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Abstract

This paper investigates under which conditions instantiation-based
proof procedures can be combined in a nested way, in order to mechani-
cally construct new instantiation procedures for richer theories. Interest-
ing applications in the field of verification are emphasized, particularly for
handling extensions of the theory of arrays.

1 Introduction

Proving the satisfiability or unsatisfiability of a first-order formula (possibly
modulo some background theory) is an essential problem in computer science
– in particular for the automatic verification of complex systems, and instan-
tiation schemes can be used for this purpose. Such schemes can be viewed as
functions Θ that map a set of formulæ (or clauses) S to a set of ground (i.e.
without variable) instances Θ(S) of S. An instantiation scheme Θ is refutation-
ally complete if for all sets of clauses S, Θ(S) is satisfiable exactly when S is.
Examples of refutationally complete instantiation schemes include [22, 24, 17, 5].
It is clear that an instantiation scheme that is refutationally complete does not
always terminate, as Θ(S) may be infinite, but schemes that are both complete
and terminating can be defined for specific classes of clause sets, that are thus
decidable. A trivial and well-known example is the Bernays-Schönfinkel class
(i.e. the class of purely universal formulæ without function symbols of arity
distinct from 0, see, e.g., [11]), since in this case the set of ground instances is
finite. Other examples include the class of stratified clause sets [1] and many
classes of clause sets of the form G ∪A, where G is a set of ground formulæ and
A is the set of axioms of a specific theory, for instance the theory of arrays [6].
In this last case, of course, only the axioms in A need to be instantiated.
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Instantiation schemes can also be defined for specific theories for which deci-
sion procedures exist. Then, the theory is not axiomatized, but directly handled
by an external prover – used as a “black box”. In this case, the instantiation
procedure should preserve the validity of the formula modulo the considered the-
ory. Such procedures are appealing, because it is usually much easier to check
the validity of a ground set than that of a non-ground set (see for instance [7]).

Frequently, one has to handle heterogeneous problems, defined on complex
theories for which no instantiation procedure exists. Such theories are frequently
obtained by combining simpler theories. For instance the theory describing a
data-structure (arrays, list, etc.) may be combined with the theory modeling
the elements it contains (e.g., integers). Most systems rely on the Nelson-Oppen
method (and its numerous refinements) to reason on combination of theories.
This scheme allows one – under certain conditions – to combine independent
decision procedures (see, e.g., [27]), but it is of no use for reasoning on theories
that include axioms containing function or predicate symbols from both theories.
As an example, consider the following formula:

∀i, j : nat, i ≤ j ⇒ select(t, i) ≤ select(t, j),

that states that an array t is sorted. This formula uses symbols from the theory
of integers (the predicate ≤) and from the theory of arrays (the function select,
which returns the value stored in a certain array at a certain index).

In this paper, we show how to construct automatically instantiation schemes
for such axioms, by combining existing instantiation schemes. More precisely,
from two complete instantiation procedures ΘN and ΘA for the theory of inte-
gers and for the theory of arrays respectively, we construct a new procedure Θ
which is able to handle a particular class of “mixed” axioms, containing function
symbols from both theories (including for instance the axioms for sorted arrays
and many others). Θ will be complete and terminating if both ΘN and ΘA are
(as proven in Section 3.3). This approach is not restricted to specific theories
such as ΘN and ΘA; on the contrary it is generic and applies to a wide range of
theories and some examples are provided in Section 4. The conditions that must
be satisfied by the considered theories and by their instantiation procedures are
very precisely identified (see Section 3.2).

Comparison with Related Work

There is an extensive amount of work on the combination of (usually disjoint)
theories, using mainly refinements or extensions of the Nelson-Oppen method
(see, e.g., [27, 8]). For instance, [14] shows that many decidable fragments of
first-order logic can be combined with any disjoint theory, even if these fragments
do not fulfill the stable infiniteness condition in general. A related result is
presented in [15] for the theory of lists (with a length function). However, these
results do not apply to non-disjoint theories as the ones we consider in this
paper, and they cannot handle nested combinations of arbitrary theories.

Reasoning on the combination of theories with mixed axioms has been rec-
ognized as an important problem and numerous solutions have been proposed
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in many specific cases. Most existing work focuses on testing the satisfiability
problem of ground formulæ in combinations or extensions of existing theories.
In contrast, our method aims at reducing non-ground satisfiability to ground
satisfiability tests, via instantiation.

For instance, [7, 6] define a decision procedure for extensions of the theory
of arrays with integer elements, which is able to handle axioms such as the one
above for sorted arrays. As we shall see in Section 4, our approach, when applied
to these particular theories, permits to handle a strictly more expressive class
of quantified formulæ.

[19] focuses on arrays with integer indices and devises a method to combine
existing decision procedures (for Presburger arithmetic and for the theory of
arrays). This method is able to handle some important specific features of
arrays such as sortedness or array dimension. Similarly to our approach, theirs
is based on an instantiation of the axioms. As we shall see, some of its features
can be tackled with our method and others (such as Injectivity) are out of its
scope. However, our method is generic in the sense that it applies to a wide
class of theories and axioms (in particular, it applies to axioms that are not
considered in [19]). It is essentially syntactic, whereas that of [19] is more of a
semantic nature.

A logic devoted to reasoning with arrays of integers is presented is [21] and
the decidability of the satisfiability problem is established by reduction to the
emptiness problem for counter automata. In Section 4 we shall show that the
expressive power of this logic is again incomparable with the one we obtain with
our approach.

[18] proposes an instantiation scheme for sets of clauses possibly containing
arithmetic literals, which can handle some of the axioms we consider. However
termination is not guaranteed for this scheme, in contrast to ours.

Slightly closer to our approach is the work described in [25, 26], which defines
the notion of the (stably) local extension of a theory and shows that the satisfi-
ability problem in a (stably) local extension of a theory A can be reduced to a
mere satisfiability test in A. The notion of a local extension is a generalization
of the notion of a local theory [16]. The idea is that, for testing the satisfiability
of a ground formula G in the local extension of a theory, it is sufficient to instan-
tiate the variables occurring in the new axioms by ground terms occurring either
in G or in the axioms. This condition holds for numerous useful extensions of
base theories, including for instance extensions with free functions, with selector
functions for an injective constructor, with monotone functions over integers or
reals etc. Our approach departs from these results because our goal is not to
extend basic theories, but rather to combine existing instantiation procedures.
Note also that the notion of a local extension is a semantic one, and that this
property must be established separately for every considered extension. In our
approach we define conditions on the theories ensuring that they can be safely
combined. These conditions can be tested once and for all for each theory, and
then any combination is allowed. The extensions we consider in this paper are
not necessarily local thus do not fall under the scope of the method in [25, 26].
However, an important restriction of our approach compared to [25, 26] is that
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the theories must be combined in a hierarchic way: intuitively there can be
function symbols mapping elements of the first theory B (the “base” theory) to
elements of the second one N (the “nesting” theory), but no function symbols
are allowed from N to B.

Extensions of the superposition calculus [3] have been proposed to handle
first-order extensions of a base theory (see for example [4, 2]). The superposi-
tion calculus is used to reason on the generic part of the formulæ whereas the
theory-specific part is handled by an external prover. These proof procedures
can be used to reason on some the formulæ we consider in the present paper.
However, we are not aware of any termination result for these approaches (even
completeness requires additional restrictions that are not always satisfied in
practice). Our approach uses an instantiation-based approach instead of super-
position, and ensures that termination is preserved by the combination, at the
cost of much stronger syntactic restrictions on the considered formulæ.

Organization of the Paper

The rest of the paper is structured as follows. Section 2 contains general def-
initions and notations used throughout the present work. Most of them are
standard, but some are more particular, such as the notions of ω-clauses or
specifications. Section 3 describes our procedure for the nested combination of
instantiation schemes, and introduces conditions to ensure that completeness
is preserved. Section 4 shows some interesting applications of these results for
theories that are particularly useful in the field of verification (especially for
extensions of the theory of arrays). Section 5 concludes the paper and gives
some lines of future work.

2 Preliminaries

In this section, we first briefly review usual notions and notations about first-
order clausal logic. Then we introduce the rather nonstandard notion of an
ω-clause (a clause with infinitely many literals). We define the notion of speci-
fications and provide some examples showing how usual theories such as those
for integers or arrays can be encoded. Finally we introduce the notion of in-
stantiation methods.

2.1 Syntax

Let S be a set of sort symbols and F be a set of function symbols together with a
ranking function rnk : F → S∗×S. For every f ∈ F , we write f : s1×· · ·×sn → s

if rnk(f) = s1, . . . , sn, s. If n = 0 then f is a constant symbol of sort s. We
assume that F contains at least one constant symbol of each sort. To every
sort s ∈ S is associated a countably infinite set Xs of variables of sort s, such
that these sets are pairwise disjoint. X =

⋃

s∈S Xs denotes the whole set of
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variables. For every s ∈ S, the set of terms of sort s is denoted by Ts(X ) and
built inductively as usual on X and F :

• Xs

def

⊆ Ts(X ).

• If f : s1×. . .×sn → s and for all i ∈ [1, n], ti ∈ Tsi
(X ) then f(t1, . . . , tn)

def

∈
Ts(X ).

The set of terms is defined by T(X )
def

=
⋃

s∈S Ts(X ).
An atom is an equality t ≃ s between terms of the same sort. A literal is

either an atom or the negation of an atom (written t 6≃ s). If L is a literal,

then Lc denotes its complementary: (t ≃ s)c
def

= (t 6≃ s) and (t 6≃ s)c
def

= (t ≃ s).
A clause is a finite set (written as a disjunction) of literals. We assume that S
contains a sort bool and that F contains a constant symbol true of sort bool.
For readability, atoms of the form p ≃ true will be simply denoted by p (thus
we write, e.g., a ≤ 2 instead of (a ≤ 2) ≃ true). An atom is equational iff it is
of the form t ≃ s where t, s 6= true.

The set of variables occurring in an expression (term, atom, literal or clause)
E is denoted by Var(E). E is ground iff Var(E) = ∅. The set of ground terms of

sort s is denoted by Ts and the set of ground terms by T
def

=
⋃

s∈STs.
A substitution is a function that maps every variable to a term of the same

sort. The image of a variable x by a substitution σ is denoted by xσ. The

domain of a substitution σ is the set1 dom(σ)
def

= {x ∈ X | xσ 6= x}, and its
codomain cod(σ) is the set of elements the variables in the domain are mapped
to. Substitutions are extended to terms, atoms, literals and clauses as usual:

f(t1, . . . , tn)σ
def

= f(t1σ, . . . , tnσ), (t ≃ s)σ
def

= (tσ ≃ sσ), (¬L)σ
def

= ¬(Lσ) and

(
∨n

i=1 Li)σ
def

=
∨n

i=1 Liσ. A substitution σ is ground if ∀x ∈ dom(σ), Var(xσ) =
∅. A ground instance of an expression E is an expression of the form Eσ, where
σ is a ground substitution of domain Var(E).

Definition 1. A substitution σ is pure iff for all x ∈ X , xσ ∈ X . In this case,
for any term t, tσ is a pure instance of t. A substitution σ is a renaming if it is
pure and injective. ♦

A substitution σ is a unifier of a set of pairs {(ti, si) | i ∈ [1, n]} iff ∀i ∈
[1, n], tiσ = siσ. It is well-known that all unifiable sets have a most general
unifier (mgu), which is unique up to a renaming.

2.2 Semantics

An interpretation I is a function mapping:

• Every sort symbol s ∈ S to a nonempty set sI .

• Every function symbol f : s1 × . . . × sn → s ∈ F to a function f I :
sI1 × . . .× sIn → sI .

1for technical convenience we do not assume that dom(σ) is finite.
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DI denotes the domain of I, i.e., the set
⋃

s∈S s
I . As usual, the valuation

function E 7→ [E ]I maps every ground expression E to a value defined as follows:

• [f(t1, . . . , tn)]I
def

= f I([t1]I , . . . , [tn]I),

• [t ≃ s]I = true iff [t]I = [s]I ,

• [t 6≃ s]I = true iff [t ≃ s]I 6= true,

• [
∨n

i=1 Li]I
def

= true iff ∃i ∈ [1, n], [Li]I = true.

An F -interpretation I satisfies an F -clause C if for every ground instance Cσ of
C we have [Cσ]I = true. A set of F -clauses S is satisfied by I if I satisfies every
clause in S. If this is the case, then I is a model of S and we write I |= S. A set
of clauses S is satisfiable if it has a model; two sets of clauses are equisatisfiable
if one is satisfiable exactly when the other is satisfiable.

In the sequel, we restrict ourselves, w.l.o.g., to interpretations such that, for
every s ∈ S, sI = {[t]I | t ∈ Ts}.

2.3 ω-Clauses

For technical convenience, we extend the usual notion of a clause by allowing
infinite disjunction of literals:

Definition 2. An ω-clause is a possibly infinite set of literals. ♦

The notion of instance extends straightforwardly to ω-clauses: if C is an ω-
clause then Cσ denotes the ω-clause {Lσ | L ∈ C} (recall that the domain of
σ may be infinite). Similarly, the semantics of ω-clauses is identical to that of

standard clauses: if C is a ground ω-clause, then [C]I
def

= true iff there exists
an L ∈ C such that [L]I = true. If C is a non-ground ω-clause, then I |= C
iff for every ground substitution of domain Var(C), [Cσ]I = true. The notions
of satisfiability, models etc. are extended accordingly. If S, S′ are two sets of
ω-clauses, we write S E S′ if for every clause C′ ∈ S′ there exists a clause C ∈ S
such that C ⊆ C′.

Proposition 3. If S E S′ then S′ is a logical consequence of S.

Of course, most of the usual properties of first-order logic such as semi-
decidability or compactness fail if ω-clauses are considered. For instance, if C

stands for the ω-clause {b ≃ f i(a) | i ∈ N} and Dj
def

= {b 6≃ f j(a)} for j ∈ N,

then S
def

= {Dj | j ∈ N} ∪ {C} is unsatisfiable, although every finite subset of S
is satisfiable.

2.4 Specifications

Usually, theories are defined by sets of axioms and are closed under logical
consequence. In our setting, we will restrict either the class of interpretations
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(e.g., by fixing the interpretation of a sort int to the natural numbers) or
the class of clause sets (e.g., by considering only clause sets belonging to some
decidable fragments or containing certain axioms). This is why we introduce
the (slightly unusual) notion of specifications, of which we provide examples in
the following section:

Definition 4. A specification A is a pair (I,C), where I is a set of interpreta-
tions and C is a class of clause sets. A clause set S ∈ C is A-satisfiable if there
exists an I ∈ I such that I |= S. S and S′ are A-equisatisfiable if they are both
A-satisfiable or both A-unsatisfiable. We write S |=A S′ iff every A-model of S
is also an A-model of S′. ♦

For the sake of readability, if A is clear from the context, we will say that a
set of clauses is satisfiable, instead of A-satisfiable. We write (I,C) ⊆ (I ′,C′)
iff I = I ′ and C ⊆ C′. By a slight abuse of language, we say that C occurs in
A if there exists S ∈ C such that C ∈ S.

In many cases, I is simply the set of all interpretations, which we denote by
Ifol. But our results also apply to domain-specific instantiation schemes such
as those for Presburger arithmetic. Of course, restricting the form of the clause
sets in C is necessary in many cases for defining instantiation schemes that are
both terminating and refutationally complete. That is why we do not assume
that C contains every clause set. Note that axioms may be included in C. We
shall simply assume that C is closed under inclusion and ground instantiations,
i.e., for all S ∈ C if S′ ⊆ S and S′′ only contains ground instances of clauses in
S, then S′, S′′ ∈ C. All the classes of clause sets considered in this paper satisfy
these requirements.

We shall restrict ourselves to a particular class of specifications: those with
a set of interpretations that can be defined by a set of ω-clauses.

Definition 5. A specification A = (I,C) is ω-definable iff there exists a (pos-
sibly infinite) set of ω-clauses Ax(I) such that I = {I | I |= Ax(I)}. ♦

From now on, we assume that all the considered specifications are ω-definable.

2.5 Examples

Example 6. The specification of first-order logic is defined by Afol
def

= (Ifol,Cfol)
where:

• Ifol is the set of all interpretations (i.e. Ax(Ifol)
def

= ∅).

• Cfol is the set of all clause sets on the considered signature.

Example 7. The specification of Presburger arithmetic is defined as follows:

AZ

def

= (IZ,CZ) where:

• Ax(IZ) contains the domain axiom:
∨

k∈N
(x ≃ sk(0) ∨ x ≃ −sk(0)) and

the usual axioms for the function symbols 0 : int, − : int → int, s :
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int → int, p : int → int, + : int × int → int, and for the predicate
symbols ≃k: int × int → bool (for every k ∈ N) ≤: int × int → bool

and <: int× int → bool:

0 + x ≃ x s(x) + y ≃ s(x+ y)
p(x) + y ≃ p(x+ y) p(s(x)) ≃ x

s(p(x)) ≃ x sk(0) ≃k 0
−0 ≃ 0 −s(x) ≃ p(−x)

−p(x) ≃ s(−x) x 6≃k y ∨ sk(x) ≃k y
x 6≃k y ∨ pk(x) ≃k y x < y ⇔ s(x) < s(y)
x 6< y ∨ x < s(y) x ≤ y ⇔ (x < y ∨ x ≃ y)

x < s(x)

≃k denotes equality modulo k (which will be used in Section 4.1.1); x, y
denote variables of sort int and k is any natural number. Note that the
domain axiom is an infinite ω-clause, while the other axioms can be viewed
as standard clauses.

• CZ is the class of clause sets built on the set of function symbols 0 : int, s :
int → int, p : int → int and on the previous set of predicate symbols.

In the sequel, the terms sk(0) and pk(0) will be written k and −k respectively.

Example 8. The specification of arrays is AA

def

= (IA,CA) where:

• Ax(IA)
def

= {select(store(x, z, v), z) ≃ v, z′ ≃ z ∨ select(store(x, z, v), z′) ≃
select(x, z′)}, where select : array×ind → elem and store : array×ind×
elem → array (x is a variable of sort array, z, z′ are variables of sort ind
and v is a variable of sort elem).

• CA is the class of ground clause sets built on select, store and a set of
constant symbols.

It should be noted that reals can be also handled by using any axiomatization
of real closed fields.

2.6 Instantiation Procedures

An instantiation procedure is a function that reduces the A-satisfiability prob-
lem for any set of A-clauses to that of a (possibly infinite) set of ground A-
clauses.

Definition 9. Let A = (I,C) be a specification. An instantiation procedure
for A is a function Θ from C to C such that for every S ∈ C, Θ(S) is a set of
ground instances of clauses in S. Θ is complete for A if for every S ∈ C, S and
Θ(S) are A-equisatisfiable. It is terminating if Θ(S) is finite for every S ∈ C.♦
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If Θ is complete and terminating, and if there exists a decision procedure
for checking whether a ground (finite) clause set is satisfiable in I, then the A-
satisfiability problem is clearly decidable. Several examples of complete instan-
tiation procedures are available in the literature [24, 17, 5, 18, 23, 1, 7, 13, 12].
Our goal in this paper is to provide a general mechanism for constructing new
complete instantiation procedures by combining existing ones.

3 Nested Combination of Specifications

3.1 Definition

Theories are usually combined by considering their (in general disjoint) union.
Decision procedures for disjoint theories can be combined (under certain con-
ditions) by different methods, including the Nelson-Oppen method [27] or its
refinements. In this section we consider a different way of combining specifica-
tions. The idea is to combine them in a “hierarchic” way, i.e., by considering
the formulæ of the first specification as constraints on the formulæ of the second
one.

For instance, if AZ is the specification of Presburger arithmetic and AA is
the specification of arrays, then:

• 0 ≤ x ≤ n is a formula of AZ (x denotes a variable and n denotes a
constant symbol of sort int).

• select(t, x) ≃ a is a formula of AA (stating that t is a constant array).

• 0 ≤ x ≤ n ⇒ select(t, x) ≃ a (stating that t is a constant on the interval
[0, n]) is a formula obtained by combining AZ and AA hierarchically.

Such a combination cannot be viewed as a union of disjoint specifications,
since the axioms contain function symbols from both specifications. In this
example, AZ is a base specification and AA is a nesting specification.

More formally, we assume that the set of sorts S is divided into two disjoint
sets SB and SN such that for every function f : s1 × . . . × sn → s, if s ∈ SB,
then s1, . . . , sn ∈ SB. A term is a base term if it is of a sort s ∈ SB and a
nesting term if it is of a sort s ∈ SN and contains no non-variable base term.

In the sequel we let XB
def

=
⋃

s∈SB
Xs (resp. XN

def

=
⋃

s∈SN
Xs) be the set of base

variables (resp. nesting variables) and let FB (resp. FN ) be the set of function
symbols whose co-domain is in SB (resp. SN ). An SB-ground instance of an
expression E is an expression of the form Eσ where σ is a ground substitution of
domain Var(E) ∩ XB. Intuitively, an SB-ground instance of E is obtained from
E by replacing every variable of a sort s ∈ SB (and only these variables) by a
ground term of the same sort.

Definition 10. ΩB denotes the set of ω-clauses C such that every term occur-
ring in C is a base term. ΩN denotes the set of ω-clauses C such that:

1. Every non-variable term occurring in C is a nesting term.

9



2. For every atom t ≃ s occurring in C, t and s are nesting terms. ♦

Notice that it follows from the definition that ΩB ∩ ΩN = ∅, since SB and
SN are disjoint.

Definition 11. A specification (I,C) is a base specification if Ax(I) ⊆ ΩB and
for every S ∈ C, S ⊆ ΩB. It is a nesting specification if Ax(I) ⊆ ΩN and for
every S ∈ C, S ⊆ ΩN . ♦

Throughout this section, B = (IB ,CB) will denote a base specification and
N = (IN ,CN ) denotes a nesting specification. Base and nesting specifications
are combined as follows:

Definition 12. The hierarchic expansion of N over B is the specification
N [B] = (I,C) defined as follows:

1. Ax(I)
def

= Ax(IB) ∪Ax(IN ).

2. Every clause set in C is of the form {CB
i ∨ CN

i | i ∈ [1..n]}, where {CB
i |

i ∈ [1..n]} ∈ CB and {CN
i | i ∈ [1..n]} ∈ CN . ♦

If C is a clause in C, then CB is the base part of the clause and CN is its
nesting part. If S is a set of clauses in C, then SB and SN respectively denote
the sets {CB | C ∈ S} and {CN | C ∈ S}, and are respectively called the base
part and nesting part of S.

The following proposition shows that the decomposition in Condition 2 is
unique.

Proposition 13. For every clause C occurring in a clause set in C, there exist
two unique clauses CB and CN such that C = CB ∨ CN .

Proof. The existence of two clauses CB, CN is a direct consequence of Con-
dition 2 in Definition 12. Uniqueness follows straightforwardly from Definition
11.

Example 14. Consider the following clauses:

c1 {x 6≥ a ∨ select(t, x) ≃ 1} (t is constant on [a,∞[)
c2 {x 6≥ a ∨ x 6≤ b ∨ select(t, x) ≃ select(t′, x)} (t and t′ coincide on [a, b])
c3 {select(t, i) ≃ select(t′, i+ 1)} (t and t′ coincide up to a shift)
c4 {x 6≤ y ∨ select(t, x) ≤ select(t, y)} (t is sorted)
c5 {select(t, x) ≤ x} (t is lower than the identity)

Clauses c1 and c2 occur in AA[AZ], and for instance, cN1 = (select(t, x) ≃ 1)
and cB1 = (x 6≥ a). Clause c3 does not occur in AA[AZ] because the atom
select(t′, i+ 1) of the nesting specification contains the non-variable term i+ 1
of the base specification. However, c3 can be equivalently written as follows:

c′3 {j 6≃ i+ 1 ∨ select(t, i) ≃ select(t′, j)}

10



and c′3 is in AA[AZ]
2. Clause c4 does not occur in AA[AZ], because select(t, x) ≤

select(t′, x) contains symbols from both AZ (namely ≤) and AA (select) which
contradicts Condition 2 of Definition 12. However, c4 can be handled in this set-
ting by considering a copy A′

Z
of AZ (with disjoint sorts and function symbols).

In this case, c4 belongs to (AA ∪ A′
Z
)[AZ], where AA ∪ A′

Z
denotes the union

of the specifications AA and A′
Z
. Of course A′

Z
can be replaced by any other

specification containing an ordering predicate symbol. The same transformation
cannot be used on the clause c5, since (because of the literal select(t, x) ≤ x) the
sort of the indices cannot be separated from that of the elements. Again, this is
not surprising because, as shown in [6], such axioms (in which index variables
occur out of the scope of a select) easily make the theory undecidable.

Since SB and SN are disjoint, the boolean sort cannot occur both in SB and
SN . However, this problem can easily be overcome by considering two copies of
this sort (bool and bool′).

3.2 Nested Combination of Instantiation Schemes

The goal of this section is to investigate how instantiation schemes for B and
N can be combined in order to obtain an instantiation scheme for N [B]. For
instance, given two instantiation schemes for integers and arrays respectively,
we want to automatically derive an instantiation scheme handling mixed axioms
such as those in Example 14. We begin by imposing conditions on the schemes
under consideration.

3.2.1 Conditions on the Nesting Specification

First, we investigate what conditions can be imposed on the instantiation pro-
cedure for the nesting specification N . What is needed is not an instantiation
procedure that is complete for N ; indeed, since by definition every term of a
sort in SB occurring in CN is a variable, such an instantiation would normally
replace every such variable by an arbitrary ground term (a constant, for exam-
ple). This is not satisfactory because in the current setting, the value of these
variables can be constrained by the base part of the clause. This is why we shall
assume that the considered procedure is complete for every clause set that is
obtained from clauses in CN by grounding the variables in XB , no matter the
grounding instantiation.

Definition 15. An SB-mapping is a function α from TB to TB. Such a map-
ping is extended straightforwardly into a function from expressions to expres-
sions: for every expression (term, atom, literal, clause or set of clauses) E , α(E)
denotes the expression obtained from E by replacing every term t ∈ TB occur-
ring in E by α(t).

2However as we shall see in Section 4, our method cannot handle such axioms, except in
some very particular cases. In fact, adding axioms relating two consecutive elements of an
array easily yields undecidable specifications (as shown in [6]).

11



An instantiation procedure Θ is SB-invariant iff for every SB-mapping α,
and every clause C in a set S, C ∈ Θ(S) ⇒ α(C) ∈ Θ(α(S)). ♦

We may now define nesting-complete instantiation procedures. Intuitively,
such a procedure must be complete on those sets in which the only terms of a
sort in SB that occur are ground, the instances cannot depend on the names
of the terms in TB and the addition of information cannot make the procedure
less instantiate a clause set.

Definition 16. An instantiation procedure Θ is nesting-complete if the follow-
ing conditions hold:

1. For all sets S ∈ CN and all sets S′ such that every clause in S′ is an
SB-ground instance of a clause in S, S′ and Θ(S′) are A-equisatisfiable.

2. Θ is SB-invariant.

3. Θ is monotonic: S′ ⊆ S ⇒ Θ(S′) ⊆ Θ(S). ♦

3.2.2 Conditions on the Base Specification

Second, we impose conditions on the instantiation procedure for the base spec-
ification B. We need the following definitions:

Definition 17. Let S be a set of clauses and let G be a set of terms. We
denote by S↓G the set of clauses of the form Cσ, where C ∈ S and σ maps every
variable in C to a term of the same sort in G. ♦

Proposition 18. Let S be a set of clauses and let G and G′ be two sets of
ground terms. If G ⊆ G′ then S↓G ⊆ S↓G′ .

Definition 19. If S is a set of clauses, we denote by S⋆
∨ the set of clauses of

the form
∨

i=1,...,n Ciσi such that for every i ∈ [1, n], Ci ∈ S and σi is a pure
substitution. ♦

Example 20. Let S = {p(x, y)}. Then S⋆
∨ contains among others the clauses

p(x, x), p(x, y), p(x, y) ∨ p(z, u), p(x, y) ∨ p(y, x), p(x, y) ∨ p(y, z) ∨ p(z, u), etc.

Definition 21. An instantiation procedure Θ for B is base-complete iff the
following conditions hold:

1. For every S ∈ CB there exists a finite set of terms GS such that Θ(S) =
S↓GS

and Θ(S) and S are B-equisatisfiable.

2. If S ⊆ S′ then GS ⊆ GS′ .

3. For every clause set S ∈ C, GS⋆
∨
⊆ GS . ♦

Obviously these conditions are much stronger than those of Definition 16.
Informally, Definition 21 states that:

12



1. All variables must be instantiated in a uniform3 way by ground terms,
and satisfiability must be preserved.

2. The instantiation procedure is monotonic.

3. The considered set of ground terms does not change when new clauses are
added to S, provided that these clauses are obtained from clauses already
occurring in S by disjunction and pure instantiation only.

3.2.3 Definition of the Combined Instantiation Scheme

We now define an instantiation procedure for N [B]. Intuitively this procedure
is defined as follows.

1. First, the nesting part of each clause in S is extracted and all base variables
are instantiated by arbitrary constant symbols • (one for each base sort).

2. The instantiation procedure for N is applied on the resulting clause set.
This instantiates all nesting variables (but not the base variables, since
they have already been instantiated at Step 1).

3. All the substitutions on nesting variables from Step 2 are applied to the
initial set of clauses.

4. Assuming the instantiation procedure for B is base-complete, if this pro-
cedure was applied to the base part of the clauses, then by Condition 1 of
Definition 21, the base variables in the base part of the clauses would be
uniformly instantiated by some set of terms G. All base variables and all
occurrences of constants • are replaced by all possible terms in G.

Example 22. Assume that B = AZ, N = Afol and that F contains the follow-
ing symbols: a : int, b : int, c : s and p : int × s → bool. Consider the set
S = {x 6≤ a ∨ p(x, y), u 6≤ b ∨ ¬p(u, c)}.

1. We compute the set SN = {p(x, y),¬p(u, c)} and replace every base vari-
able by •. This yields the set: {p(•, y),¬p(•, c)}.

2. We apply an instantiation procedure for Afol
4. Obviously, this procedure

should instantiate the variable y by c, yielding {p(•, c),¬p(•, c)}.

3. We apply the (unique in our case) substitution y 7→ c to the initial clauses:
{x 6≤ a∨p(x, c), u 6≤ b∨¬p(u, c)}. Note that at this point all the remaining
variables are in XB.

4. We compute the set of clauses SB = {x 6≤ a, u 6≤ b} and the set of terms
GSB . It should be intuitively clear5 that x must be instantiated by a and
u by b, yielding GSB = {a, b}.

3Of course sort constraints must be taken into account.
4There exist several instantiation procedures for Afol, one such example is given in Section

4.2.1.
5A formal definition of an instantiation procedure for this fragment of Presburger arithmetic

will be given in Section 4.1.1.
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5. We thus replace all base variables by every term in {a, b} yielding the set
{a 6≤ a ∨ p(a, c), b 6≤ a ∨ p(b, c), a 6≤ b ∨ ¬p(a, c), b 6≤ b ∨ ¬p(b, c)}, i.e.,
after simplification, {p(a, c), b 6≤ a ∨ p(b, c), a 6≤ b ∨ ¬p(a, c),¬p(b, c)}. It
is straightforward to check that this set of clauses is unsatisfiable. Any
SMT-solver capable of handling arithmetic and propositional logic can be
employed to test the satisfiability of this set.

The formal definition of the procedure is given below. Let γ• be a substitu-
tion mapping every variable of a sort s ∈ SB to an arbitrary constant symbol
•s of sort s.

Definition 23. Let ΘB be a base-complete instantiation procedure and ΘN be
a nesting-complete instantiation procedure. ΘN [ΘB](S) is defined as the set of
clauses of the form (CB ∨ CN )θ′σ where:

• C ∈ S.

• CNγ•θ ∈ ΘN (SNγ•).

• θ′ is obtained from θ by replacing every occurrence of a constant symbol
•s in the co-domain of θ by a fresh variable of the same sort.

• σ maps every variable in Cθ′ to a term of the same sort in GSB . ♦

The following proposition is straightforward to prove and states the sound-
ness of this procedure:

Proposition 24. Let ΘB be a base-complete instantiation procedure and let ΘN

be a nesting-complete instantiation procedure. For every set of clauses S ∈ C,
ΘN [ΘB](S) is a set of ground instances of clauses in S. Thus if ΘN [ΘB](S) is
N [B]-unsatisfiable, then so is S.

Several examples of concrete instantiation procedures satisfying the condi-
tions of Definitions 16 and 21 are provided in Section 4.

3.3 Completeness

The remainder of this section is devoted to the proof of the main result of this
paper, namely that the procedure Θ2[Θ1] is complete for N [B]:

Theorem 25. Let ΘB be a base-complete instantiation procedure (for B) and
let ΘN be a nesting-complete instantiation procedure (for N ). Then ΘN [ΘB] is
complete for N [B]; furthermore, this procedure is monotonic and SB-invariant.

The rest of the section (up to Page 21) can be skipped entirely by readers
not interested in the more theoretical aspects of the work. The proof of this
theorem relies on a few intermediate results that are developed in what follows.
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3.3.1 Substitution Decomposition

Definition 26. A substitution σ is a base substitution iff dom(σ) ⊆ XB. It is
a nesting substitution iff dom(σ) ⊆ XN and for every x ∈ dom(σ), xσ contains
no non-variable base term. ♦

We show that every ground substitution can be decomposed into two parts:
a nesting substitution and a base substitution. We begin by an example:

Example 27. Assume that B = AZ, N = Afol and that F contains the fol-
lowing symbols: f : s × int → s, c : s. Consider the ground substitution
σ = {x 7→ f(c, s(0)), y 7→ f(f(c, 0), 0), n 7→ s(0)}. We can extract from σ a
nesting substitution by replacing all subterm-maximal base terms by variables,
thus obtaining σN = {x 7→ f(c, n), y 7→ f(f(c,m),m)}, and then construct the
base substitution σB = {n 7→ s(0),m 7→ 0} such that σ = σNσB. Note that σN
is not ground and that dom(σB) 6⊆ dom(σ).

The following result generalizes this construction:

Proposition 28. Every ground substitution σ can be decomposed into a product
σ = (σNσB)|dom(σ) where σN is a nesting substitution, σB is a base substitution,

and for all x ∈ dom(σB) \ dom(σ),

• ∀y ∈ dom(σB) ∩ dom(σ), xσB 6= yσB,

• ∀y ∈ dom(σB) \ dom(σ), yσ = xσ ⇒ x = y.

Proof. Let E be the set of subterm-maximal base terms occurring in terms
of the form xσ, with x ∈ dom(σ). Let ν be a (partial) function mapping every
term t ∈ E ∩ cod(σ) to an arbitrarily chosen variable ν(t) such that ν(t)σ = t.
This function ν is extended into a total function on E by mapping all terms t
for which ν(t) is undefined to pairwise distinct new variables, not occurring in
dom(σ). Note that ν is injective by construction. The substitutions σB and σN
are defined as follows:

• dom(σN )
def

= dom(σ)∩XN and xσN is the term obtained by replacing every
occurrence of a term t ∈ E in xσ by ν(t);

• dom(σB)
def

= [dom(σ) ∩ XB] ∪ ν(E); if x = ν(t) for some term t ∈ E, then

xσB
def

= t; otherwise, xσB
def

= xσ. Note that σB is well-defined, since by
definition if ν(t) = ν(s) then t = s.

By construction, σN is a nesting substitution and σB is a base substitution.
Furthermore, since ν(t)σB = t, xσNσB = xσ for every x ∈ dom(σ) ∩ XN .
Similarly, for every x ∈ dom(σ) ∩ XB, xσNσB = xσB = xσ and therefore
σ = (σNσB)|dom(σ). Let x ∈ dom(σB) \ dom(σ). By definition of σB , x is

of the form ν(t) for some t ∈ E, and there is no variable y ∈ dom(σ) such
that yσ = t, since otherwise ν(t) would have been defined as y. Thus ∀y ∈
dom(σB) ∩ dom(σ), xσB 6= yσ = yσB. Now if y ∈ dom(σB) \ dom(σ) and
xσB = yσB , then y is also of the form ν(s) for some s ∈ E and we have xσB = t
and yσB = s, hence t = s and x = y.
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3.3.2 Partial Evaluations

Given a set of clauses S in N [B] and an interpretation I of B, we consider a
set of clauses S′ of N by selecting those ground instances of clauses in S whose
base part evaluates to false in I and adding their nesting part to S′. More
formally:

Definition 29. For every clause C ∈ CB and for every interpretation I ∈ IB,
we denote by ΦI(C) the set of ground substitutions η of domain Var(C) such
that I 6|= Cη. Then, for every S ∈ C we define:

S|I
def

= {CNη | C ∈ S, η ∈ ΦI(C
B)}.

Example 30. Let S = {x 6≃ a ∨ P (x), y < 2 ∨ Q(y, z)} be a set of clauses in
Afol[AZ], where x, y, a are of sort int and z is a variable of a sort distinct from
int. Let I be the interpretation of natural numbers such that aI = 1. Then
ΦI(x 6≃ a) = {x 7→ 1} and ΦI(y < 2) = {y 7→ k | k ∈ N, k ≥ 2}. Therefore
S|I = {P (1)} ∪ {Q(k, z) | k ∈ N, k ≥ 2}.

The following lemma shows that S|I is N -unsatisfiable when S is N [B]-
unsatisfiable.

Lemma 31. For every N [B]-unsatisfiable set of clauses S ∈ C and for every
I ∈ IB , S|I is N -unsatisfiable.

Proof. Let N [B] = (I,C). Assume that S|I is N -satisfiable, i.e. that there
exists an interpretation J ∈ IN validating S|I . W.l.o.g. we assume that the
domain of J is disjoint from that of I. We construct an interpretation K ∈ I
satisfying S, which will yield a contradiction since S is N [B]-unsatisfiable by
hypothesis.

For all sort symbols s ∈ SB and for all e ∈ sI , we denote by γ(e) an
arbitrarily chosen ground term in TB such that [γ(e)]I = e6. If E is a ground
expression, we denote by E↓γ the expression obtained from E by replacing every
term t by γ([t]I); by construction [E ]I = [E↓γ ]I . Let ψ : DI ⊎DJ → DJ be the
function defined for every element e ∈ DI ∪DJ as follows:

• if e ∈ sI then ψ(e)
def

= [γ(e)]J ;

• otherwise ψ(e)
def

= e.

We define the interpretation K by combining I and J as follows:

• K coincides with I on SB and on every function symbol whose co-domain
is in SB.

• K coincides with J on SN .

6γ(e) always exists since we restricted ourselves to interpretations such that, for every
s ∈ S, sI = {[t]I | t ∈ Ts}.
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• For all function symbols f ∈ FN of arity n, fK(e1, . . . , en)
def

=
fJ(ψ(e1), . . . , ψ(en)). Note that fK is well-defined since by definition
of ψ, if e ∈ sK then ψ(e) ∈ sJ .

Let E be a ground expression (term, atom, literal, clause or ω-clause) such
that E↓γ= E . Assume that E is a ground instance of an expression occurring in
a clause in ΩN . We prove by structural induction on E that [E ]J = ψ([E ]K).

• If E is a term of a sort in SB then since I and K coincide on SB ∪ FB,
we have [E ]K = [E ]I . By hypothesis E ↓γ= E , thus γ([E ]I) = E and by
definition of ψ, ψ([E ]K) = ψ([E ]I) = [γ(E)]J = [E ]J .

• If E is of the form f(t1, . . . , tn) where f ∈ FN , then by definition [E ]J =
fJ([t1]J , . . . , [tn]J) and by the induction hypothesis, [ti]J = ψ([ti]K) for
i ∈ [1, n]. Again by definition, [E ]K = fJ(ψ([t1]K), . . . , ψ([tn]K)) =
fJ([t1]J , . . . , [tn]J) = [E ]J . Thus, since the domains of I and J are disjoint,
[E ]J 6∈ SIB, hence ψ([E ]J ) = [E ]J .

• If E is an atom of the form t1 ≃ t2 then t1, t2 6∈ SB. Indeed E occurs in
a ground instance of a clause C occurring in ΩN and by Definition 10,
such clauses cannot contain equalities between base terms. Thus we have
ψ([ti]K) = [ti]K (for i = 1, 2) and the proof is straightforward.

• The proof is immediate if E is a literal or a (possibly infinite) disjunction
of literals.

Since J |= S|I and all specifications are assumed to be ω-definable (see
Definition 5), we deduce that K |= S|I ∪ Ax(IN ). Indeed, for the sake of
contradiction, assume that there exists an ω-clause C ∈ S|I ∪ Ax(IN ) and a
ground substitution θ of domain Var(C) such that K 6|= Cθ. Since K |= t ≃ t↓γ
for every term t, necessarily K 6|= Cθ′ where xθ′

def

= xθ↓γ . But then Cθ′↓γ= Cθ′

and since [E ]J = ψ([E ]K), we conclude that J 6|= Cθ′ which is impossible since
by hypothesis J is an N -model of S|I .

We now prove that K |= S. Let C ∈ S and η be a ground substitution
of domain Var(C). W.l.o.g. we assume that ∀x ∈ Var(C), xη↓γ= xη. Let ηB
(resp. ηN ) be the restriction of η to the variables of a sort in SB (resp. in SN ).
If I |= CBηB then K |= CBηB because K and I coincide on SB ∪ FB, and
consequently K |= Cη (since Cη ⊇ CBηB). If I 6|= CBηB then ηB ∈ ΦI(C),
hence CNηB ∈ S|I . Again K |= CηB hence K |= Cη; therefore K |= S.

Finally, since K coincides with I on SB ∪ FB we have K |= Ax(IB). This
proves that K is an N [B]-model of S, which is impossible.

3.3.3 Abstraction of Base Terms

Lemma 31 relates the N [B]-unsatisfiability of a set of clauses S to the N -
unsatisfiability of sets of the form S|I . By definition, S|I is of the form S′σ, for
some clause set S′ ∈ CN and for some ground base substitution σ. However,
since neither Ax(IN ) nor CN contains symbols of a sort in SB, the interpretation
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of the ground base terms of S′ in an interpretation of IN is arbitrary: changing
the values of these terms does not affect the N -satisfiability of the formula. Thus
the actual concrete values of the ground base terms does not matter: what is
important is only how these terms compare to each other.

Example 32. Assume that N = Afol, p : int × s → bool, a : s, and let
S = {p(x, z),¬p(y, a)}. Consider σ : {x 7→ 0, y 7→ 0}, clearly, Sσ |=N �. But
also S{x 7→ s(0), y 7→ s(0)} |=N � and more generally S{x 7→ t, y 7→ t} |=N �.
On the other hand, S{x 7→ 0, y 7→ s(0)} 6|=N � and more generally S{x 7→
t, y 7→ t′} 6|=N � if t, t′ are distinct integers.

Therefore, if Sσ |=N Cσ for some base substitution σ then actually
Sθ |=N Cθ, for every substitution θ such that xθ = yθ ⇔ xσ = yσ. This
will be formalized in the following definitions and lemma. We first introduce an
unusual notion of semantic entailment. The intuition is that variables in SB are
considered as “rigid” variables that must be instantiated by arbitrary ground
terms:

Definition 33. Let S ∈ CN . We write S |=r C iff for every ground substitution
of domain XB , Sσ |=N Cσ. ♦

Example 34. Assume that N = Afol. Let a : s, p : int × s → bool and
q : int → bool, where int ∈ SB, s ∈ SN . Let S = {p(x, y),¬p(u, a) ∨ q(u)},
where x, y, u are variables. Then S |=r q(x), but S 6|=r q(0). Note that x denotes
the same variable in S and q(x) (the variables are not renamed).

Definition 35. For every substitution σ we denote by 〈σ〉 an arbitrarily chosen
pure substitution such that xσ = yσ ⇒ x〈σ〉 = y〈σ〉, for every x, y ∈ X . ♦

Note that such a substitution always exists. The next lemma can be viewed
as a generalization lemma: it shows that the values of the ground base terms
can be abstracted into variables.

Lemma 36. Let S ∈ CN and σ be a base substitution such that dom(σ) ⊆ XB .
If Sσ |=N Cσ then S〈σ〉 |=r C〈σ〉.

Proof. Let θ be a substitution of domain XB. We assume that there exists an
I ∈ IN such that I |= S〈σ〉θ and I 6|= C〈σ〉θ, and we show that a contradiction
can be derived.

For every ground term t, we denote by Γ(t) the ground term obtained from
t by replacing every ground subterm of the form xσ by x〈σ〉θ. Γ is well-defined:
indeed, if xσ = yσ, then by definition of 〈σ〉, x〈σ〉 = y〈σ〉 thus x〈σ〉θ = y〈σ〉θ.
Let J be the interpretation defined as follows7:

• If s ∈ SB then sJ
def

= Ts.

• If f is a symbol of rank s1 × . . . × sn → s where s1, . . . , sn, s ∈ SB then

fJ(t1, . . . , tn)
def

= f(t1, . . . , tn).

7Intuitively, J interprets every base term as itself and coincides with I on nesting terms.
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• If f is a symbol of rank s1 × . . . × sn → s where s 6∈ SB then

fJ(t1, . . . , tn)
def

= f I(t′1, . . . , t
′
n) where for every i ∈ [1, n], si ∈ SN ⇒

t′i = [ti]J and si ∈ SB ⇒ t′i = [Γ(ti)]I .

By construction, [s]J = s for every ground base term s; we prove that for every
ground nesting term t, [t]J = [Γ(t)]I , by induction on t. If t = f(t1, . . . , tn),
then [t]J = f I(t′1, . . . , t

′
n) where for every i ∈ [1, n], si ∈ SN ⇒ t′i = [ti]J and

si ∈ SB ⇒ t′i = [Γ(ti)]I . By the induction hypothesis, si ∈ SN ⇒ t′i = [Γ(ti)]I .
Thus [t]J = f I([Γ(t1)]I , . . . , [Γ(tn)]I) = [Γ(t)]I .

Now let σ′ be a ground substitution with a domain in XN , and let θ′
def

= Γ◦σ′.
We prove that for every expression E occurring in S ∪ {C} that is not a base
term, [Eσσ′]J = [E〈σ〉θθ′]I .

• Assume that E is a variable x in XN . Then [Eσσ′]J = [xσ′]J , and by the
previous relation we get [Eσσ′]J = [Γ(xσ′)]I = [xθ′]I = [E〈σ〉θθ′]I .

• Assume that E is a nesting term of the form f(t1, . . . , tn). Then
by the result above, [Eσσ′]J = [Γ(Eσσ′)]I . By definition of Γ
we have Γ(Eσσ′) = f(Γ(t1σσ

′), . . . ,Γ(tnσσ
′)), therefore, [Eσσ′]J =

f I([Γ(t1σσ
′)]I , . . . , [Γ(tnσσ

′)]I). For i ∈ [1, n], if ti is a nesting term then
by the result above [Γ(tiσσ

′)]I = [tiσσ
′]J and by the induction hypothesis,

[Γ(tiσσ
′)]I = [ti〈σ〉θθ′]I . Otherwise, ti is a base term, and must neces-

sarily be a variable, thus Γ(tiσ) = ti〈σ〉θ. Therefore Γ(tiσσ
′) = Γ(tiσ) =

ti〈σ〉θ = ti〈σ〉θθ′. Therefore [Eσσ′]J = f I([t1〈σ〉θθ′]I , . . . , [tn〈σ〉θθ′]I) =
[E〈σ〉θθ′]I .

• The proof is similar if E is of the form t ≃ s, t 6≃ s of
∨n

i=1 li.

We thus conclude that for every clause D ∈ S ∪ {C} ∪ Ax(I), J |= Dσσ′ iff
I |= D〈σ〉θθ′. Since I |= S〈σ〉θ ∪ Ax(IN ), we deduce that J |= Sσ ∪ Ax(IN ),
which proves that J ∈ IN . Since I 6|= C〈σ〉θ we have J 6|= Cσ, which is
impossible because J ∈ IN and Sσ |=N Cσ.

3.3.4 Completeness of ΘB for ω-Clauses

In this section, we prove that any procedure that is base-complete is also com-
plete for some classes of sets of possibly infinite ω-clauses – this is of course not
the case in general. We first notice that the notation S⋆

∨ of Definition 19 can be
extended to ω-clauses, by allowing infinite disjunctions:

Definition 37. Given a set of clauses, S, we denote by Sω
∨ the set of ω-clauses

of the form {Ciσ | i ∈ N, Ci ∈ S, σi is a pure substitution}. ♦

The notation S↓G also extends to ω-clauses: S↓G is the set of clauses Cσ such
that C ∈ S and σ maps every variable in C to a term in G.

Proposition 38. Let S be a finite set of clauses and G be a finite set of terms.
Then Sω

∨↓G is a finite set of clauses.
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Proof. By definition, any literal occurring in Sω
∨ is of the form Lσ where L is a

literal occurring in a clause C ∈ S and σ is a pure substitution. Thus any literal
occurring in Sω

∨↓G is of the form Lσθ where L is literal occurring in a clause in
S, σ is pure and θ maps every variable to a term in G. Obviously, since G and
S are finite, there are finitely many literals of this form. Hence all the ω-clauses
in Sω

∨↓G are actually finite, and there are only finitely many possible clauses.

Lemma 39. Let S be a set of clauses and S′ a set of ω-clauses with S′ ⊆ Sω
∨ .

If G if a finite set of terms, then there exists a set of clauses S′′ E S′ such that
S′′

↓G = S′
↓G.

Proof. Let C be a clause in S′
↓G; by Proposition 38, C is finite. By definition

there exists an ω-clause C′ ∈ S′ such that C = C′θ, where θ is a substitution
mapping all the variables in Var(C′) to a term in G. Every literal in C′ is of
the form Lγ, where literal L occurs in S and γ is a pure substitution of Var(L).
Since S and G are finite, there is a finite number of possible pairs (L, γθ). Thus
there exists a finite subset DC ⊆ C′ such that for every literal Lγ occurring in
C′, there exists a literal Lγ′ ∈ DC with γθ = γ′θ.

Every variable occurring in a literal Lγ of C′ is of the form xγ, where x ∈
Var(L). Let ηC be the substitution mapping every variable xγ ∈ Var(C′ \DC)
to xγ′. Then for every literal Lγ ∈ C′, we have LγηC = Lγ′ ∈ DC . Thus
C′ηC = DC ; furthermore, ηC is pure and DCηC = DC .

We define S′′ = {DC | C ∈ S′
↓G}; obviously S′′ E S′ and by definition

S′′
↓G ⊇ S′

↓G. Conversely, let E be a clause in S′′
↓G, E is necessarily of the

form DCθ where C ∈ S′
↓G and θ maps every variable to a term in G. But then

E is of the form C′ηCθ, where C
′ ∈ S′, and ηCθ is a substitution mapping every

variable in C′ to a term in G; thus E must occur in S′
↓G.

The next lemma proves the completeness result for ω-clauses:

Lemma 40. Let Θ be a base-complete instantiation procedure and S be a set
of clauses. If S′ ⊆ Sω

∨ then S′ and S′
↓GS

are B-equisatisfiable.

Note that the clauses in S are finite, but those in S′ may be infinite.

Proof. S′
↓GS

is a logical consequence of S′, thus if S′ is satisfiable then so
is S′

↓GS
; we now prove the converse. Let I be an interpretation validating

S′
↓GS

. By Lemma 39, there exists a set of clauses S′′ such that S′′ E S′ and
S′

↓GS
= S′′

↓GS
. Since I |= S′

↓GS
, we deduce that S′′

↓GS
is satisfiable, hence

(since by Condition 1 in Definition 21, Θ is complete8) so is S′′. But S′′ E S′

therefore by Proposition 3, S′ is satisfiable.

3.3.5 Main Proof

We are now in the position to give the proof of the main theorem.

8Recall that S′′ is a set of finite clauses.
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Proof (of Theorem 25). Let Θ
def

= ΘN [ΘB] and let S be an unsatisfiable
clause set in C. We prove that Θ(S) is also unsatisfiable.

Let I ∈ IB, by Lemma 31, the set S|I = {CNη | C ∈ S, η ∈ ΦI(C)} is
N -unsatisfiable, and by completeness of ΘN , so is ΘN(S|I). We define

AI =
{

Cηθ | C ∈ S, CNηθ ∈ ΘN (S|I)
}

.

This set may be infinite, since no assumption was made on the decidability of
N . Every clause in AI is of the form Cηθ where I 6|= CBη,9 and by Proposition
28, Cηθ = Cσσ′, where σ is a nesting substitution and σ′ is a base substitution.
In particular, since dom(σ) ⊆ XN , CBσσ′ = CBσ′ and I 6|= CBσ′.

By construction, the set {CNσσ′ | (CN ∨ CB)σσ′ ∈ AI} is N -unsatisfiable.
Thus for every model J of AI , there exists a clause (CN ∨ CB)σσ′ ∈ AI such
that J 6|= CNσσ′, hence J |= CBσσ′ (since J |= AI we have J |= (CN∨CB)σσ′).
Since the CB cannot contain nesting variables, we have CBσσ′ = CBσ′. Hence
AI |=N

∨

Cσσ′∈AI
CBσ′. We let T = SB and define:

BI =
{

Cσ〈σ′〉 | Cσσ′ ∈ AI

}

and EI =
∨

Cσσ′∈AI

CB〈σ′〉.

Note that since AI may be infinite, EI is an ω-clause that belongs to Tω
∨ .

Lemma 36 guarantees that BI |=r EI ; thus by definition, for all sets of ground
base terms G, BI↓G |=N EI↓G. This is in particular the case for G = GT .

Let U = {EI | I ∈ IB}; by construction, for all I ∈ IB, I 6|= U ; hence U is B-
unsatisfiable and since U ⊆ Tω

∨ , by Lemma 40, U↓GT
is also B-unsatisfiable.

We have shown that BI↓G |=N EI↓G. This, together with the fact that
U↓GT

=
⋃

I∈IB
EI↓GT

permits to deduce that
⋃

I∈IB
BI↓GT

|=N U↓GT
. Since

U↓GT
is B-unsatisfiable (hence also N [B]-unsatisfiable),

⋃

I∈IB
BI↓GT

is N [B]-
unsatisfiable.

There remains to prove that
⋃

I∈IB
BI↓GT

⊆ Θ(S) to obtain the result.
Consider the function α that maps every term of a sort s ∈ SB to •s; it is
clear that α(S|I) ⊆ SNγ•. In particular, if CNσσ′ ∈ ΘN (S|I), then by the
SB-invariance and monotonicity of ΘN ,

CNσ〈σ′〉γ• = α(CBσσ′) ∈ ΘN (α(S|I)) ⊆ ΘN (SNγ•).

Therefore, (Cσ〈σ′〉)↓GT
⊆ Θ(S), hence the result.

The fact that ΘN [ΘB] is SB-invariant and monotonic follows immediately
from the definition and from the fact that ΘN is SB-invariant and that ΘB and
ΘN are monotonic.

4 Applications

In this section, we show some examples of applications of Theorem 25 that are
particularly relevant in the context of program verification.

9Recall that CBη = CBηθ, since η is a ground base substitution
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4.1 Examples of Base-Complete Specifications

4.1.1 Presburger Arithmetic

No base-complete instantiation procedure can be defined for the specification
AZ as defined in Section 2.5, as evidenced by the following example.

Example 41. Assume that a base-complete procedure Θ exists, and consider
the clause set S = {x 6≃ y + 1, y 6≃ 0}. Since Θ is base-complete by hypothesis,
by Condition 1 of Definition 21, Θ(S) = S↓GS

for some finite set of ground
terms GS , and by Condition 3, GS contains GS⋆

∨
. But S⋆

∨ contains in particular
the clause: Cn :

∨n
i=1 xi 6≃ xi−1 + 1 ∨ x0 6≃ 0. Cn is obviously AZ-unsatisfiable,

but the only instance of Cn that is AZ-unsatisfiable is: Cn{xi 7→ i | i ∈ [0, n]}.
Consequently {i | i ∈ [0, n]} ⊆ GS hence GS cannot be finite, thus contradicting
Condition 1.

It is however possible to define base-complete procedures for less general
specifications, that are still of a practical value.

Definition 42. Let χ be a special constant symbol of sort int, let m be a
natural number distinct from 0 and let TB be a set of ground terms of sort int
not containing χ. We denote by BZ the specification (I ′

Z
,C′

Z
) defined as follows.

Ax(I ′
Z
)

def

= Ax(IZ)∪{χ > t+m | t ∈ TB}, where Ax(IZ) is defined in Example 7
(Section 2.5). C′

Z
contains every clause set S such that every non-ground literal

occurring in a clause in S is of one of the following forms:

• x 6≤ t or t 6≤ x for some variable x and for some ground term t ∈ TB;

• x 6≤ y for some variables x, y;

• x 6≃k t for some k ∈ N \ {0} that divides m, some ground term t ∈ TB and
some variable x. ♦

Intuitively, the constant χ occurring in Ax(I ′
Z
) is meant to translate the fact

that the terms appearing in S admit an upper bound (namely χ). It is clear
that if S is an arbitrary set of arithmetic clauses (not containing the special
constant χ), then the set TB and the integer m can be computed so that S
indeed belongs to C′

Z
.

Definition 43. For every set of clauses S ∈ C′
Z
, let BS be the set of ground

terms t such that either t = χ or S contains an atom of the form x ≤ t. We

define the instantiation procedure ΘZ by: ΘZ(S)
def

= S↓GZ

S
, where GZ

S is defined

by: GZ

S

def

= {t− l | t ∈ BS , 0 ≤ l < m}. ♦

The two following propositions are straightforward consequences of the def-
inition:

Proposition 44. If S ⊆ S′ then GZ

S ⊆ GZ

S′ .

Proposition 45. GZ

S = GZ

S⋆
∨
.

22



Proof. This is immediate because the set of ground terms occurring in S⋆
∨ is

the same as that of S, since the atoms in S⋆
∨ are pure instances of atoms in S.

Thus BS⋆
∨
= BS .

Theorem 46. ΘZ is base-complete if B = BZ.

Proof. We adopt the following notations for the proof: given a set of terms
W , we write x 6≤ W for

∨

t∈W x 6≤ t and x 6≥ W for
∨

t∈W x 6≥ t. Additionally,
if K is a set of pairs (k, t) ∈ N×Tint then we denote by ¬K(x) the disjunction
∨

(k,t)∈K x 6≃k t.

Let S ∈ C′
Z
and assume that S is BZ-unsatisfiable, we prove that ΘZ(S)

is also BZ-unsatisfiable. Let I ∈ I ′
Z
, then in particular, I |= {χ > t + m |

t is a ground term in S′}. Let C be a clause in S such that I 6|= C. By definition
of C′

Z
, C can be written as C = D ∨

∨n
i=1(xi 6≤ Ui ∨ xi 6≥ Li ∨ ¬Ki(xi)), where

D is ground and where the xi’s (1 ≤ i ≤ n) denotes distinct variables10. Since
I 6|= C, there exists a ground substitution θ such that I 6|= Cθ, i.e., for all
i ∈ [1, n]:

• ∀u ∈ Ui, [xiθ]I ≤ [u]I ;

• ∀l ∈ Li, [l]I ≤ [xiθ]I ;

• ∀(k, t) ∈ Ki, [xiθ]I ≃k [t]I .

If [xiθ]I is such that [xiθ]I > [χ]I , then it is straightforward to verify that
[xiθ]I−m satisfies the same conditions, since for all terms t in Ui∪Li, [χ]I−m >
[t]I , and since m is a common multiple of every k occurring in Ki. We may
therefore assume that [xiθ]I ≤ [χ]I .

We denote by ui an element in Ui ∪ {χ} such that [ui]I is minimal in {[u]I |
u ∈ Ui∪{χ}}, and by mi the greatest integer such that mi ≤ [ui]I and for every
(k, t) ∈ Ki, mi ≃k t holds; the existence of mi is guaranteed by what precedes
and [xiθ]I ≤ mi. We cannot have mi +m ≤ ui, because otherwise mi would
not be the greatest integer satisfying the conditions above. Thus, necessarily,
mi > [ui]I − m, and there must exist a term vi ∈ GZ

S such that [vi]I = mi.

Let σ
def

= {xi 7→ vi | i ∈ [1, n]}, we deduce that I 6|= Cσ. Since Cσ ∈ S↓GZ

S
, we

conclude that S↓GZ

S
is BZ-unsatisfiable, hence the result.

By construction, GZ

S is finite, hence Condition 1 of Definition 21 is satisfied.
By Propositions 44 and 45, Conditions 2 and 3 are satisfied, respectively, which
concludes the proof.

4.1.2 Term Algebra with Membership Constraints

We give a second example of a specification for which a base-complete instan-
tiation procedure can be defined. We consider formulæ built over a signature
containing:

10Note that the sets Ui, Li and Ki could be empty.
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• a set of free function symbols Σ;

• a set of constant symbols interpreted as ground terms built on Σ;

• a set of monadic predicate symbols P, each predicate p in P is interpreted
as a (fixed) set p̂ of ground terms built on Σ. We assume that the emptiness
problem is decidable for any finite intersection of these sets (for instance
p̂ can be the set of terms accepted by a regular tree automaton, see [9] for
details).

From a more formal point of view:

Definition 47. Let Σ ⊆ FB. We denote by T(Σ)s the set of ground terms of
sort s built on Σ. Let P be a finite set of unary predicate symbols, together
with a function p 7→ p̂ mapping every symbol p : s → bool ∈ P to a subset of
T(Σ)s.

We denote by A∈ the specification (I∈,C∈) where:

• Ax(I∈) contains the following axioms:

∨

t∈T(Σ)s
x ≃ t for s ∈ SB, x ∈ XB ,

xi ≃ yi ∨ f(x1, . . . , xn) 6≃ f(y1, . . . , yn) if f ∈ Σ, i ∈ [1, n]
p(x) ∨ t 6∈ p̂ if p ∈ P, t ∈ p̂.

• Every non-ground atom in C∈ is of the form ¬p(x), or of the form x 6≃ t
for some ground term t. ♦

The axioms of Ax(I∈) entail the following property which is proved by a
straightforward induction on the depth of the terms:

Proposition 48. For all interpretations I ∈ I∈ and all terms t, t′ occurring in
a clause in C∈, if [t]I = [t′]I then t = t′.

If the sets in {p̂ | p ∈ P} are regular then A∈ is well-known to be decidable,
see, e.g., [10]. We define the following instantiation procedure for A∈:

Definition 49. Let G∈
S be a set of ground terms containing:

• Every ground term t such that S contains an atom of the form x 6≃ t.

• An arbitrarily chosen ground term sP ∈
⋂

p∈P p̂, for each P ⊆ P such
that

⋂

p∈P p̂ 6= ∅ (recall that the emptiness problem is assumed to be
decidable).

Let Θ∈
def

= S↓G∈

S
. ♦

Theorem 50. Θ∈ is base-complete if B = A∈.
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Proof. Let C be a clause in C∈, C is of the form
∨n

i=1 xi 6≃ ti∨
∨m

i=1 ¬pi(yi)∨D
where D is ground, xi and yj (i ∈ [1, n], j ∈ [1,m]) are variables, ti is a ground
term for i ∈ [1, n] and pj ∈ P for j ∈ [1,m]. Let X = {x1, . . . , xn} and
Y = {y1, . . . , ym}; note that these sets are not necessarily disjoint. For every
variable y ∈ Y we denote by Py the set of predicates pj (1 ≤ j ≤ m) such that

yj = y and we let sy
def

= sPy
. Consider the substitution σ of domain X ∪ Y such

that:

• xiσ
def

= ti for every i ∈ [1, n];

• if y ∈ Y \X then yσ
def

= sy (notice that sy must be defined since y ∈ Y )

We prove that Cσ |=A∈
C.

Let I be an interpretation such that I |= Cσ and I 6|= C. Then there
exists a substitution θ such that I 6|= Cθ, which implies that for all i ∈ [1, n],
[xiθ]I = [ti]I , and for all j ∈ [1,m], [yjθ]I ∈ [p̂j]I . Proposition 48 entails that
xiθ = ti for all i ∈ [1, n], and yjθ ∈ p̂j for all j ∈ [1,m]. Thus, in particular, for
all x ∈ X , xσ = xθ, and for all y ∈ Y \X ,

⋂

p∈Py
p̂ 6= ∅.

Since I |= Cσ and xiσ = ti for all i ∈ [1, n], there must exist a j ∈ [1,m]
such that [yjσ]I 6∈ [p̂j ]I ; and, again by Proposition 48, this is equivalent to
yjσ /∈ p̂j. If yj ∈ X , then yjθ = yjσ /∈ p̂j and I |= Cθ, which is impossible.
Thus yj ∈ Y \X , and since

⋂

p∈Pyj
p̂ 6= ∅, by construction, yjσ = syj

∈ p̂j ; this

contradicts the assumption that yjσ /∈ p̂j.
Since Cσ |=A∈

C, we deduce that for every clause C ∈ S, there exists a
D ∈ S↓G∈

S
such that D |=A∈

C, and therefore, S ≡A∈
S↓G∈

S
. By construction,

G∈
S is finite, G∈

S = G∈
S⋆
∨
and G∈

S ⊆ G∈
S′ if S ⊆ S′. Hence all the conditions of

Definition 21 are satisfied.

4.2 Combination of Specifications

Building on the results of the previous section, we now provide some concrete
applications of Theorem 25.

4.2.1 Combining First-order Logic without Equality and Presburger

Arithmetic

We begin with a simple example to illustrate how the method works. We show
how to enrich the language of first-order predicate logic with some arithmetic
constraints. We assume that F contains no function symbol of co-domain int

other than the usual symbols 0, s,+,− introduced in Section 2.5.
Let Nfol be the restriction of the specification Afol defined in Example 6

to non-equational clause sets (i.e. to clause sets in which all atoms are of the
form t ≃ true). We consider the combination Nfol[BZ] of the specification BZ

introduced in Section 4.1.1 with Nfol. According to Theorem 46, ΘZ is base-
complete for BZ; thus, in order to apply Theorem 25, we only need to find a
nesting-complete instantiation procedure for Nfol. We will use an instantiation
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procedure based on hyper linking [22]. It is defined by the following inference
rule:

∨n
i=1 li,m1 ∨ C1, . . . ,mn ∨ Cn

∨n
i=1 liσ

if σ is an mgu. of the (li,m
c
i )’s.

If S is a set of clauses, we denote by Θ′
fol(S) the set of clauses that can

be obtained from S by applying the rule above (in any number of steps) and
by Θfol(S) the set of clauses obtained from Θfol(S) by replacing all remaining
variables of sort s by a constant symbol ⊥s of the same sort.

Proposition 51. Θfol is nesting-complete for Nfol.

Proof. In [22], it is proven that S and Θfol(S) are equisatisfiable, thus Con-
dition 1 of Definition 16 holds; furthermore, by definition, Θfol is monotonic.
To verify that Θfol is SB-invariant, it suffices to remark that if a clause D is
deducible from a set of clauses S by the instantiation rule above, then for every
SB-mapping α, α(D) must be deducible from Θfol(α(S)), since the unifiers are
not affected by the replacement of ground terms: if an mgu maps a variable x
to a term t in S, then the corresponding mgu will map x to α(t) in α(S).

Theorem 25 guarantees that Θfol[ΘZ] is complete for Nfol[BZ]. Note that in
general, Θfol[ΘZ] (and Θfol) are not terminating. However, Θfol[ΘZ] is terminat-
ing if the set of ground terms containing no subterm of sort int (and distinct
from •int) is finite (for instance if F contains no function symbol of arity greater
than 0 and of a sort distinct from int).

Example 52. Consider the following set of clauses S, where i, j denote vari-
ables of sort int, x, y denote variables of sort s, and F contains the following
symbols: a, b : int, c, d : s, p : int× s → bool and q : int× s× s → bool.

(1) ¬p(i, x) ∨ ¬q(i, y) ∨ r(i, x, y)
(2) p(a, c)
(3) j 6< b ∨ q(j, d)
(4) i 6≃2 0 ∨ ¬r(i, x, y)

Clauses (2) and (3) are not in A. Indeed, the non-arithmetic atom p(a, c)
contains a non-variable arithmetic subterm a and (3) contains a literal j 6< b that
is not allowed in BZ (see Definition 42). Thus these clauses must be reformulated
as follows:

(2)’ i 6≤ a ∨ a 6≤ i ∨ p(i, c)
(3)’ j 6≤ b− 1 ∨ q(j, d)

To apply the procedure Θfol[ΘZ], we compute the set SN and replace every
arithmetic variable occurring in it by a special constant • of sort int:

SN =















¬p(•, x) ∨ ¬q(•, y) ∨ r(•, x, y)
p(•, c)
q(•, d)
¬r(•, x, y)
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We apply the procedure Θfol. The reader can verify that we obtain the
following clause set:

Θfol(S
N ) =































¬p(•,⊥) ∨ ¬q(•,⊥) ∨ r(•,⊥,⊥)
p(•, c)
q(•, d)
¬r(•,⊥,⊥)
¬p(•, c) ∨ ¬q(•, d) ∨ r(•, c, d)
¬r(•, c, d)

Next we consider the clauses in SB: {i 6≤ a ∨ a 6≤ i, j 6≤ b − 1, i 6≃2 0}
and compute the set GZ

SBZ
, according to Definition 43. The terms occurring as

the right operands of a symbol ≤ are {a, b − 1}. The least common multiple
of all the natural numbers k such that SB contains a comparison modulo k is
2. Thus GZ

SBZ
= {a, b − 1, a − 1, b − 2}. To get the clause set Θ[ΘZ](S), the

substitutions generated by Θ are combined with all instantiations of integer
variables by elements of GZ

SBZ
. This yields:

¬p(a,⊥) ∨ ¬q(a,⊥) ∨ r(a,⊥,⊥) p(a, c)
¬p(b− 1,⊥) ∨ ¬q(b − 1,⊥) ∨ r(b− 1,⊥,⊥) p(b− 1, c)
¬p(a− 1,⊥) ∨ ¬q(a− 1,⊥) ∨ r(a− 1,⊥,⊥) p(a− 1, c)
¬p(b− 2,⊥) ∨ ¬q(b − 2,⊥) ∨ r(b− 2,⊥,⊥) p(a− 2, c)
¬r(a,⊥,⊥) ¬r(a, c, d)
¬r(b− 1,⊥,⊥) ¬r(b− 1, c, d)
¬r(a− 1,⊥,⊥) ¬r(a− 1, c, d)
¬r(b− 2,⊥,⊥) ¬r(b− 2, c, d)
¬p(a, c) ∨ ¬q(a, d) ∨ r(a, c, d) q(a, d)
¬p(b− 1, c) ∨ ¬q(b− 1, d) ∨ r(b− 1, c, d) q(b− 1, d)
¬p(a− 1, c) ∨ ¬q(a− 1, d) ∨ r(a− 1, c, d) q(a− 1, d)
¬p(b− 2, c) ∨ ¬q(b− 2, d) ∨ r(b− 2, c, d) q(b− 2, d)

The resulting set of clauses is Nfol[BZ]-unsatisfiable, hence, so is S.

4.2.2 Arrays with Integer Indices and Uninterpreted Elements

The specification of arrays with integer indices and uninterpreted elements can
be defined as a hierarchic expansion of the base specification BZ defined in
Section 4.1.1 with a simple specification NA = (Ifol,CA), where the clauses in CA

are built on a set of variables of sort int, on a signature containing only constant
symbols of sort array or elem and a function symbol select : array × int →
elem. We have assumed that CA contains no occurrence of the function symbol
store for convenience. There is no loss of generality: indeed, every definition of
the form s = store(t, i, a) where s, t, i, a are ground terms can be written as the
conjunction of the following clauses:

select(s, i) = v
i+ 1 6≤ z ∨ select(s, z) ≃ select(t, z)
z 6≤ i− 1 ∨ select(s, z) ≃ select(t, z)
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It is simple to verify that these three clauses are in CA. Obviously, the last two
clauses are equivalent to z ≃ i ∨ select(s, z) ≃ select(t, z).

There exists a straightforward nesting-complete instantiation procedure for

NA: namely the identity function id(S)
def

= S. This is indeed an instantiation
procedure since all the variables occurring in CA are of type int; these variables
will already be instantiated by the instantiation procedure for BZ and the re-
maining clause set will be ground. The following result is a direct consequence
of Theorem 25:

Proposition 53. id[ΘZ] is complete for NA[BZ].

We provide some examples of properties that have been considered in [6,
21, 20], and can be expressed in NA[BZ] (t,t

′ denotes constant symbols of sort
array).

(1) ∀i, a 6≤ i ∨ i 6≤ b ∨ select(t, i) ≃ v

-- t is constant on [a, b].
(2) ∀i, a 6≤ i ∨ i 6≤ b ∨ select(t, i) ≃ select(t′, i)
-- t and t′ coincide on [a, b].
(3) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ ∨c 6≤ j ∨ j 6≤ d ∨ select(t, i) 6≃ select(t′, j)
-- The restriction of t and t′ to [a, b] and [c, d] respectively are disjoint.

(4) ∀i, j, i 6≃2 0 ∨ j 6≃2 1 ∨ select(t, i) 6≃ select(t, j)
-- The values of t at even indices are disjoint from the ones at odd ones.

(5) ∀i, i 6≃2 0 ∨ select(t, i) ≃ select(t′, i) ∨ select(t, i) ≃ select(t′′, i)
-- For every even index, the value of t is equal to the value of t′ or t′′.

(6) ∀i, i 6≥ 0 ∨ i 6≤ d ∨ select(t, i) 6≃ ⊥
∀i, i 6≥ succ(d) ∨ select(t, i) ≃ ⊥

-- Array t has dimension d.

(7) ∀i, select(map(f, t), i) ≃ f(select(t, i))
-- Array map(f, t) is obtained from t by iterating function f.

Properties (1-3) can be expressed in the Array property fragment (see [6]),
but not Property (4), because of condition i ≃2 0. Property (4) is expressible
in the Logic for Integer Arrays (LIA) introduced in [21], but not Property (5),
because there is a disjunction in the value formula.

On the other hand, Properties such as Injectivity cannot be expressed in our
setting:

(8) ∀i, j, i ≃ j ∨ select(t, i) 6≃ select(t, j)
-- t is injective.

(9) ∀i, j, i ≃ j ∨ select(t, i) 6≃ select(t, j) ∨ select(t, i) ≃ ⊥
-- t is injective on its domain.

Indeed, the literal i ≃ j is not allowed in C′
Z
.

4.2.3 Arrays with Integer Indices and Interpreted Elements

Instead of using the mere specification NA, one can combine the specification BZ

with a richer specification, with function and predicate symbols operating on the
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elements of the arrays. For instance, consider the specification NR

A
= (IR,CR

A
),

where Ax(IR) is some axiomatization of real closed fields over a signature FR

and the clauses occurring in CR

A
are built on a set of variables of sort int and

on a signature containing all function symbols in FR, constant symbols of sort
array or real and a function symbol select : array × int → real. Then
NR

A
[BZ] is the specification of arrays with integer indices and real elements, and

an immediate application of Theorem 25 yields:

Proposition 54. id[ΘZ] is complete for NR

A
[BZ].

To model arrays with integer indices and integer elements, it is necessary
to use a combination of the specification BZ with a specification containing the
symbols in BZ: 0 : int, s : int → int, ≤: int×int → bool, etc. However, this
is not permitted in our approach since the clause sets of the nesting specification
would contain function symbols whose co-domain would be a sort of the base
specification (namely int), thus contradicting the conditions on SB and SN
(see Section 3.1). A solution is to use a copy of the sort int and of every
symbol of co-domain int. We denote by N Z

A
the specification (I ′

Z
,CZ) where

Ax(I ′
Z
) is the image of Ax(IZ) by the previous transformation and where the

clause sets in CZ

A
are built on a set of variables of sort int and on a signature

containing all function symbols 0′, s′,≤′,. . . in Ax(I ′
Z
), constant symbols of sort

array or int′ and a function symbol select : array×int → int′. Then N Z

A
[BZ]

is a specification of arrays with integer indices and integer elements, and by
Theorem 25, id[ΘZ] is complete for N Z

A
[BZ].

Note however that, due to the fact that the sort symbols are renamed, equa-
tions between integer elements and integer indices are not permitted: indices
cannot be stored into arrays and terms of the form select(t, select(t, i)) are for-
bidden. However, the sharing of a constant symbol c between the two sorts int
and int′ (as in the equation: select(t, c) ≃ c) is possible, by adding ground ax-
ioms of the form: k ≃ c⇒ k′ ≃ c′, where c′ denotes the copy of c, k is any integer
in int and k′ denotes its copy in int′. Let A denote this set of axioms; it is ob-
vious that A is countably infinite. It is clear that id[ΘZ](S∪A) = id[ΘZ](S)∪A,
so that the instantiation procedure is not affected by this addition. Thus these
axioms can be simply removed afterward by “merging” int and int′ and by re-
placing c′ by c (it is straightforward to verify that this transformation preserves
satisfiability).

We provide some examples. ≤′ and +′ are renaming of the symbols ≤ and
+ respectively. Notice that the indices of the arrays are of sort int, whereas the
elements are of sort int′. The following properties can be expressed in N Z

A
[BZ]:

(1) ∀i, j, i 6≤ j ∨ select(t, i) ≤′ select(t, j)
-- t is sorted.

(2) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ c 6≤ j ∨ j 6≤ c ∨ select(t, i) ≤′ select(t′, j)
-- The values of t at [a, b] are lower than the ones of t′ at [c, d].
(3) ∀i, i 6≃2 0 ∨ i 6≤ n ∨ select(t, i) ≃′ select(t′, i) +′ select(t′′, i)
-- For every even index lower than n, t is the sum of t′ and t′′.
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Here are some examples of properties that cannot be handled:

(4) ∀i, select(t, i) ≃ i
-- t is the identity.

(5) ∀i, select(t, i)− select(t, i+ 1) ≤ 2
-- The distance between the values at two consecutive index

-- is at most 2.

Property (4) is not in N Z

A
[BZ] because there is an equation relating an element of

sort int (i.e. an index) to an element of sort int′ 6= int (an element). Property
(5) could be expressed in our setting as ∀i, j, j 6≃ i+1∨select(t, i)−select(t, j) ≤
2 but the atom j 6≃ i + 1 is not in BZ. Property (5) can be expressed in the
logic LIA (see [21]). This shows that the expressive power of this logic is not
comparable to ours.

These results extend straightforwardly to multidimensional arrays.

4.2.4 Arrays with Translations on Arrays Indices

In some cases, properties relating the value of an array at an index i to the value
at index i+ k for some natural number k can be expressed by reformulations.

Definition 55. Let S be a clause set, containing clauses that are pairwise
variable-disjoint. Let λ be a function mapping every array constant to a ground
term of sort int. S is shiftable relatively to λ iff the following conditions hold:

1. Every clause in S is of the form C ∨ D, where D is a clause in N Z

A
and

every literal in C is of one of the following form: i 6≤ j + s, i 6≤ s, s 6≤ i,
i 6≃k s, where i, j are variables of sort int, s is a ground term of sort int
and k is a natural number.

2. For every clause C ∈ S and for every literal i 6≤ j + s occurring in C,
where i, j are variables and s is a term of sort int, C contains two terms
of the form select(t, i) and select(t′, j) where λ(t′) − λ(t) is equivalent to
s.

3. If C contains two terms of the form select(t, i) and select(t′, i) then λ(t) =
λ(t′).

4. If C contains a equation t ≃ t′ between arrays then λ(t) = λ(t′). ♦

The existence of such a function λ is easy to determine: conditions (2-4)
above can immediately be translated into arithmetic constraints on the λ(t)’s,
and the satisfiability of this set of constraints can be tested by using any decision
procedure for Presburger arithmetic.

We define the following transformation of clause sets:

Definition 56. Let t 7→ t′ be an arbitrarily chosen function mapping all the
constants t of sort array to pairwise distinct fresh constants t′ of sort array.
We denote by shift(S) the clause set obtained from S by applying the following
rules:
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• every clause C containing a term of the form select(t, i) (where i is a
variable) is replaced by C{i 7→ i− λ(t)};

• then, every term of the form select(t, s) is replaced by select(t′, s+λ(t)).♦

Lemma 57. Let S be a shiftable clause set. Then:

• shift(S) and S are equisatisfiable.

• shift(S) is in N Z

A
[BZ].

Proof. It is clear that for every clause C in S, C ≡ C{i 7→ i − k}: since i
ranges over all integers, i and i−k range over the same set. The replacement of
select(t, s) by select(t′, s+λ(t)) obviously preserves sat-equivalence: it suffices to

interpret t′ as the array defined by the relation: select(t′, i)
def

= select(t, i−λ(t)).
Thus shift(S) and S are equisatisfiable.

We prove that shift(S) is in N Z

A
[BZ]. By Condition 3 of Definition 55, if

a clause C{i 7→ i − λ(t)} contains a term of the form select(s, i − λ(t)) then
we must have λ(s) = λ(t), thus this term is replaced by select(s′, i) when the
second rule above is applied. Consequently, the non-arithmetic part of the
resulting clause cannot contain any non-variable term of sort int. Now assume
that C contains an arithmetic literal of the form i ≤ j+s. Then by condition 2,
C also contains terms of the form select(t, i) and select(t′, j), where λ(t′)−λ(t)
is equivalent to s. Hence, the clause in shift(S) corresponding to C contains the
literal i− λ(t) ≤ j − λ(t′) + s ≡ i ≤ j − (λ(t′)− λ(t)) + s ≡ i ≤ j.

We provide an example in which this result applies.

Example 58. Consider for instance the following clause set:

S =















































(1) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ j 6≃ i− a ∨ select(s, i) ≃ select(t, j)
-- s is identical to t up to a shift of length a.
(2) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ j 6≃ i− a ∨ select(u, i) ≃ select(s, j)
-- u is identical to s up to a shift of length a.
(3) c ≥ a+ a
(4) c ≤ b
(5) i 6≃ c ∨ j 6≃ c− a− a ∨ select(u, c) 6≃ select(t, j)
-- u is not identical to t up to a shift of length a+ a.

It is simple to check that S is shiftable relatively to the mapping: λ(u) = a+ a,
λ(s) = a and λ(t) = 0. According to Definition 57, S is reformulated as follows:

shift(S) =























(1′) ∀i, 0 6≤ i ∨ i 6≤ b− a ∨ j 6≃ i ∨ select(s′, i) ≃ select(t′, j)
(2′) ∀i, 0 6≤ i ∨ i 6≤ b− a ∨ j 6≃ i ∨ select(u′, i) ≃ select(s′, j)
(3) c ≥ a+ a
(4) c ≤ b
(5) i 6≃ c ∨ j 6≃ c− a− a ∨ select(u′, c) 6≃ select(t′, j)

shift(S) and S are equisatisfiable, and shift(S) belongs to N Z

A
[BZ]. The unsat-

isfiability of shift(S) can be proven by applying the procedure id[ΘZ].
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4.2.5 Nested Arrays

An interesting feature of this approach is that it can be applied recursively,
using as base and/or nesting specifications some nested combination of other
specifications.

We denote by B′
Z
a copy of the specification BZ in which the symbols int, 0,

s, ≤, . . . are renamed into int′, 0′, s′, ≤′, . . .We denote by Θ′
Z
the corresponding

instantiation procedure, as defined by Definition 43. Let N Z

A

′
be a copy of the

specification N Z

A
, in which the symbols int′, 0′, s′, ≤′, select. . . are renamed

into int′′, 0′′, s′′, ≤′′, select′ . . . Let AZ3

def

= N Z

A

′
[B′

Z
][BZ].

Proposition 59. id[Θ′
Z
][ΘZ] is complete for AZ3

.

In AZ3
, the (integer) indices of an array t can themselves be stored into

arrays of integers, but of a different type than t.

Example 60. The following clause set is AZ3
-unsatisfiable (for the sake of read-

ability we use t 6≃ s as a shorthand for t 6≤ s ∨ t 6≤ s):

(1) i ≤ j ∨ select(t, i) ≤ select(t, j)
-- t is sorted.

(2) i′ ≤ j′ ∨ select′(t′, i′) ≤′ select′(t′, j′)
-- t′ is sorted.

(3) a ≤ b
(4) x 6≃ a ∨ y 6≃ b ∨ x′ 6≃ select(t, x) ∨ y′ 6≃ select(t, y)

∨select′(t′, x′) > select(t′, y′).
-- t′ ◦ t is not sorted.

We describe the way the procedure works on this very simple but illustrative
example. According to the definition of id[Θ′

Z
][ΘZ], the variables i, j, x and y

are replaced by a special symbol • and the instantiation procedure id[Θ′
Z
] is

applied. The variables i′, j′, x′, y′ are replaced by a constant symbol •′ and the
procedure id is applied on the resulting clause set (in a trivial way, since this set
is ground). Next, we apply the procedure Θ′

Z
. According to Definition 43, Θ′

Z

instantiates the variables i′, j′, x′, y′ by select(t, •). This substitution is applied
to the original clause set and the procedure ΘZ is invoked. The variables i,
j, x and y, and the constant symbol • are replaced by {a, b}. After obvious
simplifications, we obtain the following set of instances:

a ≤ b ∨ select(t, a) ≤ select(t, b)
b ≤ a ∨ select(t, b) ≤ select(t, a)

select(t, a) ≤ select(t, a) ∨ select′(t′, select(t, a)) ≤′ select′(t′, select(t, a))
select(t, a) ≤ select(t, b) ∨ select′(t′, select(t, a)) ≤′ select′(t′, select(t, b))
select(t, b) ≤ select(t, b) ∨ select′(t′, select(t, b)) ≤′ select′(t′, select(t, b))
select(t, b) ≤ select(t, a) ∨ select′(t′, select(t, a)) ≤′ select′(t′, select(t, a))

a ≤ b
select′(t′, select(t, a)) > select′(t′, select(t, b))
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At this point, ≤′ may be simply replaced by ≤ (this operation obviously
preserves equisatisfiability) and the resulting clause set can be refuted by any
SMT-solver handling ground equality and integer arithmetic.

Such nested array reads are outside the scope of the Array property fragment
of [6] and of the Logic LIA of [21]. They are not subsumed either by the
extensions of the theory of arrays considered in [20]. Note that, due to the
fact that we use distinct renamings of the specification of integers, equations
such as select(t′, select(t, a)) ≃ select(t′, a) are forbidden (if arrays are viewed as
heaps, this means that there can be no equation between pointers and referenced
values).

5 Discussion

In this paper we have introduced a new combination method of instantiation
schemes and presented sufficient conditions that guarantee the completeness of
the resulting instantiation scheme. As evidenced by the examples provided in
Section 4, this combination method permits to obtain instantiation procedures
for several theories that are quite expressive, at almost no cost. One direct
consequence of these results is that it should be possible for developers of SMT
solvers to focus on the design of efficient decision procedures for a few basic
theories, such as, e.g., the theory of equality with uninterpreted function symbols
(EUF) or Presburger arithmetic, and obtain efficient SMT solvers for a large
panel of theories.

This combination method may seem inefficient, since exponentially many
ground clauses may be generated, except for the trivial cases. An interesting
line of research is to investigate how incremental techniques can be implemented
and the instantiations controlled so that the (un)satisfiability of the clause set
under consideration can be detected before all clauses are instantiated in all
possible ways. For instance, we believe it is possible – but this will probably
depend on B and N – to devise more subtle strategies that begin by replacing
base variables with the constants •s and applying the instantiation procedure for
N , and deriving additional information from the resulting set of ground clauses
to avoid having to instantiate all base variables in all possible ways. Further
investigations into this line of work could lead to the design of more powerful
instantiation procedures that could enlarge the scope of modern SMT solvers
by making them able to handle efficiently more expressive classes of quantified
formulæ.
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