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Hybrid MKNF knowledge bases are one of the most prominent tightly integrated combinations of
open-world ontology languages with closed-world (non-monotonic) rule paradigms. The definition
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its WFS variant. This procedure is able to answer a slightly restricted form of conjunctive queries,
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MKNF knowledge bases.

To illustrate this approach, we provide a concrete oracle for EL+, a fragment of the light-weight
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1. INTRODUCTION

It is frequently claimed that integrating open world with closed world reasoning is
a key issue for practical large-scale ontology applications. As one example, [Patel
et al. 2007] describes a large medical case study about matching patient records for
clinical trials criteria containing up to millions of assertions. In that clinical domain,
open world reasoning is needed for radiology and laboratory data, because, for
example, unless a lab test asserts a negative finding, no arbitrary assumptions about
the test can be made. However, in pharmacy data, the closed world assumption can
be used to infer that a patient is not on a specific medication unless it is asserted.

In general, both ontologies and rules provide distinct strengths for the repre-
sentation and interchange of knowledge in the Semantic Web and for applications
of knowledge representation, such as the one described above. Expressive ontol-
ogy languages are usually fragments of first-order logics represented in description
logics (DLs) [Baader et al. 2007] and offer the deductive advantages of first-order
logics with an open domain, while guaranteeing decidability. Rules on the other
hand offer non-monotonic (closed-world) reasoning that can be useful for formal-
izing scenarios under (local) incomplete knowledge. They also enable reasoning
about fixed points (e.g., reachability), which cannot be expressed within first-order
logic. Interest in ontologies, rules, and their combination is demonstrated by the
development of ontology languages for the Semantic Web, such as OWL [Hitzler
et al. 2009], and the growing interest on rule languages for the Semantic Web, cf.
the RIF [Boley and Kifer 2010] and the RuleML1 initiatives.

The majority of proposals for combining rules and ontologies (see, e.g., related
work in [Eiter et al. 2008; Knorr et al. 2011]) rely on one of the two most common
semantics for rules: the Well-Founded Semantics (WFS) [van Gelder et al. 1991]
or the Answer-Sets Semantics [Gelfond and Lifschitz 1991]. Both semantics are
widely used and allow closed-world reasoning and the representation of fixed points.
Furthermore, the relationship between the two semantics has been fully explored.
Of the two, the Well-Founded Semantics is weaker (in the sense that it is more
skeptical w.r.t. derivable consequences), but it has the clear advantage that its
lower complexity is more suitable for applications with large amounts of data, such
as the medical case study described above.

Several formalisms have concerned themselves with combining decidable DLs
with WFS rules [Drabent and Ma luszyński 2007; Lukasiewicz 2010; Eiter et al.
2011; Knorr et al. 2011]. Among these, the well-founded semantics for Hybrid
MKNF knowledge bases (MKNFWF ), introduced first in [Knorr et al. 2008] and
further refined in [Knorr et al. 2011], is based on a three-valued extension of the
logics of minimal knowledge and negation as failure (MKNF) [Lifschitz 1991], and
is the only one that allows knowledge about instances to be fully inter-definable
between rules and an ontology that is taken as a parameter of the formalism.
MKNFWF is defined using a monotonic fixpoint operator that computes in each

iteration step, besides the usual immediate consequences from rules, the set of
all atoms derivable from the ontology that is augmented with the already proven
atomic knowledge. The least fixpoint of the MKNFWF operator coincides with the

1http://ruleml.org/
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original WFS [van Gelder et al. 1991] if the ontology is empty, and coincides with
the semantics of the ontology if there are no rules; in addition, if the DL underlying
the ontology language is polynomial, then MKNFWF retains a polynomial data
complexity. Furthermore, MKNFWF is sound with respect to the semantics of
[Motik and Rosati 2010] for MKNF knowledge bases (KBs), which is based on the
Answer-Set Semantics and coincides with answer-sets of logic programs [Gelfond
and Lifschitz 1991] if the ontology is empty.

In one sense, the fixpoint operator of MKNFWF provides a way to compute, in a
naive bottom-up fashion, all consequences of a knowledge base. However, such an
approach is impractical for large knowledge bases. Consider the medical case study
above: knowledge of whether a specific patient is using a certain medication does
not require knowledge of the medications of thousands of other patients. Thus,
despite its polynomial complexity, bottom-up computation of MKNFWF does not
scale to enterprise applications, much less to those of the Semantic Web. A query-
driven procedure corresponding to the semantics of MKNFWF that only consults
information relevant for a specific patient is clearly preferable.

This paper presents such a querying mechanism, called SLG(O), that is sound
and complete for MKNFWF [Knorr et al. 2011], and sound for MKNF knowledge
bases of [Motik and Rosati 2010]. SLG(O) accepts DL-safe conjunctive queries, i.e.,
conjunctions of predicates with variables where queries have to be ground before
being processed by the DL reasoner, returning all correct answer substitutions
for variables in the query. To the best of our knowledge, SLG(O) is the first
query-driven, top-down like procedure for knowledge bases that tightly combines
an arbitrary decidable ontology language with non-monotonic rules.
SLG(O) applies to any DL and under certain conditions maintains the data

complexity of MKNFWF . To show that these conditions are realistic, we also
provide a concrete oracle, with practical usage, namely for EL+. EL+ is a fragment
of the light-weight description logics EL++, which is the DL underlying OWL 2 EL
– one of the tractable profiles [Motik et al. 2009] of OWL 2 – and thus part of the
W3C recommendations for the Semantic Web. We show that the oracle thus defined
is correct with respect to the general procedure and maintains the polynomial data
complexity of MKNFWF for such a polynomial DL.

The gist of the approach

The main element of our approach addresses the interdependency of the ontology
and rules. In particular, SLG(O), presented in Section 4, extends SLG resolu-
tion [Chen and Warren 1996], which evaluates queries posed to normal logic pro-
grams, i.e., sets of non-disjunctive non-monotonic rules, under WFS. SLG is a form
of resolution that handles loops within the program, and does not change the data
complexity of WFS. It does that by resorting to already computed results in a forest
of derivation trees, a technique also known as tabling.

To adjoin an ontology to rules, the first thing that needs to be done is to allow an
SLG evaluation to make calls to an inference engine for the ontology. Since MKNF
is parametric on any given decidable ontology formalism,2 the inference engine is

2In fact, theoretically the limitation to decidable ontology formalisms is not strictly needed, but it
is a pragmatic choice to achieve termination and complexity results in accordance with decidable
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viewed in SLG(O) as an oracle. In fact, every time SLG(O) selects an atom, the
oracle’s inference engine may be called, in case the atom is not provable by the rules
alone. Such a queried atom, say P(a), might thus be provable in the ontology but
only if a certain set of atoms in turn is provable via rules. Our approach captures
this by allowing the oracle to return a new rule, say P(a) ← Goals, which has
the property that a (possibly empty) set Goals, in addition to the axioms in the
ontology and the atoms already derived from the combined knowledge base, would
be sufficient to prove P(a). SLG(O) then treats these new rules just as if they were
part of the knowledge base.

Note that getting these conditional answers does not endanger decidability (or
tractability, if it is the case) of reasoning in the ontology alone. In fact, it is easy to
conceive of a modification of a tableau-based inference engine for an ontology that
is capable of returning these conditional answers and is decidable if the tableau
algorithm is. Simply add all the atoms that are defined in the rules to the ontology,
then proceed with the tableau as usual, but collect all those added facts that have
been used in the proof. Under some assumptions on the complexity of the oracle, it
is shown (in Section 5 along with some other properties) that SLG(O) also retains
the data complexity of MKNFWF .

The second element of our approach arises from the need to properly combine
the classical negation usually appearing in the ontology language with the non-
monotonic negation of rules. This problem, which is solved by the semantics
of [Knorr et al. 2011], is similar to the issue of coherence that arises when adding
classical (or strong) negation to logic programs [Gelfond and Lifschitz 1991; Pearce
and Wagner 1990; Pereira and Alferes 1992]: the classical negation must imply
negation by default. In our case, if the ontology entails that some atom A is false,
then perforce the default negation notA must hold as well. The derivation must
accordingly be modified since the proof of notA cannot simply rely on the failure
of the proof of A as it is usual in Logic Programming. For that purpose, an alter-
nating fixpoint approach is used in the bottom-up construction defined in [Knorr
et al. 2011], where two alternating fixpoint operators are applied to two different
sets of rules. In each iteration step, the fixpoint construction alternates between
deriving more true atoms, and more (default) false atoms; when deriving more true
atoms, the original set of rules is used; when deriving more default false atoms, a
transformed set of rules is used so that rules with head A are removed if ¬A holds.
This ensures that notA is derived (see Section 2.3 for details).

Adapting the alternating fixpoint for the top-down derivation would result in a
procedure significantly different from the original SLG. So instead, we transform
the original knowledge base to ensure coherence without the need for alternating
between two sets of rules. This approach is simpler to understand as it is a more
direct extension of SLG and separates the concerns of coherence from those of top-
down derivation; in addition the transformational approach should also facilitate
implementations of SLG(O). Indeed, one can rely more directly on the existing
implementations that follow closely SLG.3 Accordingly, Section 3 defines the above

ontology languages, such as OWL [Hitzler et al. 2009].
3We have already made some experiments on the implementation of SLG(O) [Gomes et al. 2010],
relying on the XSB-Prolog implementation.
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mentioned transformation of the knowledge base. The transformation itself provides
an alternative formulation of MKNFWF and is another result of the paper.

Finally, in Section 6, we provide a concrete oracle for EL+. Our approach in-
cludes a preprocessing step that applies the subsumption algorithm4 for EL+ to
compute all the subsumption relationships contained in the DL knowledge base
and then remove redundant information with respect to answering queries. The re-
sulting reduced DL knowledge base is then translated into rules and can be directly
combined with the set of rules contained in the combined knowledge base, so that
SLG(O) can be applied for querying. This direct integration of the oracle into the
querying mechanism, as we show, immediately ensures that the data complexity of
MKNFWF is maintained, i.e., the EL+ oracle is polynomial.

2. PRELIMINARIES

We assume a basic understanding of the Well-Founded Semantics [van Gelder et al.
1991] and first-order logics, in particular notions related to Logic Programming and
resolution (see e.g. [Lloyd 1987]). In this section we recall basic concepts that we
rely on in the following sections. In particular, we present description logics using
the DL ALC, the syntax of Hybrid MKNF knowledge bases, and their well-founded
semantics.

2.1 Description Logics

We recall general notions for description logics, basing our examples on ALC with
role inclusions although our work is in principle applicable to any DL. Afterwards,
since we present a concrete oracle for EL+ in Section 6, we also review the syntax
of that DL. We refer to [Baader et al. 2007] for a general and thorough overview of
description logics

We start by recalling the syntax and semantics for a general DL DL. DLs define
concept descriptions inductively with the help of a set of constructors, starting with
a set NC of concept names, a set NR of role names, and a set NI of individual names.
Concept descriptions of DL are formed using a set of constructors, and the upper
part of Table I shows the constructors of ALC. There, and in general, we use a
and b to denote individual names, R and S to denote role names, and C and D to
denote concept descriptions (all possibly with indices).

The semantics of DL-concept descriptions is defined in terms of an interpretation
I = (∆I , ·I). The domain ∆I is a non-empty set of individuals and the interpre-
tation function ·I maps each concept name A ∈ NC to a subset AI of ∆I , each
role name R ∈ NR to a binary relation RI on ∆I , and each individual name a ∈ NI

to an individual aI ∈ ∆I . The extension of ·I to arbitrary concept descriptions is
inductively defined as shown in the third column of Table I for ALC.

A DL TBox T is a finite set of general concept inclusions (GCIs) and possibly
role inclusions (RIs), and both their syntax can be found in the middle of Table
I. An interpretation is a model of a TBox T if, for each GCI and RI in T , the
conditions given in the third column of Table I are satisfied. In the definition of
the semantics of RIs, the symbol ′◦′ denotes composition of binary relations.

4Such as the one included in Pellet (http://clarkparsia.com/pellet/) or CEL (http://lat.
inf.tu-dresden.de/systems/cel/)
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Table I. Syntax and semantics of ALC with role inclusions.

Name Syntax Semantics

top ⊤ ∆I

bottom ⊥ ∅

negation ¬C ∆I \ CI

conjunction C ⊓D CI ∩DI

disjunction C ⊔D CI ∪DI

existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}

value restriction ∀R.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI implies y ∈ CI}

GCI C ⊑ D CI ⊆ DI

RI R1 ◦ · · · ◦Rk ⊑ R RI
1 ◦ · · · ◦RI

k
⊑ RI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

A DL ABox A is a finite set of concept assertions for concept descriptions C
and role assertions for role names R whose syntax can be found in the lower part
of Table I. ABoxes are used to describe a snapshot or state of the world. An
interpretation I is a model of an ABox A if, for each concept assertion and role
assertion in A, the conditions given in the third column of Table I are satisfied.

A DL knowledge base O consists of a DL TBox T and a DL ABox A, and I is
a model of O if it is a model of both T and A.

One of the main inference problems in DLs, actually the one considered in [Baader
et al. 2005] for EL++, is subsumption. Given two DL-concept descriptions C, D
we say that C is subsumed by D w.r.t. the TBox T (C ⊑T D) iff CI ⊆ DI for
all models I of T . In addition, we recall the instance problem since, as we will
see below, it is the reasoning task we are interested in when answering top-down
queries in our system combining rules and an oracle to an ontology. An individual
name a is an instance of a concept C in ABox A w.r.t. a TBox T if aI ∈ CI for
every common model I of A and T . Definition 2.1 extends the instance problem
to instances of roles, a non-standard reasoning task.

Definition 2.1 A pair of individuals (a, b) is an instance of a role R in ABox A
w.r.t. a TBox T if (aI , bI) ∈ RI for every common model I of A and T .

The above definition will be useful, since in the oracle we define queries for instances
of roles, i.e., binary predicates, as well as concepts.

2.1.1 EL+. The tractable DL EL+ is a large fragment5 of the DL EL++ [Baader
et al. 2005]. It is obtained by restricting the allowed concept constructors to ⊤, ⊥,
¬, ⊓, and ∃, i.e., negations, disjunctions, and value restrictions are not allowed. All
the remaining notions, in particular the semantics, carries over from the general
case.

5We omit nominals and concrete domains as concept constructors.
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Two remarks regarding the expressivity of EL+ are in order. First, RIs allow
expression of role hierarchies R ⊑ S, transitive roles using R ◦ R ⊑ R, right-
identity rules R ◦ S ⊑ S, and left-identity rules S ◦ R ⊑ S. Second, disjointness
of complex concept descriptions C, D (and unsatisfiability of a concept C), can be
expressed by C ⊓D ⊑⊥ (resp. C ⊑⊥).

2.2 Syntax of Hybrid MKNF Knowledge Bases

Hybrid MKNF knowledge bases, as introduced in [Motik and Rosati 2010], are
essentially formulas in the logics of minimal knowledge and negation as failure
[Lifschitz 1991], i.e., first-order logics with equality and two modal operators, K
and not, allowing inspection of the knowledge base. At an intuitive level, given a
first-order formula ϕ, Kϕ asks whether ϕ is known, i.e., true in all models of the
related Hybrid MKNF knowledge base K, while notϕ is used to check whether ϕ is
not known. Hybrid MKNF knowledge bases consist of two components, a decidable
DL knowledge base translatable into a first-order logic, and a finite set of rules.

Definition 2.2 Let O be a DL knowledge base built over a language L with distin-
guished sets of countably infinitely many variables NV, and finitely many individuals
NI and predicates NP, where NC ∪ NR ⊆ NP. An atom P (t1, . . . , tn), where P ∈ NP

and ti ∈ NV ∪ NI, is called a DL-atom if P occurs in O, otherwise it is called non-
DL-atom. An MKNF rule r has the following form where, for all i and j, H , Ai,
and Bj are atoms:

H ← A1, . . . , An,notB1, . . . ,notBm. (1)

H is called the (rule) head, and the sets {A1, . . . , An} and {notB1, . . .notBm}
form the body of the rule. Literals are positive literals A or negative literals notB.
We abbreviate rules by H ← B, splitting B into two sets B+ (positive literals) and
B− (negative literals). A rule r is positive if m = 0 and a fact if n = m = 0. A
program P is a finite set of MKNF rules and called positive if all its rules are positive.
A Hybrid MKNF knowledge base K is a pair (O,P). The ground instantiation of
K is the KB KG = (O,PG) where PG is obtained from P by replacing each rule r
of P with a set of rules substituting each variable in r with constants from K in all
possible ways.

In this definition and in the rest of the paper, we omit the modal operator K in
rule heads and bodies.6

To ensure decidability, DL-safety is applied [Motik and Rosati 2010; Knorr et al.
2011]. Intuitively, DL-safety constrains the use of rules to individuals actually
appearing in the knowledge base under consideration. Since, as indicated in the
introduction, we are especially interested in querying the knowledge base, care also
must be taken to impose DL-safety on (conjunctive) queries:

6The MKNF semantics in [Motik and Rosati 2010] and [Knorr et al. 2011] requires the presence
of these modal operators to ensure that the interaction between the DL KB O and the rules is
limited to information that is known to hold. For our purposes, a simpler representation of models
suffices, thus allowing us to simplify notation here.
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Definition 2.3 An MKNF rule r is DL-safe if every variable in r occurs in at least
one (positive) non-DL-atom in the body of r. A Hybrid MKNF knowledge base K
is DL-safe if all its rules are DL-safe.

A DL-safe conjunctive query q is a non-empty set, i.e., conjunction, of literals
where each variable in q occurs in at least one (positive) non-DL-atom in q. We also
write q as a rule q(Xi)← A1, . . . , An,notB1, . . . ,notBm where Xi is the (possibly
empty) set of variables, appearing in the body.

This restriction of conjunctive queries to DL-safety is not always necessary: for
DLs like SHIQ, conjunctive query answering is decidable [Glimm et al. 2008] and
we may make use of existing algorithms. However, for DLs where there is no known
algorithm for conjunctive query answering or where the problem is not decidable,
such as full EL++ [Rosati 2007], the limitation is required to achieve decidability
in Hybrid MKNF knowledge bases. For simplicity of presentation, we impose the
restriction throughout the paper.

Example 2.4 We present a small technical example to illustrate the notions in-
troduced in this section. Consider the Hybrid MKNF knowledge base K consisting
of an EL+ KB O containing two TBox statements and one assertion and a set of
MKNF rules. Here and in the following examples we follow the convention that
DL-atoms are capitalized, while non-DL-atoms start with lower case letters.

C ⊑ D C(b)

C ⊓ E ⊑ ⊥

p(x)← not D(x), o(x) o(a)←

E(x)← not E(x), o(x) o(b)←

The ground instantiation KG is obtained by grounding both rules with a and b.
Note that the atom o(x) ensures that both (non-ground) rules are DL-safe.

2.3 Well-founded Semantics of Hybrid MKNF Knowledge Bases

In this section, we recall the computation of the well-founded MKNF model from
[Knorr et al. 2011].7 We adopt that terminology here and recall the notions relevant
for its definition. First, we present some notions from [Knorr et al. 2011] that are
useful in the definition of the operators for obtaining that well-founded MKNF
model.

Definition 2.5 Let K = (O,P) be a ground Hybrid MKNF knowledge base. The
set of known atoms of K, KA(K), is the smallest set that contains (i) all positive
literals occurring in P , and (ii) a positive literal ξ for each negative literal not ξ

7The well-founded MKNF semantics including the well-founded MKNF model, as presented in
[Knorr et al. 2011], is based on a complete three-valued extension of the original MKNF semantics
of [Motik and Rosati 2010]. In it, a model consists of two sets of sets of first-order interpretations;
a 3-valued truth valuation is defined that exactly determines the semantics, and in which any
MNKF formula can be evaluated. However, as here we are only interested in queries that are
(conjunctions of) atoms, we limit ourselves to the computation of the literals that are true and
false. This is called the well-founded partition in [Knorr et al. 2011] but we term it the well-founded
MKNF model here.

ACM Transactions on Computational Logic, Vol. V, No. N, September 2018.
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occurring in P . For a subset S of KA(K), the objective knowledge of S w.r.t. K is
the set of first-order formulas OBO,S = {π(O)}∪{ξ | (K) ξ ∈ S} where π(O) is the
first-order translation of O.

Basically all literals appearing in the rules are collected in the set KA(K) as a
set of positive literals while the objective knowledge OBO,S provides a first-order
representation of O together with a set of known/derived facts without the implicit
modal operator K. For the computation of the three-valued MKNF model, the set
KA(K) can be divided into true, undefined, and false literals.

Example 2.6 Recall K from Example 2.4 and its ground instantiation KG. Then
KA(KG) = {p(a), p(b), D(a), D(b), E(a), E(b), o(a), o(b)}.

We continue by defining an operator TK that allows us to draw conclusions from
positive Hybrid MKNF knowledge bases.

Definition 2.7 Let K = (O,P) be a positive, ground Hybrid MKNF knowledge
base. The operators RK, DK, and TK are defined on subsets of KA(K):

RK(S) ={H | P contains a rule of the form H ← A1, . . . An

such that, for all i, 1 ≤ i ≤ n,Ai ∈ S}

DK(S) ={ξ | ξ ∈ KA(K) and OBO,S |= ξ}

TK(S) =RK(S) ∪DK(S)

RK derives consequences from the rules while DK obtains knowledge from the on-
tology O together with the information in S.

The operator TK is shown to be monotonic in [Knorr et al. 2011]. So, by
the Knaster-Tarski theorem [Tarski 1955], it has a unique least fixpoint, denoted
lfp(TK), which is reached after a finite number of iteration steps (since the ground
knowledge base K is always finite).

The computation of the well-founded MKNF model follows the alternating fix-
point construction [van Gelder 1989] of the well-founded semantics for logic pro-
grams. This construction requires a reduction that turns a Hybrid MKNF knowl-
edge base into a positive one to make TK applicable.

Definition 2.8 Let K = (O,P) be a ground Hybrid MKNF knowledge base and
S ⊆ KA(K). The MKNF transform K/S is defined as K/S = (O,P/S), where P/S
contains all rules H ← A1, . . . , An for which there exists a rule

H ← A1, . . . , An,notB1, . . . ,notBm

in P with Bj 6∈ S for all 1 ≤ j ≤ m.

Example 2.9 Consider again K from Example 2.4 and let S be KA(KG). Then
KG/S is obtained as follows:

C ⊑ D C(b)

C ⊓ E ⊑ ⊥

o(a)← o(b)←

ACM Transactions on Computational Logic, Vol. V, No. N, September 2018.
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The resulting KB is positive and we may apply TK and obtain {D(b), o(a), o(b)}.
Note that C(b) is not explicitly mentioned since it does not occur in KA(KG). It is
nevertheless derivable from KG.

The MKNF transform resembles the well-known answer-set transformation [Gel-
fond and Lifschitz 1991] for logic programs. Based on it, an antitonic operator
can be defined, but it is shown in [Knorr et al. 2011] that such an operator alone
would not properly treat a problem called coherence, i.e., classical negation would
not enforce default negation. Therefore, a second, slightly different transformation
is introduced in [Knorr et al. 2011].

Definition 2.10 Let K = (O,P) be a ground Hybrid MKNF knowledge base and
S ⊆ KA(K). The MKNF-coherent transform K//S is defined as K//S = (O,P//S),
where P//S contains all rules H ← A1, . . . , An for which there exists a rule

H ← A1, . . . , An,notB1, . . . ,notBm

in P with Bj 6∈ S for all 1 ≤ j ≤ m and OBO,S 6|= ¬H .

Example 2.11 Consider again K from Example 2.4 and let S be ∅. Then KG//S
is obtained:

C ⊑ D C(b)

C ⊓ E ⊑ ⊥ p(a)← o(a)

p(b)← o(b) o(a)←

E(a)← o(a) o(b)←

The only rule that is removed is the one with head E(b), since C(b) holds and C and
E are disjoint. Hence, OBO,∅ |= ¬E(b). We can apply TKG

to the resulting positive
KB and obtain KA(KG) \ {E(b), D(a)}.

Note the difference between Definitions 2.8 and 2.10: we also remove a rule from
the MKNF-coherent transform, in case the classical negation of the head is derivable
from the ontology augmented by S.

These two transformations can now be used to define two operators for Hybrid
MKNF KBs as already hinted in the examples.

Definition 2.12 Let K = (O,P) be a ground Hybrid MKNF knowledge base and
S ⊆ KA(K). We define:

ΓK(S) = lfp(TK/S) and Γ′
K(S) = lfp(TK//S).

Both operators are shown to be antitonic [Knorr et al. 2011] and form the ba-
sis for defining the well-founded MKNF model. Here we present its alternating
computation.
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Definition 2.13 Let K be a ground Hybrid MKNF knowledge base. We define:

P0 = ∅ N0 = KA(K)

Pn+1 = ΓK(Nn) Nn+1 = Γ′
K(Pn)

Pω =
⋃

Pi Nω =
⋂

Ni

Pω contains everything that is necessarily true, while Nω contains everything that
is not false. Note that, by finiteness of the ground knowledge base, the iteration
stops before reaching ω. It was shown in [Knorr et al. 2011] that the sequences are
monotonically increasing, decreasing respectively. The two fixpoints can also be
used to detect whether a knowledge base is MKNF-consistent or not [Knorr et al.
2011].

Theorem 2.14 Let K = (O,P) be a ground Hybrid MKNF knowledge base. K is
MKNF-inconsistent iff Γ′

K(Pω) ⊂ ΓK(Pω) or Γ′
K(Nω) ⊂ ΓK(Nω) or O is inconsis-

tent.

Intuitively, MKNF-consistency requires that O is (first-order) consistent and that
neither of the two additional conditions of Theorem 2.14 succeed.8 These two
comparisons ensure that the two fixpoints never contain contradictions and that
there is no rule such that the truth value of the (conjunction in the) body is greater
than the truth value of the head.

Example 2.15 Consider the following KB K1:

P(a)← not P(a) Q(a)← Q ⊑ ¬P

K1 is MKNF-inconsistent, since P(a) is necessarily false, so the first rule violates
the intuitive condition that the body should not have a higher truth value than the
head. In fact, the computation yields that P(a) is true and false at the same time,
and the test reveals that. Consider the KB K2:

R ⊑¬P R(a)

P(a)←not u u←not u

P(a) is false, but u is undefined, so that we obtain a rule with false head and
undefined body, and this is detected with the test.

If K is MKNF-consistent, then the well-founded MKNF model exists.

Definition 2.16 The well-founded MKNF model MWF of an MKNF-consistent,
ground Hybrid MKNF knowledge base K = (O,P) is defined as

MWF = {A | A ∈ Pω} ∪ {π(O)} ∪ {notB | B ∈ KA(K) \Nω}.

8The formal definition of MKNF-consistency from [Knorr et al. 2011] would require the complete
material on three-valued MKNF semantics, which we want to avoid.

ACM Transactions on Computational Logic, Vol. V, No. N, September 2018.
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Example 2.17 Consider again the running Example 2.4. We provide the results
of the computation.

P0 = ∅ N0 = KA(KG)

P1 = {D(b), o(a), o(b)} N1 = KA(KG) \ {E(b), D(a)}

P2 = {D(b), o(a), o(b), p(a)} N2 = KA(KG) \ {E(b), D(a), p(b)}

P3 = P2 N3 = N2

Thus we obtain the well-founded MKNF model as

MWF = {π(O)} ∪ {D(b), o(a), o(b), p(a)} ∪ {notE(b),not D(a),notp(b)}.

Consequently, E(a) is undefined.

To ease some proofs in the following section, we also adapt the notion of un-
founded sets [van Gelder et al. 1991] for Hybrid MKNF which relates to the se-
quence Ni (see [Knorr et al. 2011]). The essential advantage is that the reasons
why a certain atom is considered false are better characterized. For that purpose,
we first need to define a notion of dependency that captures more precisely the
derivations from OBO,S , for some S, by the operator DK.

Definition 2.18 Let K = (O,P) be a ground Hybrid MKNF knowledge base, H
an atom with H ∈ KA(K), and S a (possibly empty) set of atoms with S ⊆ KA(K).
We say that H depends on S if and only if

(i) OBO,S |= H and

(ii) there is no S′ with S′ ⊂ S such that OBO,S′ |= H .

Intuitively, S is a minimal set that, in combination with O, allows us to derive
H . Note that there may exist several such minimal sets. Based on this notion
of dependency, the notion of an unfounded set can be extended to Hybrid MKNF
KBs.

Definition 2.19 Let K be a ground Hybrid MKNF knowledge base and (T, F ) a
pair of sets of atoms with T, F ⊆ KA(K). We say that U ⊆ KA(K) is an unfounded
set (of K) with respect to (T, F ) if, for each atom H ∈ U , the following conditions
are satisfied:

(Ui) for each rule H ← B in P at least one of the following holds.
(Uia) Some atom A appears in B and in U ∪ F .
(Uib) Some negative literal notB appears in B and in T .
(Uic) OBO,T |= ¬H

(Uii) for each (possibly empty) S on which H depends, with S ⊆ KA(K) and OBO,S

consistent, there is at least one atom A such that OBO,S\{A} 6|= H and A in U∪F .

The union of all unfounded sets of K w.r.t. (T, F ) is called the greatest unfounded
set of K w.r.t. (T, F ) and denoted UK(T, F ).

It can be shown that the computation of Ni based on Γ′
K directly corresponds

to the computation of the greatest unfounded set w.r.t. (Pi−1,Ni−1).
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Example 2.20 Consider the computation in Example 2.17. All three atoms that
were removed in the sequence of Ni — E(b), D(a), p(b) — obviously satisfy (Uii).
However these removed atoms satisfy different conditions of (Ui). For E(b), (Uic)
applies. In the case of D(a), there is no rule with this head, so (Ui) is vacuously
true. Finally, for p(b), (Uib) applies because notD(b) occurs in the single rule for
this atom, while D(b) is true.

3. ALTERNATIVE COMPUTATION OF MKNFWF

As presented in Section 2, the bottom-up computation of the well-founded MKNF
model requires essentially two operators each with its own transformation of the
knowledge base. Using the operators directly would make the top-down procedure
quite different from the original SLG procedure, which operates on a single logic
program, and does not differentiate between the two phases of the alternating fix-
point. To approximate the bottom-up computation to the SLG procedure, in this
section we define that computation in a different way. Namely, we transform the
original knowledge base, by doubling the rules and the ontology in K using new
predicates, and transform both so that a single operator and copy of the KB can
be used. As we shall see, a simpler bottom-up computation, with a single operator,
performed over this single transformed knowledge base yields the same results as
the one defined in Section 2, and in particular still guarantees that classical negation
enforces default negation.

The first definition introduces two new special predicates for each predicate ap-
pearing in K based on which the transformation that doubles a knowledge base K
is defined.

Definition 3.1 Let K = (O,P) be a Hybrid MKNF knowledge base. We intro-
duce new predicates Ad and NA for each predicate A appearing in K, and then
constructively define

(1) Od by substituting each predicate A in O by Ad; and

(2) Pd by transforming each rule

H( ~tH)← A1( ~tA1), . . . , An( ~tAn),notB1( ~tB1), . . . ,notBm( ~tBm)

occurring in P into two rules:
(2a) H( ~tH)← A1( ~tA1),notBd

1 ( ~tB1), . . . ,notBd
m( ~tBm) and either

(2b.i) Hd( ~tH)← Ad
1( ~tA1), . . . , Ad

n( ~tAn),notB1( ~tB1), . . . ,notBm( ~tBm),
notNH( ~tH) if H( ~tH) is a DL-atom; or

(2b.ii) Hd( ~tH)← Ad
1( ~tA1), . . . , Ad

n( ~tAn),notB1( ~tB1), . . . ,notBm( ~tBm)
if H( ~tH) is a non-DL-atom.

We define the doubled Hybrid MKNF knowledge base Kd = (O,Od,Pd).

Intuitively, we use an atom based on the original predicate A to represent truth
of A in the original knowledge base, while the atom based on a newly introduced
predicate Ad represents non-falsity of A in the original knowledge base, i.e., if we
want to know whether some atom is (non-monotonically) false, then we query using
the auxiliary predicate. The new atom NH( ~tH) appearing in (2b.i), is used as a
marker to distinguish between rules that may be affected by the derivability of the
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classical negation of its head (as in Γ′
K) and the others (as in ΓK). Note that this

process of doubling the knowledge base has no impact on the (at best) polynomial
data complexity of computing the well-founded MKNF model since it only alters
the computation by the constant factor 2.

Example 3.2 Consider K from Example 2.4. We obtain Kd as follows.

C ⊑ D Cd ⊑ Dd

C ⊓ E ⊑ ⊥ Cd ⊓ Ed ⊑ ⊥

C(b) Cd(b)

p(x)← not Dd(x), o(x) pd(x)← not D(x), od(x)

E(x)← not Ed(x), o(x) Ed(x)← not E(x), od(x),not NE(x)

o(a)← od(a)←

o(b)← od(b)←

Only the rule with head Ed(x) contains the marker in the body as the original rule
is the only one in K with a DL-atom in the head. Note that the atoms based on
the predicate o, which ensure DL-safety, could be excluded from the doubling for
efficiency reasons.

The marker has to be referenced in the modified transform but, before that, we
define a slightly different operator for doubled, positive Hybrid MKNF knowledge
bases that takes into account the parallel computations on the two renamings of
the ontology.

Definition 3.3 Let Kd = (O,Od,Pd) be a doubled, positive, ground Hybrid
MKNF knowledge base. The operators RKd , DKd , and TKd are defined on sub-
sets of KA(Kd) as follows:

RKd(S) = {H | Pd contains a rule of the form H ← A1, . . . An

such that, for all i, 1 ≤ i ≤ n,Ai ∈ S}

DKd(S) = {ξ | ξ ∈ KA(K) and OBO,S |= ξ}∪

{ξ | ξ ∈ KA(Kd) \ KA(K) and OBOd,S |= ξ}

TKd(S) =RKd(S) ∪DKd(S)

These operator definitions are the same as those of Definition 2.7 apart from two
differences. First, the doubled knowledge base Kd is considered and, consequently,
atoms from KA(Kd) appear. Second, the operator DKd computes consequences
from O and Od in parallel but limited to the corresponding set of atoms appearing
in each of the two renamings, thus preventing an inconsistency, e.g., in O, from
affecting the consistency of Od.

Next, we present a slightly altered version of the MKNF-coherent transform (cf.
Definition 2.10) taking into account the doubled Hybrid MKNF knowledge base
and the new negative literals of the form NH( ~tH) that serve as markers.
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Definition 3.4 Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowl-
edge base and S ⊆ KA(Kd). The MKNFd-coherent transform Kd//′S is defined as
Kd//′S = (O,Od,Pd//′S), where Pd//′S contains all rules H ← A1, . . . , An for
which there exists a rule

H ← A1, . . . , An,notB1, . . . ,notBm

in Pd with

(1) Bj 6∈ S for all 1 ≤ j ≤ m; and

(2) OBO,S 6|= ¬H1( ~tH1
) if notNH1( ~tH1

) appears in the body, where H = Hd
1 ( ~tH1

).

This definition is almost identical to the transformation of Definition 2.10 with the
only difference that the removal due to classical negation is only possible in marked
rules. Given Definition 3.1, this means that only rules whose head is a DL-atom
and built by means of a doubled predicate may be eliminated that way (case 2b.i
of Definition 3.1). Additionally, as we will see in Section 4, the marker itself can
be used to actually trigger a query to the ontology for the classical negation of the
atom in the head (using the original predicate for the atom).

We can now define a new operator Γd
K for ground knowledge bases K similar to

the ones in Definition 2.12, but that operates on atoms of KA(Kd).

Definition 3.5 Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowl-
edge base and S ⊆ KA(Kd). We define:

ΓKd(S) = lfp(TKd//′S).

We can show that this operator is antitonic just as its two predecessors.

Lemma 3.6 Let Kd be a doubled, ground Hybrid MKNF knowledge base and S1 ⊆
S2 ⊆ KA(Kd). Then ΓKd(S2) ⊆ ΓKd(S1).

Proof. We have to show that lfp(TKd//′S2
) ⊆ lfp(TKd//′S1

). Since K is finite,

Kd is also finite, and we prove by induction on n that TKd//′S2
↑ n ⊆ TKd//′S1

↑ n
holds.

The base case for n = 0 is trivial since ∅ ⊆ ∅.
Assume that TKd//′S2

↑ n ⊆ TKd//′S1
↑ n holds, consider H ∈ TKd//′S2

↑ (n + 1).
Then H ∈ TKd//′S2

(TKd//′S2
↑ n) and there are two cases to consider:

(1) Kd//′S2 contains a rule of the form H ← A1, . . . , An such that Ai ∈ TKd//′S2
↑

n for each 1 ≤ i ≤ n. In this case, since S1 ⊆ S2 holds, we also have H ←
A1, . . . , An in Kd//′S1 and, by the induction hypothesis, Ai ∈ TKd//′S1

↑ n
holds for each 1 ≤ i ≤ n. Hence, H ∈ TKd//′S1

↑ (n + 1).

(2) H is a consequence obtained from DKd . But DKd derives only consequences
from the unchanged DL renamings O and Od together with TKd//′S2

↑ n. By
the induction hypothesis, we conclude that H ∈ TKd//′S1

↑ (n + 1).

This finishes the proof.

Since this new operator is antitonic, we can define its iteration similar to Defini-
tion 2.13, but now with just one operator.
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Definition 3.7 Let Kd be a doubled, ground Hybrid MKNF knowledge base. We
define:

Pd
0 = ∅ Nd

0 = KA(Kd)

Pd
n+1 = ΓKd(Nd

n) Nd
n+1 = ΓKd(Pd

n)

Pd
ω =

⋃
Pd

n Nd
ω =

⋂
Nd

n

The correspondence between Definitions 2.13 and 3.7 can be established with a
precise relation between the atoms in the doubled knowledge base Kd and those in
K. To ease the proof of the corresponding property, we rely on an adaptation of
the notion of unfounded sets to doubled Hybrid MKNF KBs. For that purpose, we
also adapt the notion of dependency.

Definition 3.8 Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowl-
edge base, H an atom with H ∈ KA(Kd), and S a (possibly empty) set of atoms
with S ⊆ KA(Kd). We say that H depends on S if and only if, for O′ = O or
O′ = Od:

(i) OBO′,S |= H and

(ii) there is no S′ with S′ ⊂ S such that OBO′,S′ |= H .

Based on this notion of dependency, the notion of an unfounded set for Hybrid
MKNF is extended from Definition 2.19 to include O and Od of the doubled KB.

Definition 3.9 Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowl-
edge base and (T, F ) a pair of sets such that T, F ⊆ KA(Kd). We say that
U ⊆ KA(Kd) is an unfounded set (of Kd) with respect to (T, F ) if, for each atom
H ∈ U , the following conditions are satisfied:

(Ui) for each rule H ← B in P at least one of the following holds.
(Uia) Some atom A appears in B and in U ∪ F .
(Uib) Some negative literal notB appears in B and in T .
(Uic) OBO,T |= ¬H1( ~tH1

) and notNH1( ~tH1
) ∈ B, where H = Hd

1 ( ~tH1
)

(Uii) for each (possibly empty) S on which H depends, with S ⊆ KA(K) and OBO,S

consistent, there is at least one atom A such that OBO,S\{A} 6|= H and A in U∪F .

(Uiid) for each (possibly empty) S on which H depends, with S ⊆ KA(Kd) and
OBOd,S consistent, there is at least one atom A such that OBOd,S\{A} 6|= H and
A in U ∪ F .

The union of all unfounded sets of Kd w.r.t. (T, F ) is called the greatest unfounded
set of Kd w.r.t. (T, F ) and denoted UKd(T, F ).

Of course, (Uiid) is just a copy of (Uii) to deal with Od, the copy of O.
The correspondence to the sequence Nd

i for all i can now be established.

Lemma 3.10 Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowledge
base and (Pd

i ,N
d
i ) a pair of sets such that Pd

i ,N
d
i ∈ KA(Kd) in the computation of

the alternating fixpoint of Kd (Definition 3.7). Then the following holds:

KA(Kd) \Nd
i+1 = UKd(Pd

i ,KA(Kd) \Nd
i )
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Proof. We show both inclusions from which the equality follows.
KA(Kd) \Nd

i+1 ⊆ UKd(Pd
i ,KA(Kd) \Nd

i ): Let H ∈ KA(Kd) \Nd
i+1. Then H 6∈

Nd
i+1, i.e., H 6∈ ΓKd(Pd

i ) and H 6∈ lfp(TKd//′P
d

i

). Thus, two conditions hold. First,

for all rules of the form H ← B+∧B− in Pd, there is at least one A ∈ B+ with A ∈
KA(Kd) \Nd

i+1, or at least one notB ∈ B− with B ∈ Pd
i , or OBO,Pi

|= ¬H1( ~tH1
)

and notH1( ~tH1
) ∈ B−, where H = Hd

1 ( ~tH1
). Second, neither OBO,Nd

i+1
|= H

nor OBOd,Nd

i+1
|= H holds. The first condition corresponds exactly to (Ui) of

Definition 3.9 w.r.t. (Pd
i ,KA(Kd) \Nd

i ). We derive from the second condition that,
for all S with S ⊆ KA(Kd) on which H depends, there is at least one atom A such
that OBO,S\{A} 6|= H , respectively OBOd,S\{A} 6|= H , and A in KA(Kd)\Nd

i+1. This

matches condition (Uii) (resp. condition (Uiid) of Definition 3.9 w.r.t. (Pd
i ,KA(Kd)\

Nd
i ), and we conclude that H ∈ UKd(Pd

i ,KA(Kd) \Nd
i ).

UKd(Pd
i ,KA(Kd) \Nd

i ) ⊆ KA(Kd) \Nd
i+1: Let H ∈ UKd(Pd

i ,KA(Kd) \Nd
i ). Then

H occurs in the greatest unfounded set w.r.t. (Pd
i ,KA(Kd) \Nd

i ). It follows from
Definition 3.9 that H 6∈ Nd

i+1. Consequently, H ∈ KA(Kd) \Nd
i+1.

We can now show the correspondence between atoms of K in the fixed point of
Definition 2.13 and those of Kd in the fixed point of Definition 3.7.

Proposition 3.11 Let K = (O,P) be a ground Hybrid MKNF knowledge base.
Then the following holds:

—A ∈ Pω if and only if A ∈ Pd
ω.

—B 6∈ Nω if and only if Bd 6∈ Nd
ω.

Proof. We show by induction on n that two conditions hold.

(i) A ∈ Pn if and only if A ∈ Pd
n

(ii) B 6∈ Nn if and only if Bd 6∈ Nd
n

This is sufficient since the grounded knowledge base is finite, which means that
the iteration is finite and stops for some natural number n, i.e., the two fixpoints
coincide on the relevant atoms as in (i) and (ii).

The base case for n = 0 is straightforward since P0 and Pd
0 are empty while N0

and Nd
0 both contain their entire Herbrand base.

(1) So, suppose that (i) and (ii) hold for n and let A ∈ Pn+1 and B 6∈ Nn+1.
We show that A ∈ Pd

n+1 and Bd 6∈ Nd
n+1. The other direction of the equivalence

follows from an identical argument.

(i) First, suppose that A ∈ Pn+1 but A 6∈ Pn (otherwise we obtain the result
by the induction hypothesis (1) immediately). We show that A ∈ Pd

n+1. If
A ∈ Pn+1, then A ∈ ΓK(Nn), by Definition 2.13, and, thus, A ∈ lfp(TK/Nn

) by
Definition 2.12. So A ∈ TK/Nn

↑ m for some m and we show by induction on

m that A ∈ TKd//′Nn
↑ m (2), which implies that A ∈ Pd

n+1. The base case
for m = 0 holds immediately. Assume the claim (2) holds for m, we show it
for m + 1. Suppose that A ∈ TK/Nn

↑ (m + 1) then A ∈ TK/Nn
(TK/Nn

↑ m).
Then either A ∈ RK/Nn

(TK/Nn
↑ m) or A ∈ DK/Nn

(TK/Nn
↑ m). We start

with the first case, i.e., there is a rule A← A1, . . . , An,notB1, . . . ,notBm with
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Ai ∈ TK/Nn
↑ m and notBj 6∈ Nn for all i and j. For each such rule A ←

A1, . . . , An,notB1, . . . ,notBm in K there is, according to Definition 3.1, a rule
A ← A1, . . . , An,notB

d
1 , . . . ,notB

d
m in Pd. Since, by the induction hypothesis

(1), we have that Bi 6∈ Nn if and only if Bd
i 6∈ Nd

n we obtain that each rule in
K/Nn has its correspondent in Kd//′Nd

n. We obtain by the nested induction
hypothesis of (2) that A ∈ TKd//′Nn

↑ (m + 1). Otherwise, A ∈ DK/Nn
(TK/Nn

↑
m) holds, and A ∈ DKd//′Nn

(TKd//′Nn
↑ m) is obtained immediately by the

induction hypothesis (2) and the identical ontologies O contained in Kd and K.

(ii) To prove (ii) we suppose as well that B 6∈ Nn+1 but B ∈ Nn. We show that
Bd 6∈ Nd

n+1. If B 6∈ Nn+1, then B ∈ UK(Pn,KA(K) \Nn). By Definitions 3.9,
and 3.1, we obtain that B ∈ UKd(Pd

n,KA(Kd) \ Nd
n). Hence, by Lemma 3.10,

B 6∈ Nd
n+1.

This finishes the proof.

It follows immediately from this proposition that we can use this alternative
computation to compute the well-founded MKNF model. Formally we obtain the
following theorem, which shows the adapted well-founded MKNF model.

Theorem 3.12 Let K = (O,P) be a ground, MKNF-consistent Hybrid MKNF
knowledge base and let Pd

K,N
d
K ⊆ KA(Kd) with

Pd
K = {A | A ∈ Pd

ω and A ∈ KA(K)},Nd
K = {Ad | Ad ∈ Nd

ω and Ad ∈ KA(Kd)}.

Then

MWF = {A | A ∈ Pd
K} ∪ {π(O)} ∪ {notA | Ad ∈ (KA(Kd) \ KA(K)) \Nd

K}

is the well-founded MKNF model of K.

Proof. The result is an immediate consequence of Proposition 3.11 and Defini-
tion 2.16.

The two sets Pd
K and Nd

K are just used to remove superfluous atoms, e.g., the
atoms based on doubled predicates for Pd

K. We note that for practical purposes we
also derive from this theorem and Proposition 3.11 that we have to use the new
predicates Ad if we query for negative literals.

To better illustrate how each of the two computations work, we finish the section
with a technical example.

Example 3.13 Consider the knowledge base K.

Q ⊑ ¬R

p(a)← not p(a)

Q(a)←

R(a)← not R(a)

We now show how both computation work in this example, yielding (as expected
from Proposition 3.11) the same results.
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We can compute the two sequences Pi and Ni and obtain:

P0 = ∅ N0 = {p(a), Q(a), R(a)}

P1 = {Q(a)} N1 = N0

P2 = P1 N2 = {p(a), Q(a)}

P3 = {p(a), Q(a), R(a)} N3 = N2

P4 = P3 N4 = ∅

The knowledge base is obviously MKNF-inconsistent since we derive that everything
is true and false at the same time.

Now we apply the alternative computation using the doubled set of rules Pd and
the ontology O and its renaming Od including the special marker predicates NR and
NQ.

Q ⊑ ¬R Qd ⊑ ¬Rd

p(a)← not pd(a) pd(a)← not p(a)

Q(a)← Qd(a)← not NQ(a)

R(a)← not Rd(a) Rd(a)← not R(a),notNR(a)

We compute the two sequences for the transformed knowledge base Kd and obtain:

Pd
0 = ∅ Nd

0 = {p(a), pd(a), Q(a), Qd(a), R(a), Rd(a), NQ(a), NR(a)}

Pd
1 = {Q(a), Qd(a)} Nd

1 = Nd
0

Pd
2 = Pd

1 Nd
2 = {p(a), pd(a), Q(a), Qd(a), R(a)}

Pd
3 = {p(a), Q(a), R(a)} Nd

3 = Nd
2

Pd
4 = Pd

3 Nd
4 = {p(a), Q(a), R(a)}

All atoms based on original predicates are true while all doubled atoms are false.
This indicates again that the knowledge base is MKNF-inconsistent.

Note that the inconsistency in R ensures that everything in the knowledge base is
considered inconsistent. This does not always hold (consider adding a fact p(a)←
to the rules, then pd(a) is not false but true). However, whenever we encounter an
atom such that P is true while Pd is false, then we know that the KB is MKNF-
inconsistent. Adapting Theorem 2.14 to this alternative computation of the well-
founded MKNF model is not trivial, since the computation is now more intertwined.
But this does not constitute a problem. The purpose of this computation is to
provide a link to top-down querying, where, for reasons of efficiency, we do not
want to test whether the entire KB is MKNF-consistent: we only consider the
portion of the KB used in the derivation of the considered query.

4. TABLED SLG(O)-RESOLUTION FOR HYBRID MKNF

We present SLG(O) for Hybrid MKNF knowledge bases which extends SLG reso-
lution from [Chen and Warren 1996] with an oracle to capture first-order deduction
in DLs. SLG evaluation models well-founded computation for logic programs at an
operational level, ensuring goal-directedness, termination and optimal complexity
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for a large class of programs (cf. [Chen and Warren 1996]). At the same time it
has motivated the design of modern tabling engines, and captures many aspects
of their behavior. When SLG is extended with an oracle in SLG(O), several of
the definitions of SLG are affected. In this section we present the definitions of
SLG(O), as well as defining when an oracle is suitable for use in an evaluation. As
the SLG(O) definitions are presented, we make clear how they differ from those
of SLG. For the definition of SLG(O), we follow and extend the model of [Swift
1999].

Briefly, an SLG(O) evaluation is a sequence of forests (sets) of program trees.
Program trees themselves correspond to subgoals that have been encountered in
an evaluation. The nodes in these trees contain sets of literals divided into those
literals that have not been examined, and others that have been examined, but their
resolution delayed (cf. Definition 4.2). The need to delay some literals arises for the
following reason. Modern Prolog engines rely on a fixed order for selecting literals
in a rule, e.g., always left-to-right. However, well-founded computations cannot
be performed using a fixed-order literal selection function.9 Hence, in SLG(O)
the delay operation may postpone evaluation of some literals, which may be later
resolved through an operation called simplification. In addition to modeling the
operational behavior of Prolog, the use of delay and simplification supports the
termination and complexity results of SLG(O) discussed in Section 5, analogous
to those presented for SLG in [Chen and Warren 1996].

Example 4.1 To ease the understanding of SLG(O), we present a concrete exam-
ple of an SLG(O) evaluation that does not use an oracle. Consider the following
Hybrid MKNF knowledge base K with empty O.

p(b)← (2)

p(c)← notp(a) (3)

p(X)← t(X, Y, Z),not p(Y),notp(Z) (4)

p(a)← p(b), p(a) (5)

t(a, a, b)← (6)

t(a, b, a)← (7)

We consider the query p(c) to K in which none of the atoms is a DL-atom, i.e.,
no oracle needs to be used. The SLG(O) forest at the end of this evaluation is
shown in Figure 1 where each node is labeled with a number indicating the order
in which it was created in the SLG(O) evaluation. Nodes consist of either the
symbol fail, or of a head representing the bindings made to an atomic subgoal
and a body with a set of Delays, followed by the | symbol, followed by Goals that
are still to be examined. The evaluation begins by creating a tree for the initial
query with root p(c)← |p(c) in node 1. Children of root nodes are created via the
operation Program Clause Resolution just as in the SLD resolution of Prolog.

9A literal selection function is employed to choose the next literal to resolve in the body of a rule.
In SLG(O), the only requirement for a selection function is that DL-atoms are not selected until
they are ground, which is always possible given DL-safety of conjunctive queries and the rules
appearing in the knowledge base (cf. Definition 2.3).
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Accordingly, the evaluation uses rule (3) to create node 2. The (only possible) literal
not p(a) in node 2 is selected. This literal has an underlying subgoal p(a) that
does not correspond to the root of any tree in the forest so far. Thus, the SLG(O)
operation New Subgoal creates a new tree for p(a) (node 3), whose child, node 4,
is created by Program Clause Resolution using rule (4). The New Subgoal

operation is again used to create a new tree for the selected literal t(a,X,Y) (node
5), and children nodes 6 and 7 are created by Program Clause Resolution from
rules (6) and (7). These latter nodes have empty Goals and are termed answers;
moreover, since they also have empty Delays, they are unconditional answers.10

Any atom in the ground instantiation of an unconditional answer is true in the
well-founded MKNF model, cf. Theorem 5.3. The SLG(O) operation Positive

Return is used to resolve the first of these answers against the selected literal
of node 4, producing node 9. The selected literal of this latter node has p(a) as
its underlying subgoal, but there is already a tree for p(a) in the forest and there
are no answers for p(a) to return. Since there is another unconditional answer for
t(a,X,Y) (in node 7), Positive Return can be used to produce node 10. The
underlying subgoal p(b) is selected, by New Subgoal the tree for p(b) is created,
and it is eventually determined that the subgoal p(b) has an unconditional answer
(node 12); accordingly, using the Negation Failure operation, the failure node,
node 14, is created. Then, the computation, via Program Clause Resolution

and program rule (5), produces another child for p(a), node 15, and resolves p(b)
(node 16). At this stage the subgoal p(a) is neither true, as no unconditional
answers have been derived for it, nor false as one of its possible derivations, node
9, effectively has a loop through negation. However, in SLG(O) it is possible to
apply the delay operation to the selected negative literal, by moving it from the
Goals to the right of the | symbol into the Delays to the left of the | symbol. This
delay operation produces node 17, which is termed a conditional answer, as it has
empty Goals but non-empty Delays.11 Delay also produces node 18 whose new
selected literal not p(b) now fails (given the unconditional answer in node 12),
producing the failure node 19. At this stage, all possible operations for non-answer
nodes in p(a) and the trees it depends on have been performed so that p(a) may be
completed (step 20). The completed subgoal p(a) has no answers, and so is termed
failed and is false in the well-founded MKNF model of K. This failed literal can
be removed from the delay list of node 18 through the simplification operation
producing the unconditional answer node 21.

Example 4.1 covers most of the main aspects of SLG(O), more precisely the
main aspect of the underlying formalism, SLG, that is applicable to normal logic
programs. SLG does not especially differ from other Prolog-like tabling formalisms
in the case of programs that do not use default negation (not). However, for nega-

10In a practical program, a predicate defined by simple facts would not be evaluated using tabling,
but rather would use SLD resolution as in Prolog.
11Choosing delay in this order is not optimal and is made for purposes of illustrating the operations
of SLG(O). This does not affect the result of the query itself since SLG(O) is shown to be
confluent in Theorem 5.2.
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22. complete

8. complete 13. complete

20. complete

16. p(a)<− |p(a).

15. p(a)<− |p(b),p(a).

18. p(a)<− not p(a)|not p(b)

17. p(c)<− not p(a)|

19. fail

20. fail

21. p(c) <− |

1. p(c) <− | p(c)

2. p(c)<− | not p(a)

3. p(a) <− | p(a)

4. p(a)<− |t(a,X,Y),not p(X),not p(Y)

9. p(a)<− |not p(a),not p(b)

5. t(a,X,Y) <− |t(a,X,Y)

6. t(a,a.b) <− | 7. t(a,b,a) <− | 

10.  p(b)<− |not p(b),not p(a)

12. p(b) <− |

11. p(b) <− | p(b)

14. fail

Fig. 1. Final forest for the query p(c) to P1.

tion it introduces the concept of delaying literals in order to be able to find witnesses
of failure anywhere in a rule, along with the concept of simplifying these delayed
literals whenever their truth value becomes known. SLG(O) allows additionally
the usage of an oracle to incorporate reasoning in the DL part O, and we present
its definitions in the following.

An SLG(O) evaluation proceeds by constructing a forest according to the set of
SLG(O) operations. Such a forest, and the trees and nodes it contains are defined
as follows:

Definition 4.2 A node has the form

AnswerTemplate← Delays|Goals or fail.

In the first form, AnswerTemplate is an atom or a classically negated atom, while
Delays and Goals are sequences of literals. The second form is called a failure
node. A program tree T is a tree of nodes whose root is of the form S ← |S for
some atom S or a classically negated atom S = ¬S1: we call S the root node for T
and T the tree for S. An SLG(O) forest F is a set of program trees. A node N
is an answer when it is a leaf node for which Goals is empty. If the Delays of an
answer is empty, it is termed an unconditional answer, otherwise, it is a conditional
answer. A program tree T may be marked with the symbol complete.

The notions in Definition 4.2 are almost identical to previous formulations of
SLG resolution. The only difference is that SLG(O) allows for the appearance
of classically negated atoms as roots to incorporate possible calls for the classical
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negation as required by the bottom-up computation in Definition 3.4. Such a literal
¬A only appears in an AnswerTemplate or as the only goal in the root node, and
is only used to query O.

An SLG(O) evaluation of a query Q starts with an initial forest with just one
node Q ← |Q and creates a sequence of forests. Each forest is obtained from the
previous one by applying one SLG(O) operation. If no further SLG(O) operation
is applicable, then the final forest for the evaluation of the query has been reached.
We introduce these SLG(O) operations incrementally, in Definitions 4.5, 4.7, 4.11,
and 4.14. But before we present the first set of operations, we need two auxiliary
definitions.

The definition of answer resolution in SLG(O) (and SLG) differs from resolution
in Horn rules in order to take into account delay literals in conditional answers.

Definition 4.3 Let N be a node A← D|L1, ..., Ln, where n > 0. Let Ans = A′ ←
D′| be an answer whose variables are disjoint from N . N is SLG(O) resolvable
with Ans if ∃i, 1 ≤ i ≤ n, such that Li and A′ are unifiable with an mgu12 θ. The
SLG(O) resolvent of N and Ans on Li has the form:

(A← D|L1, ..., Li−1, Li+1, ..., Ln)θ

if D′ is empty; otherwise the resolvent has the form:

(A← D,Li|L1, ..., Li−1, Li+1, ..., Ln)θ

Note that this form of resolution delays Li rather than propagating the answer’s
delay list D′. This is necessary, as shown in [Chen and Warren 1996], to ensure
polynomial data complexity.13

Next, we relate different types of literals to their underlying subgoals.

Definition 4.4 The underlying subgoal of L is 1) L if L is a positive literal or
L = ¬S; 2) is S if L = notS (and S is not based on one of the new predicates NH
introduced in Definition 3.4); or 3) is ¬H( ~tH) if L = notNH( ~tH).

The first set of operations that we present deals with the creation of new trees
and with resolution with program rules and with answers in other trees.

Definition 4.5 (SLG(O) Operations – 1) Let Kd = (O,Od,Pd) be a doubled
Hybrid MKNF knowledge base. Further assume that a fixed selection function is
used to select a literal from the Goals in a node.

Given a forest Fn of an SLG(O) evaluation of Kd, Fn+1 may be produced by one
of the following operations.

(1) New Subgoal: Let Fn contain a tree with non-root node

N = Ans← Delays|G,Goals

12most general unifier
13If delay lists were propagated directly, then delay lists could contain all derivations which could
be exponentially many in the worst case.
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24 · José Júlio Alferes et al.

where S is the underlying subgoal of G. Assume Fn contains no tree with root
S. Then add the tree S ← |S to Fn.

(2) Program Clause Resolution: Let Fn contain a tree with root node N =
S ← |S and C be a rule Head ← Body such that Head unifies with S with
mgu θ. Assume that in Fn, N does not have a child Nchild = (S ← |Body)θ.
Then add Nchild as a child of N .

(3) Positive Return: Let Fn contain a tree with non-root node N whose selected
literal S is positive. Let Ans be an answer for S in Fn and Nchild be the
SLG(O) resolvent of N and Ans on S. Assume that in Fn, N does not have
a child Nchild. Then add Nchild as a child of N .

As illustrated in Example 4.1, the operation New Subgoal creates a new tree
in the forest F for a selected literal in the Goals of some (non-root) node in a tree
in F . Once a root node N for a positive literal is created, the Program Clause

Resolution operation can create children for N , given the rules in the knowledge
base. Positive Return resolves positive literals in nodes, with answers already
in the forest, according to Definition 4.3. Contrary to SLG, the New Subgoal

operation may also create new trees for classically negated literals to which only
the operation Oracle Resolution, defined below, applies.

Now, if a sequence of SLG(O) operations yields a (possibly intermediate) forest
containing an unconditional answer, then this answer is considered to be true.
Likewise, if no more operations are applicable to a set of trees, and none of them
contains an unconditional answer, i.e., the set of literals associated to these trees is
completely evaluated (see Definition 4.12), then we can interpret all these literals as
false. Expanding on this correspondence, we may associate an SLG(O) forest with
a partial interpretation, taking into consideration that, besides atoms and default
negated atoms, SLG(O) also allows classically negated literals as the roots of trees.
This interpretation is shown to correspond to MWF (cf. Theorem 5.3 below).

Definition 4.6 Let F be a forest. Then the interpretation induced by F , IF , is
the smallest set such that:

—A (ground) atom A ∈ IF iff A is in the ground instantiation of some unconditional
answer Ans← | in F .

—A (ground) negated atom ¬A ∈ IF iff ¬A is in the ground instantiation of some
unconditional answer Ans← | in F .

—A (ground) literal notA ∈ IF iff A is in the ground instantiation of a literal
whose tree in F is marked as complete, and A is not in the ground instantiation
of any answer in a tree in F .

An atom S is successful (resp. failed) in F if S′ (resp. notS′) is in IF for every
S′ in the ground instantiation of S.

Whenever an atom A is successful, we can fail its default negation notA. If an
atom A is failed, then we can simplify away notA. Ground default negated literals
that are neither failed nor successful may be delayed and be simplified later. More
precisely:
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Definition 4.7 (SLG(O) Operations – 2) Let Kd = (O,Od,Pd) be a doubled
Hybrid MKNF knowledge base, and assume a selection function as in Definition 4.5.

Given a forest Fn of an SLG(O) evaluation of Kd, Fn+1 may be further produced
by one of the following operations.

(4) Negative Return: Let Fn contain a tree with a leaf node, whose selected
literal notS is ground

N = Ans← Delays|notS,Goals.

(a) Negation Success: If S is failed in Fn then create a child for N of the
form: Ans← Delays|Goals.

(b) Negation Failure: If S succeeds in Fn, then create a child for N of the
form fail.

(5) Delaying: Let Fn contain a tree with leaf node

N = Ans← Delays|notS,Goals

such that S is ground in Fn, but S is neither successful nor failed in Fn. Then
create a child for N of the form Ans ← Delays,notS|Goals.

(6) Simplification: Let Fn contain a tree with leaf node

N = Ans← Delays|

and let L ∈ Delays
(a) If L is failed in F then create a child f ail for N .
(b) If L is successful in F , then create a child Ans ← Delays′| for N , where

Delays′ = Delays− L.

In Hybrid MKNF knowledge bases, an atom S is true if it is derivable from the
rules or from the DL part of the knowledge base. So far, we have presented the
operation Program Clause Resolution that handles the former case. We now
introduce the Oracle Resolution operation to deal with the latter.

The next definition characterizes the behavior of an abstract oracle, O,14 that
computes entailment according to the DL knowledge base O, to be used in the
Oracle Resolution operation. For that purpose, we define an oracle transition
function that, given an interpretation induced by a forest, computes in a single step
all possible atoms required to prove a goal S. In other words, such an oracle, when
presented with S and a forest F , non-deterministically returns in one step a set of
ground atoms L such that: for each L ∈ L there is at least one rule with L in the
head in ground PG, and if L were added to O augmented with IF , the extended
theory would immediately entail S. We only have to take into account that we
appropriately query O or its renaming Od in a doubled Hybrid MKNF knowledge
base, and that we extend O only with the positive part of IF .

Definition 4.8 Let Kd = (O,Od,Pd) be a doubled Hybrid MKNF knowledge
base, S a ground goal, L a set of ground atoms such that each L ∈ L is unifiable

14We overload O syntactically to represent the oracle and the ontology, i.e., its underlying DL
knowledge base, since from the viewpoint of SLG(O) they are the same.
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with at least one rule head in Pd, and I+F = IF \ {notA | notA ∈ IF}. The
complete oracle for O, denoted compTO, is defined by

compTO(IF , S,L) iff O ∪ I+F ∪ L |= S or Od ∪ I+F ∪ L |= S

Example 4.9 Consider the Hybrid MKNF knowledge base K containing O.

C(a) C ⊓ F ⊑ E

Assume that IF is empty, and that there is at least one rule whose head unifies
with F(a). We query for E(a). In this case, compTO(∅, E(a), {F(a)}) holds because
O∪{F(a)} |= E(a). Thus, deriving F(a) from the rules would be enough to conclude
that E(a) is true in the well-founded MKNF model.

The set O ∪ I+F ∪L (and likewise Od ∪ I+F ∪L) may be inconsistent even though
the well-founded MKNF model of K exists. Consequently, such a complete oracle
potentially allows us to obtain a large number of entailments that are eventually
useless to derive S if K is MKNF-consistent.

Example 4.10 Consider the Hybrid MKNF knowledge base K containing O.

C(a) C ⊑ ¬D E ⊑ F

Assume that IF is empty and we query for E(a). If O were extended with D(a), O
would become inconsistent, so that all statements would be derivable from the ex-
tended O, including E(a). Hence compTO(∅, E(a), {D(a)}) holds because O∪{D(a)}
is inconsistent. However, as K is MKNF-consistent, D(a) cannot be derived so that
the corresponding tree eventually fails. In Section 5, we provide the definition of
a partial oracle which overcomes this lack of efficiency, and upon which concrete
oracles can be based.

Complete oracles are applied to define the next SLG(O) operation, which has
no correspondence in SLG:

Definition 4.11 (SLG(O) Operations – 3) Let Kd = (O,Od,Pd) be a dou-
bled Hybrid MKNF knowledge base. Given a forest Fn of an SLG(O) evaluation
of Kd, Fn+1 may be produced by:

(7) Oracle Resolution: Let Fn contain a tree with root node N = S ← |S,
and suppose that compTO(IFn

, S,Goals) holds. Assume that N does not have
a child Nchild = S ← |Goals in Fn.15 Then add Nchild as a child of N .

SLG(O) also includes an operation that marks a set of trees as complete if the
corresponding set of literals is completely evaluated. Completed trees can be used
in SLG(O) to simplify other trees and to augment the interpretation associated
with the forest with default negated literals

Definition 4.12 A set S of literals in a forest F is completely evaluated if at least
one of the conditions holds for each S ∈ S

15For that comparison, we consider the sequences Goals as sets to avoid that one root node has
several children whose sequences Goals are merely permutations.
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(1) The tree for S contains an answer S ← |; or

(2) For each node N in the tree for S:
(a) The underlying subgoal of the selected literal of N is marked as complete;

or
(b) The underlying subgoal of the selected literal of N is in S and there are

no applicable New Subgoal, Program Clause Resolution, Positive

Return (Definition 4.5), Negative Return, Delaying (Definition 4.7)
or Oracle Resolution (Definition 4.11) operations for N .

Once a set of literals is determined to be completely evaluated, a Completion op-
eration marks the trees for each literal (Definition 4.2). If a subgoal S is completed
due to condition 1 holding, we say that S is early completed. If condition 1 does
not hold, condition 2a of the above definition prevents the Completion operation
from being applied to one of a set of trees if certain other operations are applicable
to those trees. This notion of completion is incremental in the sense that once a
set S of mutually dependent subgoals is fully evaluated, the derivation need not be
concerned with the trees for S apart from any answers they contain. In an actual
implementation resources for such trees can be reclaimed.

In certain cases the propagation of conditional answers through resolution (Def-
inition 4.3) can lead to a set of unsupported answers — conditional answers that
are false in the well founded model (see, e.g., Example 1 of [Swift et al. 2009]).16

Intuitively, these answers, which have positive mutual dependencies, correspond to
an unfounded set, but their technical definition is based on the form of conditional
answers.

Definition 4.13 Let F be an SLG(O) forest, and Answer be an atom that occurs
in the head of some answer in a tree with root S. Then Answer is supported in F
if and only if:

(1) S is not completely evaluated; or

(2) there exists an answer node Answer′ ← Delays| in S such that Answer′ sub-
sumes Answer and for every positive literal L ∈ Delays, L is supported in
F .

We are now able to characterize the last two operations of SLG(O): one allows
the completion of trees, and the other removes unsupported answers.

Definition 4.14 (SLG(O) Operations – 4) Let Kd = (O,Od,Pd) be a dou-
bled Hybrid MKNF knowledge base. Given a forest Fn of an SLG(O) evaluation
of Kd, Fn+1 may also be produced by one of the following operations.

(8) Completion: Given a completely evaluated set S of literals (Definition 4.12),
mark the trees for all literals in S as complete.

(9) Answer Completion: Given a set of unsupported answers UA, create a
failure node as a child for each answer Ans ∈ UA.

16As an aside, we note that unsupported answers appear to be uncommon in practical evaluations
which minimize the use of delay such as [Sagonas et al. 2000].
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Each of the operations (1)–(9), in Definitions 4.5, 4.7, 4.11 and 4.14, can be seen
as a function that associates a forest with a new forest by adding a new tree, adding
a new node to an existing tree, or marking a set of trees as complete. The only
thing missing to complete the description of the procedure is the formalization of the
initialization of an SLG(O) evaluation, i.e., how the initial (DL-safe) conjunctive
query is defined.

Definition 4.15 Let Kd be a doubled Hybrid MKNF knowledge base and let q
be a query of the form q(Xi) ← A1, . . . , An,notB

d
1 , . . . ,notB

d
m where Xi is the

(possibly empty) set of requested variables. We set F0 = {q(Xi) ←| q(Xi)} to be
the initial forest of an SLG(O) evaluation of Kd for q and add q itself to Kd.

Of course, if the query is atomic we can simply start with the query itself, i.e.,
with the root containing the queried literal itself. Since the derivation uses Kd (the
doubled knowledge base), the technically correct way to query negative literals is
to use notBd instead of notB for any atom B which is why we use the doubled
predicates for negative literals in the query.

Finally, note that if O represents an expressive DL, then O may derive equalities
between different individuals because the unique names assumption (UNA) is not
applied. Hybrid MKNF accounts for that using the standard names assumption
(see [Motik and Rosati 2010; Knorr et al. 2011]), thus adapting reasoning with
equalities as well. As such, equalities allow us to derive further information in the
sense that, for example, if C(a) and a ≈ b hold, then C(b) is derivable. If C(a) is a
DL-atom, then the DL reasoner of the oracle takes care of the problem internally.
Only if C(a) is a non-DL-atom, then we specifically have to query for equalities in
O which is why Oracle Resolution is not restricted to DL-atoms.

In the next section, we show that SLG(O) always terminates (Theorem 5.1)
and, even though some orders of application of the possible operations are more
efficient than others, that the procedure is confluent (Theorem 5.2). We also show
that the procedure is sound and complete w.r.t. the well-founded MKNF model
(Theorem 5.3) and that it is sound w.r.t. the semantics of two-valued MKNF
(Corollary 5.4). Finally, under some assumptions, we maintain the computational
complexity of the bottom-up procedure (Theorem 5.7), which is actually an im-
provement since we do not have to consider the entire knowledge base but only the
part relevant for a concrete query. But before showing these results, we finish the
presentation of SLG(O) with an example illustrating its behavior.

Example 4.16 In order to illustrate the actions of SLG(O) we consider a deriva-
tion of an answer to the query discount(Bill) using a KB K from [Motik and
Rosati 2007]:17

17For ease of reading and since neither an MKNF-inconsistency nor an issue related to coherence
occurs, we operate on K directly instead of on Kd.
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14. complete

1. discount(bill)<− |discount(bill)

2. discount(bill)<− | not HighRisk(bill)

8. Married(bill) <− |

7. Married(bill)<− |Married(bill)

3. HighRisk(bill)<− |HighRisk(bill)

4. HighRisk(bill)<− |NonMarried(bill)

5. NonMarried(bill)<−|NonMarried(bill)

6. NonMarried(bill)<− |not Married(bill)

9. fail

10. complete

11. complete

12. complete

13. discount(bill)<−|

Fig. 2. Final Forest for the query discount(Bill) to K.

NonMarried ≡¬Married (8)

¬Married ⊑ HighRisk (9)

∃Spouse.T ⊑ Married (10)

(∃Spouse.{Michelle})(Bill) (11)

NonMarried(x)←not Married(x) (12)

discount(x)←not HighRisk(x) (13)

First, note that TBox and ABox information are each distributed over both the
DL KB and the rules. Figure 2 shows the final forest for this evaluation, where
elements are marked in the order they are created. The initial forest for the evalu-
ation consists of node 1 only. Given the selected literal of node 1, discount(Bill),
we can only apply Program Clause Resolution, so we use rule (13) to produce
node 2, followed by New Subgoal to produce node 3. No rules are applicable for
node 3, HighRisk(Bill), but an Oracle Resolution operation can be applied
to derive from axioms (8) and (9) that if NonMarried(Bill) can be proven (node
4), then this suffices to prove HighRisk(Bill). Then, via a New Subgoal oper-
ation, node 5 is obtained. For the selected literal in node 5, NonMarried(Bill),
Program Clause Resolution produces node 6 from (12) and New Subgoal

produces node 7. The selected literal of node 7, Married(Bill), is not the head
of a rule, so the only possibility is to use Oracle Resolution, and the answer
Married(Bill) is derived from axioms (10) and (11). Using this answer, the tree
for Married(Bill) can be early completed and a Negative Return operation
produces node 10. The tree for NonMarried(Bill), which does not have an answer,
must be completed (step 11), and the same holds for HighRisk(Bill) (step 12).
Once this occurs, a Negative Return operation is enabled to produce node 13.

The evaluation in the example illustrates two main points. First, the evaluation
makes use of classical negation in the ontology along with closed world negation in
the rules. Second, the actions of the DL part and the program part are interleaved,
with the program “calling” the oracle by Oracle Resolution, and the oracle
“calling” the program back with the answers of that operation.
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5. PROPERTIES OF TABLED SLG(O)-RESOLUTION

We now present several properties of SLG(O)-resolution. The first property we
can ensure is that our extension of SLG resolution terminates for the evaluation of
any query, generating a final forest.

Theorem 5.1 Let q = L be a query to a doubled Hybrid MKNF knowledge base
Kd. Then any SLG(O) evaluation of K d for q terminates after finitely many steps,
producing a finite final forest.

Proof. The proof is straightforward since we know already that SLG, i.e.,
SLG(O) without Oracle Resolution and the extended New Subgoal opera-
tion, terminates finitely for programs with bounded term-depth, and transfinitely
otherwise (cf. Theorem 5.10 of [Chen and Warren 1996]). Since Definition 2.2 en-
sures that Hybrid MKNF knowledge bases do not contain recursive terms, i.e.,
non-nullary functors, they have bounded term depth, and so does the doubled
knowledge base Kd. Accordingly, we only have to ensure that the new operation
Oracle Resolution and the extension of New Subgoal do not invalidate finite
termination.

The operation Oracle Resolution can be applied in the same situation as
Program Clause Resolution, namely when creating a new child for a root of
a tree, so that each operation can be applied only once to a given node (for each of
the finitely many rules, respectively for each of the finitely many possible answers
of the complete oracle), and this creates one child per successful application. Now,
since the knowledge base Kd is finite, the number of (ground) rule heads is finite.
Thus, 1) the number of children possibly created with Oracle Resolution for
any arbitrary root is finite; and 2) the size of the nodes created is also finite.

The extension of the operation New Subgoal creates even in the worst case
finitely many more trees with roots to which only Oracle Resolution is appli-
cable, which in its turn is fintely many, as just demonstrated.

We conclude that termination holds for SLG(O).

As SLG(O) is defined, there is no prescribed order in which to apply the oper-
ations possible in a forest Fi. For SLG some orders of application are in general
more efficient than others but, as shown in [Chen and Warren 1996], any order
yields the same outcome for any query. This same sort of confluence also holds for
SLG(O):

Theorem 5.2 Let E1 and E2 be two SLG(O) evaluations of a query q = L to a
doubled Hybrid MKNF knowledge base Kd, F1 the final forest of E1, and F2 the
final forest of E2. Then, IF1

= IF2
.

Proof. This is a well-known property for SLG as defined using the operations
of Definition 4.5 excluding the extension of New Subgoal to classical negation,
and the operations of Definitions 4.7 and 4.14 (cf. Theorem 5.7 of [Chen and War-
ren 1996]). Accordingly, we consider cases in which E1 and E2 make use of the
operations that have been introduced/extended in SLG(O). However, Program

Clause Resolution is used in SLG, and if we just consider the created children,
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then Program Clause Resolution and Oracle Resolution are not distin-
guishable. Thus, we can consider that Oracle Resolution is a syntactic variant
of Program Clause Resolution. The same holds for New Subgoal and the
treatment of default negated atoms notS that create a tree with root S and those
special literals notNH(ti) that may allow us to create a tree with root ¬H(ti):
both its children are not distinguishable and only one of the two is applicable in
each case. Thus, confluence of SLG(O) follows directly from confluence of SLG
(see Theorem 5.7 of [Chen and Warren 1996]).

The above theorem is also helpful to prove that SLG(O) is a correct query
procedure for MKNFWF and terminates within the same complexity bounds as the
semantics defined in [Knorr et al. 2011]. First, we show that SLG(O) coincides
with MKNFWF . Intuitively, what we have to show is that the well-founded MKNF
model, as presented in Section 2 and based on the computation presented in Section
3, coincides with the interpretation IF induced by the final forest Fn for some query
q to Kd in all the ground literals involved in the query.18 We can further simplify
that by showing, for each literal L appearing inKd

G, that L ∈MWF (Definition 2.16)
if and only if L ∈ IF with ground query q = L and Fn for some n. Note that this
correspondence also holds for atoms and classically negated atoms only appearing
in the ontology.

Theorem 5.3 Let Kd be a doubled Hybrid MKNF knowledge base, and IF the
interpretation induced by the final forest F of an SLG(O) evaluation of Kd for a
ground query q = L where L is a literal or a classically negated atom. SLG(O)
resolution is sound and complete w.r.t. MWF , which is obtained from Pd

ω and Nd
ω,

i.e.,

—for L ∈ KA(Kd
G):

—L ∈ Pd
ω if and only if L ∈ IF and

—Ld
1 6∈ Nd

ω if and only if L = notLd
1 ∈ IF .

—for L 6∈ KA(Kd
G): O ∪Pd

ω |= L or Od ∪Pd
ω |= L if and only if L ∈ IF .

Proof. (Completeness): We show by induction on n that

—for L ∈ KA(Kd
G), if L is a positive literal, then L ∈ Pd

n implies that L ∈ IF ; and
if L = notLd

1 is a negative literal, then Ld
1 6∈ Nd

n implies that notLd
1 ∈ IF

—for L 6∈ KA(Kd
G), if O ∪Pd

n |= L or Od ∪Pd
n |= L then L ∈ IF .

The induction base holds immediately, for L ∈ KA(Kd
G), since Pd

0 is empty and
Nd

0 contains all literals appearing in KA(Kd
G). For L 6∈ KA(Kd

G), we obtain that
O |= L or Od |= L, so we can create a tree L : − | L and with Oracle Resolution

an answer L : − |, which shows L ∈ IF .
(Induction Hypothesis 1) Now suppose the claim holds for n. We have to show

the induction step for n + 1. For L ∈ KA(Kd
G), let L be a positive literal, and

suppose that L ∈ Pd
n+1 but L 6∈ Pd

n (otherwise the claim would immediately follow
by the induction hypothesis). Therefore, L ∈ ΓKd

G

(Nd
n) and so L ∈ TKd

G
//′Nd

n
↑ ω

18Without loss of generality, we can restrict that statement to ground queries, a non-ground query
would simply require to check all the ground instances.
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(Definition 3.5). We show by induction on m that L ∈ TKd

G
//′Nd

n
↑ m implies that

L ∈ IF .

Inner Induction

The base case is void since TKd

G
//′Nd

n
↑ 0 is empty.

(Induction Hypothesis 2) Suppose the property holds for m, we show it for m+1.
So, assume that L ∈ TKd

G
//′Nd

n
↑ (m + 1) but L 6∈ TKd

G
//′Nd

n
↑ m (otherwise the

property would immediately follow by the induction hypothesis (2)). Then L ∈
TKd

G
//′Nd

n
(TKd

G
//′Nd

n
↑ m) and either L ∈ RKd

G
//′Nd

n
(TKd

G
//′Nd

n
↑ m) (i.e., L is a con-

sequence of rule deduction, Definition 3.3) or L ∈ DKd

G
//′Nd

n
(TKd

G
//′Nd

n
↑ m) (L is

a consequence of deduction in the ontology). In the first case, for L to be the conse-
quence of a rule derivation, there must be a rule L← A1, . . . , An,notB1, . . . ,notBm

in Kd
G such that all Bj 6∈ Nd

n and all KAi ∈ TKd

G
//′Nd

n
↑ m. Such a rule gives rise

to the rule L ← A1, . . . , An in the the MKNF-coherent reduction, Kd
G//

′Nd
n. We

thus know by the two induction hypotheses that all Ai and all notBj appear in
IF . From that we can construct a tree with root L : − | L and a child obtained by
applying Program Clause Resolution with the rule considered. In the result-
ing child the set of goals contains exactly all Ai that can be removed by Positive

Return and all notBj that can be removed by Negative Return. The result
is a leaf node L : − | and we obtain that L ∈ IF for this order of applying SLG(O)
operations. Since Theorem 5.2 ensures that we achieve the same result if we alter
the order of such applications of SLG(O) operations, we know that the statement
holds in general. In the second case, i.e., for L ∈ DKd

G
//′Nd

n
(TKd

G
//′Nd

n
↑ m), we

construct a tree L : − | L and apply Oracle Resolution as (finitely) many
times as necessary. One of those children is the one actually allowing to derive L
by means of the ontology, i.e., all goals in this child are positive literals that are
true in TKd

G
//′Nd

n
↑ m. We apply Positive Return to these literals, and this, by

the induction hypothesis (2), results in a leaf node L : − |. As before, Theorem 5.2
ensures that a different application order again yields eventually the same result.

Now, let L be a negative literal notLd
1, and suppose that Ld

1 6∈ Nd
n+1 but Ld

1 ∈ Nd
n

(otherwise the claim would follow immediately by the induction hypothesis (1)).
Then, Ld

1 ∈ UKd

G

(Pd
n,KA(Kd

G) \Nd
n) by Lemma 3.10, i.e., Ld

1 occurs in the greatest

unfounded set w.r.t. (Pd
n,KA(Kd

G) \Nd
n). We construct a tree with root Ld

1 : − |
Ld
1. We proceed by creating all children of that root, applying Program Clause

Resolution and Oracle Resolution as (finitely) many times as possible. By
Definition 3.9, each such child (after finitely many subsequent operations) is either
false or completely evaluated as in case 2.(b) of Definition 4.12, which means that
another element of UKd

G

(Pd
n,KA(Kd

G)\Nd
n) has been encountered in the list of goals.

Note that SLG(O) selects literals in some order, while the greatest unfounded set
U just refers to some other element in U . Consequently, it may happen that we
have to evaluate some literals first whose evaluation is only known in an iteration
step m with m > n. But this does not cause any problem. Such negative literals
may be simply delayed (Delaying), while both positive and negative literals are
processed (New Subgoal and so on): if a literal can eventually be resolved, then
it is removed from the list of goals of a child. Otherwise, we obtain an even larger
unfounded set. In both cases, once no further operation can be applied, the set U
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can be completed, and, by Definition 4.6, we derive notLd
1 ∈ IF .

End of Inner Induction
The previous inner induction handled the case where L was derived as a con-

sequence of a rule. Alternately, suppose that L 6∈ KA(Kd
G) and O ∪ Pd

n |= L or
Od ∪ Pd

n |= L. We can can construct a tree starting with L : − | L and apply
Oracle Resolution until we get a child L : − | Goals such that Goals ⊆ Pd

n,
which has to exist. We apply Positive Return to all positive literals in Goals,
which is possible by the induction hypothesis (1) thus deriving the answer L : − |,
from which we conclude L ∈ IF .
(Soundness): We show by induction on n that:

—for L ∈ KA(Kd
G), if L is a positive literal, then L ∈ IFn

implies that L ∈ Pd
ω, and

if L = notLd
1 is a negative literal, then L ∈ IFn

implies that Ld
1 6∈ Nd

ω; and

—for L 6∈ KA(Kd
G), if L ∈ IF , then O ∪Pd

ω |= L or Od ∪Pd
ω |= L.

The induction base holds trivially, since IF0
is empty. So assume the property

holds for n. We show that the property holds for all cases (1)–(9) of an SLG(O)
operation that may be applied to IFn

yielding IFn+1
.

(1) New Subgoal: This operation creates a new tree and does alone not alter
IF , i.e., if L ∈ IFn+1

, then L ∈ IFn
, and the property holds by the induction

hypothesis.

(2) Program Clause Resolution: A new child is created for the root S ← | S.
If this child has an empty list of goals, then a rule with empty body was used
to create this child. Now, if L is a positive literal with L = S, then L ∈ IFn+1

.
But then, L ∈ Pd

ω since there is a fact L in Kd
G. Alternatively, if the list of

children is not empty, then L ∈ IFn+1
implies L ∈ IFn

, and the property holds
by the induction hypothesis.

(3) Positive Return: If the resolved goal is the last remaining, then the outcome
of the operation is an unconditional answer. Suppose the answer template is
equal to L. We can trace back this child to the immediate child of the root.
All goals in this particular child have already been resolved, so that, by the
induction hypothesis, all positive literals L appear in Pd

ω and all negative literals
notLd

1 do not appear in Nd
ω. But then the property holds, no matter whether

L ∈ KA(Kd
G) or not. Alternatively, if the list of goals (including delayed ones)

is not empty, then L ∈ IFn+1
implies L ∈ IFn

, and the property holds by the
induction hypothesis.

(4) Negative Return

(a) Negation Success: The argument is exactly the same as for Positive

Return, only now the last goal is a negative literal.
(b) Negation Failure: This operation fails one child. However, it does alone

not contribute to IF , i.e., if L ∈ IFn+1
, then L ∈ IFn

, and the property
holds by the induction hypothesis.

(5) Delaying: This operation at best provides a conditional answer. As such it
does not affect IF alone. Therefore, if L ∈ IFn+1

, then L ∈ IFn
, and the

property holds by the induction hypothesis.

(6) Simplification:
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(a) The first simplification case corresponds exactly to Negation Failure,
only here the failure occurs in Delays and the failed literal may be positive
or negative.

(b) The second simplification case corresponds exactly to Negation Success,
only now the success occurs in Delays and the successful literal may be
positive or negative.

(7) Oracle Resolution: A new child is created for the root S ← | S by means
of the oracle. If the returned list of goals is empty, then the oracle allows us
to derive the root directly, and O ∪ IFn

|= L or Od ∪ IFn
|= L. In this case,

if L is a positive literal with L = S, then L ∈ IFn+1
. If L ∈ KA(Kd

G), then
L ∈ Pd

ω, since the operator DKd

G

together with all L′ ∈ IFn
, for which L′ ∈ Pd

ω

holds by the induction hypothesis, allows us to derive L. If L 6∈ KA(Kd
G), then

O ∪ Pd
ω |= L or Od ∪ Pd

ω |= L holds since we have that, for all L′ ∈ IFn
,

L′ ∈ Pd
ω holds by the induction hypothesis. Alternatively, if the list of goals

is not empty, then L ∈ IFn+1
implies L ∈ IFn

, and the property holds by the
induction hypothesis.

(8) Completion: This operation only affects IF if some A is in the ground in-
stantiation of a completely evaluated literal in F and A is not in the ground
instantiation of any answer in a tree in F . In other words, this operation in-
troduces notL′ to IF . In particular, consider L = notLd

1 as a negative literal
and L ∈ IFn+1

. Thus, the tree for Ld
1 does not contain any answer but also no

further operation can be applied, i.e., in each child, there is (at least) one literal
that either can not be resolved or it is failed. This matches the condition of
the greatest unfounded set and we obtain that Ld

1 6∈ Nd
ω. For all other cases, if

L ∈ IFn+1
, then L ∈ IFn

, and the property holds by the induction hypothesis.

(9) Answer Completion: This operation may affect IF by adding failure nodes
as children to conditional answers. Assume that one such answer occurs within
some tree with root S ← S in Fn. In such a case, S may become false in
IFn+1

but was not false in IFn
. However, the notion of an answer that is

not supported (Definition 4.13) captures the definition of an element of an
unfounded set: in this case literals in the unfounded set may be in the Delays
of an answer. As with the case of Completion, we have that for any L in the
ground instantiation of S, Ld 6∈ Nd

ω. For all other cases, if L ∈ IFn+1
, then

L ∈ IFn
, and the property holds by the induction hypothesis.

We conclude that soundness holds.

Given the soundness of MKNFWF with respect to the semantics of MKNF knowl-
edge bases of [Motik and Rosati 2010], it follows easily from [Knorr et al. 2011] that:

Corollary 5.4 Let K be a Hybrid MKNF knowledge base and L a literal that ap-
pears in Kd

G. If L ∈ IF (L = notLd
1 ∈ IF respectively), where IF is induced by

the forest F of an SLG(O) evaluation of Kd
G for query q = L, then L (notL1

respectively) is derivable from all two-valued MKNF models of K.

In addition to the interpretation of the final forest IF being sound with respect to
the 2-valued MKNF model, the conditional answers in F can be seen as a well-
founded reduct of the rules in K, augmented with conditional answers derived by
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Oracle Resolution operations. As a result, the final forest can be seen as a
residual program: a sound transformation not only of the rules, but of information
from the oracle, and can be used to construct a partial 2-valued stable model.19

Regarding complexity, it is clear that the complexity of the whole procedure
SLG(O) depends on the complexity of the oracle, and also on the number of
results returned by each call to the oracle. Clearly, the complexity associated to the
computation of one result of the oracle function is a lower-bound of the complexity of
SLG(O). Moreover, even if the computation of one result of the oracle is tractable,
the (data) complexity of SLG(O) may still be exponential if exponentially many
solutions are generated by the oracle, e.g., if returning all supersets of a solution.
This is so, because our definition of the oracle is quite general, and in order to prove
interesting complexity results some assumptions must be made about the oracle.
We start by defining a correct partial oracle:

Definition 5.5 Let Kd = (O,Od,Pd) be a doubled Hybrid MKNF knowledge
base, S a goal, and L a set of ground atoms such that each L ∈ L is unifiable
with at least one rule head in Pd (called program atoms). A partial oracle for O,
denoted pTO, is a relation pTO(IF , S,L) such that if pTO(IF , S,L), then

O ∪ I+F ∪ L |= S and O ∪ I+F ∪ L consistent; or

Od ∪ I+F ∪ L |= S and Od ∪ I+F ∪ L consistent.

A partial oracle pTO is correct w.r.t. compTO iff, for all MKNF-consistent Kd,
replacing compTO in SLG(O) with pTO succeeds for exactly the same set of queries.

Note that the complete oracle is indeed generating unnecessarily many answers,
and it can be replaced by a partial one that assures correctness. E.g., consider a
partial oracle that does not return supersets of other results. Such a partial oracle
is obviously correct. A further improvement on efficiency is the restriction to con-
sistent sets O∪I+Fn

∪L and Od∪I+Fn
∪L. If the knowledge base is MKNF-consistent,

then looking for derivations based on inconsistencies is pointless anyway: we would
just create a potentially large number of children none of which would result in
an unconditional answer. In this sense, partial oracles are limited to meaningful
derivations. In the case of an MKNF-inconsistent knowledge base, things get a bit
more complicated.

Example 5.6 Consider again the already doubled knowledge base from Exam-
ple 3.13.

Q ⊑ ¬R Qd ⊑ ¬Rd

p(a)← not pd(a) pd(a)← not p(a)

Q(a)← Qd(a)← not NQ(a)

R(a)← not Rd(a) Rd(a)← not R(a),notNR(a)

19[Chen and Warren 1996] discusses these transformational aspects of SLG resolution, which are
preserved in SLG(O), while the XSB manual discusses how the residual program can serve as
input to an ASP solver.
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Cf. the computation in Example 3.13, p(a), Q(a), and R(a) are true in the sequence
Pd

ω while pd(a), Qd(a), and Rd(a) are false in the sequence Nd
ω. The same results

are derivable with a complete oracle. Q(a) is derivable from the corresponding fact.
From that ¬R(a) is derivable and therefore not Rd(a) as well. This allows us to
obtain R(a). Now, Q(a) and R(a) together with O are inconsistent from which we
can derive p(a), but also ¬Q(a) and ¬p(a). Consequently, not pd(a) and not Qd(a)
hold as well, i.e., everything is supposedly true and false at the same time.

If we limit ourselves to the partial (consistent) oracle, then we no longer derive
p(a), notQ(a), or not p(a). In this case, R(a) is still true and false (inconsistent),
but Q(a) is true, and p(a) is undefined.

Thus, the usage of such a partial oracle partially hides MKNF-inconsistencies
and demonstrates a somewhat paraconsistent behavior instead.

This example also shows why correctness of a partial oracle is only defined w.r.t.
MKNF-consistent knowledge bases. For MKNF-inconsistent knowledge bases the
derivation relation is not identical in general.

By making assumptions on the complexity and number of results of an oracle,
complexity results of SLG(O) are obtained.

Theorem 5.7 Let Kd be a doubled Hybrid MKNF knowledge base, and pTO a cor-
rect partial oracle for O, such that for every goal S, the cardinality of pTO(IF , S, L)
is bound by a polynomial on the number of program atoms. Moreover, assume that
computing each element of pTO is decidable with data complexity C. Then, the
SLG(O) evaluation of a query in Kd is decidable with data complexity PC.

Proof. Decidability is guaranteed by Theorem 5.1. As for complexity, first
note that, given the polynomial data complexity of SLG [Chen and Warren 1996],
SLG(O) without calls to the oracle is of polynomial data complexity as well. Con-
sidering the oracle, since the cardinality of pTO(IFn

, S, L) is bound by a polynomial,
and each of the calls to the oracle can be seen as adding a new program rule (the
result of Oracle Resolution operation), only polynomially many such rules are
added. Hence, as such, the inclusion of oracle calls does not alter the the polyno-
mial data complexity of SLG. Now, computing each such rule amounts to a call
to the oracle, which by hypothesis is decidable and with data complexity C. So,
the overall data complexity is PC. Note that the doubling of the knowledge base
does not affect that since the factor 2 is subsumed by the (at least) polynomial
complexity.

In particular, Theorem 5.7 means that if the partial oracle is tractable, and
produces only polynomial many results, then SLG(O) is also tractable. Clearly,
for an ontology part of the knowledge base that is tractable, it is possible to come
up with a correct partial oracle that is also tractable. Basically, all that needs
to be done is to proceed with the usual entailment method, assuming that all
program atoms hold, and collecting them for the oracle result. To guarantee that
the number of solutions of the oracle is bound by a polynomial, and still keeping
with correctness, might be a bit more difficult. It amounts to finding a procedure
that returns less results, and at the same time does not damage the completeness
proof (similar to that of Theorem 5.3). At least for the tractable case this is
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possible, albeit the oracle being the (polynomial complexity) bottom-up procedure
that defines MKNFWF . This approach is, however, somewhat counterproductive
to the whole idea of a top-down querying mechanism: we could simply use the
bottom-up procedure in the first place to compute the model and store the results
in a database which we then query on demand. The following section defines a
concrete oracle for the tractable description logic EL+ that maintains the desired
data complexity and retains goal-orientation.

6. AN ORACLE FOR EL+

When defining an oracle on EL+ we could simply try to use the algorithm for
subsumption presented in [Baader et al. 2005]: reduce instance checking to sub-
sumption and return the desired set of atoms which, when proven, would ensure
the derivability of the initial query. However, apart from the technical problems we
would have to face, like how to obtain these sets of atoms whose truth allows us
to prove the initial query, this would mean that we would have to run the entire
subsumption algorithm for each query posed to the oracle in EL+.

We therefore proceed differently. We still use the algorithm for subsumption from
[Baader et al. 2005] to compute the complete class hierarchy of the EL+ TBox T ,
but we use it only once, as a kind of preprocessing of the ontology. Then we take
the obtained results together with the TBox T and simplify them by removing all
statements that are redundant when looking for instances of classes in a top-down
manner. The result, together with the EL+ ABox A, is then turned into a set
of rules which can be used in a top-down manner, by using SLG alone, yielding
the desired oracle. Moreover, this way we can straightforwardly combine these
transformed rules with the ones in the knowledge base and, with the top-down
querying system defined in Section 4, obtain a single top-down procedure querying
an MKNF knowledge base where the ontology is described in EL+.

6.1 Subsumption in EL+

In [Baader et al. 2005], a polynomial time algorithm for subsumption was described,
and we recall important notions from it, restricted to EL+. For a TBox T , the
notion BCT represents the smallest set of concept descriptions that contains all
concept names used in T plus the top concept ⊤; while RT denotes the set of all
role names used in T . Using this notation, a normalized form of a TBox T is
defined.

Definition 6.1 [Baader et al. 2005] A TBox T is in normal form if

(1) all GCIs have one of the following forms, where C1, C2 ∈ BCT and D ∈
BCT ∪ {⊥}:

(1) C1 ⊑ D (3) ∃R.C1 ⊑ D
(2) C1 ⊓ C2 ⊑ D (4) C1 ⊑ ∃R.C2

(2) all RI are of the form R ⊑ S or R1 ◦R2 ⊑ S

By appropriately introducing new concept and role names, any TBox T can be
turned into normal form and, as shown in [Baader et al. 2005], this transformation
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can be done in linear time. So, from now on, we assume that any TBox T is in
normal form.

The subsumption algorithm for EL+ ([Baader et al. 2005]) applies a set of com-
pletion rules to compute the entire class hierarchy, i.e. all subsumption relationships
between all pairs of concept names occurring in T . In detail, given a normalized
TBox T , the algorithm computes:

—a mapping S from BCT to a subset of BCT ∪ {⊥}; and

—a mapping T from RT to a binary relation on BCT .

These mappings make implicit relations explicit in the following sense:

(I1). D ∈ S(C) implies that C ⊑ D,

(I2). (C,D) ∈ T (R) implies that C ⊑ ∃R.D.

The initialization of these mappings is the following:

—S(C) := {C,⊤} for each C ∈ BCT

—T (R) := ∅ for each R ∈ RT

Then the following completion rules are applied to extend S and T until no more
rule applies.

CR1 If C′ ∈ S(C), C′ ⊑ D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR2 If C1, C2 ∈ S(C), C1 ⊓ C2 ⊑ D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR3 If C′ ∈ S(C), C′ ⊑ ∃R.D ∈ T , and (C,D) 6∈ T (R)
then T (R) := T (R) ∪ {(C,D)}

CR4 If (C,D) ∈ T (R), D′ ∈ S(D), ∃R.D′ ⊑ E ∈ T , and E 6∈ S(C)
then S(C) := S(C) ∪ {E}

CR5 If (C,D) ∈ T (R), ⊥ ∈ S(D), and ⊥ 6∈ S(C)
then S(C) := S(C) ∪ {⊥}

CR6 If (C,D) ∈ T (R), R ⊑ S ∈ T , and (C,D) 6∈ T (S)
then T (S) := T (S) ∪ {(C,D)}

CR7 If (C,D) ∈ T (R1), (D,E) ∈ T (R2), R1 ◦R2 ⊑ R3 ∈ T , and (C,E) 6∈ T (R3)
then T (R3) := T (R3) ∪ {(C,E)}

Note that we omitted the four completion rules related to nominals and concrete
domains.

It is shown in [Baader et al. 2005] that this algorithm terminates in polynomial
time and that it is correct.

6.2 Simplifying the Ontology

Given a normalized EL+ TBox T (Definition 6.1) and an EL+ ABox A, the first
step in transforming the ontology is to apply the subsumption algorithm to T and
obtain the mappings S and T computed by it. In particular, we obtain via S all
the subsumption relationships implicitly or explicitly present in C. In fact, it is
easy to see that the initialization of C ∈ S(C) for each C ∈ BCT ensures that
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each GCI of the form (1) of the normal form of Definition 6.1 (C1 ⊑ D) is also
obtained by D ∈ S(C1), and each GCI of the form (4) (C1 ⊑ ∃R.C2) is obtained
by (C1, C2) ∈ T (R).20

It follows immediately from that, that we can actually ignore all GCIs of the form
(1) and (4) as long as we have the complete mappings S and T of the subsumption
algorithm available. But we can simplify even more.

Example 6.2 Consider the Hybrid MKNF knowledge base with O in EL+, con-
taining one rule, and some facts.

C ⊑ ∃ R.D G(x)← D(x)
∃ R.C ⊑ D C(a). C(b).

C1 ⊓ C2 ⊑ D R(a, b).

Now consider that we want to know whether G(a) holds. There is only one rule
that allows us to derive G(a), and this requires that D(a) is derivable. Obviously, if
we have C1(a) and C2(a) then D(a) holds as well. But this information is currently
not present in the knowledge base. If we check the second GCI then obtaining
D(a) requires finding R(a, x) and C(x) which appear as facts in the rule part, for
x = b. Intuitively, we want the oracle to transform the query D(a) into an SLG(O)
node D(a) : − | R(a, x), C(x), the goals of which can then be resolved, leading to a
derivation of D(a).

Next, suppose we alternatively query for G(b), and subsequently query the oracle
for D(b). Then the second GCI does not allow us to derive D(b) because there is
no R(b, x) for some x derivable; the third does not allow us to derive D(b) because
there are no individuals known to hold in C1 or C2. But even using the first GCI
does not allow us to derive D(b): while C(a) holds and we know that there is an
explicit relation R(a, b) in the knowledge base, the semantics of O (and descriptive
first-order semantics in general) does not allow to derive D(b), since D(b) does not
hold in all models of O - there are models where R(a, i) and D(i) hold for some
individual i not appearing in the knowledge base.

Clearly in a EL+ KB with a normalized TBox T , GCIs of the form (3) (∃R.C1 ⊑ D)
and (2) (C1 ⊓C2 ⊑ D) – and therefore also of the form (1) – can be used to derive
information when answering an (instance) query. On the other hand, the example
implies that GCIs of the form (4) (C1 ⊑ ∃R.C2) do not contribute to drawing this
kind of conclusions. We now formalize this observation.

For simplicity of notation, we start by transforming all the mappings obtained
from the algorithm into GCIs, and then we remove all GCIs of the form (4).

Definition 6.3 Let T be an EL+ TBox and S and T be the mappings obtained
from the subsumption algorithm. We obtain the completed EL+ TBox T ′ from T
by adding for each D ∈ S(C) a GCI C ⊑ D to T ′ and for each (C,D) ∈ T (R) a
GCI C ⊑ ∃R.D to T ′.

Let T be a completed EL+ TBox. We define the reduced EL+ TBox T ′ which is
obtained from the completed TBox T by removing all GCIs of form (4).

20Cf. the completion rules CR1 and CR3 in Section 2 which precisely add each such explicit GCIs
to the appropriate mapping.
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It is straightforward to see that the transformation from the TBox T to the com-
pleted TBox T ′ simply allows us to disregard the mappings S and T obtained by the
algorithm of subsumption without losing any of the subset relationships contained
in these mappings.

Now we have to show that a reduced TBox, which in general does not preserve
EL+ semantics, is still suitable for the query answering we are interested in, which
restricts itself to queries of the form C(a) or R(a, b).

Proposition 6.4 Let A be an EL+ ABox, T be a completed EL+ TBox, and T ′

the reduced EL+ TBox obtained from T . Then the following two conditions hold.

(i) a is an instance of concept C in A w.r.t. T iff a is an instance of concept C in
A w.r.t. T ′.

(ii) (a, b) is an instance of role R in A w.r.t. T iff (a, b) is an instance of role R
in A w.r.t. T ′.

Proof. For (i) we have to show that aI ∈ CI for every common model I of
A and T iff aI ∈ CI for every common model I of A and T ′; for (ii) we have to
show that (aI , bI) ∈ RI for every common model I of A and T iff (aI , bI) ∈ RI

for every common model I of A and T ′. We are going to sketch the argument for
(i); the case of (ii) follows analogously.
′ ⇐′: follows directly from monotonicity: adding GCIs of the form (4) will not
invalidate any drawn conclusions, i.e. if aI ∈ CI for every common model I of A
and T ′ then adding GCIs of the form (4) can only reduce the common models of
I of A and never increase. We conclude aI ∈ CI for every common model I of A
and T .
′ ⇒′: suppose that aI ∈ CI for every common model I of A and T . If none of the
GCIs of the form (4) contains the concept name C then we can remove them all
and aI ∈ CI for every common model I of A and T ′. The same argument applies
if C appears only on the left hand side of such GCIs. So assume C appears on the
right hand side of at least one such GCI C1 ⊑ ∃R.C. However, even if there is an
individual i such that iI ∈ CI

1 and (iI , aI) ∈ RI for every common model I of A
then T does not allow to conclude aI ∈ CI for every common model I of A and T .
We can thus conclude that aI ∈ CI for every common model I of A and T ′.

Having proven that TBox completion does not alter the derivability of instance
queries, we can take a short cut: instead of completing the TBox we can directly
remove all GCIs of the form (4) and discard the mapping T . We then complete the
TBox only with respect to the mapping S and obtain the reduced TBox.

Corollary 6.5 Let T be a EL+ TBox and S and T be the mappings obtained from
the subsumption algorithm. We obtain the reduced TBox T ′ from T by removing
all GCIs of the form (4) from T and by adding for each D ∈ S(C) a GCI C ⊑ D.

6.3 Transformation into Rules

Now, we show how to transform the reduced EL+ KB into rules in such a way that
running the SLG procedure on the obtained set of rules yields an oracle that can
be used in SLG(O). Special care must be taken with inconsistencies and with the
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fact that if an atom is proven false in the ontology, then its negation also holds in
the rules. Note that this is achieved in SLG(O) by querying for classically negated
atoms, but these are outside the syntax of REL even though a restricted form of
negation is achievable via ⊥.

Regarding inconsistencies, there are two kinds which can appear in the three-
valued Hybrid MKNF semantics as presented in [Knorr et al. 2011]: either the
ontology alone is inconsistent, or there is an inconsistency resulting from contradic-
tory derivations in the rules and the ontology. In the first case, there is not much
to be done. An inconsistent ontology has no models and we can simply derive any-
thing from it, making reasoning over a combined knowledge base rather pointless.
We therefore admit in the following an a-priori consistency check of the ontology
alone, and proceed only if it succeeds, i.e., we limit ourselves in the following to a
consistent ontology.21 For the second case, the bottom-up computation allows us to
detect such problems, but in SLG(O) we are limited to finding atoms that are true
and false at the same time, i.e., if for some C(a) both queries C(a) and not Cd(a)22

are answered with ’yes’, then the combined KB is inconsistent. This can, of course,
not be complete for a partial oracle, as shown in Example 5.6, so that we obtain a
paraconsistent behavior. To carry over this behavior to a transformation into rules,
we have to take into consideration the transformation presented in Definition 3.4
and their effect on the EL+ KB.

Regarding classical negation, we solve the problem in a specific way. In SLG(O),
the special negative literals notNH(ti) are used to call ¬H(ti). Since this is not
expressible in EL+ we simply consider notNH(ti) as normal negative literals, and
transform O into rules such that notNH(ti) holds if ¬H(ti) holds. More precisely,
if H ⊑ ⊥, then NH(ti) holds.

We are now ready to define the transformation of the ontology O consisting of a
reduced TBox and an ABox into a set of already doubled rules (see Definition 3.1).

Definition 6.6 Let K = (O,P) be a Hybrid MKNF knowledge base with a con-
sistent EL+ KB O. We define Pd

O from O, where C,D, C1, and C2 are concept
names, R, S, T are role names, and a, b are individual names, as the smallest set
containing:

(a1). for each C(a) ∈ A: C(a)← and Cd(a)← notNC(a).

(a2). for each R(a, b) ∈ A: R(a, b)← and Rd(a, b)← notNR(a, b).

(c1). for each GCI C ⊑ D ∈ T : D(x)← C(x) and
Dd(x)← Cd(x),notND(x).

(c2). for each C1 ⊓ C2 ⊑ D ∈ T : D(x)← C1(x), C2(x) and
Dd(x)← Cd

1 (x), Cd
2 (x),notND(x).

(c3). for each ∃R.C ⊑ D ∈ T : D(x)← R(x, y), C(y) and
Dd(x)← Rd(x, y), Cd(y),notND(x).

(r1). for each RI R ⊑ S ∈ T : S(x, y)← R(x, y) and
Sd(x, y)← Rd(x, y),notNS(x, y).

21Note that ontologies in EL+ can in fact be inconsistent: consider a GCI C ⊑⊥ in the TBox and
an assertion C(a) in the ABox.
22Recall that we use the doubled predicate for determining falsity.
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(r2). for each R ◦ S ⊑ T ∈ T : T (x, z)← R(x, y), S(y, z) and
T d(x, z)← Rd(x, y), Sd(y, z),notNT (x, z).

(i1). for each C ⊑⊥∈ T : NC(x)←.

(i2). for each C1 ⊓C2 ⊑⊥∈ T : NC2(x)← C1(x) and NC1(x)← C2(x).

(i3). for each ∃R.C ⊑⊥∈ T : NC(y)← R(x, y) and NR(x, y)← C(y) .

Note that the cases (i1) to (i3) are used to introduce truth of some NH(ti). Fur-
thermore, these three cases only produce one rule, since atoms based on predicates
of the forms NCd or NRd are not required anywhere.

Program Pd
O can then be used as the basis for obtaining a correct partial oracle

for EL+, to be integrated in the general procedure of SLG(O). Recall that an
oracle receives a query S and the already derived (positive) information I+Fn

, and
returns a set of atoms L, which if proven, ensure that S is derivable. The general
idea of such an oracle for EL+ would be to use SLG to query Q in a program
consisting of Pd

O plus facts for all the atoms in I+Fn
, in such a way that any time

an atom also defined in the rules is queried, the atom can succeed, i.e., is removed
from the resolvent, and is collected in a set associated to the respective derivation
branch.23 Upon success, the so modified SLG procedure would return the set of
collected atoms. The partial oracle would be defined by the relation with the
query, the running forest, and the returned set of collected atoms. However, since
both the rule part and the oracle itself would be evaluated by an SLG procedure,
they can be combined: instead of collecting the atoms in the set, and then calling
them in SLG(O) after the oracle returns a result, one can simply immediately call
the otherwise collected atoms, i.e., the atoms defined in the program. This way,
correctness of the so defined partial oracle is equivalent to the correctness of the
above transformation. We start by proving this for the consistent case:

Theorem 6.7 Let K = (O,P) be an MKNF-consistent Hybrid MKNF knowledge
base with O in EL+. Then KEL+ = (∅, (Pd ∪ Pd

O)) is semantically equivalent to
Kd = (O,Od,Pd).

Proof. We have to show that Pd
O is equivalent to O and Od.

The transformations on ABox assertions, (a1) and (a2), on GCIs in C, (c1), (c2),
and (c3), and on role inclusions, (r1) and (r2), are semantically equivalent and can
be found, e.g., in [Grosof et al. 2003]. Since O contains the original GCIs and
Od the doubled ones with new predicate names, we also create two rules, one for
each of the two DL knowledge bases in Kd. Note that the addition of predicates,
such as NC(x), to the body of a rule with head Cd(x) is just done to enforce
that whenever NC(x) holds, i.e., ¬C(x), then Cd(x) cannot become true, which
is used in the consistent case to enforce coherence. We only have to consider the
transformations (i1) to (i3).

(i1) C ⊑⊥: C is unsatisfiable, i.e., ¬C(x) for all x; O contains a statement that
allows us to infer ¬C(x) which corresponds exactly to the fact NC(x)←.

23An alternative way of viewing this, would be to add to Pd

O
facts for all the atoms defined in the

rules, run SLG as usual, but collecting all those facts that were used in the derivation.
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(i2) C1⊓C2 ⊑⊥: the statement expresses disjointness of C1 and C2, i.e., ¬(C1(x)∧
C2(x)) for all x which is equivalent to C1(x) → ¬C2(x) and C2(x) → ¬C1(x);
using the correspondences ¬C1(x)→ NC1(x) and ¬C2(x)→ NC2(x).

(i3) ∃R.C ⊑⊥ follows the same argument as (i2).

This finishes the proof.

For the MKNF-inconsistent case, we point out that one result of the transfor-
mation into rules is that we obtain a somewhat paraconsistent approach: while an
inconsistent ontology allows us to derive anything from it, the process of doubling
the rules enables us to derive those consequences that do not depend on inconsistent
information contained in the KB as presented in Example 5.6. We leave further
details of this paraconsistency to future studies.

Finally, we have to show that the process of translating the ontology into rules and
reasoning over the combined set of rules with SLG(O) also preserves the intended
polynomial data complexity.

Theorem 6.8 Let K = (O,P) be a Hybrid MKNF knowledge base with O in EL+.
An SLG(O) evaluation of a query in KEL+ = (∅, (Pd∪Pd

O)) is decidable with data
complexity in P.

Proof. The EL+ oracle is in fact a transformation of the evaluation of the EL+

ontology into a set of rules so that evaluation of the Hybrid MKNF KB is made
w.r.t. a combined set of rules. Note that the polynomial subsumption algorithm
for EL+ and the linear transformations to obtain KEL+ together are in P.

We consider the data complexity to be the number of answers returned for a
given atomic query w.r.t. the number ground facts in the rules, and the number of
assertions in the ABox. Note that the transformation of the EL+ axioms introduces
a number of facts in the rules at most linear in the size of the ABox (cases a1 and
a2 of Definition 6.6). As a result the number of facts in the transformed system
will be linear in the size of the rule facts plus the ABox of the original system.

Finally, note that Theorem 5.7 ensures polynomial data complexity of query
evaluation in Hybrid MKNF. The transformed KB KEL+ can be considered a Hybrid
MKNF KB with empty O, so that by Theorem 5.7 the transformed KB has a data
complexity in P. Since the transformed KB increases the size of the rule facts
linearly this proves the statement.

7. DISCUSSION AND CONCLUSIONS

7.1 Related Work

Three other semantics define well-founded models for a combination of rules and
ontologies, namely the works in [Eiter et al. 2011], [Lukasiewicz 2010], and [Drabent
and Ma luszyński 2007]. The approach of [Eiter et al. 2011] combines ontologies and
rules in a modular way, keeping separate the semantics of both, and has identical
data complexity to the well-founded MKNF semantics for a tractable DL. As such,
it has similarities with SLG(O) in terms of reasoning, in the sense that both treat
reasoning in the DL separately. However, the approach of [Eiter et al. 2011], imple-
mented using the dlv hex system [Eiter et al. 2006], has a looser integration, limiting
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the way the ontology can call back program atoms. In [Eiter et al. 2011], the set of
atoms occurring in rules and DLs are disjoint, and links must be established using
specific interface atoms in the rules, which can only temporarily add information to
the DL part. To the contrary, our semantics does not require any such restriction
so that the flow of information between rules and DLs is not limited. The well-
founded semantics for normal dl-programs [Lukasiewicz 2010] does not require any
of these limitations either, but it requires that the ontology is decomposable into a
positive and a negative part. This severely restricts the applicability to arbitrary
DLs although it is shown in [Lukasiewicz 2010] that the approach is applicable to
the DL-Lite family. This contrasts with SLG(O), which can be applied to any
decidable DL. Hybrid programs of [Drabent and Ma luszyński 2007] are even more
restrictive than [Eiter et al. 2011] in the combination: in fact it only allows to
transfer information from the ontology to the rules and not the other way around.
Moreover, the semantics of this approach differs from MKNF [Motik and Rosati
2010; Knorr et al. 2011] and also [Eiter et al. 2011; Lukasiewicz 2010] in that if an
ontology expresses B1 ∨B2, then the semantics in [Drabent and Ma luszyński 2007]
derives p from rules p ← B1 and p ← B2, p while MKNF and [Eiter et al. 2011;
Lukasiewicz 2010] do not. More generally, several well-founded models may exist,
contrary to the more common definitions of well-founded models.

In Section 6, we also presented a concrete oracle for SLG(O) that allows the
combination of non-monotonic rules with the DL EL+. Using this oracle, SLG(O)
remains tractable w.r.t. data complexity, and permits the discovery of possible
inconsistencies between the rules and the ontology. These results contribute to the
work related to conjunctive query answering with respect to EL+. Conjunctive
query answering has been studied, e.g., for acyclic EL+ in [Mei et al. 2009] as an
extension to [Lutz et al. 2009], where the limitation to acyclic TBoxes avoids general
undecidability (see [Rosati 2007]). In contrast, our work limits the queries to be
DL-safe but adds rules as an additional expressive means. As an additional point
of comparison, since the concrete oracle operates in a kind of abductive way – by
finding the set of atoms which together with the ontology prove the query - our
work also bears some relation to [Bienvenu 2008] where general complexity results
on abduction for EL++ are established. Another concrete oracle for SLG(O) was
very recently presented in [Knorr and Alferes 2011] providing a top-down procedure
for DL-LiteR, the DL underlying the tractable OWL 2 profile, OWL 2 QL. As does
the EL+ oracle, the DL-LiteR oracle maintains the data complexity of the bottom-
up approach.

7.2 Conclusions

Together with the alternate computation method of Section 3, SLG(O) provides a
sound and complete querying method for Hybrid MKNF knowledge bases. Further,
SLG(O) maintains the favorable computational complexity of the well-founded
MKNF model and freely allows bidirectional calls between the ontology and the
rules, unlike other approaches (as discussed in Section 7.1). As such it presents a
significant step towards making Hybrid MKNF knowledge bases practically usable
for the Semantic Web.

Future work with regard to concrete oracles includes the (non-trivial) extension of
the EL+ oracle to EL++. A second potentially fruitful extension is the construction
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of an oracle for ELP ([Krötzsch et al. 2008]), an approach based on rules that
allow DL expressions instead of (negated) atoms and that covers EL++. Since the
altorithmization of ELP, like that of the EL+ oracle, transforms its expressive rules
into datalog rules it may benefit from the pre-processing step introduced for EL+

knowledge bases. A third concrete oracle to investigate is SROELVn [Krötzsch
et al. 2011], a tractable fragment of SROIQ enhanced with nominal schemas that
covers not only datalog rules in DL syntax but also EL++.

Other future work will address the class of conjunctive queries that SLG(O) can
answer. While SLG(O) queries posed to KBs without an ontology are handled in
the same way as in SLG, the queries posed to the ontology, which are required to
be ground, are not conjunctive queries in the sense of [Glimm et al. 2008], where
boolean queries may contain anonymous variables that are interpreted existentially.
The extension to such queries may possibly by supported by anonymous variables
in XSB, the system in which SLG(O) is currently implemented.

Furthermore, we may take evolution and dynamics into consideration. In [Slota
and Leite 2010b; Slota et al. 2011], updating Hybrid MKNF knowledge bases is
considered, while [Slota and Leite 2010a; 2011] presents the problem from a more
general perspective in SE-models. The extension of SLG(O) to such dynamic
knowledge bases forms another line of future work.

Finally, we mention that a prototype implementation of SLG(O) exists [Gomes
et al. 2010] based on XSB Prolog and its ontology management library CDF. Be-
cause CDF includes an ALCQ prover written directly using XSB, the Oracle

Resolution operation of Section 4 is more easily implemented than it would be
using a separate prover, as is the detection of when a mutually dependent set of sub-
goals is completely evaluated (Definition 4.12). Accordingly, the polynomial data
complexity of the oracle is also more easily guaranteed. The resulting implemen-
tation will enable further study into how Hybrid MKNF knowledge bases can be
practically used and will indicate needed optimizations and useful extensions. For
instance, since XSB supports constraint processing, temporal or spatial constraints
can be added to the ABox. From a systems perspective, the multi-threading of XSB
can allow for the construction of Hybrid MKNF knowledge servers that make use
of either Prolog rules or F-logic rules (via FLORA-2, which is implemented using
XSB). As mentioned in Section 5 the final forest of a SLG(O) evaluation produces
a well-founded reduct of the rules and oracle information. This reduct, which is ma-
terialized in XSB’s tables, can be sent to a stable model generator through XSB’s
XASP library to obtain a partial stable MKNF model of [Motik and Rosati 2010].
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