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Abstract

MATLAB is a popular dynamic array-based language commonly used by students, scientists
and engineers, who appreciate the interactive development style, the rich set of array operators,
the extensive builtin library, and the fact that they do not have to declare static types. Even
though these users like to program in MATLAB, their computations are often very compute-
intensive and are potentially very good applications for high-performance languages such as
X10.

To provide a bridge between MATLAB and X10, we are developing M1X10, a source-to-
source compiler that translates MATLAB to X10. This paper provides an overview of the initial
design of the M1X10 compiler, presents a template-based specialization approach to compiling
the builtin MATLAB operators, and provides translation rules for the key sequential MATLAB
constructs with a focus on those which are challenging to convert to semantically-equivalent
X10. An initial core compiler has been implemented, and preliminary results are provided.

1 Introduction

MATLAB is a popular numeric programming language, used by millions of scientists, engineers as
well as students worldwide[12]. MATLAB programmers appreciate the high-level matrix operators,
the fact that variables and types do not need to be declared, the large number of library and
builtin functions available, and the interactive style of program development available through the
IDE and the interpreter-style read-eval-print loop. However, even though MATLAB programmers
appreciate all of the features that enable rapid prototyping, their computations are often quite
compute intensive and could benefit from a system more suited to high performance computing.

On the other hand, X10 is an object-oriented and statically-typed language which uses cilk-style
arrays indexed by Point objects, and has been designed with well-defined semantics and high
performance computing in mind.

We have been working on M1X10, a source-to-source compiler that helps to bridge the gap between
MATLAB, a language familiar to scientists, and X 10, a language designed for high performance. In
particular, this paper identifies the key challenges and our approach to compiling MATLAB to X10,
focusing on the sequential core of X10.

The ultimate goal of the MiX10 compiler is two-fold. First, it can be used as a back-end for
a MATLAB system, producing high-performance code via X10. Second, it can be used to help
programmers port their MATLAB code to X10 source code. The techniques presented in this paper
provide the core upon which these two ultimate goals can be achieved.

The major contributions of this paper are as follows:

Identifying key challenges: We have identified the key challenges in performing a semantics-
preserving translation of MATLAB to X10.

Overall design of MiX10: We provide the design of a source-to-source translator, building upon
the McLab front-end and analysis toolkits.

MiX10 IR design: In order to provide a convenient target for the first level of translation, we
have defined a high-level M1X10 IR. This IR is currently used for code generation, but in the
future will also be used for code simplifications and transformations.



Template-based builtin framework: MATLAB supports many builtin operations that can op-
erate over a wide variety of run-time types. We have designed and implemented a template-
based system that allows us to generate specialized X10 code for a collection of important
builtin operations.

Code generation strategies for key language constructs: There are some very significant
differences between the semantics of MATLAB and X10. A key difference is that MATLAB is
dynamically-typed, whereas X 10 is statically-typed. Furthermore, the type rules are quite
different, which means that the generated X10 code must include the appropriate explicit
type conversion rules, so as to match the MATLAB semantics. Other MATLAB features, such
as multiple returns from functions, a non-standard semantics for for loops, and a very general
range operator, must also be handled correctly.

Working core implementation: We have implemented the core functionality for the MiX10
compiler, concentrating on the sequential part of X10, and we provide some initial results.

The remainder of this paper is structured as follows. In Section 2 we describe the overall structure of
MiX10, and how we build upon the McLAB framework. Section 3 provides the high-level design of
Mi1X10 backend with details about the M1X10 IR. In Section 4 we discuss the need to have several
overloaded methods corresponding to a MATLAB builtin method and describe the specialization
technique to select the correct method in the generated X10 code. In Section 5 we explain how
various MATLAB features are mapped to X10. Section 6 Provides a performance comparison of
generated X10 code with the original MATLAB code. Section 7 talks about previous work related
to static MATLAB compilation. Finally, in Section 8 we conclude and discuss some planned future
work.

2 Background

MiX10 is implemented on top of several existing MATLAB compiler tools. The overall structure
is given in Figure 1, where the new parts are indicated by the shaded boxes, and future work is
indicated by dashed boxes.

MATLAB is actually quite a complicated language to compile, starting with its rather unusual
syntax, which cannot be parsed with standard LALR techniques. There are several issues that
must be dealt with including distinguishing places where white space and new line characters have
syntactic meaning, and filling in optional end keywords, which are sometimes optional. The McLAB
front-end handles the parsing of MATLAB through a two step process. There is a pre-processing
step which translates MATLAB programs to a cleaner subset, called Natlab, which has a grammar
that can be expressed cleanly for a LALR parser. The McLAB front-end delivers a high-level AST
based on this cleaner grammar.

After parsing, the next major phase of M1X10 uses the McSAF framework [4, 3] to disambiguate
identifiers using kind analysis [5], which determines if an identifier refers to a variable or a named
function. This is required because the syntax of MATLAB does not distinguish between variables
and functions. For example, the expression a(i) could refer to four different computations, a could
be an array or a function, and i could refer to the builtin function for the imaginary value ¢, or it
could refer to a variable i. The McSAF framework also simplifies the AST, producing a lower-level
AST which is more amenable to subsequent analysis.
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Figure 1: Overview of M1X10 structure

The next major phase is the Tamer [6], which is a key component for any tool which statically
compiles MATLAB. The Tamer generates an even more defined AST called Tamer IR, as well as
performing key interprocedural analyses to determine both the call graph and an estimate of the
base type and shape of each variable, at each program point. The call graph is needed to determine
which files (functions) need to be compiled, and the type and shape information is very important
for generating reasonable code when the target language is statically typed, as is the case for X10.

The Tamer may find dynamic MATLAB features which cannot be statically compiled, in which case
it flags that feature as not tame, and the ultimate goal is to support a refactoring tool which would
aid the programmer to restructure their input MATLAB program in order to eliminate the wild
feature.

The Tamer also provides an extensible interprocedural value analysis and an interprocedural analysis
framework that extends the intraprocedural framework provided by McSAF. Any static backend
will use the standard results of the Tamer, but is also likely to implement some target-language-
specific analyses which estimate properties useful for generating code in a specific target language.
We have currently added an analysis for determining if a MATLAB variable is real or complex.

For the purposes of M1X10, the output of the Tamer is a low-level, well-structured AST, which
along with key analysis information about the call graph, the types and shapes of variables, and
X10-specific information. These Tamer outputs are provided to the code generator, which generates
X10 code, as discussed in the next section.



3 Design of X10 Generator and M1X10 IR

The M1X10 code generator is the key component which makes the translation from the Tamer IR,
which is based on MATLAB programming constructs and semantics, to X10. The overall structure
of the M1X10 code generator is given in Figure 2.
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Figure 2: Structure of the MiX10 code generator

Rather than do a direct code generation to X10 source code, we have defined a general and exten-
sible IR to represent X10. We have implemented the IR using JastAdd [7, 2], which allows us to
easily add new AST nodes by simply extending the JastAdd specification grammar.

Although we currently do not transform the M1X10 IR very much, the ultimate goal is to support
a variety of analyses and transformations that can be used to: (1) produce more efficient X10 code,
and (2) produce more readable X10 code.

Note that there are potentially two places that optimizations and transformations may happen:
either at the Tamer IR level or at the M1X10 IR level. It is our intent to put any analysis or
transformation that is not X10-specific into the Tamer IR, so that other back-ends can benefit
from those improvements. However, optimizations and transformations that are specific to X10
programming constructs (such as points and regions) and semantics will need to be done on the
MiX10 IR. We may also use the M1X10 IR as a convenient place to insert instrumentation code.

As shown in Figure 2, the X10 source code generator actually gets inputs from two places. It
uses the M1X10 IR to drive the code generation, but for expressions referring to built-in MATLAB
functions it interacts with the Built-in Handler. In the next section, Section 4, we discuss this
process in in more detail, and in the subsequent section, Section 5, we address source code generation
for the key X10 constructs.



4 MATLAB Builtins

MATLAB builtin methods are the core of the language and one of the features that make it popular
among scientists. They provide a huge set of commonly used numerical functions. All the operators,
including the standard binary operators (+, -, *,/), comparison operators (<, >, <=, >=, ==)
and logical operators (&, &&, |, ||) are merely syntactic sugar for corresponding builtin methods
that take the operands as arguments. For example an expression like a+b is actually implemented
as plus(a,b). An important thing to note is that unlike most programming languages, all the
MATLAB builtin methods by default operate on matrix values as a whole. For example a*b or
mtimes(a,b) actually performs matrix multiplication on matrix values a and b. However, most
of the builtin methods also accept one or more scalar, or more accurately, 1 x 1 matrix argu-
ments. Builtin methods are overloaded to accept almost all possible shapes of arguments. Thus
mtimes(a,b) can have both a and b as matrix arguments (including 1 x 1 matrices) with number
of columns in a equal to number of rows in b, in which case the result is a matrix multiplication of
a and b or one of them can be a 1 x 1 matrix and other can be a matrix of any size and the result is
a matrix containing each element of the non-scalar argument times the scalar argument. Wherever
possible, MATLAB builtins also support complex numerical values. X10 on the other hand, like
most of the programming languages operates on scalar values by default.

Due to the fact that X10 is still new and evolving, it has a very limited set of libraries, specially
to support a large subset of available MATLAB builtin methods. The X10 Global Matrix Library
(GML) supports double-precision matrix operations however it is still not as extensive as MATLAB’s
set of operations and it poses some restrictions:

1. It works on values of type Matrix instead of X10 type Array which means it needs explicit
conversion of Array values to Matrix values before performing a matrix operation and and
then a conversion of the results back to Array type. This conversion may be a large overhead,
especially for small data sizes.

2. GML is limited to Matrix values of two dimensions and containing elements of type Double,
whereas many MATLAB builtin methods support values of greater number of dimensions.

3. GML currently does not support complex numerical values whereas MATLAB naturally sup-
ports them.

4. Currently GML requires a separate installation and configuration which is non-trivial specially
for scientists who need something that works out of the box.

Due to above restrictions, X10 Global Matrix Library is useful in some situations, for example
when there is a matrix multiplication of a very large data size, but cannot be used or is not a good
choice for a large number of operations.

For a language with open-sourced libraries, it would be possible to actually compile the library
methods to X10. However, many MATLAB libraries are closed source and thus it is not possible to
translate them to X10.



4.1 MiX10 builtin support framework

We decided to write our own X10 implementations of the commonly used MATLAB builtin methods.
Currently we have implemented only those methods that are used in our benchmarks. In this paper,
we concentrate on how these methods are included in the generated X10 code with minimal loss
of readability and performance rather than the actual implementation.

The code below shows the X10 code for the MATLAB builtin method plus(a,b).

public static def
plus(a: Array[Double], b:Array[Double])
{a.rank == b.rank}{
val x = new Array[Double](a.region);
for (p in a.region){
} x(p) = a(p)+ b(p);

return x;

}

public static def plus(a:Double, b: Array[Double]){
val x = new Array[Double](b.region);
for (p in b.region){
} x(p) = at b(p);

return x;

}

public static def plus(a:Array[Double], b:Double){
val x = new Array[Double](a.region);
for (p in a.region){
} x(p) = a(p)+ b;

return x;

}

public static def plus(a:Double, b:Double){
val x: Double;
X = a-+b;
return x;

}

This X10 code contains four overloaded versions (and it still does not contain methods to support
complex values and of types other than Double) based on whether the arguments are scalar or
array and their relative position in the list of arguments.

Including all the overloaded versions in the generated X10 code would result in lot of lookup
overhead, would require producing redundant code (versions of methods with arguments of similar
shape but different types will have the same algorithm) and would generate large code with less
readability. Instead we designed a specialization technique that selects the appropriate versions of



only the methods used in the source MATLAB program.

After studying numerous builtin methods we categorized most of them into following five common
types:

Type 1: All the parameters are scalar values or no parameters.
Type 2: All the parameters are arrays.

Type 3: First parameter is scalar, rest of the parameters are arrays.
Type 4: Last parameter is scalar, rest of the parameters are arrays.

Type 5: Variable number of parameters.

Each of these categories use the same code template for different types of values.

We build an XML file that contains the method bodies for each category for every builtin method
(that we support). We implement the following strategy to select and generate the correct and
required methods. First, we make a pass through the AST to make a list of all the builtin methods
used in the source MATLAB program. Next, we parse the XML file once and read in the X10 code
templates for all the categories of the builtin methods collected in the first step. Next, whenever
a call to a builtin method is made, based on the results of the value analysis we generate the cor-
rect method header and select the corresponding builtin template for that method. The generated
methods are finally written to a X10 class file named Mix10.x10. In the code generated for actual
MATLAB program the call to a builtin method is simply replaced by a call to the corresponding
method in the Mix10 class. For example, MATLAB expression plus(a,b) is translated to X10
expression Mix10.plus(a,b).

Using the above approach not only improves the readability of the generated code, but it also allows
for future extensibility, better maintenance and more specialization. One of the specialization that
we are currently working on is the ability to use the Global Matrix Library for the available methods
in it and whenever the data size is large enough.

5 Mapping wild MATLAB features to X10

MATLAB is a programming language designed specifically for numerical computations. Every value
is a Matriz and has an associated array shape. Even scalar values are 1 x 1 matrices. Vectors
are 1 X n or n X 1 matrices. All the values are by default of type double. MATLAB naturally
supports imaginary components for all numerical values and almost all operators and library func-
tions support complex inputs. In the rest of this section we describe some of the key features of
MATLAB that demonstrate what makes MATLAB different and challenging to compile statically and
techniques used by M1X10 to translate these “wild” features to X10.

5.1 Methods

A function definition in MATLAB takes one or more input arguments and returns one or more
values. A typical MATLAB function looks as follows:



function|x,y] = foo(a,b)

X = a+3;
y = b=3;
end

This function has two input arguments a and b that can be of any type and any shape and returns
two values x and y of the same shape as a and b respectively and of types determined by MATLAB’s
type conversion rules. The Tamer IR provides a list of input arguments and a list of return values
for a function. The interprocedural value analysis identifies the types, shapes and whether they are
complex numerical values for all the arguments and the return values.

MATLAB functions are mapped to X10 methods. If it is the entry function, the type of the
input argument is specified by the user (Tame IR requires to have an entry function or a driver
function with one argument. This function may call other functions with any number of input
arguments). For other functions the parameter types are computed by the value analysis performed
by the Tamer on the Tame IR. The type information computed includes the type of the value, its
shape and whether it is a complex value. Other statements in the function block are processed
recursively and corresponding nodes are created in the X10 IR. Finally, if there are any return
values, as determined by the Tame IR, a return statement is inserted in the X10 IR at the end
of the method. If the function returns only one value, say x then the inserted statement is simply
return x; but if the function returns more than one values (which is quite common in MATLAB)
then we return a one-dimensional array of type Any whose elements are the values that are returned.
So, for the above example the return statement is return [x as Any, y as Any];. Note that the
use of short syntactic form for one-dimensional array construction improves the readability of the
generated code. Below is the generated code for the simple example above.

static def foo(a: Double, b: Double){
var mc_t0: Double = 3;
var x: Double = Mix10.plus(a, mc_t0);
var mc_t1: Double = 3;
var y: Double = Mix10.minus(b, mc_t1);
return [x as Any, y as Any|;

}

Also note that the variables mc_t0 and mc_t1 are introduced by Tamer in the Tame IR. Note that
their type is Double because in MATLAB values are double by default, to specify an integer in
MATLAB one must use an explicit conversion, such as int32(3).

5.2 Types, Assignments and Declarations
MATLAB provides following basic types:

e double, single: floating point values

e uint8, uintl6, uint32, uint64: unsigned integer values
e int8, intl6, in32, int64: integer values

e logical: boolean values

e char: character values (strings are vectors of char)
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These basic types are naturally mapped to X10 base types as follows. Floating point values are
mapped to Double and Float respectively, unsigned integers are mapped to UByte, UShort, Ulnt
and ULong, integer values are mapped to Byte, Short, Int and Long, logical is mapped to
Boolean and char is mapped to Char (vector of chars is mapped to String type). If the shape of
an identifier of type T is greater than 1 x 1 it is mapped to Array[T]. The type conversion rules
are quite different from standard languages. For example, an operation involving a double and an
int32 results in a value of type int32.! M1X10 inserts an explicit typecast wherever required.

All the MATLAB operators are designed to work on matrix values and are provided as syntactic sugar
to the corresponding builtin methods that take operands as arguments. Operators are overloaded
to support different semantics for 1 x 1 matrices (scalar values). MATLAB provides two types
of operators - matriz operators and array operators. Matrix operators work on whole matrix
values. These include matrix multiplication (*) and matrix division (\, /). Array operators always
operate in an element-wise manner. For example array multiply operator .* performs element-wise
multiplication. M1X10 implements all operators as builtins as described in Section 4.

MATLAB is a dynamically typed language which means that variables need not be declared and
take up any value that they are assigned to. X10 however is statically typed and requires variables
to be declared before being assigned to. MIX10 maintains a list of all the declared variables. It
starts with an empty list. Whenever an identifier appears in an assignment statement on LHS,
if it is not already present in the list, a declaration statement is added to the X10 IR and the
variable (with its associated type and value information) is added to the list, else if it is already
present in the list, the assignment statement is added to the X10 IR and the associated type and
value information is updated. In case the MATLAB assignment statement is inside a loop and
needs a declaration, the declaration statement (without any assignment) is added to the method
block outside any loop or conditional scope and the assignment statement is added in the scope
where it is present in MATLAB code. If the identifier on LHS is an array, then the declaration
creates a new array with the region corresponding to the shape of the array. For example a MAT-
LAB statement like a=b; where shape of a is, say, 3 x 3 and type is double will be translated to
a:Array[Double]=new Array[Double](1..3*1..3,b); (outside the scope of any loops or condi-
tionals). Note that the indexing starts from 1 and not 0, the way it is done in MATLAB.

5.3 Loops

Loops in MATLAB are fairly intuitive except for one semantic difference from most of the languages.
In a for loop if the loop index variable is redefined inside the body of the loop then its new value
is persistent only in a particular iteration and does not affect the number of loop iterations. For
example, consider the following listing.

function [x] = forTestl(a)
for i = (1:10)
i=3;
a=a+ti;
end
X=a;
end

!The type rules are explained in detail in the Tamer documents, www.sable.mcgill.ca/mclab/tamer.html.
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Note that inside every iteration, the value of loop index variable i is 3 but the loop still terminates
after ten iterations. The above code would be translated to the following X10 code:
static def forTestl (a: Double)
{
var mc_t0: Double = 1;
var mc_t1: Double = 10;
var i_x10: Double;
var b: Double;
var i: Double;
for (ix10 = mc_t0; (ix10 <= mc_tl); ix10 = (i-x10 + 1))
{
i =1x10;
i=3;
b = Mix10.plus(a, i) ;
}
var x: Double = a;
return x;

}

To handle this somewhat different semantics we introduce a new loop index variable and assign it
to the original loop index variable at the beginning of the loop body. The rest of the loop body is
translated by standard rules. Note that the new loop index variable is introduced only if the actual
loop index variable is redefined inside the loop body.

5.4 Conditionals

In MATLAB conditionals are expressed using the if-elseif-else construct and do not have any wild se-
mantics. MATLAB also allows switch statements which are converted to equivalent if-else statements
by the Tamer. It also recursively converts a statement like if (B1) S1 elseif (B2) S2 else S3
to a series of if-else clauses like if (B1) S1 else{ if(B2) S2 else S3}. This if-else construct is
intuitively mapped to the if-else construct in X10.

5.5 Array access and Colon operator

Arrays (or matrices) are the core of MATLAB and most of the data read and write operations involve
accessing one or a set of elements of an array. There are two basic ways of accessing elements of
an array, as described below.

Accessing individual elements: This type of access is similar to that in C or Java where an
array element is accessed given its location index along each dimension of the array. MATLAB
naturally supports linear indexing? More precisely, if the number of subscripts in an array access
is less than the number of dimensions of the array, the last subscript is linearly indexed over the
remaining number of dimensions in a column-major fashion. (Support for linear indexing in M1X10
is currently a work in progress). Note that array indexing in MATLAB starts from 1. MATLAB allows

http://www.mathworks . com/help/matlab/math/matrix-indexing.html
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the use of keyword end or an expression involving end (like end-1) as a subscript. end denotes the
highest index in that dimension.

This subscripting operation to access individual elements is mapped to X10 array subscripting
operation. If the rank of array is 4 or less, it is subscripted directly by integers corresponding to
subscripts in MATLAB otherwise we create a point object from these integer values and use it to
subscript the array. In case end is used, if we have complete shape information we easily know the
highest index for a particular dimension, otherwise if shape information cannot be determined at
compile time we use the max(Int i) method provided by the Region class of X10. Thus an array
access such as a(i,end) is translated to a(i as Int, a.region.max(1)). Whenever an identifier
of type Double (default in MATLAB) is used as a subscript, we need to explicitly cast it to Int.

Accessing a set of elements: MATLAB supports accessed and operations on a set of elements as
a whole. To achieve this MATLAB allows the use of an expression involving colon operator in place
of an integer subscript. An expression such as a:b (or colon(a,b)) creates a vector of integers
[a, a+t1l, a+2, ...bl.? In a second form, an interval size can also be provided. For example
a:i:b with interval size i creates a vector [a, a+i, a+2i, ...k] where k is the greatest integer
such that b-k<i. Use of a colon expression for array subscripting takes all the elements of the array
for which the subscript in a particular dimension is in the vector created by the colon expression

in that dimension. For array subscripting we can also use 7 :” without specifying the lower and the
upper limit. In this case elements for all the indices in that particular dimension are accessed.

Consider the MATLAB code below:

function [x] = crazyArray(a)
y = ones(3,4,5);
x = y(1,2:3,1);

end

In this code y is a 3-dimensional array of shape 3 x 4 x 5. x is an array created by copying the
elements of y at (1,2,1), (1,2,2),

(1,2,5), (1,3,1), (1,3,2), ... and (1,3,5). However y itself is of shape 1 x 2 x 5 and
is indexed normally. This code is translated into the following X10 code.?

public static def crazyArray(a: Double){
var mc_t1: Double = 3;
var mc_t2: Double = 4;
var mc_t3: Double = 5;
val y: Array[Double] =
new Array[Double|( Mix10.ones(mc_t1, mec_t2, mc_t3));
var mc_t4: Double = 2;
var mc_t5: Double = 3;
val mc_t0: Array[Double| =
new Array[Double]( Mix10.colon(mc_t4, mc_t5));
var mc_t6: Double = 1;
val x: Array[Double];
val mix10_pt_y: Point;

3See http://www.mathworks.com/help/matlab/ref/colon.html.
“Note that we are currently implementing aggregation transformations which will aggregate expressions, including
folding constants into expressions.
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mix10_pt_y = Point.make(1—(mc_t6 as Int),
1—(mc_t0(mc_t0.region.min(0)) as Int), 0);
x = new Array[Double]((1..1)x
((mc-t0.region.min(0)) as Int..
(mc_t0.region.max(0)) as Int)x*
((y.region.min(2))..y.region.max(2)),
(p:Point(3))=>y(p.operator—(mix10_pt_y)));

}

Our current shape analysis engine does not compute the shape of arrays involving colon operator
but we can use the

Region.min(Int i) and Region.max(Int i) methods to compute the correct values at run time.
In the above example, we first create a new Point object that serves as an offset to get the elements
at the correct position of the array accessed. Then we create the new array with region derived from
the resultant vector from the colon operator for second dimension and from the third dimension of
the source array y. Thus the resultant array x has the region 1..1*x1..2*1..5. Note that M1X10
creates arrays with starting index 1 to maintain readability of the generated code for MATLAB
users. This is easy due to region-based arrays in X10. Providing support for colon operator in
array access on LHS of an assignment statement and support for colon operator with specified
interval value is currently a work in progress.

5.6 Function calls

Function calls in MATLAB are similar to other programming languages if the called function returns
nothing or returns only one value. However, MATLAB allows a function to return multiple values.
Whenever a call is made to such a function, returned values are received in a list in the order
specified by function definition. For example in the statement [x,n] = bubble(a); a call is made
to the function bubble which returns two values that are read into x and n respectively. This
statement is compiled to following code in X10.

var x: Double;

var n: Double;

val xn: Array[Any];

x_n = bubble(A) ;

x = xn(0 as Int)as Double ;
n = xn(l as Int)as Double ;

The key idea here is to create an array of type Any and read the returned value. Remember
that M1X10 packs the multiple return values of a method in an array of type Any and returns it.
Individual elements of the list simply read the values from this array. If the function call is inside
a loop, all the declarations are moved out of the loop and only assignments are inside the loop.

5.7 Cell Arrays

Cell arrays in MATLAB are arrays of data containers called cells and each cell can contain data of
any type. For example fooCell = {’x’,10,’I like’,ones(3,3)}; creates a cell array containing
values of type char, double, char array and a double array. To convert to X10, the elements of the
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cell array are packed into an X10 array of type Any. While accessing an element it is type cast into
its original type. Consider the following MATLAB listing;:

function [x] = cellTest(a)
m = ones(2,3);
n = [4,5];

myCell = {m, n*100};
x = myCell{1,2};
end

It creates a cell array containing two arrays. It is translated to the below X10 code:
static def cellTest (a: Double)
{

var mc_t2: Double = 2;

var mc_t3: Double = 3;

var m: Array[Double] = new Array[Double](Mix10.ones(mc_t2, mc_t3));

var mc_t5: Double = 4;

var mc_t6: Double = 5;

var n: Array[Double] = new Array[Double|(Mix10.horzcat(mc_t5, mc_t6));

var mc_t0: Array[Double] = new Array[Double](m);

var mc_t7: Double = 100;

var mc_t1: Array[Double] = new Array[Double](Mix10.mtimes(n, mc_t7));

var myCell: Array[Any] = [mc_t0 as Any ,mc_t1 as Any];

var mc_t9: Double = 1;

var mc_t10: Double = 2;

var x: Array|[Double];

x = myCell(mc_t9 as Int, mc_t10 as Int) as Array[Double;

return x;

6 Evaluation

In this section we present the preliminary results of testing our current implementation. To test
our compiler we used some of the benchmarks used in the previous McFor project [10] plus some
standard programs like bubble sort, sieve of Eratosthenes, Fibonacci sequence generation, etc. For
this paper we present the results for the following seven benchmarks.

e bubble is the standard bubble sort. We chose this because it involves nested loops and consists
of many array read and copy operations.

e capr computes the capacitance per unit length of a coaxial pair of rectangles. It involves four
methods and operations on 2-dimensional matrices. It is also dominated by a large number of
2-dimensional array accesses. capr_rank is a specialized version of capr for which we statically
declare the rank of all the arrays in the generated X10 code.

e dich finds the Dirichlet solution to Laplace’s equation. It involves mathematical operations on
a 2-dimensional matrix and is dominated by a large number of 2-dimensional array accesses
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inside nested loops. dich_rank, similar to capr_rank, is the specialized version of dich with
statically declared ranks for the arrays.

e fiff is a finite difference solution to a wave equation. It is dominated by a number of trigono-
metric operations and involves 2-dimensional matrix data.

e mbrt computes a mandelbrot set. The main features of this benchmark are computations
involving complex numerical values and loops.

e nbld simulates the gravitational movement of a set of objects. It involves computations on
column vectors inside nested loops. nbld_arr uses a specialized version of the M1X10 library
which has specialized methods for column vectors.

We compiled the X10 code generated by our current implementation of M1X10 using both the man-
aged backend (generates Java) and the native backend (generates C++). For the managed backend
we compiled the generated X10 code with following optimization switches: no optimizations, -0,
-NO_CHECKS and -0 -NO_CHECKS. Only -NO_CHECKS and -0 -NO_CHECKS flags were used for the
native backend since [8] states that ~NO_CHECKS option is required for acceptable multi-dimensional
array performance. We also used the X10 compiler with libraries compiled with ~-DNO_CHECKS=true
when we used -NO_CHECKS for compiling generated X10 code. We first verified the correctness of
the generated code by using small data. All the benchmarks produced accurate results compared
to the results produced by MATLAB for original MATLAB implementations.

All the programs were executed on a machine with Intel(R) Core(TM) i7-3820 CPU @ 3.60GHz
processor and 16 GB memory running GNU/Linux(3.2.0-26-generic #41-Ubuntu). The MATLAB
version used was R2011a and X 10 programs were built and executed using x10dt-2.3.1, Oracle Java
version 1.6.0-01 and gcc version 4.6.3.

Table I and Table II show execution results for original benchmarks executed in MATLAB compared

with execution results for managed backend. Table III shows execution results for native backend.

The scales 1x, 5x and 25x corresponds to problem sizes that take approximately 20 seconds, 100
seconds and 500 seconds respectively to execute the original MATLAB code. The columns labeled
‘speedup’ show the speedup factor or relative execution time (M atlab execution time/X 10 execution time)
compared to the original MATLAB code. Numbers greater than one indicate that our generated

X10 code is faster than the original MATLAB version.

6.1 Managed backend (Java)

Let us first evaluate the performance of our generated code using the managed X10 backend which
generates Java code.

For bubble, the M1X 10 generated code is about 30% slower than the original MATLAB code. Inlining
of methods for array accesses in x10.lang.array.Array was enabled by addition of the X10 -0
flag, giving it a speedup of about 22% over the MATLAB code. Adding the X10 NO_CHECKS flag
does not give a significant speedup because currently bubble involves 1-dimensional arrays which
do not seem to incur a lot of array bounds check overhead.

capr and dich show very surprising results. The unoptimized versions give acceptable performance,
and enabling the X10 NO_CHECKS flag gives further improvements. However, very surprisingly,
adding the X10 -0 flag caused enormous slowdowns, up to two orders of magnitude in some cases.
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X10 library compiled with CHECKS

MATLAB || No opt. speedup | -0 speedup
bubble 1x 22.36 32.07 0.70 18.39 1.22
bubble 5x 139.88 201.2 0.70 114.4 1.22
capr 1x 23.53 31.41 0.75 1875.63 0.01
capr 5x 117.89 160.49 0.73 11395.21 0.01
capr_rank 1x 23.53 29.41 0.80 18.91 1.24
capr_rank 5x 117.89 146.18 0.81 90.77 1.30
dich 1x 19.9 44.59 0.45 2447.73 0.01
dich 5x 99.62 220.46 0.45 11735.06 0.01
dich_rank 1x 19.9 28.61 0.70 1762.39 0.01
dich_rank 5x 99.62 143.18 0.70 8757.56 0.01
fiff 1x 21.25 44.36 0.48 37.38 0.57
fiff 5x 107.38 221.72 0.48 195.05 0.55
mbrt 1x 18.6 117.45 0.16 117.27 0.16
mbrt 5x 93.55 579.09 0.16 581.73 0.16
nbld Ix 24 77.95 0.31 65.71 0.37
nbld 5x 116.28 591.65 0.20 531.24 0.22
nbld_arr 1x 24 20.56 1.17 17 1.41
nbld_arr 5x 116.28 163.3 0.71 124.02 0.94

Table I: Execution results (time in seconds) for managed (Java) backend - with CHECKS

Both of these benchmarks are dominated by a large number of two-dimensional array accesses
inside nested loops where most of the computation is done. It turns out that the X10 optimizer
inlines the code for these array accesses, and the inlined code is fairly long and complex for each
access, including a dynamic check that the rank of the array is 2. With all of the array reads and
writes inlined, the core computation methods become too large/complex for the Java JIT compiler
to handle and thus the core computation can no longer be JIT compiled and is instead interpreted,
leading to huge slowdowns (this was observed both for the Java Hotspot and J9 JITs).

To reduce the amount of code that the X10 compiler generates for the two-dimensional array ac-
cesses, we defined capr_rank and dich_rank which are the specialized versions of capr and dich where
ranks of the arrays are declared statically in the generated X10 code (currently this specialization
is done by hand to test its effects on performance and will be implemented automatically in M1X10
in future). The results of this specialization were quite surprising. It eliminated the dynamic rank
checking code from the generated Java code which was quite a large overhead given that it was
inserted for every array access and included exception handling. For capr_rank the generated code
Java code was now short enough for the JIT compiler to compile the core computation method and
thus gave speedups of over 120 times compared to unspecialized version (with optimization switched
on). However, for dich_rank even though this specialization did provide a speedup of about 1.4
times over the optimized dich, it was still over 90 times slow compared to the unoptimized version
(with -NO_CHECKS enabled). This specialization did shorten the core method, but apparently not
enough to be acceptable by the JIT compiler used in our experiments.

fiff contains a large number of library calls to trigonometric functions in a loop. These calls are

17



X10 library compiled with NO_CHECKS

MATLAB || -NO_CHECKS speedup | -O -NO_CHECKS speedup
bubble 1x 22.36 28.28 0.79 12.19 1.83
bubble 5x 139.88 176.96 0.79 75.86 1.84
capr 1x 23.53 22.82 1.03 1458.8 0.02
capr bx 117.89 121.59 0.97 8578.2 0.01
capr_rank 1 23.53 22.75 1.03 4.85 4.85
capr_rank 5 117.89 104.12 1.13 23.64 4.99
dich 1x 19.9 27.54 0.72 1942.04 0.01
dich 5x 99.62 138.37 0.72 10072.32 0.01
dich_rank 1x 19.9 21.27 0.94 1584.48 0.01
dich_rank 5x 99.62 100.97 0.99 7448.48 0.01
fiff 1x 21.25 38 0.56 19.97 1.06
fiff 5x 107.38 186 0.58 85.24 1.26
mbrt 1x 18.6 115.42 0.16 116.48 0.16
mbrt 5x 93.55 571.41 0.16 577.64 0.16
nbld 1x 24 56.82 0.42 52.69 0.46
nbld 5x 116.28 472.35 0.25 409.27 0.28
nbld_arr 1x 24 16.26 1.48 9.48 2.53
nbld_arr 5x 116.28 129.22 0.90 80.08 1.45

Table II: Execution results (time in seconds) for managed (Java) backend - with NO_.CHECKS

made to methods in the generated M1X10 library which in turn call the methods in the X10 Math
library thus explaining the slowdown of more than 50% for unoptimized code compared to MATLAB
code. Switching on the -0 flag gives a speedup of about 20% over unoptimized code. -NO_CHECKS
also provides speedup by about 20% over unoptimized code due to 2-dimensional array accesses
inside nested loops. However -0 -NO_CHECKS gives significant speedup of above 100% compared to
unoptimized code because all the code is now inlined and has "no checks” applied to it.

mbrt shows a large slowdown of 84% compared to original MATLAB code. It mainly consists of
mathematical operations on scalar values of type Complex. MATLAB naturally supports complex
numerical values and operations on them efficiently, whereas X10 implements constructors for
complex numerical values and operations on them via the standard library. Our generated X10
code does not directly call methods in the X10 standard library but via calls to methods in the
Mi1X10 library. We believe that the slowdown in managed backend is due to the overhead involved
in dealing with all the Complex objects, including an allocation of a new Complex object for every
scalar operation. Because this is mostly a scalar benchmark, there is no effect of NO_CHECKS.

nbld involves operations on column vectors as a whole inside a doubly-nested loop unlike other
benchmarks which operate on individual elements inside an array. Also, the size of column vectors
increase proportional to v/scale. The operations on the column vectors are implemented in the
MiX10 library and involve iterating over every point in the column vector, represented as a 2-
dimensional array. Since there are few array accesses and more method calls to the M1X10 library
both -0 and -NO_CHECKS have insignificant effect on runtime. For the 1x problem size the unop-
timized version is about 70% slower than MATLAB code and with optimizations and “no checks”
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X10 library compiled with NO_CHECKS

MATLAB | -NO_CHECKS speedup | -O -NO_CHECKS speedup
bubble 1x 22.36 121.1 0.18 17.11 1.31
bubble 5x 139.88 753.33 0.19 104.69 1.34
bubble 25x 557.63 3020.53 0.18 429.06 1.30
capr 1x 23.53 129.55 0.18 22.23 1.06
capr bx 117.89 654.98 0.18 135.83 0.87
capr 25x 617.63 3240.32 0.19 566.1 1.09
capr_rank 1x 23.53 76.31 0.31 5.17 4.55
capr_rank 5x 117.89 390.87 0.30 28.74 4.10
capr_rank 25x 617.63 1959.83 0.32 137.91 4.48
dich 1x 19.9 127.63 0.16 25.83 0.77
dich 5x 99.62 664.62 0.15 129.49 0.77
dich 25x 508.22 3157.01 0.16 515.92 0.99
dich_rank 1x 19.9 94.93 0.21 20.23 0.98
dich_rank 5x 99.62 474.60 0.21 101.29 0.98
dich_rank 25x 508.22 2397.54 0.21 507.15 1.00
fiff 1x 21.25 137.58 0.15 24.28 0.88
fiff 5x 107.38 684.33 0.16 117.7 0.91
fiff 25x 537.22 3485.94 0.15 600.38 0.89
mbrt 1x 18.6 43.08 0.43 12.83 1.45
mbrt 5x 93.55 218.51 0.43 63.34 1.48
mbrt 25x 389.63 1083.79 0.36 317.54 1.23
nbld 1x 24.00 157.93 0.15 94.12 0.25
nbld 5x 116.28 1196.36 0.10 716.52 0.16
nbld 25x 566.15 10591.97 0.05 5875.75 0.10
nbld_arr 1x 24.00 62.34 0.38 11.46 2.09
nbld_arr 5x 116.28 498.71 0.23 104.04 1.12
nbld_arr 25x 566.15 4184.31 0.14 811.66 0.70

Table I1I: Execution results (time in seconds) for native (C++) backend

turned on it is still 54% slower. You may note that on a problem size of 5x, the M1X10-generated
code is proportionally slower than that for 1x. This may be due to the fact that the MATLAB
array /vector-based library routines have been highly tuned and may be better optimized and/or
use multithreaded libraries for larger data sizes.

Since our generated nbld performed poorly due to the slowness of our general-purpose MiX10
library code for array/vector operations, we experimented with generating more efficient specialized
library operations. We created a specialized version of nbld called nbid_arr that uses a version
MIX10 library containing specialized methods for column vectors.® In these specialized methods,
instead of iterating over the points, we use the traditional for loop to iterate over n * 1 elements of
the array. Comparing the performance n1bd nbild_arr shows that the specialized library approach
gives up to 5 times faster execution times over unspecialized version.

5This specialization for M1X10 library is currently done by hand and will be implemented in M1X10 in the future.
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6.2 Native backend (C++)

Results for compilation to native backend are reasonably good, and contained no big surprises.
Overall, the -NO_CHECKS flag by itself does not produce performant code, but combined with -0,
performance nearly equals original MATLAB code, with bubble and mbrt surpassing it.

capr_rank gives up to 4 times faster results as compared to capr with optimization and "no checks”
switched on. Without the optimizations also it is over 1.5 times faster than the unspecialized
version. dich_rank is about 1.3 times faster than the unspecialized version for both optimized and
unoptimized cases. This difference in improvement for these two benchmarks is probably due to the
fact that capr has nearly 3 times more array access operations than dich thus this specialization
has greater impact on capr.

The results for mbrt compiled to native backend are about 9 times faster than those for managed
backend. The reason is that x10.1lang.Complex can be implemented much more efficiently in C++
using structs which can be allocated more efficiently by either being allocated on the stack or are
embedded in a containing object.

Results for nb1d do not show any improvement with -0 because it uses for loops with points which
are not optimized [8]. nbIld_arr however gives a huge speedup of up to 8 times compared to
nbld. This shows that generating specialized M1X10 library methods is beneficial for both X10
back-ends.

6.3 Summary

Our initial experiments have given some reasonable performance results, and pointed out some
places where both our code generation, and the X10 managed code generation could be improved.

In its current form, the code M1X10 generates is directly translated from low-level Tame IR and
keeps all the extra variables introduced in it. Also, since default data type for numbers used in
MATLAB is double and in X 10 is Int, there is a large amount of type conversion overhead, specially
for array accesses (MATLAB used subscripts of type double but X10 uses subscripts of type Int).
Another factor is that MATLAB builtins are mapped to method calls (some of which make further
library calls) which introduces further overhead. Currently it is a trade-off between readability and
performance but it can be reduced once we implement method inlining optimization (which can be
invoked optionally).

Our experiments also show that generating more specialized X10 code can lead to much faster
executions. In particular, it appears that declaring the ranks of arrays in the generated X10
code is very important. Our MiX10 compiler can use the shape information provided by the
Tamer framework to automatically infer the ranks of many arrays, so future versions of Mi1X10
will specialize array declarations whenever possible. We also observed that generating specialized
MiX10 library routines can also provide excellent performance improvements, and we also plan to
add this to M1X10.

Our results also point out some places where the code generation for the managed backend for
X10 could be improved. The aggressive inlining done by the X10 -0 option seems to be counter-
productive in situations where this creates code that is too large/complex for the JIT compiler.
Furthermore, the simplifications performed by the X10 compiler to enable the inlining appears to
introduce many spurious temporary variables and type casts, which may be putting further pressure
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on the JIT compiler. We also observed significant overheads for the benchmark using Complex
scalars. For these cases it may be worth implementing some object inlining in the generated X10
code.

In this first phase of M1X10 development we achieved our goal to generate correct and robust code
for many of the commonly used MATLAB features. In the next phase of M1X 10 development we plan
to focus on optimizations for performance of generated sequential code and to identify parallelism
in MATLAB code and map them to X10’s concurrency controls. MATLAB vector instructions and
parfor loops are a good starting point.

7 Related Work

As discussed in Section 2, this work builds upon the previous work from the McLAB group, including
the front-end, the McSAF analysis framework [3, 4] analysis framework, and the MATLAB Tamer [6].

There have been previous research projects on static compilation of MATLAB which focused particu-
larly on the array-based subset of MATLAB and developed advanced static analyses for determining
shapes and sizes of arrays. For example, FALCON [14] is a MATLAB to FORTRAN9O translator with
sophisticated type inference algorithms. The McLab group has previously implemented a proto-
type Fortran 95 generator [10], and is developing the next generation Fortran generator in parallel
with the Mi1X10 project. Some of the solutions can be shared between the projects, especially the
parts which extend the Tamer. The MEGHA project[13] provides an interesting approach to map
MATLAB array operations to CPUs and GPUs, but only supports a very small subset of MATLAB.

There are also commercial compilers. One such product is the MATLAB Coder recently released
by MathWorks[11], which produces C code for a subset of MATLAB.

There are other projects providing open source implementations of MATLAB-like languages, such as
Octave[l] and Scilab[9]. These add valuable contributions to the open source community, however
their focus is on providing interpreters and open library support and they have not tackled the
problems of static compilation. We are investigating if there is any way of sharing some of their
library support with M1X10.

In terms of source-to-source compilers for X10, we are aware of two other projects. StreamX10
is a stream programming framework based on X10 [16]. StreamX10 includes a compiler which
translates programs in COStream to parallel X10 code. Tetsu discusses the design of a Ruby-based
DSL for parallel programming that is compiled to X10 [15].

8 Conclusions and Future Work

In this paper we have outlined the important first steps in building M1X10, a source-to-source
compiler from MATLAB to X10. We have provided an overview of the design, including our use of
existing tools and the new components we have defined for the X10 code generation.

We presented our approach to handling many MATLAB features including our treatment of MATLAB
built-in operators, MATLAB style for loops, and colon-style indexing operations on arrays.

We demonstrated that we could generate working X10 code for a collection of MATLAB bench-
marks, showing that the core translation is in place. In many cases the execution speed of the
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generated X10 code was comparable, and sometimes slightly faster than the original MATLAB
code. In particular, the results with the native backend were quite encouraging. This initial exper-
imental evaluation also pointed out several areas where we can improve our code generation further
including: reducing extra function call overhead, minimizing type conversions, and specializing
code based on the results of shape analysis.

Based on the foundations in this paper we plan to continue the project in several directions. On the
performance side we intend to further optimize the generated code, and to expose the parallelism
inherent in MATLAB vector instructions and MATLAB parfor loops. We also intend to add some
X10-specific optimizations, including one that will identify immutable variables, which can thus be
declared as such in the generated X10 code.

For peak performance of the generated X10 code we use the ~NO_CHECKS switch which disables the
array bounds checks and type conversion checks. However, the semantics of MATLAB require that
array bounds checks be made. We are currently working on array bound analyses which will allow
us to generate array bounds checks where necessary in our generated code.

One of our goals is to generate readable X10 code, so that programmers could use M1X10 to port
MATLAB code to X10. The structure of the generated code is already quite clear, but the individual
statements are too low-level because they are following the simplified form of the Tamer IR. We are
currently developing a collection of aggregating transformations which will rebuild the expressions
to a level more like what a programmer would specify.
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