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ABSTRACT
We propose and evaluate different methods to signal position
and size of encrypted RoIs (Regions of Interest) in JPEG im-
ages. After discussing various design choices regarding the
encoding of RoI coordinates with a minimal amount of bits,
we discuss both, existing and newly proposed approaches
to signal the encoded coordinates inside JPEG images. By
evaluating the different signalling methods on various data
sets, we show that several of our proposed encoding meth-
ods outperform JBIG in this special use case. Furthermore,
we show that one of our proposed signalling methods allows
length-preserving lossless signalling, i.e., storing RoI coor-
dinates in a format-compliant way inside the JPEG images
without quality loss or change of file size.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations—Object repre-
sentation; E.4 [Data]: Coding and Information Theory—
Data compaction and compression; I.4.2 [Image Process-
ing and Computer Vision]: Compression (Coding)—
JPEG

General Terms
Algorithms, Theory, Measurement

Keywords
JPEG, Region of Interest, Coordinates, Encoding, Signalling

1. INTRODUCTION
In the last decade, a large number of region of interest

encryption approaches have been proposed, especially for
image and video formats using DCT-domain-based compres-
sion, like JPEG [12]. Although the human eye is capable of
detecting encrypted picture regions easily, state-of-the-art
software is not. There have been attempts to detect en-
crypted picture regions automatically [3], i.e., without the
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need to signal them explicitly. However, despite their re-
ported near-100% accuracy, it is clear that perfect detection
is not possible, albeit necessary for correct decryption in
most cases.
Therefore, there is an immanent need to store the encrypted
RoIs’ coordinates inside the JPEG file in order to have them
available during decryption. As the JPEG file format has
no means of signalling encrypted regions, unlike JPEG2000
[1], different methods of encoding these coordinates have to
be evaluated and a detailled analysis of possible signalling
methods is required.
All RoI encryption approaches for JPEG proposed so far
handle RoI signalling in one of three ways. The first method
involves using JPEG comment segments with an unspecified
coordinate encoding [2], which is straight-forward, but does
not take into account that some applications do not tolerate
size changes of the JPEG file. Thus, we explore different op-
tions and present solutions for a variety of typical practical
contraints.
The second and most common signalling method relies on
an external signalling channel [4]. As signalling RoIs in the
JPEG image itself has significant advantages as compared to
using a separate channel, this paper proposes and evaluates
possibilities to store coordinates of encrypted RoIs inside the
JPEG images themselves.
Finally, the third signalling method is to omit signalling de-
tails altogether [13], which can make decryption impossible
or dependent on human RoI identification. As this is not ac-
ceptable in most cases, an analysis of encoding and signalling
methods for encrypted RoIs in JPEG images is required.
This paper is structured as follows: In Section 2, we discuss
design choices for RoI coordinate encodings and select a sub-
set thereof for further evaluation. In Section 3, we propose
different methods to signal the encoded coordinates inside a
JPEG file. Subsequently, in Section 4, we evaluate all en-
coding and signalling methods in order to find appropriate
combinations for different use cases before we conclude the
paper in Section 5.

2. ROI COORDINATE ENCODING
Before the RoI coordinates can be signalled, they have to

be encoded appropriately. As the number of signalled bits
may be limited or even influence the picture quality, de-
pending on the signalling method used, a compact encoding
is desired. In this Section, we discuss several design choices
for encodings, aiming at listing a set of practically useable
encodings to be evaluated in Section 4.
As most state-of-the-art encryption approaches for JPEG



Name Explicit Value encoding Differential Bits per RoI Overhead bits per file
Bitmap – Fixed length N/A 0 niMCU

List X Fixed length – 2 · dlog2(niMCU + 1)e 2 · dlog2(niMCU + 1)e
VList X Exp. Golomb – Variable 2
DList X Signed Exp. Golomb X Variable 2
ACBitmap – Fixed + ABAC N/A 0 Variable
ACList X Fixed + ABAC – Variable Variable
ACVList X Exp. G. + ABAC – Variable Variable
ACDList X S. Exp. G. + ABAC X Variable Variable
JBitmap – JBIG – Variable 12 (header only)

Table 1: List of coordinate encodings to be evaluated and their respective storage requirements

operate on a block [15] or iMCU (interleaved Minimum Cod-
ing Unit, multiple luminance and the corresponding chromi-
nance blocks) level [22], coordinates are limited to iMCU
granularity. Note that this limitation is also imposed – of-
ten self-imposed [3] – on format-independent encryption ap-
proaches which operate in the image domain.
Furthermore, chrominance subsampling is assumed to be
4:2:0 [14] as it is the default setting in the JPEG refer-
ence software and widely used [20]. This enforces a fixed
iMCU size of six blocks, four of which are luminance blocks
[12], limiting the coordinate granularity to rectangular im-
age blocks of 16 · 16 pixels size.
Subsequently, the following variables are used: w and h de-
note a picture’s width and height in pixels, respectively.
Furthermore, the width and height in iMCUs are defined
as wiMCU =

⌈
w
16

⌉
and hiMCU =

⌈
h
16

⌉
, respectively. In ad-

dition, niMCU = wiMCU · hiMCU denotes the total number
of iMCUs in a picture. Finally, nRoI specifies the number of
RoIs to be encoded. All coordinate encodings described in
the subsequent subsections are summarized in Table 1 using
the aforementioned variables.

2.1 Implicit vs. explicit encoding
Coordinates can be encoded either implicitly or explic-

itly. While implicit encoding entails deriving the actual co-
ordinates locally, e.g., from the position of bit patterns in
a bitmap, explicit encoding stores the actual coordinates
globally so that they can be read directly. Hence, the sim-
plest form of implicit encoding, i.e., a bitmap for all iMCUs
where a zero bit means “not encrypted” and a one bit means
“encrypted”, requires niMCU bits to be stored (see Table 1:
“Bitmap”).
In contrast, explicit coordinate encoding requires storing a
list of coordinates, specifying the location and size of each
RoI. Both, location and size, are described by a horizontal
and vertical component, referred to as X and Y coordinate,
respectively, yielding four coordinates in total.
In addition, it is necessary to specify a special coordinate
signalling the end of the coordinate list. For the sake of
simplicity and practicality, we subsequently use a RoI with
a size of zero to signal the end of the list. This is reflected in
the per-file overhead of all explicit encodings listed in Table
1 accounting for the additional end-of-list entry as storing
nRoI RoIs requires nRoI + 1 list entries in total. Each list
entry consists of 4 coordinates, 2 of which are X and Y co-
ordinates, respectively.

2.2 Component vs. index encoding
Although separate X and Y coordinates allow locating

the encrypted RoIs easily, two components (X and Y) need
to be stored to specify one location. When using a fixed
bit length per component, the X and Y coordinate require
dlog2(wiMCU +1)e and dlog2(hiMCU + 1)e bits of space, re-
spectively.
Alternatively, an index can be assigned to each iMCU, start-
ing with zero for the top-left-most iMCU and increasing in
the left-to-right and top-to-bottom direction. This way, a
location identified by two components (X and Y) can be
specified by a single index which requires dlog2(niMCU +1)e
bits when using a fixed bit length per index. Note that this
is always shorter than or in the worst case as long as sig-
nalling two separate components since dlog2(niMCU + 1)e =
dlog2(wiMCU ·hiMCU +1)e ≤ dlog2(wiMCU )+log2(hiMCU )+
1e ≤ dlog2(wiMCU + 1)e + dlog2(hiMCU + 1)e, which is the
number of bits required for two separately stored X and Y
coordinates. Thus, index encoding is to be preferred over
component encoding and all explicit encodings listed in Ta-
ble 1 encode iMCU indices instead of X and Y coordinates.

2.3 Fixed-length vs. variable-length encoding
As the picture width and height are known, the maximum

number of bits required to encode one iMCU index can be
determined easily. If this fixed bit length is used for all in-
dices, encoding one RoI requires 2 · dlog2(niMCU )e bits in
total (see Section 2.2), the factor of two being required to
account for both, the location and size of the RoI (see Sec-
tion 2.1). This way, each encoded RoI requires the same
number of bits, regardless of its own size and location (see
Table 1: “List”).
As RoIs usually do not span the whole picture, using a con-
stant number of bits which allows specifying the whole pic-
ture size can be disadvantageous. Similarly, RoI locations
on the top-left require a high number of bits, although their
corresponding iMCU start indices are small. Hence, the use
of variable-length encoding for both iMCU indices, specify-
ing the encrypted RoI’s location and size, is to be evaluated.
One method for variable-length coding are Exponential-Go-
lomb codes as used e.g., for encoding a subset of H.264 syn-
tax element values [19]. As a RoI’s position and size (repre-
sented as iMCU indices) are always positive, a zeroth order
(i.e., k = 0) unsigned Exponential-Golomb code (“ue(v)” fol-
lowing the notation of the H.264 standard [11]) can be used
to encode them. Table 2 shows examples of values and their
respective encoded bit representation.
As can be seen, a value of zero can be signalled using one
bit. Hence, an end-of-list entry (with position and size being
zero) can be signalled using two bits (see Table 1). Gener-



Value ue(v) code word se(v) code word
... – ...
-4 – 0001001
-3 – 00111
-2 – 00101
-1 – 011
0 1 1
1 010 010
2 011 00100
3 00100 00110
4 00101 0001000

... ... ...

Table 2: List of exemplary values and their respec-
tive zeroth order Exponential-Golomb code words.
Hyphens denote invalid value ranges

ally, any positive integer value x requires 2 · dlog2(x+2)e−1
bits. Thus, one iMCU index requires a maximum of 2 ·
dlog2(niMCU + 2)e − 1 bits. As the actual number of bits
can be smaller, depending on the actual iMCU indices to be
encoded, the storage requirements per RoI are variable when
using Exponential-Golomb encoded list entries (see Table 1:
“VList” for variable-length coded list), possibly reducing the
number of stored bits compared to fixed-length encoding.

2.4 Differential encoding
Although variable-length coding reduces the storage re-

quirements when encoding small indices, the converse is
true for large indices, i.e., indices identifying iMCUs at the
bottom-right of a picture. In order to overcome this draw-
back, each index can be stored relative to its predecessor,
replacing the actual value to be encoded by a differential
value which is very likely to be smaller. For example, a lo-
cation/size pair (l2, s2) can be encoded as (l2 − l1, s2 − s1)
relative to its preceding location/size pair (l1, s1). As all
RoIs are known, their order in the RoI list can be chosen
so that the differential values to be encoded are minimal in
terms of size.
However, it is not guaranteed that there is an order of en-
tries in the RoI list so that all differences are positive, thus
requiring the ability to encode negative differences as well.
Signed Exponential-Golomb codes which support both, posi-
tive and negative values, are described in the H.264 standard
[11]. Following the latter’s notation, such zeroth order codes
are referred to as “se(v)”. Table 2 shows examples of values
and their respective encoded bit representation.
In general, any integer value x requires 2 · dlog2(2 · |x|+2)e−
1 bits as signed Exponential-Golomb code word, which is
more than the amount required for the respective unsigned
Exponential-Golomb code word. Nonetheless, we include
this encoding approach as its storage requirements depend
on the RoI’s coordinates’ differences (see Table 1: “DList”
for differentially encoded list) which depend on the values
and ordering of the RoIs, unlike all other encodings.

2.5 Entropy coding
Each of the encodings described above makes use of dif-

ferent representations and/or properties of the list of RoI
coordinates. However, none of them aims at effectively elim-
inating redundancy. Thus, a modified version of each encod-
ing is included in Table 1 which essentially adds an entropy

coding step after the original encoding process, indicated by
a “C” (for compressed) prefix in the encoding’s name.
Arithmetic coding [24] (prefixed with an additional “A”) is
chosen for the entropy coding step as it theoretically allows
for quasi optimal, i.e., close-to-entropy, performance. As the
number of different values to be encoded is equal to nRoI

for nROI RoI location/size pairs and smaller than or equal
to 2 · nRoI for separately encoded location and size values,
binary arithmetic coding (abbreviated BAC in Table 1) cal-
culated in fixed-precision integer arithmetic as described in
the JPEG standard [12] is evaluated.
As signalling the symbols’ probabilities (or the correspond-
ing subintervals) would require additional bits, adaptive cod-
ing, i.e., the dynamic adjustment of the symbol probabilities,
is used to optimize coding efficiency [19]. Starting with equal
probabilities for both symbols, zero and one, the subinterval
ranges are adjusted according to the changing symbol fre-
quencies during encoding. Note that end-of-stream markers
can be omitted as the decoding process can stop the arith-
metic decoding process as soon as the end-of-list marker (a
RoI with location and size zero) is found.

2.6 Bi-level image compression
As the implicitly encoded bitmap described in Section 2.1

is in fact a bi-level image, the use of a compressor which
is optimized for this type of images has to be evaluated for
comparison. Due to its widespread use, we choose the JBIG
compression standard [9] in combination with one of its ap-
plication profiles [10] for this task (see Table 1: “JBitmap”
for JBIG-compressed bitmap).
In order to compensate for its relatively large file header
with a total size of 20 bytes, we shorten the former by the
eight bytes which signal the image’s width and height as they
can also be derived otherwise, e.g., from the JPEG picture.
This reduces the total per-file overhead to twelve bytes, thus
allowing for a fairer comparison.

2.7 Summary
A number of choices have to be made when designing an

encoding for a list of RoIs, few of which are clear without
prior evaluation. As outlined in Section 2, encoding iMCU
indices always requires less than or as many bits as encod-
ing separate X and Y coordinates, Thus, all encodings to
be evaluated encode iMCU indices. As most other design
criteria of possible encodings depend on either the number
and/or size of the RoIs and/or the picture, a selected sub-
set of possible encodings (see Table 1) covering all of the
aforementioned criteria has to be evaluated in Section 4.

3. ROI SIGNALLING
The encoded RoIs’ coordinates need to be signalled in

some form in order to identify the RoIs at a later point
in time, e.g., during the decryption process. Thus, in this
Section, we propose a number of different ways to store the
encoded RoI coordinates directly inside the JPEG file. In
order to account for the different needs of conceivable use
cases, the proposed signalling methods are chosen to cover
a number of different combinations of the following aspects:

1. Format compliance: The strict fulfillment of all syn-
tactical and semantical requirements imposed by the
JPEG standard [12]



2. Losslessness: The exact preservation of all (visible)
picture data

3. Availability: The guarantee that the proposed me-
thod will work on every JPEG picture

4. Length-preservation: The guarantee that the pic-
ture’s file size does not change (suitable for length-
preserving encryption methods like [22])

Furthermore, the capacity, i.e., the amount of storable bits,
of each signalling method is given. Note the capacity of some
of the proposed methods depends on the picture and/or its
metadata. As the number of RoIs is usually not known in
advance for all pictures, all methods need to be evaluated
in terms of usability for storing encoded RoI coordinates as
proposed in Section 2, which is done in Section 4.
All proposed methods are described with regards to the
aforementioned aspects and summarized in Table 3 for con-
venience. For reasons of practicality, we assume that all
JPEG pictures are Baseline JPEG pictures [12] with three
color components – Y, Cb and Cr, i.e., one luminance and
two chrominance components. Note that most methods will,
however, work with differently coded JPEG pictures (e.g.,
arithmetically coded ones) as well.

3.1 Use of COM and APP segments
The first method, the insertion of a COM (Comment)

segment into the JPEG file according to Annex B of the
JPEG standard [12], has already been proposed by others
(e.g., [2]). One COM segment may contain up to 65533
payload bytes, plus its marker (2 bytes) and length field
(2 bytes), totalling to 65537 stored bytes. As the num-
ber of COM segments is theoretically unlimited, so is the
total capacity of this signalling method. Signalling n bits

requires nCOM =

⌈
dn8 e
65533

⌉
COM segments with a total of

(nCOM − 1 + ε) · 65537 + 4 +
⌈⌈

n
8

⌉
mod 65533

⌉
bytes, where

mod denotes the integer modulus operator and ε is a cor-
rection factor of 1, if there is no remainder (of the modulus
operation), and 0 otherwise. The rounding to full bytes is
due to the fact that a COM segment’s length field is ex-
pressed in bytes, not bits.
As an alternative to the COM segment, an Application Data
(APP) segment can be used, which is equivalent in terms
of structure. As there are 16 different APP markers, it is
theoretically possible to encode four more bits into an APP
segment than into a comment segment of equal total size. As
the capacity is otherwise the same, signalling n bits in APP

markers requires nAPP =

⌈
dn4 e

2·65533.5

⌉
APP segments with a

total of (nAPP − 1 + ε) · 65537 + 4 +

⌈
ddn4 emod (2·65533.5)e

2

⌉
bytes. Due to the additional 4 bits per segment, APP seg-
ment signalling is to be preferred over COM segment sig-
nalling in terms of capacity. However, there may already be
APP segments in the JPEG file, in which case the gain in
capacity may be reduced. Moreover, there may be a border
case in which all different APP segment types are already
present in the file, making it impossible to store any data in
this way.
One commonly used APP segment type is APP1, typically
storing data in the Exchangeable Image File Format (EXIF)

[6]. If such data is present, but not crucial for further
processing, it can be replaced by encoded RoI coordinates.
However, this method of stripping EXIF data depends on
the presence of the latter and is usally very limited in terms
of capacity. A more detailed description of this method and
its capacity is provided in [5], which is why it is not evalu-
ated separately herein.

3.2 Use of dummy tables
Although JPEG Baseline pictures with three components

use the maximum number of Huffman tables per file, it is
possible to add an arbitrary amount of dummy Tables at the
end of the file by inserting Huffman table (DHT) segments
containing encoded bits. One such Table can be identified
easily during the decoding process. As the “defined” code
words are not actually used, they do not necessarily need
to be valid. Hence, it is possible to define up to 16 sets
of 255 theroretically contradictory maximum length Huff-
man code words defining one 8-bit value each. In total, this
allows storing 16 · 255 · 8 = 32640 bits at the expense of
4099 · 8 = 32792 stored bits (see [12, p. 45]). Note that an
additional four bytes are required for the marker (two bytes)
and the length field (two bytes) per segment. As an arbi-
trary amount of dummy Tables with the same destination
identifier can be inserted, the capacity of this approach is
theoretically unlimited.
Similar to dummy Huffman tables, dummy quantization ta-
bles can be defined by inserting Quantization Table (DQT)
segments. One such segment can store 8 bits for each of
the 64 quantization table positions. This allows for storing
64 · 8 = 512 bits at the expense of 65 · 8 = 520 stored bits
(see [12, p. 44]). Again, the four bytes of overhead for the
marker (two bytes) and additional length field (two bytes)
have to be accounted for once per segment. The capacity is,
again, unlimited due to the theoretically unlimited amount
of dummy Tables when using the same destination identifier.

3.3 Information hiding
As an alternative to bit-stream-based changes to signal

the RoIs, classic information hiding approaches, especially
steganographic ones, can be used. An overview of state-
of-the art methods, of which we consider the widely used
coefficient-based approaches, i.e., those which alter bits in
the DCT domain, is given in [5]. As encrypted RoIs can typ-
ically be identified by the human eye, the main aim of using
information hiding for signalling is not hiding the bits, but
storing them within the image itself. Thus, hiding schemes
like F5 [23] which are known to be vulnerable to attacks [7]
are considered as well.
The approaches’ capacities is not evaluated herein as it has
been evaluated in the literature, e.g., [8] for coefficient-based
information hiding. For JPEG images with one channel, i.e.,
grey-scale images, a capacity of 0.02 bits per non-zero AC
coefficient has been reported. As we assume having three
channels per image, it is safe to use the aforementioned ca-
pacity as a lower bound, requiring only to determine the
average number of non-zero AC coefficients of the test data.
Note that information hiding is not necessarily lossy as re-
versible approaches have been proposed (e.g., [16, 18]).

3.4 Length-preserving signalling
A method without overhead is the use of bits occupied by

unused code words in the Huffman tables, i.e., code words



Method Compliant Lossless Available Length-preserving Capacity (bits)
COM segment X X X – ∞
APP segment X X – – ∞
EXIF data stripping X X∗ – X Variable
Dummy DHT X X X – ∞
Dummy DQT X X X – ∞
Steganographic (coefficients) X –∗∗ X Depends Variable
Reuse of unused DHT entries X X – X Variable
DQT bit stealing X Depends – X Variable
Data before first marker – X X – ∞
Data after last byte – X X – ∞

∗ Original EXIF data will be lost, ∗∗ Reversible techniques proposed (e.g., [16, 18])

Table 3: List of proposed methods for RoI signalling in JPEG pictures broken down by the aspects listed in
Section 3

which are not used throughout the file. Although it is sim-
ple to find unused code words, even when e.g., decrypting,
the number of unused code words may be very low or even
zero, if the Huffman table only contains used code words or
if there is no Huffman table to begin with. Even if there
are unused code words, each of them only allows for storing
8 bits. Furthermore, as the number of unused code words
varies from file to file, this method’s capacity highly depends
on the encoder which created the file and therefore has to
be evaluated.
Another method of storing encoded RoI coordinates is by
stealing bits from the quantization table(s), i.e., by modify-
ing the bits of some quantization table entries, if there is a
quantization table in the first place. There are two possibil-
ities of doing so: One way is to change one bit at a time,
starting at the high frequency entries of the chrominance
quantization tables. After each modification, the JPEG file
is decoded and compared to the version with unchanged
quantization tables. Although this is computationally very
expensive, it can also be done during the decoding process
to find out which bits of the quantization tables were used.
However, the capacity is highly dependent on the picture
and possibly zero. Alternatively, if distortions are accept-
able up to a certain degree, a fixed number of bits can be
used, omitting the trial-and-error process described before.
Although this allows for a higher capacity, it does so at the
expense of picture quality, which has to be assessed.

3.5 Non-format-compliant signalling
A way to losslessly signal encoded RoI coordinates is to in-

sert them at either the very beginning of the file, i.e., before
the first marker, or at its end, i.e., after the last data byte.
Adding data in this way is, however, not format compliant
as the standard only allows for 0xFF fill bytes preceding
each marker. In addition, in both cases, special care has
to be taken in order to escape 0xFF payload bytes which
would otherwise be interpreted as markers. Depending on
how escaping is done, this may lead to additional overhead.
As this method of signalling encoded RoI coordinates is not
format compliant, most image viewers and editors will not
be able to open files edited by it anymore.

4. EVALUATION
In order to evaluate the RoI signalling methods presented

in Section 3 in combination with the coordinate encoding
methods proposed in Section 2, we first evaluate each aspect
separately and subsequently combine them. As a practical
JPEG RoI encryption application we choose the encryption
of people in pictures of surveillance cameras.
In total, eleven test sets are used – three indoors and eight
outdoors sets. The three indoors data sets1 with a total of
3271 pictures with a spatial resolution of 360 · 288 pixels
each are courtesy of the EPSRC funded MOTINAS project
(EP/D033772/1). The eight outdoors data sets2 with a total
of 67616 pictures with a spatial resolution of 640 · 480 pixels
each are courtesy of EPSRC project GR/S98146. All data
sets include ground truth for people’s coordinates within
each picture, which is subsequently used as set of RoIs to
be encoded and signalled. RoIs which exceed one or more
of the pictures’ borders are omitted.

4.1 Encoded RoI bit length assessment
In order to perform coordinate encoding of the data sets’

RoIs, we implemented the different encoding methods pre-
sented in Section 2 in Python, except for arithmetic encoding
and JBIG compression, for which we used the Python imple-
mentation of David MacKay3 and JBIG-KIT4, respectively.
As we restrict the coordinates’ accuracy to iMCUs of 16 · 16
pixels size (see Section Section 2), we rounded the data sets’
RoI coordinates so that all blocks containing an RoI were
considered to be encrypted as a whole. Before actually en-
coding the rounded coordinates, they were translated into
iMCU indices as explained in Section 2.2.
Tables 4 and 5 show the average number of bits per picture
required to encode the RoIs of the indoors and the outdoors
data sets, respectively. As the RoI count of the pictures has
a significant impact on the number of bits required, the re-
sults are grouped by RoI count, considering only pictures
from the data set with the stated number of RoIs. Note
that pictures without, i.e., zero, RoIs are omitted as they
are discussed separately in the second part of this Section.
It is clearly visible from the results of both data sets that
entropy coding (in the right half of each Table) always im-

1ftp://motinas.elec.qmul.ac.uk/pub/av_people/
2http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/
INTERACTIONS/
3http://shedskin.googlecode.com/svn/trunk/
examples/ac_encode.py
4http://www.cl.cam.ac.uk/~mgk25/jbigkit/



RoIs Pictures Bitmap List VList DList ACBitmap ACList ACVList ACDList JBitmap
1 1907 414.00 36.00 30.94 34.94 196.00 31.27 31.04 33.70 206.96
2 959 414.00 54.00 61.53 56.53 196.00 52.07 59.01 54.20 229.30
Non-0 2866 414.00 42.01 41.15 42.15 150.99 38.22 40.38 40.55 214.42

Table 4: Average number of bits required to encode the RoIs of each picture of the indoors data set with a
given number of RoIs. The best, i.e., minimal, number of bits for each distinct picture subset is italicized

RoIs Pictures Bitmap List VList DList ACBitmap ACList ACVList ACDList JBitmap
1 1444 1200.00 44.00 33.58 37.58 138.32 35.64 34.04 36.05 212.34
2 3449 1200.00 66.00 64.72 55.80 241.83 58.78 60.92 52.26 231.46
3 2820 1200.00 88.00 92.81 81.97 255.98 80.66 85.31 74.41 238.52
4 1877 1200.00 110.00 135.89 106.16 333.66 105.88 121.25 96.51 245.66
5 10822 1200.00 132.00 166.46 135.98 393.94 128.51 150.00 122.08 260.68
6 814 1200.00 154.00 204.50 163.71 433.94 149.21 180.02 144.71 267.50
7 3 1200.00 176.00 232.67 168.67 430.67 177.00 208.00 153.00 266.67
8 2 1200.00 198.00 270.00 176.00 430.00 197.50 247.50 158.50 256.00
Non-0 21234 1200.00 108.38 129.92 107.54 329.75 103.34 117.70 97.18 248.64

Table 5: Average number of bits required to encode the RoIs of each picture of the outdoors data set with a
given number of RoIs. The best, i.e., minimal, number of bits for each distinct picture subset is italicized

proves encoding efficiency, i.e., it reduces the number of bits,
except in the case of only one RoI when using a list of
variable-length coded indices (“VList”). Thus, implement-
ing an entropy coding step following the actual coordinate
encoding step should always be considered when encoding
more than one RoI. In the case of a single RoI, variable-
length coded indices (“VList”) give the best results on aver-
age over all eleven test sets.
For a higher number of RoIs, the outdoors data sets (Table
5) allow for a more thorough analysis due to the data sets’
widespread range of RoI counts. They clearly show that
a differentially coded list of values which is entropy coded
(“ACDList”) always gives the best results. The higher the
number of RoIs is, the higher the bit savings of this method
are compared to all of the others besides “JBitmap”. Note
that there are only very few pictures with seven and eight
RoIs, respectively, making the results only reliable for up to
six RoIs. Nonetheless, averaging the number of bits spent
over all pictures with RoIs (last line of Table 5) reveals that
the “ACDList” encoding is optimal for data sets which con-
tain a high number of pictures with more than one RoI. The
maximum number of bits required for one list of RoIs over
all data sets (not listed in the Table) is 219 bits.
Additionally considering the 959 pictures of the indoors data
set (Table 4) containing two RoIs shows that an entropy
coded list of indices (“ACList”) yields a good performance
as well, albeit only smaller by about two bits in this special
case as compared to the “ACDList” encoding. Interestingly,
the “ACVList” encoding shows the best overall performance
over the complete indoors data sets, being 0.17 bits shorter
than the “ACDList” encoding on average. This is due to
the fact that the number of pictures in the indoors data set
with one RoI is higher than the number of pictures with two
RoIs and that the “ACVList” encoding requires the smallest
number of bits for encoding one RoI as compared to all other
entropy-coding-based encodings in the indoors data sets.
Surprisingly, JBIG compression performs significantly worse
than most of our proposed approaches, which is mainly due

to the large overhead caused by the JBIG file header. How-
ever, it is clearly visible from the outdoors data set in Table
5 that the JBIG based encoding requires fewer bits per ad-
ditional RoI compared to all other approaches. While our
“ACDList”approach requires on average 108.66 bits more for
encoding six RoIs than it does for one RoI, “JBitmap” only
requires 55.16 bits more. Thus, it is expected that JBIG
compression outperforms our approaches for large numbers
of RoIs.
As encoding zero RoIs, i.e., the fact that no RoIs are present,
is independent of the data set used, both, Table 4 and 5, do
not include pictures without RoIs. In order to assess the
encoding methods’ RoI encoding performance of pictures of
this type in general, we used artificial images with different
spatial dimensions, all of which had an aspect ratio, i.e., a
width-to-height ratio, of 4:3 as is common in surveillance
applications. Moreover, all image sizes were rounded to the
next integer multiple of 16.
Figure 1 shows the number of bits required to encode zero
RoIs for all proposed encodings with picture sizes ranging
from 16 · 16 to 1920 · 1440 pixels in steps of 16 pixels in
width. Although the aspect ratio is fixed (despite the small
errors due to rounding), the X axis shows the square root of
the image area, making the results applicable to arbitrary
aspect ratios. The Y axis shows the required number of bits
using a logarithmic scale.
The bit requirements for “VList” and “DList” as well as for
their entropy coded variants, “ACVList” and “ACDList”,
are always constant, regardless of the picture’s spatial di-
mensions, thus forming a combined line at two bits. This
property makes the four encodings ideal for quasi all pic-
ture sizes, except for a size of 16 · 16, which we consider of
having no practical use. Thus, each of the four encodings is
recommended for encoding zero RoIs at all spatial picture
dimensions used in practice.
Conversely, the “Bitmap” encoding’s requirements in terms
of bits increase quadratically with picture width (linearly
with increasing picture area), making it inconvenient for
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Figure 1: Number of bits required to encode zero
RoIs for different spatial picture dimensions

practical use for pictures without RoIs. Note that entropy
coding (“ACBitmap”) reduces the required number of bits
significantly, albeit still dependent on the picture’s dimen-
sions. The same is true for the “List” and “ACList” encod-
ings, which are similarly inconvenient for encoding zero RoIs
in practice.
Although the “JBitmap” encoding has a constant overhead,
it is significantly larger (168 bits) than the overhead required
by our Exponential-Golomb-based approaches described a-
bove (2 bits). Thus, it is not recommended to be used to
encode zero RoIs.
As both, the indoors and the outdoors data sets, only cover
a limited range of picture dimensions and RoI counts, we
additionally assessed the bit length requirements of the pro-
posed encodings using artificial test data sets. In order to
artificially create RoIs that resemble real-world characteris-
tics we use the following approach to create nRoI RoIs:

• A random quadtree decomposition up to a maximum
level l is created for a test image of dimensions w·h, fol-
lowing the approach for creating uniformly distributed
quadtree decompositions described in [17].

• nRoI leaves are selected randomly from the set of all
leaves (in case the number of leaves is less than nRoI ,
a new quadtree is generated).

• For each selected leaf in the quadtree, a RoI is created
with dimensions qw · qh where qw = dfw · we with fw
chosen randomly such that m ≤ fw < 1. m denotes
the minimum relative width and can be specified in
0 < m ≤ 1. qh is chosen in an analogous manner.

• The position of the RoI is chosen randomly, ensuring
that the RoI fits into the area covered by the leaf:
Let (lx, ly) be the coordinates of the upper left-hand
corner of the selected leaf with dimensions lw · lh. The
horizontal position of the RoI is determined as blx+fx ·
(lw − qw)c, with fx chosen randomly and 0 ≤ fx < 1.
The vertical position of the RoI is determined in an
analogous manner.

The parameters l and m can be used to tune the average
size of the generated RoIs. In our test setup, we use l = 3
and m = 0.2 to simulate real-world RoIs.
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Figure 2: Number of bits required to encode a num-
ber of randomly generated, artificial RoIs for differ-
ent spatial picture dimensions

Figure 2 depicts the number of bits required to encode 0 ≤
nRoI ≤ 10 randomly generated RoIs for various picture
sizes (see above for details). Note that only “ACDList” and
“JBitmap” are depicted for comparison for the sake of better
graphical representation. All other encodings (not depicted)
perform worse except for very small picture sizes which we
do not consider being practical, as discussed above, with
one exception described below. It is clearly visible that
“JBitmap” does not outperform “ACDList” at any picture
size or RoI count depicted. This is due to the former’s large
overhead, confirming that JBIG may only be suitable for a
very large number of RoIs. As “ACVList” performed bet-
ter than “ACDList” for a small number of RoIs, the two
encodings are compared for 0 ≤ nRoI ≤ 10 randomly gen-
erated RoIs for various picture sizes. Figure 3 depicts the
number of bits which are required by the “ACVList” en-
coding in addition to “ACDList”’s for any given configura-
tion. Note that the X axis starts at 16 as a picture size
of 0 is not practically useful. As in the real-world data
sets, “ACDList” outperforms “ACVList” for a large num-
ber of RoIs. However, in some configurations with one or
two RoIs, “ACDList” outperforms “ACVList” by a few bits.
Nonetheless, the “ACDList” encoding is clearly the encoding
of choice, when the number of RoIs is not known in advance
and potentially large.

4.2 JPEG picture capacity assessment
As some of the signalling approaches described in Sec-

tion 3 have an unknown embedding capacity, we evaluate
the latter for our test data sets. The approaches considered
herein are the reuse of unused DHT entries, steganographic
approaches and DQT bit stealing as described in Section 3.
To evaluate the embedding capacity when reusing unused
DHT entries, we count the latter in the outdoors data sets’
JPEG files, whose JPEG quality varies between approxi-
mately 95 and 100%. Those pictures which have a quality
of approximately 100% do not have unused DHT entries at
all. Conversely, the pictures which have a quality of approxi-
mately 95% allow using 214 entries on average with one byte
of capacity each, i.e., 1712 bits in total. The minimum and
maximum number of unused entries is 191 (corresponding
to 1518 bits) and 343 (2744 bits), respectively, which, in our
opinion, is surprisingly high.
As the outdoors data sets’ approximate JPEG quality is
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Figure 3: Additional number of bits required for
the “ACVList” encoding to encode a number of ran-
domly generated, artificial RoIs for different spatial
picture dimensions compared to the “ACDList” en-
coding

within a very limited range, an evaluation spanning a wider
range of JPEG quality values is necessary. As the indoors
data sets are already compressed using a different compres-
sor, applying JPEG compression would also recompress the
existing artifacts, yielding results which are not representa-
tive. Thus, we use images from the LIVE data base [21]
and compress them with the standard JPEG encoder with
quality values ranging from 0 to 100% in 5% steps.
The results are depicted in Figure 4 and show that low JPEG
quality values allow for a higher embedding capacity than
high quality values. This is due to the standard JPEG en-
coder using a fixed DHT, making unused entries more likely
for lower quality due to the stronger quantization and there-
fore longer runs with lower absolute coefficient values. Note
that the embedding capacity for a quality value of 95% is
approximately 1800 bits on average with a minimum value
of about 1600 bits, which matches the outdoors data sets’
capacity within a small bound.
To evaluate the embedding capacity of steganographic ap-
proaches, we use the approximation described in Section 3
estimating the embedding capacity as 0.02 bits per non-zero
AC coefficient. Similar to the embedding method explained
above, we count the non-zero AC coefficients in all JPEG
images of the outdoors data sets. After omitting one im-
age which is all black, we find an average number of about
195117 non-zero AC coefficients per file with a minimum
and maximum of 49440 and 246679, respectively. This cor-
responds to an embedding capacity of about 3902 bits on
average with a minimum of 988 bits.
Again, we also count the number of non-zero AC coefficients
of the images from the LIVE data base with different JPEG
quality values to cover a wider range of the latter. As can be
seen in Figure 5, the number of non-zero AC coefficients and
therefore the embedding capacity increases quasi linearly for
increasing low JPEG quality values and exponentially with
increasing high JPEG quality value (note the logarithmic Y
scale). For a JPEG quality value of 95%, the embedding
capacity is approximately 3000 bits on average with a min-
imum of about 2000 bits, which differs from the outdoors
data sets’ capacity, but is within the same order of magni-
tude.
Finally, we evaluate the DQT bit stealing approach. In or-
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Figure 4: Average embedding capacity of the un-
used DHT entry reuse approach for different JPEG
quality values for the pictures of the LIVE data base
[21]. The bars indicate the minimum and maximum
capacity for each quality value, respectively

der to simulate a worst case bit-stealing scenario, we flip n
bits of each 8-bit DQT entry from indices i1 to i2 in zig-
zag order, i.e., in bit stream order of both, luminance and
chrominance DQT.
To find suitable values for n, i1 and i2, we take a picture
data set, decode each picture and then compare it with a
decoded version with flipped QT Table entries for all possi-
ble values of n, i1 and i2. In order to assess the difference
between the original and the modified picture, we measure
the PSNR value between the two.
As the number of possible combinations of n, i1 and i2 is
large, we evaluated them exhaustively on a smaller test set –
the LIVE data base [21]. Using the JPEG reference encoder,
we created Baseline JPEG images with default settings and
50, 75, 95 and 100% quality from the original, i.e., uncom-
pressed, images.
Figure 6 shows the embedding capacity (in terms of total
stolen bits, Y axis) over all images of a given JPEG qual-
ity so that the distortion of no image exceeds the depicted
PSNR value (X axis). Note that the JPEG quality influ-
ences the embedding capacity significantly, as does the de-
sired maximum distortion.
Surprisingly, the total capacity is very high, considering that
changes of the DQT potentially influence all blocks of a pic-
ture. Depending on the desired target distortion, it is pos-
sible to embed several hundred bits.
Note that 100% quality does not allow embedding one bit
so that no picture exceeds a distortion of 50dB. The same is
true for all JPEG quality values when no distortion (∞ dB)
is desired. Thus, this approach cannot be used for lossless
embedding.
Attempting to verify these results for the outdoors data sets,
we split the data sets into pictures with approximately 95%
and 100% JPEG quality, respectively, using the obtained
settings for a target quality of 35dB. Surprisingly, every pic-
ture in both sets exceeds a quality of 50dB compared to its
unmodified version, indicating that the embedding capacity
for a given target quality is highly dependent on the pic-
tures themselves. Due to the lack of freely available and
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Figure 5: Average embedding capacity of stegano-
graphic approaches for different JPEG quality val-
ues for the pictures of the LIVE data base [21]. The
bars indicate the minimum and maximum capacity
for each quality value, respectively

practically relevant data sets, a thorough examination of
this method with more pictures of different characteristics
remains future work.

4.3 Combined encoding and signalling
Combining the results of the previous Sections, we subse-

quently evaluate the feasibility of the combined use of the
proposed encoding and signalling methods in order to simu-
late the actual storage of RoI coordinates in the correspond-
ing JPEG files. Due to the lack of freely available JPEG-
encoded data sets with RoI ground truth, only the outdoors
data sets can be assessed in this Section. Although this al-
lows no general conclusions regarding the usefulness of the
proposed approaches, it is possible to determine possible
combinations of signalling and encoding methods suitable
for the outdoors data sets, which cover a significant portion
of practically relevant pictures and RoI counts for surveil-
lance and encryption applications.
As the average number of bits for encoding RoI coordinates
in the outdoors data sets is smallest when using our proposed
“ACDList” approach (see Section 4.1), we consider the lat-
ter to be appropriate for encoding all RoIs. This choice is
further supported by the fact that our “ACDList” approach
is one of the few approaches which allows signalling the ab-
sence of RoIs by just two bits. Note that for data sets where
zero or one RoI(s) are dominant, our “ACVList” approach
allows using fewer bits.
Subsequently, we determine which of the signalling approa-
ches described in Section 3 are able to provide enough em-
bedding capacity to store the “ACDList”-encoded RoI coor-
dinates for the outdoors data sets. Trivially, all approaches
which offer infinite capacity can be used to signal the RoIs
which require a maximum number of 219 bits with our pro-
posed“ACDList”encoding. As format-compliant approaches
are in general preferred over non-format-compliant ones, we
suggest using COM segments as their overhead is smallest as
compared to all other methods which offer infinite capacity
(see Section 3).
The reuse of unused DHT entries allows for a largely suf-
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Figure 6: Embedding capacity of the DQT bit steal-
ing approach for different JPEG quality values and
maximum target distortions for the pictures of the
LIVE data base [21]

ficient minimum capacity of 1518 bits in all pictures with
approximately 95% JPEG quality, allowing for lossless and
length-preserving RoI signalling. To our knowledge, this
is the first time that such an approach has been proposed.
However, the pictures with approximately 100% JPEG qual-
ity do not allow storing a single bit using this method, mak-
ing it unusable in this scenario. Consequently, we suggest
using this method instead of others whenever possible as its
capacity is sufficient to store large numbers of RoIs without
quality loss and change of file size.
If quality loss is acceptable, classical steganographic meth-
ods allow for a high capacity when using a generalized es-
timation of the embedding capacity. It is notable that the
minimum estimated capacity of these approaches is lower
(988 bits) than the minimum capacity provided by the reuse
of unused DHT entries, if the latter is available (1518 bits).
However, steganographic approaches can be used on prac-
tically any picture, making it the method of choice when
quality loss is acceptable. Note that the actual capacity
highly depends on the method used as well as on the desired
distortion, which is outside of the scope of this paper. We
refer to the available literature [5] for further details.
Finally, our proposed approach which steals bits from the
DQT also allows signalling RoIs, although its capacity is
limited and highly dependent on the desired quality in terms
of PSNR as well as on the pictures’ characteristics. As de-
scribed in Section 4.2, further evaluations are required in or-
der to determine the usefulness of this method. In general,
it can be noted that its capacity is surprisingly high in all
tested cases, but limited for large numbers of RoIs as well as
for pictures with large spatial dimensions. As changing the
DQTs typically influences all blocks of a picture, as opposed
to most steganographic approaches, which operate on single
blocks, steganographic approaches are recommended at this
point, with our approach being an option to be considered
as soon as it has been evaluated more thoroughly.

5. CONCLUSION
We proposed and evaluated several methods to encode and

signal RoIs in JPEG images. Using a number of data sets,



we determined that our proposed arithmetically coded dif-
ferential lists of iMCU indices are superior to all other eval-
uated RoI coordinate encoding methods for a large range of
RoI counts, outperforming JBIG in this special use case.
Furthermore, we showed that using JPEG comment seg-
ments to store the encoded RoI coordinates causes the lowest
overhead, if the file size is allowed to change. For scenar-
ios which require length-preservation, we proposed a new
method which reuses unused Huffman table entries. Al-
though it is not always available, it allows for lossless and
length-preserving signalling, if it is available. Finally, we
showed that using quantization table bits allows for RoI sig-
nalling as well, although further tests are required in order
to determine the general restrictions of this method.
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