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ABSTRACT
This paper describes an experimental study of a novel com-
puting system (algorithm plus platform) that carries out
quantum annealing, a type of adiabatic quantum computa-
tion, to solve optimization problems. We compare this sys-
tem to three conventional software solvers, using instances
from three NP-hard problem domains. We also describe
experiments to learn how performance of the quantum an-
nealing algorithm depends on input.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; F.2 [Theory of Computation]: Analysis of Al-
gorithms and Problem Complexity

General Terms
Algorithms, Experimentation, Performance

Keywords
Adiabatic Quantum Computing, Quantum Annealing, D-
Wave, Heuristics

1. INTRODUCTION
Adiabatic quantum computation (AQC),1 proposed in 2000

by Farhi et al. [17], represents a new model of computation
as well as a new paradigm in algorithm design. The com-
putational model is polynomially equivalent to the better-
known quantum gate model [1], [18], [33]. Theoretical anal-
ysis of specific AQC algorithms has returned mixed results
to date, with indications of exponential speedups and some-
times slowdowns over conventional algorithms.

This paper presents an experimental study of algorithms
based on quantum annealing (a type of AQC computation),

1The term “adiabatic” in this context refers to a quan-
tum process where no population exchange between allowed
states of the system occurs.
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running on a special-purpose D-Wave Two platform2 con-
taining 439 quantum bits (qubits). Earlier systems with
between 84 and 108 qubits have been used for finding Ram-
sey numbers [4], binary classification in image matching [28],
and 3D protein folding [29].

The “native” problem for this system is a restriction – to
Chimera-structured inputs defined in Section 2 – of the Ising
Spin Model (IM). Native instances can be solved directly
on the quantum hardware (QA), while general inputs are
solved by a hybrid approach (called Blackbox) that alter-
nates heuristic search with hardware queries.

We report on two experimental projects. First, QA and
Blackbox are compared to three conventional software solvers:
CPLEX [23], METSlib tabu search (TABU) [27], and a
branch-and-bound solver called Akmaxsat (AK) [26] . The
solvers are evaluated using instances from three NP-Hard
problems: Quadratic Unconstrained Binary Optimization
(QUBO); Weighed Maximum 2-Satisfiability (W2SAT), and
the Quadratic Assignment Problem (QAP).

In horserace terms, QA dominates on the Chimera-structure
QUBO problems: at the largest problem size n = 439,
CPLEX (best among the software solvers), returns compa-
rable results running about 3600 times slower than the hard-
ware. On the W2SAT problems, Blackbox, AK, and TABU
all find optimal solutions within the same time frame. On
the QAP problems, Blackbox finds best solutions in 28 of 33
cases, compared to 9 cases for TABU (the next-best solver
on these inputs).

Note that these results can be regarded as “snapshots” of
performance for specific implementations on specific input
sets, nothing more. Experimental studies of heuristics are
notoriously difficult to generalize. Furthermore – unlike ex-
periments in the natural sciences – no experimental assess-
ment of heuristic performance can be considered final, since
performance is a moving target that improves over time as
new ideas are incorporated into algorithms and code. Future
research will likely turn up better solvers and strategies.

As a case in point, our second project compares the V5
hardware chip used in our first study to a V6 chip that
became operational after the study was completed. V6 is
three to five times faster than V5, and can solve problems
as large as n = 502.

2Manufactured by D-Wave Systems Inc., BC, Canada. We
thank D-Wave staff for their generous assistance in set-
ting up experiments, collecting data, and helping us to un-
derstand AQC and quantum annealing: Zhengbing Bian,
Fabian Chudak, Suzanne Gildert, Mani Ranjbar, Geordie
Rose, Murray Thom, and Dominic Walliman.



Section 2 presents a basic framework for understanding
adiabatic quantum computation, surveys its theoretical un-
derpinnings, and describes how theory relates to practice.
Sections 3 and 4 present experimental results. Section 5
offers some remarks about this novel approach to solving
problems in combinatorial optimization.

2. BACKGROUND
We start with a brief overview of adiabatic quantum com-

puting. For more information see [9], [24], or [30].

2.1 Adiabatic Quantum Computing
A Hamiltonian system is a mathematical formalism to de-

scribe a physical process that evolves continuously over time
t : 0 → T . The process involves n binary-valued particles
that can interact to influence one another’s state. The pos-
sible energies of the system at time t are described by a
Hamiltonian H(t), a matrix of size 2n × 2n. The eigen-
vectors of H(t) correspond to the eigenstates (measurable
states) of the system, and the eigenvalues to the energies of
those eigenstates. The ground state φ(t) is the eigenstate
with the lowest energy at time t.

Now, suppose P is a minimization problem on binary
strings with objective function f : {0, 1}n → R. In AQC
the problem variables X = {x1, . . . , xn} correspond to the
states of the particles in the process, which evolve to a low-
energy state that corresponds to a low-cost solution to P .

Under a classical mechanical model of the system, each
particle is represented by a bit having state 0 or 1. Under a
quantum model, particles are represented by qubits, which
can exist in superposition. That is, the state of a qubit is
represented by a unit vector xi = (α, β) in C, which implies
that |α|2 + |β|2 = 1. A quantum state cannot be exam-
ined: when a qubit is measured its state “collapses” to 0
with probability |α|2 and 1 with probability |β|2.

For convenience let s = t/T , so 0 ≤ s ≤ 1. An adiabatic
quantum algorithm for solving problem P with objective
function f is specified by three components:

1. An initial Hamiltonian H(0), chosen so that the initial
(quantum) ground state φ(0) is easy to construct.

2. A final Hamiltonian H(1), that encodes the objective
function f , in such a way that ground state φ(1) cor-
responds to an optimal solution to P .

3. An adiabatic evolution path, a pair of functions A(s)
decreasing from 1 to 0, and B(s) increasing from 0 to
1, that control the transition from H(0) to H(1):

H(s) = A(s)H(0) +B(s)H(1).

By the adiabatic theorem [7] (or see [17]), if the transition
is carried out slowly enough, a system that is initially in a
ground state will stay in a ground state. Thus φ(0) evolves to
a ground state φ(1) that minimizes f , and when measured,
yields an optimal solution X to P .

The adiabatic theorem also states that the amount of time
necessary for the ground state to be preserved during tran-
sition is bounded below by a function h(n)/g2 where h(n)
is polynomial in n (whenever f is) and g is the minimum
spectral gap of the system, i.e. the minimum difference be-
tween the lowest (ground) eigenvalue and the second-lowest
eigenvalue of H(s) at any time in the process. Therefore,

the algorithm finds an optimal solution to P in polynomial
time exactly when g is an inverse polynomial in problem size
n.

As a general rule, g is difficult to bound analytically for a
given problem or even to compute for a given instance. The
next section surveys what is known about spectral gaps and
AQC.

2.2 Theoretical Underpinnings
Algorithms. Farhi et al. [17] introduce the notion of

adiabatic quantum computation and construct an AQ algo-
rithm (referred to here as AQF ) to solve several combina-
torial problems including 3SAT. In [18], Farhi et al. present
numerical simulations suggesting that g is (inverse) polyno-
mial in n for small (but arguably difficult) random instances
of Exact 3-Cover. Farhi, Goldstone and Gutmann [16] also
give two example problems where AQF takes polynomial
time while conventional simulated annealing has an expo-
nential lower bound.
AQF has since been shown to take exponential time on

some problems. For example, van Dam and Vazirani [34]
construct a family of 3SAT instances for which the gap g is
exponentially small. They also describe a problem that is
linear on a conventional model of computation but exponen-
tial for AQF . Altshuler, Krovi, and Roland [2] describe a
random model of Exact 3-Cover for which g is exponentially
small with high probability.

On the other hand, Farhi et al [17], [19], have observed
that g can sometimes be improved dramatically by simple
adjustments to the algorithm. Choi [14] demonstrates that
the initial Hamiltonian of AQF can be modified so that the
argument of [2] no longer applies to g. She also presents
numerical evidence that small g values can sometimes be in-
creased by re-scaling problem weights. Dickson and Amin
[15] show analytically that in the case of Maximum Indepen-
dent Set, there must always exist an adiabatic path for which
the exponentially small gaps of [2] do not occur. Somma and
Boixo [31] show that sometimes the final Hamiltonian can
be transformed in a way that preserves the ground state but
(quadratically) amplifies g.

Thus, whether g is (inverse) polynomial in n can depend
on algorithm parameters as well as on instance structure
and instance weights. Many fundamental questions about
the computational power of AQ algorithms remain open.

Models of computation. Aharanov et al. [1] show that
a universal AQC model can efficiently simulate the conven-
tional quantum gate model. Together with [18] and [33],
this implies that the two quantum models are polynomially
equivalent. They also demonstrate a quadratic speedup over
any classical algorithm for the search problem, a result anal-
ogous to Grover’s algorithm [21] for the standard quantum
gate model.

Biamonte and Love [5] consider ways to simplify the model
of [1], with an eye toward implementability. They show that
one simple model — the one that has been realized by D-
Wave systems and by others — is QMA-complete but un-
likely to be universal for AQC (the class Quantum-Merlin-
Authur is the quantum analog of NP).

As is the case with any computing device, there is a gap
between the perfect theoretical ideal and the physical reality.
Some differences between abstract models and working D-
Wave platforms are sketched in the next section.



2.3 Quantum Computing in Practice
The Ising Spin Model (IM) problem is, given real weights

Jij and hi, to find an assignment of spins (−1, +1) to vari-
ables S = {s1 . . . sn} to minimize

M(S) =
∑
i<j

Jijsisj +
∑
i

hisi. (1)

Note that terms with negative Jij are minimized if si = sj ,
terms with positive Jij are minimized if si 6= sj , and the
sign of hi has a similar effect on si.

A D-Wave platform comprises a conventional Linux front
end coupled with an analog unit (“the hardware”). A D-
Wave Two hardware chip contains up to 512 flux qubits,
which are microscopic loops of metal (niobium) that are ca-
pable of quantum behavior at low temperatures. That is,
electrical currents in the loops can flow in clockwise (+1)
or counter-clockwise (−1) direction, or both, when in quan-
tum superposition [20]. Qubits are connected to neighbors
according to a graph structure described below. The hard-
ware is controlled by a framework of Josephson junctions
that allow individual qubit values to be stored and read,
and to influence the states of neighboring qubits.

The front end accepts IM instances and maps them onto
the hardware graph so that weights hi are assigned to ver-
tices (qubits) and Jij to edges in the hardware graph. The
hardware carries out a process of quantum annealing to find
a minimum-energy state S, as follows.

1. To initialize, qubits are placed in superposition ground
states si = (α, β) such that α, β =

√
.5 (each binary

state equally likely).

2. The annealing path from initial to final state involves
increasing the “influence” of the weights hi and Jij on
quibit states.

3. At the end of the annealing process, qubits and qubit
pairs are weighted according to hi and Jij . If the sys-
tem remains in ground state, the collection S of mea-
sured qubit states minimizes M(S).

In theory, if the transition is carried out slowly enough, S
is an optimal solution toM , for anyM . However, theoretical
guarantees are based on several assumptions that are not
necessarily met by the physical system, as follows.

First, AQC theory assumes there is no influence from the
environment, whereas the physical system can be affected
by its environment. In particular, if (1) the ambient tem-
perature (energy) is higher than the spectral gap g, or (2)
there a sufficient level of electromagnetic noise from an out-
side source, then with nonzero probability the qubits will
“jump” from ground state to a nearby state during the an-
nealling process. For this reason the algorithm tested here
is called a quantum annealing algorithm rather than an adi-
abatic quantum algorithm. There is no guarantee that the
final solution will be close to optimal (although in practice
it often is).

To increase the probability of a successful transition, the
hardware chip is cooled to approximately 0.02◦ Kelvin and
operated inside a well-shielded cabinet. Furthermore the
system is configured to run multiple anneals, returning a
vector χ = (S1 . . . Sk) of k independently sampled solutions
for each input. Typically k = 1000 in our experiments.

Second, qubit-to-qubit interactions are restricted to neigh-
bors in a Chimera graph structure Cg containing 512 = 8 ·g2
qubits as shown below. Groups of eight qubits are connected
as bipartite graphs; in each group, the 4 left nodes are also
connected to their respective north/south grid neighbors and
the 4 right nodes are connected to their east/west neighbors.
Thus internal nodes have degree 6 and boundary nodes have
degree 5.

&%
'$

��*

qqq
q
��
�
�
�
��

@
��
�
A
A
@
�B
B
BB

A
A
@qqq
q

sssss
sss
sssss
sss

sssss
sss

sssss
sss
sssss
sss

sssss
sss

sssss
sss
sssss
sss

C8, n = 512

A D-Wave Two chip is designed to hold 512 qubits ar-
ranged as a C8 Chimera graph, but the manufacturing pro-
cess leaves some qubits inoperable. Thus computation takes
place on a hardware graph H that is a subgraph of C8. IM
instances that cannot be mapped to H cannot be solved
directly in hardware.

In some applications this is not a problem: the coeffi-
cients Jij and hi are obtained by sampling (an image, for
example), and it is not difficult to choose sample sites ((i, j)
pairs) beforehand to match H. Furthermore, the mapping
requires only that instances be embedded into a minor of
H. Choi [13] shows that the complete graph Km can be
minor-embedded into the upper triangle of a Chimera graph
Cm. Finding good algorithms and heuristics for computing
minor-embeddings of H is an interesting problem for future
research. If an embedding is not known the problem can be
solved by Blackbox, described in the next section.

Finally there has been some debate as to whether D-Wave
chips form a “truly’ quantum system; this has been demon-
strated for smaller (8 and 16 qubit) systems [22], [25] but
not, as yet, for the full hardware graph. Boixo et al. [6]
report that the hardware demonstrates quantum tunneling
(which would be inconsistent with classical annealing), and
find some evidence of qubit entanglement. A recent review
article in Science [12] concludes that the hardware is “at
least a little quantum mechanical.” Either way, it remains
an interesting question to learn how well this novel system
competes against conventional approaches to NP-hard opti-
mization problems

2.4 Blackbox
Let G denote the connectivity graph of a given IM input

M . This graph has n vertices corresponding to variables
si, and edges (si, sj) present whenever Jij 6= 0. As men-
tioned above, M can be solved by minor-embedding G into
the hardware graph H and then carrying out the quantum
annealing process.

Or, if such an embedding is not known, the problem can
be submitted to Blackbox, a hybrid solver developed by D-
Wave Systems. Blackbox accepts a general problem instance
P having objective function f(X) defined on n binary vari-
ables X = x1, . . . , xn (where n is bounded by the number of
qubits in hardware). It carries out a heuristic search (specf-
ically Tabu search) process, starting with an initial random
solution and iterating to step from neighbor to neighbor in
the solution space, towards a solution that minimizes f(X).

Blackbox’s selection of the neighborhood set at each it-
eration is guided by a query to the quantum hardware, as
follows. Given a current solution Xi, Blackbox generates a
neighborhood Ni of solutions that have Hamming distance



1 from Xi, and computes their costs using f . It then builds
an Ising Spin Model M that approximates f at these neigh-
bor points, and matches the structure of H. M is sent to
the hardware, which returns a sample N ′i = (X ′1, . . . X

′
k) of

k solutions. Blackbox then selects a minimum-cost solution
from {N ′i ∪ Ni} that is not on its Tabu list (which records
recent solutions and steps in the process), updates the list,
and moves to that solution for the next iteration. Thus each
iteration requires one hardware query, plus n objective func-
tion evaluations for Ni, plus some number k′ ≤ k of function
evaluations for the unique solutions in N ′i . When Blackbox
reaches a preset limit on total objective function evaluations,
it stops and reports the best solution found.

3. PERFORMANCE EVALUATION
Our first experimental study uses instances from three

NP-Hard optimization problems: Quadratic Unconstrained
Binary Optimization (QUBO); Weighted Maximum 2-Satis-
fiability (W2SAT); and the Quadratic Assignment Problem
(QAP). Our QUBO tests used Chimera-structured inputs
that, when formulated as IMs, can be solved directly in hard-
ware. (QUBO instances can be trivially transformed to IM
instances). The other two problems have general structure
and are solved by Blackbox.

The software solvers evaluated here are: IBM ILOG CPLEX
Optimizer version 12.3 [23]; METSlib Tabu (TABU) an open-
source implementation of Tabu search [27]; and Akmaxsat
(AK) [26], a branch-and-bound solver designed for W2SAT.

CPLEX and AK are exact solvers that can certify the
optimality of their solutions if given enough time and space.
QA, TABU, and Blackbox are heuristics that return the best
solutions they can find but provide no certification.

For convenience and uniformity, instances for all three op-
timization problems were transformed to QUBO instances
for solution in software, and to IM instances for solution in
hardware. The software solvers were invoked by a common
Matlab front end that carried out the following tasks: read
a QUBO instance, translate it to respective solver input for-
mats, invoke each solver, and record results.

Our experimental work began with a pilot study aimed
at finding good parameter settings for the software solvers
(primarily on QUBO instances) and evaluating options for
timing this diverse collection of platforms and software. The
pilot study took about 20 CPU-days of computation. Here
are some details.

CPLEX: Since QUBO has a quadratic objective func-
tion, the quadratic programming (QP) module was invoked
throughout. We found no improvements from using the
instance-specific internal tuner or changing default parame-
ters; therefore default settings were used in the main exper-
iments. The Parallel Mode switch was turned off, causing
CPLEX to run in single core mode. (Use of Parallel Mode
produced speedups around 10 percent on our 4-core platform
but also created timing anomalies.)

TABU: Parameters were set as follows: the initial solu-
tion is selected uniformly at random; the Tabu list (hold-
ing recently-touched variables) is of size min(20, n/4); the
number of unsuccessful iterations before random restart is
3500; and at each restart the new starting solution was ob-
tained by randomly flipping max(10, 0.4n) bits of the best
solution found so far. We also looked at an in-house (pro-
prietary to D-Wave) version of tabu search that is highly
tuned for QUBO instances. The in-house version was faster

than METSlib TABU but neither could compete with QA
on large QUBO instances.

AK: We considered two branch-and-bound programs called
akmaxsat and akmaxsat-ls, that performed well in a re-
cent Max-SAT competition [3]. Akmaxsat-ls incorporates a
preprocessing step carried out by a third-party standalone
program. Although akmaxsat-ls performed better in the
competition, our pilot comparisons returned mixed results
on our data sets. Since the introduction of standalone pre-
processing code significantly complexified our runtime mea-
surements, we chose the simpler akmaxsat for the main ex-
periments. We do not believe that using akmaxsat-ls would
have altered our overall conclusions.

Based on our tests we are confident that the solvers rep-
resent reasonably well-tuned implementations. However, we
make no claim that the solvers tested here represent the
most efficient heuristics (or implementations) possible for
the problems we tested. As mentioned in Section 1, such
claims are rarely appropriate in research on heuristic per-
formance. One reason is that improving any given solver
or strategy is an unending process: better ideas are al-
ways around the corner. Furthermore, most heuristics can
be “tuned” for specific problem domains or instance classes.
Highly-tuned heuristics tend to do very well on their target
problems (best best case), but their performance may de-
grade significantly when applied to problems outside their
comfort zone (worst worst case). In contrast a general solver
might be never best but never worst on any given problem
domain.

With this in mind CPLEX, TABU and Blackbox may be
considered general-purpose solvers. AK is designed for best
performance on W2SAT problems, and the QA hardware is
specialized to Chimera-structured IM (or QUBO) instances.

3.1 Timing issues
All software solver tests were carried out on a suite of

seven Lenovo ThinkStation S30 0568 workstations, each con-
taining one Intel Xeon E5-2609/2.4GHz Quad-Core proces-
sor with 16GB RAM. The operating system was Ubuntu
64-bit 12.04 LTS.

Blackbox runs on a Lenovo d20 workstation containing
two Intel Xeon X5550@1.6GHz Quad-Core processors with
16GB RAM. The operating system is Fedora 15. The num-
ber of hardware samples per main loop iteration was set
to k = 1000 and the stopping rule was set to 107 function
evaluations.

The QA algorithm was run on a hardware chip named
Vesuvius 5 (V5) that contains 439 working qubits.

It is a challenging problem to find precise, accurate, and
commensurable runtime measurements for these diverse so-
lution strategies. We adopted the following conventions.

All software runtimes are Unix CPU times in units of sec-
onds. The Matlab front end started timing immediately
before solver invocation and stopped immediately upon re-
turn: thus the tasks carried out by the front end (including
all I/O) are not included in our time measurements. All soft-
ware tests were run on empty systems (with no competing
user processes), measuring one solver on one instance, run-
ning on one core at a time. The Intel hyperthreading option
(which is known to produce timing anomalies) was turned
off. In addition to total CPU times, most tests produced
“history” trace data, by which each solver recorded time and
solution cost whenever a better solution was found.



For a given instance let Sx be the cost of the best solution
found by solver x. CPLEX and AK were set to run to pre-
set timeout limits (usually 30 minutes) but stop early if they
can certify optimality. We distinguish between find time,
the first time Sx is found by the solver, and certify or finish
time, the total time needed to find and certify a solution.
TABU always runs to a pre-set time limit, so finish times
are constant and independent of n; the above-mentioned
history data is used to obtain find times.

Our Blackbox tests ran as batch requests to a server that
carries out individual trials concurrently on an eight-core
platform. Because of demands on this resource it was not
feasible to replicate our single-core software test environ-
ment (which would have increased Blackbox times from days
to weeks). Although concurrency shrinks total batch times,
it inflates the reported elapsed (wall clock) times per in-
stance by introducing scheduler overhead and cache con-
tention; more importantly, the concurrent processes must
contend for access to the hardware chip. Therefore, we can-
not with any confidence make direct and precise time com-
parisons between Blackbox and the software solvers. In what
follows we take a conservative approach and describe only
rough bounds on Blackbox computation times.

New questions arise when it comes to definingcomputa-
tion times for the V5 chip. Here we report exclusive access
time, the total time used by the hardware to process a single
instance while other instances wait. Exclusive access time is
divided into overhead time t1 for initializing the hardware,
and sampling time t2, which is the time to anneal and re-
turn one sample solution. Thus the total time per input
is T = t1 + kt2, where k is the number of samples. Both
t1 and t2 can be changed by adjusting the annealing path;
however in normal practice they are set to default values
when the chip becomes operational. For a fixed path, t1
and t2 increase very slightly with the number of qubits that
must be stored and read. Throughout this section we re-
port maximum times necessary to process the full hardware
graph. These correspond to preset finish times that are in-
dependent of n; in Section 4 we describe a procedure for
estimating hardware find times.

3.2 Chimera-structured QUBO Instances
Our first experiment compares performance on instances

for Quadratic Unconstrained Binary Optimization: given a
matrix Q of weights Qij , find an assignment of binary values
(0,1) to variables X = {x1 . . . xn} to minimize

Q(X) =
∑
i,j

Qijxixj . (2)

This problem has wide application in machine learning
and computer vision: Boros et al. [8] and Tavares [32]
present a long list of applications that have been formu-
lated as QUBO problems. Tavares also shows reductions
from several classic NP-Hard problems to QUBO. QUBO
instances can be transformed to and from IM instances by
simple arithmetic.

This test uses QUBO instances with connectivity graphs
G ⊂ H, which (after transformation to IM) can be solved
directly in hardware. The experiment takes 100 random in-
stances each at problem sizes n = 32, 119, 184, 261, 349, 439
(corresponding to subgrids of the hardware graph). Weights
are drawn uniformly from the set {−1,+1}.
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Figure 1: Success rates: proportion of best solutions
found in 491ms CPU time (tabu, amax, cplex soft-
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Solutions in half a second.
The V5 hardware chip has setup time t1 = 201ms and

sampling time t2 = 0.29ms, and returns k = 1000 samples
per instance. This works out to T = 491ms exclusive access
time per input, just under half a second.

Figure 1 compares performance when all four solvers are
restricted to 491ms computation time. For each input let Sx

be the cost of the best solution found by solver x and let B
be the cost of the best solution found among the four solvers.
The figure shows the success rate equal to the proportion of
instances for which Sx = B. At n = 32 all but TABU enjoy
a 100 percent success rate, while at n = 184 the software
success rates drop to below 3 percent. QA was 100 percent
successful at all problem sizes. By letting CPLEX run to 30
minutes we can certify that 585 of the 600 solutions found
by QA (97 percent) are not only best, but optimal.

Figure 2 shows how solution cost Sx varies with n. The
dotted lines connect mean differences Dx = (Sx −B) for
solver; the vertical lines mark the range of differences ob-
served in 100 trials. The numbers near the bottom of the
chart are means B for each n. For example, at n = 439
TABU produced solutions that were 805 units from B, which
was -815.2 on average. Random solutions have mean 0,
which suggests that TABU makes very little improvement
on its initial random solution in this short time frame.

Time vs solution quality.
Next we focus on the largest problem size n = 439 and use

the history data to see how performance varies with compu-
tation time. The table below shows success rates when the
software solvers are allowed longer runtimes. The second
column shows each time as a multiple of QA time.

t t/491ms AK CPLEX TABU
1 sec 2.0 0 0 0
30 sec 61.1 0 56 0
1 min 122.2 0 72 0
10 min 1222.0 0 99 0
30 min 3666.0 0 100 0

Clearly CPLEX makes the most use of the extra time: with
a 10 minute limit it finds 99 percent of best solutions, and in
30 minutes it is able to find (and certify) optimal solutions
for all 100 instances. The other two fail to find any optimal
solutions within 30 minutes.

The table below shows mean differences Dx for solutions
found within in these time limits. All solvers improve, but
again CPLEX improves the most (ε signifies a positive Dcp

value that rounds to 0).

t t/491ms Dak Dcp Dtb

1 sec 2.0 72.5 224.7 759.5
30 sec 61.1 52.8 1.7 92.6
1 min 122.2 50.5 ε > 0 57.4
10 min 1222.0 40.6 ε > 0 48.4
30 min 3666.0 36.0 0.0 37.2

Further analysis in Section 4 shows that QA rarely needs
all k = 1000 samples to find its best solution. For exam-
ple if the best solution is returned 200 times, then only
5 = 1000/200 samples are needed on average. At n = 439
the estimated median and mean find times for this prob-
lem work out to 202ms and 224ms. Thus we estimate QA
could achieve the same success rates with (find) times below
a quarter-second.

The QA hardware solver clearly out-performs the software
solvers on instances that match its native structure. QA
finds best solutions (97 percent of them optimal) in less than
half a second, and results from Section 4 suggest that a
quarter-second would suffice.

At n = 439, CPLEX, the best among software solvers,
can match QA’s success rate running 3666 times slower than
QA’s finish time, or about 7332 times slower than QA’s es-
timated find time.

3.3 Weighted Max 2SAT
In the W2SAT problem, we are given a boolean formula

in conjunctive normal form, on n variables, with 2 variables
per clause, and weights W = w1 . . . wm on the clauses. The
problem is to find an assignment of boolean values to the
variables to maximize the total weight of satisfied clauses.
(W2SAT can be transformed to QUBO by negating literals
and replacing ∨,∧ with multiplication and addition.)

This test uses 120 instances from the 2012 Max-SAT Eval-
uation competition [3]. The AK code used here outper-
formed all other complete solvers in that competition. These
are random 2SAT formulas containing n ∈ (100, 120, 140)
variables with between 1200 and 1600 clauses. The com-
petition instances have random integer weights from [1,10];
our tests assign random weights from the set

[−15/2,−13/2, . . .− 1/2, 1/2, . . . 13/2, 15/2],

so that each weight is represented with 4 bits of precision.
Since the problem connectivity graphs have degree at least
8.5 (more than Chimera graphs), Blackbox is used to solve
these problems.

Software solvers were set to timeout after 30 minutes, and
Blackbox to timeout after 107 objective function evaluations.
CPLEX and TABU took around 3 days (elapsed on 7 cores)
and AK and Blackbox took a few hours to complete all tests.

In terms of success rates, Blackbox, AK, and TABU were
able to find optimal solutions (certified by AK) for all prob-
lems. CPLEX was less successful within 30 minute timeouts,
as summarized in the table below.

n = 100 120 140
CPLEX find 30 31 33
CPLEX certify 10 13 11
max Dcp 7.5 6.5 5.5

For example at n = 100, CPLEX was able to find 30 optimal
solutions (of 40 instances) and to certify optimality in 10
cases. In all tests the CPLEX solution was never observed
to be more than 7.5 units from optimal.

Figure 3 summarizes find times for TABU (left/red), AK
(center/blue) and CPLEX (right/green) at each problem
size. The bar in the middle of each box marks the median
time, box endpoints mark the first and third quartiles, and
the circles mark outliers beyond 1.5 times the inter-quartile
range. The outliers at the high end and the symmetry of
the boxes on this logarithmic y-scale indicate a significant
amount of skew in the data.

The dotted line at top marks the 1800-second timeout,
which CPLEX hit in 26 of 120 instances. Note that AK
times more than double with each increment of n, corre-
sponding to an exponential growth rate (not unusual in
branch-and-bound algorithms). We can estimate that AK
will hit the 30 minute limit at around n = 200.
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Figure 3: W2SAT software find times, and two es-
timates of median Blackbox find times (horizontal
bars). Note the logarithmic y scale.

For reasons outlined in Section 3.1 it is very difficult to
make reliable runtime comparisons between the software
solvers and Blackbox. The horizontal bars on the right of
Figure 3 show two estimates of median Blackbox time at
n = 140, calculated as follows.

Since both Blackbox and TABU are based on tabu search
we can compare counts of total objective function evalua-
tions and total main loop iterations needed to converge to an
optimal solution. Roughly speaking, Blackbox needs fewer
iterations but performs more objective function evaluations
(plus a hardware query) per iteration.

First, comparing objective function evaluations at n = 140
we have median(Blackbox-fevals / TABU-fevals) = 5.6. By
this measure Blackbox runs roughly 5.6 times slower than
TABU. This estimate is marked by the higher bar in Figure
3. Second, comparing main loop iterations we observe the
median ratio of Blackbox iteration counts to TABU iteration
counts is 5.2. This estimate is marked by the lower bar in
the figure.

In this experiment AK, TABU, and Blackbox were able to
solve all problems to optimality well within their half-hour
time limits. Based on comparisons of their similar struc-
tures, we estimate that median Blackbox find times would
be somewhere between 5 times faster and 5 times slower
than TABU find times if they ran on similar platforms.

3.4 Quadratic Assignment Problem
In the Quadratic Assignment Problem (QAP) we are given

a set of n facilities P and n locations L, a distance function
D(`i, `j) between pairs of locations, and a weight function
W (pi, pj) for pairs of facilities. The problem is to find a 1-to-
1 assignment a(p)→ ` of facilities to locations, to minimize

the cost function

QAP (a) =
∑

p,q∈P

W (p, q) ·D(a(p), a(q)).

Our third experiment uses 33 QAP instances downloaded
from a public repository called QAPLib [10]. The set has
16 different problem sizes in n = 30 . . . 50. The best-known
solutions for these problems are published on the website; in
23 of 33 cases the published solutions are certified optimal.
Details about the instances may be found in Appendix A.

A constrained QAP problem of size n can be transformed
to an unconstrained QUBO problem of size n2 by introduc-
ing a penalty function that enforces 1-to-1 assignments. This
transformation expands problem sizes to ns = 900 . . . 2500,
and allows the possibility that infeasible solutions may be
returned.

Since n = 439 is the largest problem the V5 hardware
chip can handle, our Blackbox tests use a more compact
transformation with an objective function that cannot be
represented asa QUBO problem. Under this transformation
Blackbox problem sizes are in nb = 178 . . . 395. Thus in-
stances presented to Blackbox are roughly 5.5 times smaller
than instances presented to the software solvers. (It is possi-
ble to apply the more compact transformation to TABU and
CPLEX but not AK. Ongoing tests have not been completed
in time for this report.)

As before, we ran software solvers with 30 minute timeouts
and Blackbox to 107 objective function evaluations. Compu-
tation times for this experiment totaled 6 days for Blackbox
and just over 14 CPU-days for the software.

In this test all software solvers ran to full timeouts and
neither AK nor CPLEX was able to certify optimality. The
table below compares solutions found by each. The first
column (NA) shows that AK failed to return any solution
at all about 10 of 33 cases. The second column (Infeasible)
shows that CPLEX timed out while working on infeasible
solutions in 5 cases. The third column shows the number of
times each solver found the best solution among these four:
here Blackbox had the best success rate overall. Of 9 times
when TABU found the best solution, it tied Blackbox in 4
cases and beat Blackbox in 5 cases. The last column shows
the number of times each solver found the best published
solution; in all cases these known to be optimal.

NA Infeasible Best Best Pub
Blackbox 0 0 28 6
AK 10 0 1 1
CPLEX 0 5 2 2
TABU 0 0 9 5

For given instance, let P be the best published solution
cost and let Sx be the best solution cost found by solver
x. Figure 5 shows ratios Rx = Sx/P for each solver on
each instance (ordered by increasing size). The dotted line
marks Rx ≥ 1.5. Cost ratios above the line are printed (not
to scale): the higher row of numbers (blue) shows ratios for
AK, with N marking the 10 non-solutions; the lower row of
numbers (green) shows ratios returned by CP. In all cases
Blackbox found solutions within Rbb = 1.18 ; TABU found
solutions within Rtb = 1.20 in all but two cases.

In this test Blackbox found best solutions in 28 of 33
cases, although TABU found better solutions in 5 cases and
matched Blackbox in 4 cases. Blackbox and Tabu matched
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return a solution.

the best published solutions 6 and 5 times, respectively. So-
lutions were generally within 20 percent of published results,
with Blackbox performing slightly better than TABU.

4. COMPARING V5 AND V6
This section looks at performance profiles of two hard-

ware chips named V5 and V6 that became operational in
September and December 2012, respectively. We use the
same random QUBO instances as described in Section 3.2.

Recall that theoretically, computation time depends on
the spectral gap g, which depends on input properties in-
cluding n as well as on algorithm parameters. It not feasible
to calculate g directly, so in normal use the hardware com-
putation time (exclusive access time) is fixed and (nearly)
constant in n. Instead the time is T = t1 + kt2, where t1
is setup time per instance, t2 is sampling time, and k is the
number of solutions sampled per instance.

Figure 5 shows how sample solutions returned by V5 are
distributed, for 20 instances at n = 439. A number plotted
at position y is a count of how many times solutions with
cost y were observed in the sample. For example in the first
instance V5 found best-cost solutions (−822) seven times
and second-best solutions (−820) 25 times in this sample
of k = 1000. (In this problem formulation solution costs
are even-valued). In many cases the sample distribution is
clustered near its minimum value, with no gaps at the low
end.

Let S be the best solution cost found in a sample of size
k = 1000, and let N be the number of times S appears
in the sample. Figure 6 shows how N varies with problem
size n. The points are jittered by adding random noise to
x-coordinates to make overlaps visible. The line connects
mean values of N for each sample: at n = 32 nearly all of
the samples are best solutions S and at n = 439 about 25
percent of a sample holds S on average.
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Figure 5: Distribution of V5 solution costs, n=439,
20 instances. A number at position y gives the to-
tal number of samples (out of 1000) that returned
solutions with cost y.
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Figure 6: V5: Number of samples N holding the best
answer S, in k = 1000 samples for each of 1000 inputs.
The solid red line shows means and the dotted red
line shows medians at each input size.
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Figure 7: V5: Expected number of samples k∗ to
observe S (log scale). The solid red line shows means
k∗ at each problem size; the dotted red line shows
medians. The top and bottom lines mark k = 1000, 1.
Exclusive access times appear at the right.

Of course the hardware succeeds if just one minimum cost
solution is returned. We can estimate the expected number
of independent samples k∗ needed to first observe S as fol-
lows. Sampling can be modeled as a Bernoulli trial with
success probability equal to p = N/k. Therefore the ex-
pected number of samples needed to observe the first suc-
cess is described by a geometric distribution with mean 1/p.
For example, if S appears 200 times in a sample of size 1000
we expect to observe it within the first k∗ = 5 = 1000/200
samples on average.

Figure 7 shows how k∗ varies with n. The red solid and
dotted lines show mean and median k∗, respectively, for 1000
instances at each problem size (note the log y scale). Corre-
sponding V5 computation times are shown on the right side
of the chart, together with baseline times for k = 1 and 1000
samples. For half the inputs at n = 439, we could take just 5
rather than 1000 samples to observe the same minimum cost
S. On average just under 100 samples (224ms) are needed
to find the same solution as 1000 samples (491ms).

These time estimates are based on t1 = 201ms, t2 =
0.29ms for V5. Note that these are maximum times t1 and
t2 measured independently over several tests at varying in-
put sizes. Although this works out to 491ms at k = 1000, in
fact no single test had exclusive access time above 430ms.

Figures 8 and 9 present analogous results for a newer V6
hardware chip that has 502 working qubits. Figure 8 shows
the proportion N/k of best solutions found, for larger prob-
lems n = 257, . . . 502, and larger sample sizes k. Figure 9
shows the expected number of samples needed to find S,
with corresponding exclusive access times on the right side.
V6 has t1 = 36ms overhead and t2 = 0.126ms sampling time.
Thus V6 is 5.6 times faster than V5 at k = 1 and 3 times
faster at k = 1000.
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Figure 8: V6: Proportion of samples N/k holding
the best answer S. Here n = 257, 304, 352, 383, 439,
470, 502. We have k = 2000 (at n ≤ 352), k = 5000 (at
383 ≤ n ≤ 439) and k = 10000 (at n ≥ 470). The solid
red line shows means and the dotted red lines shows
medians.
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Figure 9: Expected number of samples to observe S.
The solid red and dotted red lines show mean and
medians over all inputs. The horizontal lines mark
k = 1, 1000, and 10, 000 samples. Exclusive access
times are shown on the right.



5. CONCLUSIONS AND FUTURE WORK
This paper reports on the first experiments we know of to

compare performance of a quantum annealing system to con-
ventional software approaches, using instances from three
NP-Hard optimization problems. In all three experiments
the V5 hardware or its hybrid counterpart Blackbox found
solutions that tied or bettered the best solutions f ound by
software solvers. Performance was especially impressive on
instances that can be solved directly in hardware. On the
largest problem sizes tested, the V5 chip found optimal so-
lutions in less than half a second, while the best software
solver, CPLEX, needed 30 minutes to find all optimal solu-
tions.

We have also carried out some tests to compare V6 to
the software solvers; very preliminary results suggest that
on QUBO instances with n = 503, the hardware can find
optimal solutions around 10,000 times faster than CPLEX.

Our results have turned up many ideas for future exper-
iments, including expanding these tests to a wider set of
problem domains and solvers; looking at how problem trans-
formations affect performance; developing good algorithms
and heuristics for minor-embedding in hardware graphs; and
investigating ideas for auto-tuning Blackbox. There is also
much work to be done in understanding how performance
of hardware chips like V5 and V6 depends on input param-
eters, including size, density, objective function, and weight
distributions and scale.

It would of course be interesting to see if highly tuned
implementations of, say, tabu search or simulated annealing
could compete with Blackbox or even QA on QUBO prob-
lems; some preliminary work on this question is underway.

The open questions about the fundamental capabilities of
adiabatic quantum computers, algorithms, and models of
computation are myriad, too many to be listed here.
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Appendix A: QAPLib Problems

file n Best Published Is OPT Our Best
esc32a 32 130 opt 142
esc32b 32 168 opt 188
esc32c 32 642 opt *642
esc32d 32 200 opt 208
esc32e 32 2 opt *2
esc32g 33 6 opt *6
esc32h 32 438 opt *438
kra30a 30 88 900 opt 94 370
kra30b 30 91 420 opt 92 860
kra32 32 88 700 opt 91 380
lipa30a 30 13 178 opt 13 376
lipa30b 30 151 426 opt *151 426
lipa40a 40 31 538 opt 31 869
lipa40b 40 476 581 opt 560 670
lipa50a 50 62 093 opt 62 757
lipa50b 50 1 210 244 opt *1 210 244
nug30 30 6 124 opt 6 266
sko42 42 15 812 15 956
sko49 49 23 386 23 782
ste36a 36 9 526 opt 10 160
ste36b 36 15 852 opt 17 870
ste36c 36 8 239 110 opt 8 605 808
tai30a 30 1 818 146 1 875 566
tai30b 30 637 117 113 opt 653 908 320
tai35a 35 2 422 002 opt 2 501 550
tai35b 35 283 315 445 302 555 410
tai40a 40 3 139 370 3 254 090
tai40b 40 637 250 948 672 576 232
tai50a 50 4 938 796 5 142 226
tai50b 50 458 821 517 474 357 420
tho30 30 149 936 opt 151 854
tho40 40 240 516 247 236
wil50 50 48 816 49 164

A list of 33 instances from QAPLib used in our tests. The
rightmost column shows the best answers found by Blackbox
(28 instances) and Tabu (5 instances). Solutions that match
the best published solutions are marked with *.


