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ABSTRACT

EXPLORATORY MINING OF COLLABORATIVE SOCIAL CONTENT

MAHASHWETA DAS, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Dr. Gautam Das

The widespread use and growing popularity of online collaborative content sites

(e.g., Yelp, Amazon, IMDB) has created rich resources for consumers to consult in

order to make purchasing decisions on various items such as restaurants, movies, e-

commerce products, movies, etc. It has also created new opportunities for producers

of such items to improve business by designing better products, composing inter-

esting advertisement snippets, building more effective personalized recommendation

systems, etc. This motivates us to develop a framework for exploratory mining of

user feedback on items in collaborative social content sites. Typically, the amount

of user feedback (e.g., ratings, reviews, tags) associated with an item (or, a set of

items) can easily reach hundreds or thousands resulting in an overwhelming amount

of information (information explosion), which users may find difficult to cope with

(information overload). For example, popular restaurants listed in the review site

Yelp routinely receive several thousand ratings and reviews, thereby causing decision

making cumbersome. Moreover, most online activities involve interactions between

multiple items and different users and interpreting such complex user-item interac-

tions becomes intractable too. Our research concerns developing novel data mining
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and exploration algorithms to formally analyze how user and item attributes influence

user-item interactions. In this dissertation, we choose to focus on short user feedback

(i.e., ratings and tags) and reveal how it, in conjunction with structural attributes

associated with items and users, open up exciting opportunities for performing ag-

gregated analytics. The aggregate analysis goal is two-fold: (i) exploratory mining

to benefit content consumers make more informed judgment (e.g., if a user will enjoy

eating at a particular restaurant), as well as (ii) exploratory mining to benefit content

producers conduct better business (e.g., a redesigned menu to attract more people of

a certain demographic group, etc.). We identify a family of mining tasks and propose

a suite of algorithms - exact, approximation with theoretical properties, and efficient

heuristics - for solving the problems. Performance evaluation over synthetic data and

real data crawled from the web validates the utility of our framework and effectiveness

of our algorithms.
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CHAPTER 1

Introduction

1.1 Collaborative Social Content

Social media and communication is an integral part of most people’s everyday

lives and practices. Though Facebook, Twitter, LinkedIn, and Google Plus are readily

the most popular social networking sites and have several years of intense academic

research dedicated to interesting data-rich projects involving them, the potential of

social sites like Amazon, CNET, Yelp, IMDB, etc. is immense. For example, Amazon

enables people to connect with each other and share information, opinion, reviews,

etc. as well as provides platform to expand business reach, promote content, max-

imize brand values, etc. The rich resource of user-generated content in these sites,

in the form of reviews, ratings, question-and-answer forums, blog posts, audio files,

digital images, etc., offers unprecedented opportunities for rapid innovations. For

example, LinkedIn, the most popular social networking site for people in professional

occupations, acquired ChoiceVendor, a startup that allows companies to rate and

review business-to-business service providers, in 2010 in order to tap into the latter’s

collection of peer-to-peer reviews and ratings. Such user-generated content is increas-

ingly created through the collaborative efforts of multiple individuals interacting with

the social media. Hence, we refer to these sites as Collaborative Social Content sites.

A typical collaborative site consists of three components: (i) users, (ii) items,

and (iii) user feedback over items (i.e., user-item interactions). Users are one of the

most significant components in a collaborative site and they exist either as content

consumers or as content producers. Users provide information about their demo-
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graphics, interests, and other details in order to maximize the utility and benefits

from the site. The second component of collaborative sites is items. An item is any

object shared over the Web and can either be user generated (e.g., photos, blogs,

videos, etc), or can be produced by a product designer (e.g., cameras, apparels, etc).

The third component of collaborative content sites is user feedback. Most websites to-

day encourage users to leave feedback for online resources with a purpose to promote

their contents and allow users to share, discover and organize them. User feedback

can be either short and cryptic (e.g. numeric ratings, keywords or tags associated to

items, check-ins, etc.) or long and detailed (e.g., reviews in free-form text). Detailed

reviews can be very informative and the problem of extracting semantic information

from such reviews is a well-known problem in text mining and information extraction.

Lately, user feedback is available in the form of images, audios, and videos too. Typ-

ically, the amount of user feedback associated with an item (or, a set of items) can

easily reach hundreds or thousands. For example, the movie “The Social Network”

has received 42,000+ ratings on IMDB after being released for just two months. Sim-

ilarly, on the review site Yelp, a not-so-popular restaurant “Joe’s Shanghai” received

nearly a thousand ratings and more popular restaurants routinely exceed that number

by many multipliers. In fact, over 100 million unique visitors came to Yelp and over

1 million online reviews were posted on Yelp in January, 2013 alone!1.

Examples of popular Collaborative Social Content sites: Amazon, CNET,

eBay, Yahoo! Shopping, Walmarts, Epinions for e-commerce; Yelp, UrbanSpoon for

restaurants; TripAdvisor, Expedia for vacation packages; IMDB, Netflix for movies;

Last.fm for music; Goodreads for books; Flickr for photos; Youtube for videos;

Newsvine for news articles; etc.

1http://www.reviewtrackers.com/100-million-visitors-yelp-records-all-time-high-traffic-one-
month/
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ID Item User Feedback
Title Genre Director Name Gender Location Rating Review

1 Drama James
Cameron

Amy Female California 7.5

It is a roman-
tic adventure
with visual
grandeur and
magnificence, a
timeless tragic
love story set
against the
backdrop of a
major historical
event. Powerful
movie, it de-
serves all the
Oscars...........

2 Drama Steven
Speilberg

John Male New York 9.0

If you want to
see one of the
greatest histor-
ical films ever
made, then go
see this. Spiel-
berg rightly won
his Oscar for
this..........

Table 1.1. Example of collaborative social content expressed in a structured format

Our research impacts and benefits people (content producer or consumer) asso-

ciated with all these sites. However, due to limited availability of collaborative social

content data from these sites, we limit our experimental evaluation to few publicly

available real data and large-scale crawls of few publicly available websites. Table 1.1

presents an example structured form of collaborative content from popular movie re-

view site IMDB. The Rating is in a scale of 10. The phrases in blue in the Review

column may be extracted as tags using state-of-art text mining and information re-

trieval techniques. The number of item features and user features are much more

than the few (Genre, Director and Gender, Location) shown in the table.
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1.2 Motivation and Challenges

The widespread use and growing popularity of these collaborative content sites

has created rich resources for consumers to consult in order to make purchasing deci-

sions on various items. For example, a cell phone that has been tagged lightweight

by several users is likely to influence a prospective consumer decision in its favor. It

has also created new opportunities for producers of such items to improve business

by designing better products, composing eye-catching advertisement snippets, deal-

ing with competition, providing more effective personalized recommendations, etc.

For example, if an Europe backpacking trip package has received the tags single,

adventure, and budget from several customers, the travel agency must highlight

the relevant features youth-hostel, free city-attractions, and Eurail Youth Pass in its

advertisement in order to draw the attention of interested future users. Not just in

traditional marketplaces, a musical artist can leverage available user feedback for her

past tracks to decide the features (e.g., genre, acoustic and audio features) of her new

musical piece in order to increase its chances of becoming popular; or a blogger can

select a topic based on the tags that other popular topics have received. A huge num-

ber of articles have invaded the Internet lately conveying how social media initiatives

hold the key to fueling business. This motivates us to develop a framework for mining

user feedback on items in collaborative social content sites in order to benefit expe-

rience and decision-making of both content producers and consumers. We formally

analyze how user and item attributes influence user-item interactions.

As mentioned before, the amount of user feedback associated with an item (or,

a set of items) can easily reach hundreds or thousands resulting in an overwhelming

amount of information (information explosion), which users may find difficult to cope

with (information overload). The number of fraudulent users and user feedback in the

web is on the rise. Moreover, most online activities involve interactions between mul-
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tiple items and different users and interpreting such complex user-item interactions

becomes intractable too.

1.3 Dissertation Overview and Impact

Our research concerns developing novel data mining and exploration algorithms,

that accounts for the above-mentioned challenges. We identify a family of exploratory

mining tasks and develop a general framework for collaborative social content mining,

the first of its kind. In this dissertation, we choose to focus on short user feedback

because we believe that: (i) even though a single short feedback carries relatively

less information content, the aggregated view over numerous such user-item interac-

tions can be very useful for decision-making, and (ii) the majority of all user-item

interactions today are short feedback since their simpler mechanisms (e.g., assigning

star ratings) make user participation very easy, compared to detailed reviews which

require significant amount of time and effort from the authors as well as the readers.

For sites lacking the availability of user feedback in the form of ratings and tags, we

employ state-of-art text mining techniques to extract phrases or keywords (i.e., tags)

from reviews. Such user feedback over items, in conjunction with other structural

attributes associated with items and users in online collaborative content sites (e.g.,

item attributes such as Cuisine, Ambience, or user attributes such as Age, Gender),

open up exciting opportunities for performing aggregated analytics over the data in

order to benefit experience and decision-making of content producers and consumers.

The aggregate analysis goal is two-fold:

1 Exploratory mining to benefit content consumers make more informed judgment

(e.g., if a user will enjoy eating at a particular restaurant)

2 Exploratory mining to benefit content producers conduct better business (e.g.,

a re-designed menu to attract more people of a certain demographic group)
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The objective is to model the correlation between user feedback and item attributes

and user attributes and leverage such attribute-feedback aggregations to drive a va-

riety of applications. The first goal draws motivation from the vast literature in

automatic review mining and summarization and aims to help potential buyers make

more efficient and rational purchase decisions. The second goal is a more novel en-

deavor that aims to mine user feedback for serving the content producers (i.e., man-

ufacturers, retailers, etc.). We provide a principled approach to automatically mine

user generated content in order to boost business, as opposed to the many blogs,

articles, magazines, etc. dedicated to connecting the dots between social media and

e-commerce. Note that, the goal of exploratory mining to benefit content producers

improve business is beneficial to content consumers; and vice versa.

1.3.1 Exploratory Mining Problems

The mining problems investigated in this dissertation under the two aggregate

analysis goals and their impacts are as follows:

I. Exploratory mining of collaborative social content for content consumers:

i Collaborative Rating Behavior Analysis: In this problem, we aim to meaningfully

explain ratings as a function of metadata associated with items and reviewers,

in order to help future consumers quickly decide the desirability of an item. For

example, given the movie “Toy Story”, instead of simply showing the average

rating of 8.3/10 from 350,000+ users, we return a set of meaningful factoids such as

“young male students in California love this movie”. Note that unlike unsupervised

clustering approaches, groups returned by our problem are meaningful due to the

common structural attribute value pairs shared by all reviewers in each group. We

also build a system that visualizes the rating interpretations for popular movies

on a map and facilitates exploration over different dimensions.
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ii Collaborative Tagging Behavior Analysis: In this problem, we extend our previous

task to handle tag-based feedback since analyzing how tags are assigned by certain

users to certain items has greater implications in helping users search for desired

information. We develop a general mining framework that encompasses many

social tagging behavior analysis tasks (can handle greater than 100 problems in the

same framework) and reveals interesting insights, in order to help consumers use

that knowledge in subsequent actions. As in (i), we build a system for interactive

mining and exploration of social tagging behavior, as well as systematic geo-

visualization of the findings over a map.

II. Exploratory mining of collaborative social content for content producers:

i New Item Design: In this problem, we leverage available user feedback for de-

signing new improved items that are likely to attract maximum positive response

when published. The problem of item design has been studied by many disciplines

including Economics and Industrial Engineering. Optimal item design or position-

ing is a well studied problem in Operations Research and Marketing. However,

none of these works has studied the problem of item design in relation to social

user behavior (i.e., feedback). Our work investigates this novel problem, i.e., how

to decide the specifications of new items so that they draw the highest expected

number of desirable tags.

ii Item Snippet Generation: In this problem, we leverage available user feedback (as

in the previous task) for generating informative advertisement snippets that are

likely to maximize an item’s visibility among buyers. Succinct summarization of

an item’s descriptions that provides its first impression is referred to as snippet.

We envision the utility of a dynamic snippet as opposed to the pre-defined and

static item description summaries (e.g., in faceted navigation of Amazon and
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eBay), in order to match a user’s search query effectively. We investigate the

problem of finding the top-k best snippets for an item that are likely to maximize

the probability that the user preference (available in the form of search query)

is satisfied. Since a search query returns multiple relevant items, we also study

the problem of finding the best diverse set of snippets for the items in order to

maximize the probability of a user liking at least one of the top items.

iii Technical Item Recommendation: In this problem, we consider available user

feedback (as in the previous tasks) to understand user lifestyle preferences and

help non-expert buyers shop for technical products (e.g., camera, laptop, etc.).

Note that, buying such technical products online is not an easy task for an average

shopper since she cannot rely on the guidance of a in-store shopping assistant

and is exepected to understand the technical specifications associated with the

product. In this task, we build a system that translates, for example, laptop

details like “at least 4 GB of RAM” and “at least 500 GB of hard drive” to questions

like “do you intend to use the laptop for playing games?” and “do you want to

store a lot of movies in your laptop?”, etc.

We formalize the problems and design a suite of algorithms - exact, approximation

with theoretical properties, and efficient heuristics - for solving them. Performance

evaluation over synthetic data and real data crawled from Amazon, IMDB, Yahoo!

Autos, etc. validates the effectiveness of our algorithms and utility of our framework.

1.4 Dissertation Organization

The first chapter introduces the overview of mining collaborative social content.

We introduce the set of exploratory mining problems and discuss its impact. The

research in this dissertation has two primary objectives (i.e., parts), each of which
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encompasses a set of challenging problems. We distribute the exploratory mining

problems across the different chapters in the following way:

In Chapter 2, we introduce the problem of Collaborative Rating Behavior Analy-

sis [1][2]. We define the notion of meaningful interpretation of collaborative ratings

based on the idea of data cube and formalize two important sub-problems, meaningful

description mining and meaningful difference problem. We prove that the problems

are NP-Complete and design randomized hill exploration algorithms to solve them

efficiently. Performance evaluation over real data shows that our algorithms perform

much faster and generate equally good interpretations as brute-force algorithms. We

also conduct user studies to validate that users overwhelmingly prefer meaningful

rating explanations over simple average ratings.

In Chapter 3, we introduce the problem of Collaborative Tagging Behavior Analy-

sis [3][4]. We develop a dual mining framework to explore tagging behavior. This

framework is centered around two opposing measures: similarity and diversity, ap-

plied to one or more tagging components: users, items and tags, and therefore enables

a wide range of analysis scenarios (such as characterizing similar users tagging diverse

items with similar tags) and they are NP-Complete in general. We design four sets

of efficient algorithms for solving many of those problems and demonstrate, through

comprehensive experiments over real data, the superiority of our algorithms over their

baseline counterparts.

In Chapter 4, we introduce the problem of New Item Design [5]. Given a training

dataset of existing items with their user-submitted tags and a query set of desirable

tags, the objective is to design the k best new items expected to attract the maximum

number of desirable tags. We show that this problem is NP-Complete, even if simple

Naive Bayes Classifiers are used for tag prediction. We present an exact two-tier
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algorithm (based on top-k querying techniques) for moderate problem instances and a

novel polynomial-time approximation algorithm with provable error bound for larger

problem instances. We conduct detailed experiments on synthetic and real data

crawled from the web to evaluate the efficiency and quality of our algorithms.

In Chapter 5, we introduce the problem of Item Snippet Generation [6]. We exploit

the availability of user feedback in collaborative content sites in the form of tags to

identify the salient item features that must be highlighted in the item’s snippet, in

order to help a user quickly discover the items she is interested in. Since a search

query returns multiple items, we also study the problem of finding the best diverse set

of snippets for the items in order to maximize the probability of a user liking at least

one of the top items. We develop an exact top-k algorithm and an approximation

algorithm for each of the problems and perform detailed experiments on synthetic

and real data crawled from the web to to demonstrate the utility of our problems and

effectiveness of our solutions.

In Chapter 6, we introduce the problem of Technical Item Recommendation [7]. We

present ShoppingAdvisor, a novel recommender system that helps users in shopping

for technical products by leveraging both user preferences and technical product at-

tributes. The system elicits user preferences via a tree-shaped flowchart, where each

node is a question to the user. At each node, ShoppingAdvisor suggests a ranking

of products matching the preferences of the user and that gets progressively refined

along the path from the tree’s root to one of its leafs. First, we adapt the classical

top-down strategy for building decision trees (by partitioning the user space rather

than the product space) in order to find the best user attribute to ask at each node.

Second, we show how to employ a learning-to-rank approach in order to learn, for each

node of the tree, a ranking of products appropriate to the users who reach that node.
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We experiment with both synthetic and real data to demonstrate that it produces

good quality interpretable recommendations.

Chapter 7 discusses related work in the literature that focuses on (i) sub-areas rea-

sonably aligned to our research of exploratory mining of collaborative content such

as review mining, recommendation, etc., as well as (ii) techniques which we have

adapted to solve some of our problems such as top-k algorithms, locality sensitive

hashing, etc.

Chapter 8 summarizes the contributions made in this dissertation. It also outlines

the research frontiers in achieving the bigger goal of a general collaborative content

mining framework that that caters to any community featuring two-way communi-

cation between producers and consumers (e.g., manufacturer and buyer, healthcare

service provider and patient, musical artist and listener, blogger and reader, etc.).
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PART I

EXPLORATORY MINING OF COLLABORATIVE CONTENT

FOR CONTENT CONSUMERS

“A brand is no longer what we tell the consumer it is;

it is what consumers tell each other it is.”

- Scott D. Cook
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CHAPTER 2

Collaborative Rating Behavior Analysis
2.1 Introduction

Collaborative rating sites drive a large number of decisions today. For example,

online shoppers rely on ratings on Amazon to purchase a variety of goods such as

books and electronics, and movie-goers use IMDB to find out about a movie before

renting it. The number of ratings associated with an item (or a set of items) can

easily reach hundreds or thousands, thus making reaching a decision cumbersome. To

cope with the overwhelming amount of information, a user can either spend a lot of

time examining ratings and reviews before making an informed decision (maximalist

option), or simply go with overall rating aggregations, such as average, associated

with an item (minimalist option). Not surprisingly, most users choose the latter due

to lack of time and forgo the rich information embedded in ratings and in reviewers’

profiles. Typically, average ratings are generated for a few pre-defined populations of

reviewers (e.g., average among movie critics). In addition, aggregated ratings are only

available for one item at a time, and therefore a user cannot obtain an understanding

of a set of items of interest, such as all movies by a given director.

In this task, we aim to help users make better decisions by providing meaningful

interpretations of ratings of items of interest, by leveraging metadata associated with

items and reviewers in online collaborative rating sites. We call this problemmeaning-

ful rating interpretation (MRI), and define two sub-problems: meaningful description

mining (DEM) and meaningful difference mining (DIM).

Given a set of items, the first problem, meaningful description mining, aims to

identify groups of reviewers who share similar ratings on the items, with the added
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constraint that each group consists of reviewers who are describable with a subset

of their attributes (i.e., gender, age, etc.). The description thus returned to the user

contains a small list of meaningfully labelled groups of reviewers and their ratings

about the item, instead of a single monolithic average rating. This added information

can help users judge items better by surfacing inherent reviewers’ biases for the items.

For example, the movie “Titanic” may have a very high overall average rating, but it

is really the group of female reviewers under the age of 20 who give it very high ratings

and raise the average. A user can then make informed decisions about items based

on whether she tends to agree with that group.

The second problem, meaningful difference mining, aims to help users better

understand controversial items by identifying groups of reviewers who consistently

disagree on those items, again with the added constraint that each group is described

with a meaningful label. For the movie “Titanic”, we can see that two groups of re-

viewers, females under 20 and males between 30 and 45, are in consistent disagreement

about it: the former group loves it while the latter does not.

We emphasize that while the examples above all involve a single item, both

description mining and difference mining can be applied to a set of items with a

common feature. For example, we can apply them to all movies directed by “Woody

Allen” and help users learn some meaningful trends about Woody Allen as a director.

The algorithms we describe in this section apply equally whether we are analyzing

the ratings of a single item or a set of items.

2.2 Problem Framework

We model a collaborative rating site D as a triple ⟨U , I,R⟩, representing the

reviewers (i.e., users), sets of items (i.e., products), and feedback (i.e., ratings) re-

spectively. Each rating, i.e., feedback r ∈ R is itself a triple ⟨u, p, sup⟩, where u ∈ U ,
14



p ∈ I, and sup ∈ [1, 5] is the integer rating that reviewer u has assigned to item p1.

Furthermore, I is associated with a set of attributes, denoted IA = {pa1, pa2, . . .},

and each item p ∈ I is a tuple with IA as its schema. In another word, p =

⟨pv1, pv2, . . .⟩, where each pvj is a value for attribute paj. Similarly, we have the

schema UA = {ua1, ua2, . . .} for reviewers, i.e., u = ⟨uv1, uv2, . . .⟩ ∈ U , where each

uvj is a value for attribute uaj. As a result, each rating action, r = ⟨p, u, sup⟩, is a

tuple, ⟨uv1, uv2, . . . , pv1, pv2, . . . , sup⟩, that concatenates the tuple for p, the tuple for

u, and the numerical rating score sup. The set of all attributes (including both item

and reviewer attributes) is denoted as A = {a1, a2, . . .}.

Item attributes are typically provided by the rating site. For example, restau-

rants on Yelp are described with attributes such as Cuisine (e.g., Thai, Sushi), Attire

(e.g., Formal, Casual). Movies on IMDB are described with Title, Genre (e.g., Drama,

Animation), Actors, Directors. An item attribute can be multi-valued (e.g., a movie

can have many actors). Reviewer attributes include mostly demographics such as

Age, Gender, Location and Occupation. Such attributes can either be provided to the

site by the reviewer directly as in MovieLens, or obtained from social networking

sites such as Facebook as their integration into content sites becomes increasingly

common. In this section, we focus on item ratings describable by reviewer attributes.

Our ideas can be easily extended to explain reviewer ratings by item attributes.

We model the notion of group based on data cube [8]. Intuitively, a group is a

set of ratings described by a set of attribute value pairs shared among the reviewers

and the items of those ratings. A group can also be interpreted as a selection query

condition. More formally, a group description is defined as c = {⟨a1, v1⟩, ⟨a2, v2⟩, . . .},

where each ai ∈ A (where A is the set of all attributes as introduced earlier) and

each vi is a value for ai. For example, {⟨genre,war⟩, ⟨location, nyc⟩} describes a group

1For simplicity, we convert ratings at different scales into the range [1, 5].
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representing all ratings of “war” movies by reviewers in “nyc.” The total number of

groups that can exist is given by n =
∏|A|

i=1(|⟨ai, vj⟩|+1), where |A| is the cardinality

of the set of attributes and |⟨ai, vj⟩| is the number of distinct vj values each attribute

ai can take. When the ratings are viewed as tuples in a data warehouse, this notion

of group coincides with the definition of cuboids in the data cube literature. Here, we

take the view that, unlike unsupervised clustering of ratings, ratings grouped this way

are much more meaningful to users, and form the foundation for meaningful rating

interpretations. We now define three essential characteristics of the group.

Definition 2.2.1. Coverage: Given a rating tuple r = ⟨v1, v2, . . . , vk, s⟩, where

each vi is a value for its corresponding attribute in the schema A, and a group

c = {⟨a1, v1⟩, ⟨a2, v2⟩, . . . , ⟨an, vn⟩}, n ≤ k, we say c covers r, denoted as r l c, iff

∀i ∈ [1, n], ∃r.vj such that vj is a value for attribute c.ai and r.vj = c.vi. For example,

the rating ⟨female, nyc, cameron,winslet, 4.0⟩ is covered by the group {⟨gender, female⟩, ⟨

location, nyc⟩, ⟨actor,winslet⟩}.

Definition 2.2.2. Relationship between groups: A group c1 is considered an ancestor

of another group c2, denoted c1 ⊃ c2, iff ∀j where ⟨aj, vj⟩ ∈ c2, ∃⟨aj, v′j⟩ ∈ c1, such

that vj = v′j, or v′j semantically contains vj according to the domain hierarchy. For

example, the group of ratings g1 by reviewers who live in Michigan is a parent of

the group of ratings g2 by reviewers who live in Detroit, since Detroit is located in

Michigan according to the location hierarchy2.

Definition 2.2.3. Recursive coverage: Given a rating tuple r and a group c, we say c

recursively covers r iff ∃c′, such that, c ⊃ c′, rlc′. For example, ⟨female, nyc, cameron,

winslet, 4.0⟩ is recursively covered by {⟨gender, female⟩, ⟨location, usa⟩, ⟨actor, winslet⟩}.

For the rest of the section, we use the term coverage to mean recursive coverage for

simplicity, unless otherwise noted.

2Those domain hierarchies are essentially dimension tables and we assume they are given.
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2.2.1 Meaningful Rating Interpretation

When the user is exploring an item (or a set of items) I, our goal is to mean-

ingfully interpret the set of ratings for I, denoted RI . Given a group c, the set of

ratings in RI that are covered by c are denoted as cRI
= {r|r ∈ RI ∧ r l c}. Similar

to data cubes, the set of all possible groups form a lattice of n nodes, where the

nodes correspond to groups and the edges correspond to parent/child relationships.

Note that, for a given I, there are many groups not covering any rating from RI . Let

n′ denote the total number of groups covering at least one rating. Solving the MRI

problem is therefore to quickly identify “good” groups that can help users understand

ratings more effectively.

Before introducing the problem formally, we first present a running example,

shown in Figure 2.1, which will be used throughout the rest of the section.

Example 2.2.1. Consider the use case where we would like to explain all ratings of

the movie (item) “Toy Story”, by identifying describable groups of reviewers sharing

common rating behaviors. As in data cube analysis, we adopt a lattice structure to

group all ratings, where each node in the lattice corresponds to a group containing

rating tuples sharing the set of common attribute value pairs, and each edge between

two nodes corresponds to the parent/child relationship. Figure 2.1 illustrates a partial

lattice for “Toy Story”, where we have four reviewer attributes to analyze3: gender

(G), age (A), location (L) and occupation (O). For simplicity, exactly one distinct value

per attribute is shown in the example: ⟨gender, male⟩, ⟨age, young⟩, ⟨location, ca⟩ and

⟨occupation, student⟩. As a result, the total number of groups in the lattice is 16. Each

group (i.e., node in the lattice) maps to a set of rating tuples that are satisfied by the

selection condition corresponding to the group label, and the numeric values within

each group denotes the total number of ratings and the average rating within the

3Since there is only one movie in this example, item attributes do not apply here.
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group. For example, the base (bottom) group corresponds to all 452 ratings of “Toy

Story”, with an average rating of 3.88, while the double circled group in the center of

the lattice corresponds to the 75 ratings provided by ‘male & student’ reviewers, who

collectively gave it an average rating of 3.76. �

{452, 3.88}

<G, male>

{333, 3.91}

<A, young>

{260, 3.93}

<O, student>

{260, 3.79}

<L, CA>

{58, 4.07}

<G, male>

<A, young>

{202, 3.93}

<G, male>

<L, CA>

{44, 4.14}
<G, male>

<O, student>

{75, 3.76}

<A, young>

<L, CA>

{32, 4.06} <A, young>

<O, student>

{69, 3.90}

<L, CA>

<O, student>

{10, 4.40}

<G, male>

<A, young>

<L, CA>

{26, 4.12}

<G, male>

<A, young>

<O, student>

{52, 3.88}

<G, male>

<L, CA>

<O, student>

{6, 4.5}

<A, young>

<L, CA>

<O, student>

{4, 5.0}

<G, male> <A, young> 

<L, CA> <O, student>

{3, 5.0}

Figure 2.1. Partial rating lattice for movie “Toy Story” with one value for each
attribute; the full lattice contains more nodes with multiple distinct values for each
attribute.

Even when there is only a single item, the number of groups associated with its

ratings can be too large for a user to browse. The challenge is therefore to identify

good groups to be highlighted to the user. We define desiderata that such good groups

should follow:

Desiderata 1: Each group should be easily understandable by the user. While this

desiderata is often hard to satisfy through unsupervised clustering of ratings, it is

easily enforced in our approach since each group is structurally meaningful and has

an associated description that the user can understand.

Desiderata 2: Together, the groups should cover enough ratings in RI . While ideally

we would like all ratings in RI to be covered, it is often infeasible given the constraint

on the number of groups that a user can reasonably go through.
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Desiderata 3: Ratings within each group should be as consistent as possible, i.e.,

should reflect users with similar opinions toward the input item(s). Note that we

are referring to opinions within a group instead of opinions across groups. In fact,

difference in opinion across groups is the key differentiator between the two sub-

problems of MRI, which we will formally define in the next section.

We now formally define the two sub-problems of meaningful rating interpreta-

tion: meaningful description mining (DEM) and meaningful difference mining (DIM).

2.2.2 Meaningful Description Mining

Our first goal is to give a meaningful description of all the ratings over an item

set I. We propose to present to the users a small set of meaningfully labelled rating

groups (i.e., cuboids), each with their own average ratings. Specifically, we consider

three main factors. First, the number of cuboids, k, to be presented to the user must

be limited, so that users are not overwhelmed with too many cuboids. Second, all

cuboids presented to the user must collectively cover a large enough portion of ratings

for items in I. Third, the returned cuboids must collectively have the minimum

aggregate error, which we will define next.

Consider a set of ratings RI over input items in I. For each cuboid c, let

avg(c) = avgrilc(ri.s) (where ri.s is the score of the ith tuple ) be the average numer-

ical score of ratings covered by c. Given a set of cuboids, C, to be returned to the

user. We define two formal notions:

Definition 2.2.4. Description coverage: Let CRI
= {r | r ∈ RI ,∃c ∈ C, s.t. r l c},

coverage(C,RI) =
|CRI

|
|RI |

.

Definition 2.2.5. Description error: Let Er = avg(|r.s−avgc∈C∧rlc(c)|), error(C,RI) =

Σr∈RI
(Er).
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Intuitively, description coverage measures the percentage of ratings covered by

at least one of the returned cuboids, while description error measures how well the

group average approximates the numerical score of each individual rating. (When a

rating is covered by more than one returned cuboids, we average the errors over all

the cuboids that cover the rating.)

2.2.3 Meaningful Difference Mining

Another important goal of rating interpretation is to identify meaningful groups

of ratings where reviewers’ opinions on the item(s) are divergent. To accomplish this

goal, we start by dividing RI into two sets R+
I = {r | r ∈ RI ∧ r.s ≥ θ+} and

R−
I = {r | r ∈ RI ∧ r.s ≤ θ−}, where θ+ and θ− are thresholds that define whether a

rating should be considered positive or negative respectively. Intuitively, θ+ and θ−

can either be decided statically or dynamically according to the mean and variances of

RI . While setting the thresholds statically is easier computationally, it is not always

clear what the thresholds should be. As a result, we follow the dynamic approach

and set θ+ and θ− to be one standard deviation above and below the mean of RI

respectively.

Given R+
I , R

−
I and a set of cuboid groups, C, we can now formalize the notion

of balance as follows:

Definition 2.2.6. Balance: Let indicator I(r1,r2) = 1 if and only if ∃c ∈ C s.t. r1 l

c ∧ r2 l c (i.e., there is at least one cuboid in C that covers both r1 and r2.). We

then have balance(C,R+
I , R

−
I ) = m×Σr1∈R+

I ,r2∈R−
I
I(r1,r2), where m = 1

|R+
I |×|R−

I | is the

normalization factor that normalizes all balance values into [0, 1].

Intuitively, the notion of balance captures whether the positive and negative

ratings are “mingled together” (high balance) or “separated apart” (low balance).
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Problem 2.2.1. The problem of meaningful difference mining (DIM) for a given set

of items I and their ratings RI (split into R+
I , R

−
I ), identify a set of cuboids C, such

that:
• balance(C,R+

I , R
−
I ) is minimized, subject to:

◦ |C| ≤ k;

◦ coverage(C,R+
I ) ≥ α ∧ coverage(C,R−

I ) ≥ α.

2.3 Complexity Analysis

In this section, we analyze the computational complexity of the description

mining and difference mining problem.

Problem 2.3.1. The problem of meaningful description mining (DEM) for a given

set of items I and their ratings RI , identify a set of cuboids C, such that:

• error(C,RI) is minimized, subject to:

◦ |C| ≤ k;

◦ coverage(C,RI) ≥ α.

Theorem 2.3.1. The decision version of the problem of meaningful description min-

ing (DEM) is NP-Complete even for boolean databases, where each attribute iaj in

IA and each attribute uaj in UA takes either 0 or 1.

Proof : The decision version of the problem of meaningful description mining (DEM)

is : For a given set of items and their ratings RI , is there a set of cuboids C, such that

error(C,RI) ≤ β, subject to |C| ≤ k and coverage(C,RI) ≥ α. The membership

of the decision version of the description mining problem in NP is obvious.

To verify NP-completeness, we reduce the Exact 3-Set Cover problem (EC3)

to the decision version of our problem. EC3 is the problem of finding an exact

cover for a finite set U , where each of the subsets available for use contain exactly 3

elements. The EC3 problem is proved to be NP-Complete by a reduction from the

Three Dimensional Matching problem in computational complexity theory [9].
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Let an instance of EC3 (U , S) consist of a finite set U = {x1, x2, ... xn} and

a family S = {S1, S2, ... Sm} of subsets of U , such that |Si| = 3, ∀i 1 ≤ i ≤ n. We

are required to construct an instance of DEM (RI , k, α, β) having k = (n
3
+1), α =

100 (so that, coverage(C,RI) = 100%) and β = 0 (so that, error(C,RI) = 0); such

that there exists a cover C ⊆ S of n
3
pairwise disjoint sets, covering all elements in

U , if and only if, a solution to our instance of DEM exists.

We define (m+1) Boolean attributes A = {A1, A2, ... Am+1} and (n+1) tuples

T = {t1, t2, ... tn+1}, where each entry ti has a corresponding Boolean rating. For

each Si = {xi, xj, xk}, Ai has Boolean 1 for tuples {ti, tj, tk}; while the remaining

tuples are set to Boolean 0. For attribute Am+1, tuples {t1, t2, ... tn+1} are all set to

0. The ratings corresponding to tuples {t1, t2, ... tn} are all 0, while tuple {tn+1} has

a rating of 1. Figure 2.2 illustrates example instances of the EC3 problem and our

DEM problem.

Figure 2.2. Example instances of EC3 and DEM.

As defined in Section 2.2, cuboids (or, groups) are selection query conditions

retrieving structurally meaningful groupings of the ratings. For Boolean attributes
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{A1, A2, ... Am+1}, a query condition Q ∈ {0, 1, ∗}m+1, where attribute Ai in Q is

set to 0, 1 or *, ∀i 1 ≤ i ≤ (m + 1). The space of all possible cuboids (or, query

conditions) is 3m+1.

Now, the DEM instance has a solution if error(C,RI) = 0 and coverage(C,RI)

= 100%. Note that, each cuboid in the set C of k cuboids in the solution for DEM

should choose tuples either from T1 = {t1, t2, ... tn} or from T2 = {tn+1} to achieve

error(C,RI) = 0. We need one cuboid 0m+1 to cover the single tuple in T2. Now, let

us focus on how to cover tuples in T1 with n
3
more cuboids.

Lemma 1: A selection query Q ∈ {0, ∗}m{0, 1, ∗} cannot retrieve non-empty set of

tuples only from T1.

For a query Q ∈ {0, ∗}m{0, 1, ∗}: if Q ∈ {0, ∗}m{1}, no tuple is selected; if Q ∈

{0, ∗}m{0, ∗}, non-empty set of tuples from both T1 and T2 are selected. Thus queries

of the form {0, ∗}m{0, 1, ∗} cannot yield a solution for the DEM instance.

Lemma 2: A query Q /∈ {0, ∗}i−1{1}{0, ∗}m−i0, 1, ∗, ∀i 1 ≤ i ≤ m cannot have a

solution for the DEM instance.

If a cuboid (or selection query) has 2 or more attributes Ai set to 1, the set of covered

tuples is strictly smaller than 3. Thus cuboids that select exactly 3 elements have to

have exactly one attribute Ai is set to 1, ∀i 1 ≤ i ≤ m,

From Lemmas 1 and 2 we conclude that a set C of (n
3
pairwise disjoint cuboids

in which one cuboid covers exactly one tuple (defined by query {0}m+1), and the

remaining n
3
cuboids each cover exactly 3 tuples (each defined by a query of the form

{0, ∗}i−1{1}{0, ∗}m−i{0, 1, ∗}, and satisfying error(C,RI) = 0 and coverage(C,RI)

= 100% corresponds to the solution to EC3. The meaningful description mining

problem is NP-Complete for Boolean databases. �

Theorem 2.3.2. The decision version of the problem of meaningful difference mining

(DIM) is NP-Complete even for boolean databases.
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Proof : The decision version of the problem of meaningful difference mining (DIM)

is as follows: For a given set of items and their ratings RI , is there a set of cuboids

C, such that balance(C,R+
I , R

−
I ) ≤ β, subject to |C| ≤ k and coverage(C,R+

I ) ≥

α ∧ coverage(C,R−
I ) ≥ α. The membership of the decision version of the difference

mining problem in NP is obvious. To verify its NP-completeness, we again reduce

the Exact 3-Set Cover problem (EC3) to the decision version of DIM.

Similar to the proof in Theorem 2.3.1, we consider an instance of EC3 (U , S);

we are required to construct an instance of DIM (RI , k, α, β) having k = (n
3
+1),

α = 100 (so that, coverage(C,R+
I ) = 100 ∧ coverage(C,R−

I ) = 100%) and β = 0

(so that, balance(C,R+
I , R

−
I ) = 0); such that there exists a cover C ⊆ S of size n

3
,

covering all elements in U , if and only if, a solution to our instance of DIM exists.

The reduction follows the same steps as that in Theorem 2.3.1, except that the ratings

corresponding to tuples {t1, t2, ... tn} are all 0 (indicating negative rating), while

tuple {tn+1} has a rating of 1 (indicating positive rating). �

Now, we propose efficient algorithms for both description mining and difference

mining tasks. The brute-force algorithms for description mining and difference mining

enumerate all possible combinations of cuboids, which can be prohibitively expensive.

We propose alternative heuristic algorithms to solve the problems of meaningful de-

scription mining and meaningful difference mining efficiently.

2.4 Algorithms

2.4.1 Description Mining Algorithms

Given a set I of items and the set RI of all ratings over I, the description mining

task aims to identify a set C of cuboids over RI , such that the overall aggregate error,

error(C,RI), is minimized, and the size and coverage constraints are satisfied. The

straightforward approach is to enumerate all possible combinations of cuboids over RI .

24



We introduce this Exact Algorithm first, and later propose a more efficient heuristic

algorithm based on randomized hill exploration.

2.4.1.1 Exact Algorithm (E-DEM)

This algorithm uses brute-force to enumerate all possible combinations of cuboids

to return the exact (i.e., optimal) set of cuboids as the rating descriptions. Algo-

rithm 10 illustrates its high level pseudo code. The algorithm consists of two stages.

During the first stage, it maps the rating lattice to the ratings of the given item set I.

In particular, lattice nodes that do not cover any rating in RI are not materialized and

the average ratings of the remaining lattice nodes are computed. In the second stage,

the algorithm looks up all
(
n
k

)
possible sets of cuboids C, where n is the number of lat-

tice nodes remaining after the first stage. The set that minimizes error(C,RI) such

that |C| ≤ k and coverage(C,RI) ≥ α. Clearly, Algorithm E-DEM is exponential in

the number of cuboids and can be prohibitively expensive.

Algorithm 1 − E-DEM Algorithm (RI , k, α) : C

- Build the rating lattice of n′ cuboids (out of n), each of which covers at least one
tuple from RI .

1: while true do
2: build set C ← combinatorics-getnext(n′, k)
3: if coverage(C,RI) ≥ α then
4: build list L ← ( C, error(C,RI) )
5: end if
6: end while
7: C ← min error(C,RI) in L
8: return C

2.4.1.2 Randomized Hill Exploration Algorithm (RHE-DEM)

A common heuristic technique for solving optimization problems similar to our

description mining problem is random restart hill climbing [10]. A straightforward
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adoption of this technique involves the following. We first randomly select a set of

k cuboids as the starting point. The process then continues by replacing one cuboid

in the current set with one of its lattice neighbors4 not in the set as long as the

substitution reduces the aggregate error. The algorithm stops when no improvements

can be made indicating a local minima has been reached. The process is repeated

with multiple diverse sets of cuboids to increase the probability of finding the global

minima that satisfies the constraints.

However, this simple application of hill climbing fails for our description mining

task because of the critically important coverage constraint, coverage(C,RI) ≥ α.

For any given set of cuboids randomly chosen as the starting point, the probability

of it satisfying the coverage constraint is fairly small since most cuboids in the lattice

cover a small number of ratings. Since the simple hill climbing algorithm cannot

optimize for both coverage and aggregate error at the same time, the results produced

by the simple hill climbing algorithm often fail the coverage constraint. Hence, a

large number of restarts is required before a solution can be found, negating the

performance benefits.

To address this challenge, we propose the Randomized Hill Exploration Algo-

rithm (RHE-DEM) which first initializes a randomly selected set of k cuboids as the

starting point. However, instead of immediately starting to improve the aggregate

error, it explores the hill to identify nearby cuboid sets that satisfy the coverage con-

straint. Specifically, RHE-DEM performs iterative improvements on the coverage that

lead to a different set of cuboids where the coverage constraint is satisfied. This new

cuboid set is then adopted as the starting point for the error optimization with the

added condition that an improvement is valid only when the coverage constraint is

satisfied. Furthermore, this exploration can advance in multiple directions, producing

4Two cuboids are neighbors if they are directly connected in the lattice.
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multiple cuboid sets as new start points based on the single initial cuboid set. Since

we found single direction exploration works well in practice, we have not pursued this

technique.

The details of the algorithm are shown in Algorithm 2. Intuitively, we begin

with the rating lattice constructed on RI . The algorithm starts by picking k ran-

dom cuboids to form the initial set C. For each cuboid ci in C, we swap ci with

each of its neighbors cj in the lattice, while the other cuboids in C remain fixed,

to generate a new combination (i.e., cuboid set). The exploration phase computes

coverage(C,RI) for each obtainable combination of k cuboids, until it finds one that

satisfies coverage(C,RI) ≥ α. The resulting set then acts as the initial condition for

the second phase of the optimization to minimize the aggregate error error(C,RI).

The configuration that satisfies coverage(C,RI) ≥ α and incurs minimum error

error(C,RI) is the best rating explanation for item set I.

Example 2.4.1. Consider the example rating lattice introduced in Example 2.2.1

and suppose k=2, α=80%. The complete rating lattice will have many more cuboids

than what is shown in Figure 2.1, since there are several other attribute-value pairs

such as ⟨gender, female⟩, ⟨age, old⟩, ⟨location, NY⟩, etc. Precisely, the total number

of cuboids in the rating lattice for “Toy Story” is n = 17490, of which n′ = 1846

have cRI
̸= 0. However, we focus on the example rating lattice having 16 groups to

illustrate our description mining algorithms. The exact algorithm will investigate all(
16
2

)
(or,

(
1846
2

)
for complete rating lattice) possible combinations to retrieve the best

rating descriptions. On the other hand, the randomized hill exploration algorithm

begins by randomly selecting a set of k=2 cuboids, say c1 = {⟨G,male⟩, ⟨O, student⟩}

and c2 = {⟨L, ca⟩, ⟨O, student⟩} (marked in double circle in Figure 2.1). Here CRI

= 79, which does not satisfy the constraint coverage(C,RI) ≥ 80%. Keeping c2

fixed, the obtainable combinations by swapping c1 with its parent/child are: {c′1, c2},
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Algorithm 2 − RHE-DEM Algorithm (RI , k, α) : C

- Build the rating lattice of n′ cuboids (out of n), each of which covers at least one
tuple from RI .

1: C ← randomly select k of n′ cuboids
2: if coverage(C,RI) ≥ α then
3: C ← satisfy-coverage(C,RI))
4: end if
5: C ← minimize-error(C,RI))
6: C ′ ← best C so far
7: return C ′

// method satisfy-coverage (C,RI): C

1: while true do
2: val ← coverage(C,RI)
3: for each cuboid ci in C, each neighbor cj of ci do
4: C ′ ← C − ci + cj
5: val′ ← coverage(C ′, RI)
6: if val′ ≥ α then
7: return C ′

8: end if
9: end for
10: end while

// method minimize-error (C,RI): C

1: while true do
2: val ← error(C,RI)
3: C = ∅
4: for each cuboid ci in C, each neighbor cj of ci do
5: C ′ ← C − ci + cj
6: if coverage(C ′, RI) ≥ α then
7: add (C ′, error(C ′, RI)) to C
8: end if
9: end for
10: let (C ′

m, val
′
m) ∈ C be the pair with minimum error

11: if val′m ≥ val then
12: return C // we have found the local minima
13: end if
14: C ← C ′

m

15: end while
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{c′′1, c2}, {c′′′1 , c2} and {c′′′′1 , c2}, where c′1 = {⟨G,male⟩}, c′′1 = {⟨O, student⟩}, c′′′1 =

{⟨G,male⟩, ⟨O, student⟩, ⟨A, young⟩} and c′′′′1 = {⟨G,male⟩, ⟨O, student⟩, ⟨L, ca⟩}. We

see c′1 = {⟨G,male⟩}, c2 ={⟨L, ca⟩, ⟨O, student⟩} satisfy the coverage constraint. The

set {c′1, c2} is then used as the initial condition to explore the connected lattice and

minimize the description error. RHE-DEM on this partial rating lattice eventually

returns the cuboids {⟨G,male⟩} and {⟨O, student⟩} as the rating interpretations who

share similar ratings on “Toy Story”. �

2.4.2 Difference Mining Algorithms

Similar to the description mining task, the task of difference mining (Sec-

tion 2.2.3) poses an optimization problem with the goal of, given an item set I,

identifying a set C of cuboids with the most divergent opinions regarding the ratings

RI over I (i.e., minimizing the aggregate balance, balance(C,R+
I , R

−
I )) and satisfying

the size and coverage constraints. The difference mining task is even more challeng-

ing because computing the optimization objective, balance, is very expensive. We

describe this challenge and propose a similar heuristic hill exploration algorithm that

leverages the concept of fundamental region.

2.4.2.1 Exact Algorithm (E-DIM)

Similar to Algorithm E-DEM, this algorithm uses brute-force to enumerate all

possible combinations of cuboids.

2.4.2.2 Randomized Hill Exploration Algorithm (RHE-DIM)

The difference mining problem shares many similar characteristics with the

description mining problem. In particular, the measure, aggregate balance, needs

to be minimized, while at the same time, a non-trivial constraint, coverage above
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a threshold, must be satisfied. This makes the direct application of prior heuristic

techniques such as hill climbing difficult. As a result, we leverage the same randomized

hill exploration technique as introduced in Section 2.4.1 and propose RHE-DIM.

Similar to RHE-DEM, RHE-DIM first initializes a randomly selected set of k

cuboids. It explores the search space, in the first phase, to find a new set of cuboids

such that the coverage constraint is satisfied. During the second phase, the algorithm

iteratively improves the aggregate balance while ensuring that the coverage constraint

remains satisfied, until a local minima is identified.

Unlike the description mining problem, however, computing the optimization

measure balance(C,R+
I , R

−
I ) for the difference mining problem can be very expensive.

When done naively, it involves a quadratic computation that scans all possible pairings

of positive and negative ratings, for each set of k cuboids we encounter during the

second phase. To address this computational challenge, we introduce the concept of

fundamental region (FR), which defines core rating sets induced by a set of k cuboids,

to aid the computation of balance(C,R+
I , R

−
I ). The idea is inspired by the notion of

finest partitioning [11], with the key difference here being the need for keeping track

of both positive and negative ratings.

Definition 2.4.1. Fundamental Region: Given RI and the set C of k cuboids in the

rating lattice, we can construct a k-bit vector signature for each tuple in RI , where a bit

is set to true if the tuple is covered by the corresponding cuboid. A fundamental region

(denoted by F) is thus defined as the set of ratings that share the same signature. The

number of fundamental regions is bounded by 2k−1, but is often substantially smaller.

Given the set of fundamental regions, we can compute balance(C,R+
I , R

−
I ) by

iterating over all pairs of fundamental regions instead of all pairs of tuples, thus having

a significant performance advantage. Specifically, for a self-pair involving a single

region Fi, we have balance(C,R+
I i, R

−
I i) = Fi(R

+
I ) × Fi(R

−
I ); for a pair of distinct
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regions Fi and Fj sharing at least a common cuboid, we have balance(C,R+
I ij, R

−
I ij)

= Fi(R
+
I )× Fj(R

−
I ) + Fj(R

+
I )× Fi(R

−
I ). Finally, we have:

balance(C,R+
I , R

−
I ) = m× (

∑
i
balance(C,R+

I i, R
−
I i) +∑

ij
balance(C,R+

I ij, R
−
I ij)) (2.1)

where m is the normalization factor described in Section 2.2.3.

Example 2.4.2. Consider a set C = {c1, c2} of k = 2 cuboids, where c1 = {⟨G,male⟩,

⟨O, student⟩} and c2 = {⟨L, ca⟩, ⟨O, student⟩} (marked in double circle in Figure 2.1).

The two cuboids partition the set of 79 ratings (covered by C) into 3 fundamental

regions F1, F2 and F3 each having a distinct signature, as shown in Figure 2.3. The

positive and negative rating tuple counts, F (R+
I ) and F (R−

I ) respectively in each

region are also presented in Figure 2.3. By Equation 2.1, balance(C,R+
I , R

−
I ), can

be computed as: 1
46×33

× (40×29 + 4×2 + 2×2 + (40×2 + 4×29) + (4×2 + 2×2)),

based on counts in F1, F2, F3, (F1, F2) and (F2, F3) respectively. �

Figure 2.3. Computing balance(C,R+
I , R

−
I ) using Fundamental Regions..

Theorem 2.4.1. Given RI and C, balance(C,R+
I i, R

−
I i) computed using Equation 2.1

is equivalent to the one computed using the formula in Section 2.2.3.

Proof : The standard computation of aggregate balance balance(C,R+
I , R

−
I ) looks

up all possible pairings of positive and negative ratings, for each set of k cuboids.
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The pseudo code of the standard technique is presented in Algorithm 3. It scans each

of the k cuboids in C to identify possible positive and negative rating pairings. The

method maintains a |R+
I | × |R

−
I | matrix for book-keeping, all of whose elements are

first initialized to zero and then set to one, whenever a particular element position

(corresponding to postive-negative rating pairing) is encountered. The total number

of one-s in the |R+
I | × |R

−
I | matrix determines the measure balance(C,R+

I , R
−
I ). �

This fundamental region based balance computation involves populating a

min(nfr, |R+
I |) × min(nfr, |R−

I |)) matrix, where nfr is the number of fundamental

regions induced by the set C of k cuboids (nfr ≤ 2k − 1), each cell stores the balance

between a pair of FRs (or a self pair), and summing over all cells to compute the overall

balance. The details are presented in Algorithm 3. Finally, Algorithm RHE-DIM

works the same way as RHE-DEM presented in Algorithm 2, with all error(C,RI)

computation being replaced with compute-balance(C,R+
I , R

−
I ) of Algorithm 3.

Algorithm 3 − compute-balance(C,R+
I , R

−
I ) : v

1: for i′=1 to nfr do
2: Fi′(R

+
I , R

−
I ) ← {count(Fi′ , R

+
I ), count(Fi′ , R

−
I )}

3: end for
4: for i=1 to nfr, j=1 to nfr do
5: pairing-matrix-fr(i, j) ← 0
6: end for
7: for i=1 to 2k − 1, j=1 to 2k − 1 do
8: if i = j and pairing-matrix-fr(i, j) = 0 then
9: pairing-matrix-fr(i, j) ← Fi(R

+
I )× Fi(R

−
I )

10: else if i ̸= j and
pairing-matrix-fr(i, j) = 0 and
Fi, Fj belongs to same cuboid in C then

11: pairing-matrix-fr(i, j) ← Fi(R
+
I )× Fj(R

−
I )

12: pairing-matrix-fr(j, i) ← Fj(R
+
I )× Fi(R

−
I )

13: end if
14: end for
15: v ← sum of all non-zero products in pairing-matrix-fr
16: return v
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Complexity Analysis: The computational complexity of the description mining and

difference mining problems can be viewed as depending on the parameters: RI (

R+
I , R

−
I ), the set of ratings over item set I; n′, the number of cuboids in rating

lattice covering at least one rating from RI ; and k, the number of cuboids to be

presented to user. The exact algorithms E-DEM and E-DIM are exponential in n′.

The heuristic algorithms RHE-DEM and RHE-DIM work well in practice (as shown

in Section 2.5); but of course they do not guarantee any sort of worst case behavior,

either in running time or in result quality. We note that the performance of RHE-DIM

for difference mining is dependent on the computation of the optimization measure,

balance(C,R+
I , R

−
I ).

The naive way of computing the aggregate balance involves a quadratic com-

putation that scans all possible pairings of positive and negative ratings, for each

set C of k cuboids, during the second phase. The runtime complexity for balance

computation this way is O(k × |R+
I |× |R

−
I |). The alternate way of using the concept

of fundamental regions reduces the complexity since it concerns pairings of positive

and negative rating regions, instead of pairings of positive and negative rating tuples.

The number of fundamental regions for a set of k cuboids is 2k-1. Therefore, the

reduced running time is given by O(k × min(2k − 1, |R+
I |)×min(2k − 1, |R−

I |)).

2.5 Experiments

We conduct a set of comprehensive experiments to demonstrate the quality and

efficiency of our proposed MRI algorithms. First, we show that our randomized hill

exploration algorithms are scalable and achieve much better response time than the

exact algorithms while maintaining similar result quality (Section 2.5.1). Second,

through a set of Amazon Mechanical Turk studies, we demonstrate that interpre-

tations generated by our approaches are superior to the simple aggregate ratings

returned by current systems (Section 2.5.2).
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Real Movie Dataset: We use the MovieLens5 100K ratings dataset for our evaluation

purposes because the two alternative MovieLens datasets with more ratings (1M and

10M ratings datasets) do not contain user details that are required for our study. The

dataset has 100,000 ratings for 1682 movies by 943 users.

User Attributes: There are four user attributes that we consider in the MovieLens

dataset that we adopt, including gender, age, occupation and zipcode. The attribute

gender takes two distinct values: male or female. We convert the numeric age into

four categorical attribute values, namely teen-aged (under 18), young (18 to 35),

middle-aged (35 to 55) and old (over 55). There are 21 different occupations listed by

MovieLens, such as student, artist, doctor, lawyer, etc. Finally, we convert zipcodes

to states in the USA (or foreign, if not in USA) by using the USPS zip code lookup.

This produces the user attribute, location, which takes 52 distinct values.

Table 2.1. Bin Statistics.

lowest #rtg highest #rtg avg #rtgs
Bin 1 1 4 2
Bin 2 4 11 7
Bin 3 11 27 18
Bin 4 27 59 41
Bin 5 59 121 84
Bin 6 121 583 212

Binning the Movies: The number of ratings for each movie can vary significantly,

which can have a significant impact on the performance of the algorithms. Intuitively,

the more ratings we have to consider, the more costly the interpretation process is

expected to be. Therefore, we order our set of 1682 movies according to the number

of ratings each movie has, and then partition them into 6 bins of equal sizes, where

Bin 1 contains movies with the fewest number of ratings (on average 2) and Bin 6

contains movies with highest number of ratings (on average 212). Table 2.1 shows the

5http://www.grouplens.org/datasets/movielens/
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statistics of those bins. We randomly pick 100 movies from each bin and compare the

execution time and the objective score (error for description mining and balance

for difference mining) of both the exact algorithms and our heuristic algorithms.

System configuration: Our prototype system is implemented in Java with JDK 5.0.

All experiments were conducted on an Windows XP machine with 3.0Ghz Intel Xeon

processor and 2GB RAM. The JVM size is set to 512MB. All numbers are obtained

as the average over three runs.

2.5.1 Quantitative Evaluation

We compare the execution time for computing interpretations using the exact

and the randomized hill exploration algorithms. For all our experiments, we fix the

number of groups to be returned at k = 2, since the brute-force algorithms are not

scalable for larger k.

Figure 2.4 and 2.5 illustrates the average execution time and average descrip-

tion error respectively for E-DEM and RHE-DEM. As expected, while the execution

time difference is small for movies with small number of ratings, the RHE algorithm

computes the descriptions much faster than the exact algorithm for movies with a

large number of ratings (i.e., Bins 5, 6). Moreover, it reduces the execution time from

over 7 seconds to about 2 seconds on average for movies in Bin 6, which is significant

because we can effectively adopt description mining in an interactive real-time set-

ting with our RHE algorithm. Another observation is that for any movie randomly

chosen from any bin, our heuristic algorithm identifies a local minima very close to

the optimal solution without requiring multiple restarts. In fact, as Figure 2.5 illus-

trates, the average description error is only slightly larger for RHE, despite significant

reduction in the execution time. Figures 2.6 and 2.7 report similar results comparing

the average execution time and the average balance score respectively for E-DIM and
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Figure 2.4. Execution time: E-DEM vs
RHE-DEM.

Figure 2.5. error(C,RI): E-DEM vs
RHE-DEM.

Figure 2.6. Execution time: E-DIM vs
RHE-DIM.

Figure 2.7. balance(C,R+
I , R

−
I ): E-DIM

vs RHE-DIM.

RHE-DIM. Again, we see that our heuristic algorithm performs much faster (reducing

the execution time from over 20 second to less than 2 seconds) without compromising

much on quality.

2.5.1.1 Scalability Analysis

Figures 2.8 and 2.9 illustrate the execution time of our RHE algorithms for

description mining and difference mining respectively, over increasing number of

cuboids in the results. A randomly chosen movie, “Gone With The Wind”, is
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Figure 2.8. Execution time with increas-
ing k: DEM.

Figure 2.9. Execution time with increas-
ing k: DIM.

used in this analysis. The results show that RHE algorithms are scalable where

the execution time remains reasonably small through the range of k values up to

10, which we believe to be the upper limit of how many explanations a user can

consume for a single item. Note that the execution time of brute-force algorithms

could not be reported beyond k = 2 because they failed to finish within a reason-

able amount of time. High coverage of item ratings by few general groups such as

{⟨age, young⟩, ⟨occupation, student⟩}, etc. who frequently participate in collaborative

rating sites and very low coverage by majority of the groups in the rating lattice such

as {⟨gender, female⟩, ⟨age, old⟩, ⟨occupation, librarian⟩}, etc. supports the exploration

phase to reach a local minima quickly, thus making our RHE algorithms scalable.

2.5.2 Qualitative Evaluation

We now evaluate the benefits of rating interpretations in an extensive user

study conducted through Amazon Mechanical Turk (AMT). In particular, we aim to

analyze whether users prefer the more sophisticated rating interpretations that we are

proposing against the simple rating aggregation (i.e., average ratings) that all online

rating sites currently adopt. We conduct two sets of user studies, one for description
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mining and one for difference mining. Each set involves 4 randomly chosen popular

movies6 and 30 independent single-user tasks. For description mining, the four movies

chosen are “Toy Story”, “Titanic”, “Mission Impossible”, and “Forrest Gump”. For

difference mining, we bias toward more controversial movies and chose “Crash”, “101

Dalmatians”, “Space Jam”, and “Ben Hur”.

Each task is conducted in two phases: User Knowledge Phase and User Judg-

ment Phase. During the first phase, we estimate the users’ seriousness about the

task and familiarity about the movies in the task by asking them to complete a sur-

vey. The survey contains a few very simple questions about the movies that we use to

prune out malicious users who simply try to complete the task by answering questions

randomly. We also draw some interesting observations from the user study based on

the user’s level of familiarities with the movie. In the second phase, for each movie in

the task, we present to the user three alternative interpretations of the ratings about

the movie for description mining and difference mining:

• Option (a) overall average rating (simple)

• Option (b) the interpretation produced by the exact algorithms (E-DEM, E-

DIM)

• Option (c) the interpretation produced by our randomized hill exploration al-

gorithms (RHE-DEM, RHE-DIM), where the number of explanations (i.e., the

number of cuboid groups presented) for both exact and heuristic is limited at

3.

The user is then asked to judge which approach she prefers. The responses from

all the users are then aggregated to provide an overall comparison between the three

approaches.

6For movies that are not popular, uses can simply go over all the ratings one by one, therefore
rating interpretation does not bring much benefit.
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Figure 2.10. Users Prefer Rating Inter-
pretations.

Figure 2.11. Exact and RHE Algorithms
Produce Similar Results.

Figure 4.10 compares the simple overall average rating approach against our

approach of returning movie rating interpretations to the user. The simple average

represents the percentage of users choosing average ratings, whereas the latter is com-

puted as an addition of percentage of users preferring rating interpretations produced

by either exact or RHE algorithms. From the results, it is clear that users over-

whelmingly prefer the more informative explanations to the overall average rating,

thus confirming our motivation. We also observe that when an user is unfamiliar with

a movie in the study, she is particularly inclined to meaningful rating explanations

over average rating. To verify that the quality of results produced by our RHE algo-

rithms are on par with the exact algorithms, we leverage the same user study facility

to compare the interpretations produced by both. As shown in Figure 2.11, from the

user’s perspective and for both description mining and difference mining, results pro-

duced by exact and RHE algorithms are statistically similar. This validates that our

heuristic algorithms are viable, cheaper, alternatives to the brute-force algorithms.

2.6 Demonstration

We build a system MapRat that allows a user to explore multiple carefully

chosen aggregate analytic details over a set of user demographics that meaningfully
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explain the ratings associated with item(s) of interest. MapRat allows a user to

systematically explore, visualize and understand user rating patterns of input item(s)

so as to make an informed decision quickly. We focus on two main tasks: Similarity

Mining (SM) which identifies groups of reviewer sharing similar ratings on item(s) and

Diversity Mining (DM) which identifies groups of reviewer sharing dissimilar ratings

on item(s).

There exist prior systems such as OIC Weave7 that can provide visualization of

ratings along different demographic attributes. However, such systems do not provide

any automatic and interactive exploration of the rating information. Though Weave

allows exploration along a single dimension, it fails to identify more granular reviewer

sub-populations that can potentially have interesting rating patterns.

2.6.1 Architecture

There are two major components in the MapRat system : Rating Mining and

Visualization.

Rating Mining: This module accepts a set of items I from the front-end and collects

all the corresponding rating tuples RI . The set of groups that has at least one rating

tuple in RI are then constructed. The next step is to cast the problem as an opti-

mization task corresponding to each of the two sub-problems : Similarity Mining and

Diversity Mining. For each of the two sub-problems, the RHE algorithm is employed

to retrieve the best set of reviewer groups that provide meaningful rating interpreta-

tions. Besides returning explanations, our system also provides visualization of the

review groups. The location of the reviewer is a convenient and natural attribute to

anchor the visualization. Such location based visualization allows for rapid scanning

of the explanations, highlight geographical trends in rating patterns (if any) and also

provides a mechanism to overlay explanations from different interpretations. Using

7http://oicweave.org/
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a combination of aggressive data pre-processing, result pre-computation and caching

techniques, the latency of MapRat is minimized.

Visualization: This module is responsible for displaying the rating interpretations

over a map such that a user can get a fast overview of the rating trends over ge-

ographic regions. Each of the group always specify a geo-condition and hence it is

always visualizable on the map. The set of groups that are generated from each of the

sub-problems (SM and DM) is considered as rating interpretation object. Each set

of such objects are then rendered as a Choropleth map [12] using the average group

rating for shading. Dark red corresponds to lowest rating while dark green denotes

the highest and the intermediate values are represented by the red-green gradient.

Each group is also annotated with icons that identify the attribute value pairs used

to define it. The set of these Choropleth maps form an exploration. Such an explo-

ration is formed from the same set of input rating tuples RI and constraints, but

provide different perspective in terms of meaningful rating interpretations. Collec-

tively, the two different visualizations provide a comprehensive insight into reviewer

rating patterns. In addition, the system also allows a user to drill deeper and view

lower level aggregate statistics. For example, if the original geo condition was over

a state, the drill down provides city level statistics. Finally, navigation over time

dimension allows a user to understand the evolution of the reviewer rating pattern

over a period of time.

2.6.2 User Interface

The MapRat system can work on any collaborative rating site that provides

data as described in Section 2.5. For the purpose of the demo, we use Million rating

data set fromMovieLens. We integrate the MovieLens data with information available

from IMDB, in order to include additional item attributes such as actors and directors.

41



Figure 2.12. Primary User Interface of MapRat.

Figure 2.13. MapRat Explanation Result for Query in Figure 3.15.

Figure 2.14. MapRat Exploration Result for Explanation Male reviewers from Cali-
fornia.
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The MapRat system consists of a web based front-end that allows a user to

enter one or more items. The primary UI for entering is shown in Figure 3.15. A user

can enter a conjunctive or disjunctive query by entering one or more attribute value

pairs. Possible attributes include movie title, actor, director and genre. Furthermore,

the user can restrict the mining over a specific time interval, so that the evolution

of rating behaviors over a period can be observed. The user can enter additional

search settings such as the maximum number of groups to be returned and its rating

coverage. Suppose in Figure 3.15, a user wants to interpret how the reviewer ratings

have evolved over the years for the movie “Toy Story”. For this, the user enters the

search query “Toy Story” and sets the type of the query to Movie Name. Once the

additional search settings have been entered, the user clicks on Explain Ratings and

fetches the results. Moving the time slider over the range of values allows the user

to observe reviewer groups that provide best interpretations for the movie and how

they change over time.

The result of such a query is shown in Figure 2.13. Groups from different sub-

problems (Similarity Mining and Diversity Mining) are visualized in two different tabs.

For this demo, each of the groups always specify the state as their geo condition in

order to allow rendering of the explanation in the map. The average rating of the

group is used for highlighting the state. We use a red (rating 1.0) to green (rating 5.0)

Likert Scale for depicting the average rating. The other reviewer attributes associated

with the group are highlighted through icons as a visual aid to the user. The color of

the pin holding the icons depicts the age group of the sub-population.

For example, Figure 2.13 shows the best three groups for Similarity Mining:

male reviewers from California, male reviewers from Massachusetts and female teen stu-

dent reviewers from New York. In this particular instance, the displayed groups neatly

correspond to the major market segments of animation movie box office - male and
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young movie goers. However, it must be noted that MapRat strives to highlight

representative groups that the user can self-identify with. Explaining why the chosen

groups exhibited such rating behavior is significantly more complex and is not the pri-

mary aim of MapRat. All three groups have rated the movie positively as indicated

by the color used for highlighting the respective states; the average rating by female

teen student reviewers from New York is however lower than those by the remaining

groups. These groups consists of reviewers whose individual rating is very closer to

the group average and also cover a reasonable fraction of rating tuples. Clicking on

any of the groups displays additional statistics about the group’s rating. Figure 2.14

shows the statistical details that are shown to the user when she clicks on the result

Male reviewers from California for further exploration. This provides a convenient way

to compare the rating patterns of related groups. It is also possible to drill down

and view the city level aggregate movie rating statistics for each of the groups during

such interactive exploration. Finally, MapRat can exploit any user demographic

information (gender, age, location or occupation) available to constrain the groups

that are highlighted. This ensures that the resulting groups are the ones that user

most self-identifies with and hence most relevant for decision making.

2.6.3 Demo Plan

Our demo allows the audience to use a web interface (as shown in Figure 3.15)

and specify arbitrary search query involving one or more movie attributes. Example

queries include “The Social Network”, “Tom Hanks”, “The Lord of the Rings film

trilogy”, “thriller movies directed by Steven Spielberg” and so on. The audience can

specify other search settings and the time interval to restrict the mining.

Based on the query, our system will display the visualizations for the two mean-

ingful rating interpretation problems. The audience can explore the results to have a
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better understanding of the reviewer rating patterns for the query. They can observe

how the rating patterns fluctuate over a period of time or drill down deeper to view

the rating statistics at city level. Such exploration will give the audience a deeper ap-

preciation of our system’s utility to aid users make informed judgments about movies

quickly. It will also clearly show the superiority of our system in describing rating

explanations in terms of meaningfully labeled user groups, over existing collaborative

rating sites.

Next, we extend the current ideas to analyze handle handle tag-based feedback

since analyzing how tags are assigned by certain users to certain items has more

powerful implications in helping users search for desired information.
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CHAPTER 3

Collaborative Tagging Behavior Analysis

3.1 Introduction

Tagging is a core activity on the social web. It reflects a wide range of con-

tent interpretations and serves many purposes, ranging from bookmarking websites

in del.icio.us, organizing personal videos in YouTube, and characterizing movies in

MovieLens. While one can possibly examine tags used by a single user on a single

item, it is easy to see that the task becomes quickly intractable for a collection of tag-

ging actions involving multiple users and items. In this chapter, we aim to formalize

the analysis of the tagging behavior of a set of users for a set of items and develop

appropriate algorithms to complete that task.

A typical tagging action involves three components (i.e., dimensions), user,

item, and tag. We propose to study a variety of analysis tasks that involve applying

two alternative measures, similarity and diversity, to those components and produc-

ing groups of similar or diverse items, tagged by groups of similar or diverse users

with similar or diverse tags. For example, one possible analysis outcome could be:

“teenagers use diverse tags for action movies” or “males from New York and California

use similar tags for movies directed by Quentin Tarantino”. A general dual mining

framework that encompasses many common analysis tasks is defined in Section 3.2.4,

and an extension to the framework in Section 3.5. A core challenge in this dual mining

framework is the design of similarity and diversity measures. For user or item com-

ponents, defined by (attribute, value) pairs, several existing comparison techniques

have been proposed that can leverage their structured nature or bipartite connections.

Section 3.2.1 illustrates some of those techniques.
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Figure 3.1. Tag Signature for All Users. Figure 3.2. Tag Signature for CA Users.

Comparing similarity and diversity of tags used by various users on different

items, however, presents a new challenge. First, tags are drawn from a much larger

vocabulary than user or item attributes and exhibit a long tail characteristic. Sec-

ond, it is often the case that different tags are used for the same set of items and,

accounting for those tags separately would not capture their co-usage. Finally, tags

may have linguistic connections such as synonymy. In order to capture tag similarity

and diversity, we propose to summarize tags first to account for their co-usage and

semantic relationships. Section 3.2.2 describes some techniques that we borrow from

information retrieval and machine learning that can be used.

The tag component is also the most interesting among the three to be analyzed.

Figure 3.1 shows a rendering of a tag summarization for “Woody Allen” movies in

the form of a tag cloud. Similarly, Figure 3.2 shows a summarization of tags for the

same movies from California users only. In both cases, summarization is defined as a

simple frequency-based tag cloud where the size of a tag corresponds to how often it

has been used on those movies. While Woody and Allen are not surprisingly common

to both, the two clouds are different: all users highlight the dramatic, tragic and

disturbing nature of those movies, and California users emphasize tags such as

classic and psychiatry. Moreover, one of the director’s popular movies, Noiva

Nervosa is prominent in the tag cloud of all users, and yet is conspicuously absent
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in that of California users. Our goal is to define analysis tasks that can help users

easily spot those interesting patterns and use that knowledge in subsequent actions.

We emphasize that, in this study, it is not our goal to advocate one particular

similarity or diversity measure over another. Rather, we focus on formalizing the

Tagging Behavior Dual Mining (TagDM) framework and the problem definitions, and

designing algorithms that will work well for most measures. The analysis problems

formally defined in our proposed framework fall into the wider category of constrained

optimization problems. We are looking for groups of tagging actions that achieve

maximum similarity or diversity on one or more components while satisfying a set of

conditions and constraints. We first discuss a set of mining tasks that our TagDM

framework can handle, and then formalize the general TagDM framework.

Given that a typical tagging action involves three components (i.e., users, items,

and tags), a large number of concrete problem instances can be defined, with their

variations coming from two main aspects. The first category of variations depends on

which measure (similarity or diversity) is applied to which tagging components (users,

items, or tags). For example, a user can be interested in identifying similar user groups

who use similar tags for diverse item groups, or in identifying diverse user groups who

use similar tags for similar item groups. Since there are three components, each of

which can adopt one of two measures, this variation alone can lead to 23 = 8 different

problem instances. Since we are looking for result groups that achieve maximum

similarity or diversity on one or more components while satisfying a set of conditions

and constraints, the second category of variations depends on which components the

user is adding to the optimization goal and which components the user is adding

to the constraints. For example, a user can be interested in finding tagging action

groups that maximize a tag diversity measure while satisfying user diversity and item

similarity constraints, or groups that maximize a combination of tag diversity and user
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diversity measures while satisfying an item similarity constraint. Figures 3.1 and 3.2

depict an example of the former instance - diverse users (all users and California

users) maximizing tag diversity for similar items (Woody Allen movies). Since each

component can be part of the optimization goal, or part of the constraint, or neither,

this variation can lead to 33 − 1 = 26 different problem instances. Combining both

categories of variations, there is a total of 112 concrete problem instances that our

framework captures! We formalize such a TagDM framework in Section 3.2. Of

course, we can extend the TagDM framework to add additional conditions to the

optimization goal(s) of these 112 instances based on user needs, the details of which

are described in Section 3.5.

Table 3.1. Concrete TagDM Problem Instantiations. Column C lists the constraint
dimensions and column O lists the optimization dimensions.

ID User Item Tag C O
1 similarity similarity similarity U,I T
2 similarity diversity similarity U,I T
3 diversity similarity similarity U,I T
4 diversity similarity diversity U,I T
5 similarity diversity diversity U,I T
6 similarity similarity diversity U,I T

Table 3.1 illustrates six of the problem instantiations that we have investigated

in details through the rest of the chapter. In particular, we focus on problems with

all three components with constraints on user and item and optimization on the tag

component, since those are the most novel and intuitive mining problems. Under this

setting, the user and item components are used primarily for enforcing constraints

(similarity/diversity) and in providing an intuitive description of the tagging action

groups. However, the optimization would be done over the tagging component. Two

tagging action groups would be considered similar if their tagging components have

small distance between them.
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Not surprisingly, as our complexity analysis shows in Section 3.3, those problems

are NP-Complete in general. We propose four sets of efficient algorithms for solving

them, the first three of which consider pair-wise aggregation measures for capturing

similarity and diversity while the fourth employs a more general mining measure. The

first set incorporates Locality Sensitive Hashing (LSH) and can be used for problems

maximizing tagging action component similarity. While traditional LSH is frequently

used for performing nearest neighbor search in high-dimensional spaces, our algo-

rithm finds the bucket containing the result set of our tagging behavior analysis. The

second set of algorithms borrows ideas from techniques employed in Computational

Geometry to handle the Facility Dispersion Problem (FDP) and is effective for prob-

lems maximizing diversity. Both sets of algorithms possess compelling theoretical

characteristics for problem instances optimizing the dual mining goal without any

constraints. For both sets, we also propose advanced techniques that return better

quality results in comparable running time. The third set of algorithms use Hierar-

chical Agglomerative Clustering (HAC) techniques and can be applied to problems

maximizing either similarity or diversity. It is particularly useful for handling complex

mining problems, having additional conditions in optimization goals. All three sets

of algorithms consider some form of pair-wise distance measure for computing simi-

larity or diversity. Therefore, we propose a fourth set of more general algorithm that

is based on the Hill Climbing (HC) technique and can handle any arbitrary mining

function for similarity and diversity.

3.2 Problem Framework

Similar to Section 2, we model a collaborative tagging siteD as a triple ⟨U , I,R⟩,

representing the set of reviewers (i.e., users), the set of items (i.e., products) and the

feedback (i.e, tag vocabulary), respectively. Each feedback r, i.e., tagging action can
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be considered as a triple itself, represented as ⟨u, p, T⟩, where u ∈ U , i ∈ I, T ⊂ R, re-

spectively. A group of tagging actions is denoted as g = {⟨u1, p1, T1⟩, ⟨u2, p2, T2⟩, . . . , }.

We define a user schema, UA = ⟨ua1, ua2, . . .⟩, to represent each user as a set of at-

tribute values conforming to the user schema: u = ⟨uv1, uv2, . . .⟩ ∈ U , where each uvx

is a value for the attribute uax ∈ UA. For example, let UA = ⟨age, gender, state, city⟩,

a user can be represented as ⟨18, student, new york, nyc⟩. Similarly, we define an item

schema, IA = ⟨pa1, pa2, . . .⟩, to represent each item as a set of attribute values,

i = ⟨pv1, pv2, . . .⟩, where each pvy is a value for the attribute pay ∈ IA.

Each tagging action therefore can be represented as an expanded tuple that con-

catenates the user attributes, the item attributes and tags: r = ⟨uv1, uv2, . . . , pv1, pv2,

. . . , T⟩. G denotes the set of all such tagging action tuples. Many social sites have

hundreds of millions of such tuples. Most, if not all, mining tasks involve analyzing

sets of such tuples collectively. While there are a number of different ways tagging

action tuples can be grouped, we adopt the view proposed and experimentally ver-

ified in [1], where groups of users (or items) that are structurally describable (i.e.,

sharing common attribute value pairs) are meaningful to end-users. Such groups

correspond to conjunctive predicates on user or item attributes. An example of a

user describable tagging action group is {⟨gender, male⟩, ⟨state, new york⟩}, and of an

item describable group is {⟨genre, comedy⟩, ⟨director,woody allen⟩}. Next we define an

essential characteristic of a set of tagging action groups.

Definition 3.2.1. Describable User Group: A group of tagging actions, g = {⟨u1, p1, T1⟩,

⟨u2, p2, T2⟩, . . . , }, are considered a meaningful user group iff: ∃A ⊂ UA, |A| > 0,

such that, for each a ∈ A, ∃v, ∀r ∈ g, ru.ua = uv. A set of attribute value pairs,

Dg
user = {ua1=uv1, ua2=uv2, . . . , }, where uax ∈ A and uvx is the value of ax shared

by all tuples in g, are called the user group description. Furthermore, we say that

tuples in g satisfy Dg
user.
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Definition 3.2.2. Describable Item Group: A group of tagging actions, g = {⟨u1, p1, T1⟩,

⟨u2, p2, T2⟩, . . . , }, are considered a meaningful item group iff: ∃A ⊂ IA, |A| > 0, such

that, for each a ∈ A, ∃v,∀r ∈ g, ri.pa = pv. We define item group description as

Dg
item = {pa1=pv1, pa2=pv2, . . . , }, where pax ∈ A and pvx is the value of pax shared

by all tuples in g. We say that tuples in g satisfy Dg
item.

Definition 3.2.3. Group Support: Given the input set of tagging action tuples G,

the support of a set of tagging action groups G = {g1, g2, . . .} over G, is defined as

SupportGG = |{r ∈ G | ∃gx ∈ G, r ∈ gx}|. Intuitively, group support measures the

number of input tagging action tuples that belongs to at least one of the groups in G.

Before we formalize the mining problems, we introduce the core concept of Min-

ing Function that computes a similarity or diversity score using arbitrary evaluations

over the tagging action groups. Similarity and diversity are usually estimated as

functions of distance. In particular, aggregation of pair-wise distances between the

different objects (i.e., tagging action groups) offers powerful means for solving many

real mining scenarios:

Definition 3.2.4. Pair-Wise Aggregation Dual Mining Function. A Pair-Wise Ag-

gregation (PA) Dual Mining Function, Fpa : G×b×m→ float, is a dual mining func-

tion with two component function Fp : gi×gj×b×m→ float and Fa : {s1, s2, . . .} →

float, where (gi, gj) is a pair of distinct tagging action groups and each si is an

intermediate score produced by Fp, such that: Fpa(G, b,m) = Fa({Fp(gi, gj, b,m)},

∀gi, gj ∈ G, i ̸= j.

We now present a few examples of the pair-wise dual mining function. The key

to a pair-wise dual mining function is the pair-wise comparison function, Fp(g1, g2, b,m),

where g1 and g2 are tagging action groups, and b ∈ {users, items, tags}, is a tagging

behavior dimension, and m ∈ {similarity, diversity}, is a dual mining criterion.
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3.2.1 User and Item Dimensions Dual Mining

Given a user describable tagging action group1, its user dimension is effectively

its user group description, i.e., a set of (attribute, value) pairs that describes the

group. Therefore, given two user groups, g1 and g2, their similarity or diversity

can be captured mainly in two ways: 1) structural distance between the user group

descriptions and 2) set distance based on the items they have rated.

Let A be the set of user attributes shared between two user describable tagging

action groups g1 and g2, an example of the pair-wise comparison function leveraging

structural distance is the following:

Fp(g1, g2, users, similarity) =
∑

a∈A sim(v1, v2)

where a.v1 and a.v2 belong to the set of user attribute value pairs and sim can be a

string similarity function that simply computes the edit distance between two values

or a more sophisticated similarity function that takes domain knowledge into consid-

eration. For example, a domain-aware similarity function can determine “New York

City” to be more similar to “Boston” than to “Dallas”. Fp(g1, g2, users, diversity)

can be similarly defined using the inverse function.

Let g1.I and g2.I be the sets of items tagged by tuples in g1 and g2, respectively,

an example of the pair-wise comparison function leveraging set distance is:

F ′
p(g1, g2, users, similarity) =

|{r|r∈g1.I∧r∈g2.I}|
|{r|r∈g1.I∨r∈g2.I}|

which simply computes the percentages of items tagged by both groups (akin to

Jaccard distance.) If numerical ratings are available for each tagging tuple, a more

sophisticated set distance similarity function can further impose an additional con-

straint that an item is common to both groups if its average ratings in both are close.

F ′
p(g1, g2, users, diversity) can be similarly defined using the inverse function.

1Since the user and item dimensions share the same characteristics in the dual mining framework,
we present here only the user dimension for simplicity.
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3.2.2 Tag Dimension Dual Mining

The tag dimension is fundamentally different from the user and item dimensions.

First, there is no fixed set of attributes associated with the tag dimension, therefore

the structural distance does not apply. Second, tags are chosen freely by users using

diverse vocabularies. As a result, a single tagging action group can contain a large

number of tags. Both characteristics make comparing two sets of tags very difficult.

We propose a two-step approach for handling the tag dimension. First, we

propose an initial step to summarize the set of all tags of a tagging action group

into a smaller representative set of tags, called group tag signature. Second, we apply

comparison functions to compute distance between signatures. Once again, we are

not advocating any particular way of producing signatures and/or comparing them.

Rather, we simply argue for the need for tag signatures and their comparisons.

Definition 3.2.5. Group tag signature: Given a group of tagging actions g = {⟨u1, p1, T1⟩,

⟨u2, p2, T2⟩, . . .}, we aim to summarize the tags in T1∪T2∪ . . . into a tag signature de-

noted as Trep(g). The general form of Trep(g) is {(tc1, w1), (tc2, w2), . . . } where tci is

topic category (which can be a tag itself) and wi is a weight representing the relevance

of g for ci.

One can define several methods to compute tag signatures. For example, when

tags are hand-picked by editors and hence the number of unique tags is small, a simple

definition can be Trep(g) = {(t, freq(t)) | t ∈ T1 ∪ T2 ∪ . . .}, where freq(t) computes

how many times t is used in g.

Most collaborative tagging sites such as del.icio.us and YouTube, encourage

users to create their own tags, thereby creating a long tail of tags. This raises chal-

lenges such as sparsity (many tags are used once or twice only) and the choice of

different tags to express similar meanings. Techniques from information retrieval and

machine learning such as tf*idf and Latent Dirichlet Allocation (LDA) [13, 14] can be
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used for tag summarization. Also, a web service such as Open Calais2 can be used to

match a set of tags to a set of pre-defined categories through sophisticated language

analysis and information extraction..

Comparing group tag signatures: When tagging action groups are represented as

tag signatures over the same set of topics, we can leverage many existing vector

comparison functions to compute the distance between any two group tag signature

vectors pair-wisely. An example is simply cosine similarity as follows:

F ′′
P (g1, g2, tags, similarity) = cos(θ(Trep(g1), Trep(g2))),

where θ is the angle between the two vectors. F ′′
P (g1, g2, tags, diversity) can be

defined similarly. The comparison can also be enhanced by using an ontology such

as WordNet to compare entries of similar topics.

3.2.3 Concrete Problem Instances

We are now ready to formally define two of the concrete dual mining problems

listed in Table 3.1 in the introduction. The first one (Problem 2 in Table 3.1) aims

to find similar user sub-populations who agree most on their tagging behavior for

a diverse set of items. The second one (Problem 4 in Table 3.1 ) finds diverse user

sub-populations who disagree most on their tagging behavior for a similar set of items.

Problem 3.2.2. Identify a set of tagging action groups, Gopt = {g1, g2, . . .}, such

that:
• ∀gx ∈ Gopt, gx is user- and/or item-describable;

• 1 ≤ |Gopt| ≤ k;

• SupportG
opt

G ≥ α;

• F1(G
opt, users, similarity) ≥ q;

• F2(G
opt, items, diversity) ≥ r;

• F3(G
opt, tags, similarity) is maximized.

2https://www.opencalais.com/

55



where F1 and F2 are structural similarity based dual mining functions as defined

in Definition described in Section 3.2.1, and F3 is the LDA based tag dual mining

function as described in Section 3.2.2.

For k = 2, α = 100, q = 0.5, and r = 0.5, solving the problem on the full set of

tagging action tuples in MovieLens [15] can give us the following Gopt:

g1 = {⟨gender, male⟩, ⟨age, young⟩, ⟨actor, j. aniston⟩,

(comedy, drama, friendship)}

g2 = {⟨gender,male⟩, ⟨age, young⟩, ⟨actor, j. timberlake⟩,

(drama, friendship)}

which illustrates the interesting pattern that male young users assign similar tags,

drama and friendship, to movies with Jennifer Aniston and Justin Timberlake, the

former for her involvement in the popular TV show “Friends” and the latter for his

movie “The Social Network”.

A closely related problem to Problem 3.2.2 is to inverse the similarity and

diversity constraints for the user and item components, i.e., finding diverse user sub-

populations who agree most on their tagging behavior for a similar set of items (Prob-

lem 3 in Table 3.1 in the introduction). Both problems focus on optimizing the tag

similarity and therefore can be solved using similar techniques. Next, we define a

problem that aims to identify groups that disagree on their tagging behavior.

Problem 3.2.5. Identify a set of tagging action groups, Gopt = {g1, g2, . . .}, such

that:

• ∀gx ∈ Gopt, gx is user- and/or item-describable;

• 1 ≤ |Gopt| ≤ k;

• SupportG
opt

G ≥ α;

• F1(G
opt, users, diversity) ≥ q;

• F2(G
opt, items, similarity) ≥ r;

56



• F3(G
opt, tags, diversity) is maximized.

where F1, F2, and F3 are similarly defined as in Problem 3.2.2.

For k = 2, α = 100, q = 0.5, and r = 0.5, solving the problem on the full set of

tagging action tuples in MovieLens can give us the following Gopt:

g1 = {⟨gender,male⟩, ⟨age, teen⟩, ⟨genre,action⟩,

(gun, special effects)}

g2 = {⟨gender,female⟩, ⟨age,teen⟩, ⟨genre,action⟩,

(violence, gory)}
which illustrates teenaged male users and female users have entirely different perspec-

tives on action movies. This gives a user a new insight that there is something about

action movies that is causing the different reactions among different groups of users.

3.2.4 The TagDM Framework

The formal definitions for Problems 2 and 4 share a number of similarities.

The objective is to identify a set of tagging action groups that maximizes similar-

ity/diversity over a specific dimension. In addition, it also has constraints on the

number of results, their coverage and whether similarity/diversity measures over in-

dividual dimensions exceed certain threshold.

In this chapter, we describe a constrained optimization based framework for

tagging behavior mining. The framework is very general such that each of the con-

crete problem instances previously described can naturally be defined. Additionally,

it is also easily extensible to explore complex objective functions and constraints

depending on user needs.

We formally define the TagDM framework in the following definition.

Definition 3.2.6. Tagging Behavior Dual Mining (TagDM) Problem. Given a triple

⟨G,C,O⟩ in the TagDM framework where G is the input set of tagging actions and

C, O are the sets of constraints and optimization criteria respectively, the Tagging
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Behavior Dual Mining problem is to identify a set of tagging action groups, Gopt =

{g1, g2, . . .} for b ∈ {users, items, tags} and m ∈ {similarity, diversity}, such

that:

• ∀gx ∈ Gopt, gx is user- and/or item-describable;

• klo ≤ |Gopt| ≤ khi;

• SupportG
opt

G ≥ α;

• ∀ci ∈ C, ci.F (Gopt, b,m) ≥ threshold;

• Σoj∈O, oj.F (Gopt, b,m) is maximized.

Intuitively, TagDM aims to identify a set of user- and/or item-describable sub-

groups from input tagging actions, such that the dual mining constraints are satisfied

and a dual mining goal is optimized. We now clearly see how this framework gener-

alizes the common problem instances given in Section 3.2.3. The notation ci.F refers

to a function (associated with constraint ci) that measures similarity/diversity of the

corresponding dimension. Similarly, the notation oj.F represents the dual mining

function that operates over the specific dimension whose value must be optimized.

Notice that, the definition of TagDM problem is not limited to pair-wise ag-

gregation dual mining functions, described in Definition 3.2.4. Pair-wise dual mining

functions has a number of appealing properties - they are very common, can be com-

puted efficiently, and offers a vast literature of techniques to exploit for developing

fast solutions. However, restricting to pair-wise functions severely limits the expres-

siveness and generality of our TagDM framework.

General dual mining functions takes as input a set of tagging action groups and

performs a holistic analysis over the entire set. They are not restricted to identifying

and then accumulating the local properties at the tagging action group level. A

number of optimization functions cannot be easily be defined in terms of pair-wise

aggregation functions. Here are some examples:
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• Identify a set of tagging action groups such that the variance of individual

tagging actions is minimized. This helps us find user-describable and/or item-

describable groups who share similar tagging behavior.

• Identify a set of tagging action groups such that the number of distinct tags

they use is minimized. This helps us discover user-describable and/or item-

describable groups where there is an universal agreement on the tag usage.

• Identify a set of tagging action groups such that their tag vocabulary (obtaining

by performing union of all tagging actions) form a coherent ontology - either

they all are synonyms, antonyms or occur within a specific distance of each

other in an Ontology service such as Wordnet.

The generalized dual mining function can be formally defined as :

Definition 3.2.7. Dual Mining Function. A Dual Mining Function, F : G×b×m→

float, takes as inputs: G, a set of tagging action groups; b ∈ {users, items, tags}, a

tagging behavior dimension; m ∈ {similarity, diversity}, a dual mining criterion;

and produces a float score, s, that quantifies the mining criterion over the particular

dimension for the set of tagging action groups.

3.3 Complexity Analysis

In this section, we prove that the Tagging Behavior Dual Mining problem is

NP-Complete. The decision version of the TagDM problem is defined as follows:

Given a triple ⟨G,C,O⟩, is there a set of tagging action groupsGopt = {g1, g2, . . .}

such that
∑

oj∈O(oj.Wt× oj.F (Gopt, oj.D, oj.M) ≥ α subject to:

• ∀gx ∈ Gopt, gx is user- and/or item-describable.

• klo ≤ |Gopt| ≤ khi

• SupportG
opt

G ≥ α

• ∀ci ∈ C, ci.F (Gopt, ci.D, ci.M) ≥ ci.Th
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Theorem 3.3.1. The decision version of the TagDM problem is NP-Complete.

Proof. The membership of decision version of TagDM problem in NP is obvious. To

verify NP-Completeness, we reduce Complete Bipartite Subgraph problem (CBS) to

our problem and argue that a solution to CBS exists, if and only if, a solution our

instance of TagDM exists. First, we show that the problem CBS is NP-Complete.

Lemma 3.3.1. Complete bipartite subgraph problem (CBS) is NP-Complete.

Proof. The decision version of CBS is defined as follows:

Given a bipartite graphG′ = (V1, V2, E) and two positive integers n1 ≤ |V1|, n2 ≤

|V2|, are there two disjoint subsets V
′
1 ⊆ V1, V

′
2 ⊆ V2 such that |V ′

1 | = n1, |V
′
2 | = n2

and u ∈ V
′
1 , v ∈ V

′
2 implies that {u, v} ∈ E.

The membership of CBS in NP is obvious. We verify the NP-Completeness

of the problem by reducing it to Balanced Complete Bipartite Subgraph (BCBS)

problem which is defined as : Given a bipartite graphG′′ = (V
′′
1 , V

′′
2 , E

′
) and a positive

integer n
′
, find two disjoint subsets V

′′′
1 ⊆ V

′′
1 , V

′′′
2 ⊆ V

′′
2 such that |V ′′′

1 | = |V
′′′
2 | = n

′

and u ∈ V
′′′
1 , v ∈ V

′′′
2 implies that {u, v} ∈ E

′
. This problem was proved to be

NP-Complete by reduction from Clique in [16]. We can reduce BCBS to CBS by

passing the input graph G′′(V
′′
1 , V

′′
2 , E

′
) of BCBS to CBS and setting n1 and n2 to

n
′
. If a solution exists for the CBS instances, then the disjoint subsets V

′′′
1 , V

′′′
2 form

a balanced complete bipartite subgraph in G′′.

We have already established that TagDM problem is in NP. To verify its NP-

Completeness, we reduce CBS to the decision version of our problem. Given an

instance of the problem CBS with G
′
= (V1, V2, E) and positive integers n1, n2, we

construct an instance of TagDM problem such that there exists a complete bipartite

subgraph induced by disjoint vertex subsets V
′
1 ⊆ V1, V

′
2 ⊆ V2 and |V

′
1 | = n1, |V

′
2 | = n2,

if and only if, a solution to our instance of TagDM exists.
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First, we create an user schema SU = ⟨a1, a2, . . . , a|V2|⟩ such that for each vertex

vj ∈ V2, there exists a corresponding user attribute aj ∈ SU . Next, we define a

set of users U = {u1, u2, . . . , u|V1|}. Again, for each vertex vi ∈ V1 there exists a

corresponding user ui ∈ U .

For all pairs of vertices (vi, vj), vi ∈ V1, vj ∈ V2 , we set ui.aj to 1 if {vi, vj} ∈ E;

else, we set it to a unique value such that ux1.ay1 ̸= ux2.ay2 unless x1 = x2, y1 = y2.

Intuitively, we set the j-th attribute of i-th user to 1 if an edge exists between vertex

pairs (vi, vj); else, we set it to a unique value that is not shared with any attribute of

any user. One possible way to assign the unique attribute values is to pick a previously

unassigned value from the set [2, |V1| × |V2|+ 1]. Since the number of possible edges

is at most |V1| × |V2|, this set suffices to generate unique attribute values.

We construct an instance of the TagDM problem where I = {i} and T =

{t}. This results in a set of tagging actions, G = {⟨u1, i, t⟩, . . . , ⟨u|V1|, i, t⟩} where

only the user dimension plays a non-trivial role in determining the problem solution.

Given a pair of users, the pairwise similarity function F1 on user dimension measures

their structural similarity by counting the number of attribute values that are shared

between them. Intuitively, the problem collapses to that of finding a subset of users

who share a subset of attributes. We then define our TagDM problem instance as :

For a given a triple ⟨G,C,O⟩, identify a set Gopt of tagging action groups such that

F3(G
opt, tags,m) ≥ 0 subject to:

• 1 ≤ |Gopt| ≤ n1

• SupportG
opt

G ≥ n1

• F1(G
opt, users, similarity) ≥ n2 ×

(
n1

2

)
If there exists a solution to this TagDM problem instance, then there are n1

users who have identical values for at least n2 of their attributes. If two users ux

and uy have same values for a set of attributes A, then for all attributes a ∈ A,
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ux.a = uy.a = 1. In other words, whenever the attributes of two users overlap, the

shared attributes can only take a value of 1. Any other symbol that was assigned

is unique and cannot overlap by construction. If there exists a subset of attributes

A′ ⊆ SU and a subset of users U ′ ⊆ U , then the corresponding vertices in V1 and V2

form a complete bipartite subgraph solving the input instance of BCS. Thus TagDM

problem is NP-Complete. �

A brute-force exhaustive approach (henceforth, referred to as Exact) to solve the

TagDM problem requires us to enumerate all possible combinations of tagging action

groups in order to return the optimal set of groups maximizing the mining criterion

and satisfying the constraints. The number of possible candidate sets is exponential

in the number of groups. Evaluating the constraints on each of the candidate sets

and selecting the optimal result can thus be prohibitively expensive. Each tagging

action group is associated with a group tag signature vector (the size of which is

determined by the cardinality of the global set of tag topics), which may introduce

additional challenges in the form of higher dimensionality. Therefore, we develop

practical efficient solutions.

We develop two sets of algorithms that are capable of solving all 112 concrete

problem instances that TagDM framework captures. The first set comprises of locality

sensitive hashing based algorithms for handling TagDM problem instances maximiz-

ing similarity of tagging action components. The algorithms are efficient in practice,

but cannot handle TagDM problem instances maximizing diversity. The second set is

based on techniques employed in computational geometry for the facility dispersion

problem and is our solution for diversity mining problem instances.

Next, we discuss ways to extend the general TagDM framework, i.e., Defini-

tion 3.2.6, and further develop two additional algorithms which are capable of han-
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dling complex mining tasks. The first of these algorithms draws inspiration from

hierarchical clustering methods and handles problem instances maximizing similarity

as well as those maximizing diversity. The technique is particularly useful for handling

mining tasks which involve additional conditions and criteria in the optimization goal

of the general TagDM framework. The second of these algorithms consider the more

general mining function in Definition 3.2.7 as opposed to the pairwise measures used

by all the remaining algorithms.

3.4 Algorithms

3.4.1 Similarity Maximization: LSH Based Algorithms

The first of our solutions is based on locality sensitive hashing (LSH) which is a

popular technique to solve nearest neighbor search problems in higher dimensions [17].

LSH is preferred over several seemingly promising techniques (such as constructing

efficient indices, which suffers from the curse of dimensionality) because it scales

gracefully to higher dimensional data, is efficient and provides theoretical guarantees.

LSH performs a probabilistic dimensionality reduction of high dimensional data

by projecting input items in higher dimension to a lower dimension such that items

that were in close proximity in the higher dimension retain their proximity in lower

dimensional space with high probability. LSH hashes an input item such that similar

input items fall into the same bucket (i.e., uniquely definable hash signature) with

high probability. In other words, all the input items in the same bucket are highly

likely to be similar.

A classical application of LSH is to identify nearest neighbors efficiently. Typi-

cally, the input items in LSH are high dimensional vectors such as multimedia content.

There are two major parameters for LSH : d′, the number of hash functions (which
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also determines the lower dimension to which items are projected to) and l, the num-

ber of hash tables. A hash table is associated with d′ hash functions randomly chosen

from a hash family that is problem specific. Each hash function accepts a vector in

high dimension and returns a scalar. By concatenating the result of d′ hash func-

tions, we get a d′ dimensional vector that also forms a distinct hash signature for

the item. All the input items that have identical hash signatures are said to fall in

the same bucket. This process is repeated for all the l hash tables. Intuitively, each

hash table can be considered as a partition of the input items such that similar items

fall into same partition with high probability. Typically, each hash table results in

different partition of the input data based on the hash functions associated with it.

Once the input data has been projected to lower dimensions, it can then be used

for applications such as identifying nearest neighbors of a given item. For each of

the l hash tables, we project the input query item and identify which bucket it falls

into. All the items that co-occur in any of the l buckets the input query items fall

into are considered as candidate nearest neighbors. However, the set of candidates is

usually much smaller than the size of input items and allows nearest neighbor(s) to

be computed efficiently.

LSH guarantees a lower bound on the probability that two similar input items

fall into the same bucket in the projected space and also the upper bound on the

probability that two dissimilar vectors fall into the same bucket. For any pair of

points in a high-dimensional space and a given hash function h, P1 is the probability

of two close points receiving the same value after hashing. P2 is the probability of

two far-apart points falling receiving the same value after hashing. We want P2 < P1

and typically P1 >
1
2
. Formally, given a pair of nearby points p1, q1 (defined as points

within distance R1) and far-apart points p2, q2 (those with distance at least R2 = cR1)

we have:
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P [h(p1) = h(q1)] ≥ P1 for dist(p1, q1) ≤ R1

P [h(p2) = h(q2)] ≤ P2 for dist(p2, q2) ≥ R2 (3.1)

Two items fall into the same bucket if they receive identical values for each of

the d′ independently chosen hash functions. After projecting the input items from

higher dimension d to a lower dimension d′, we can see that the following probabilistic

bounds hold for similar/dissimilar items falling into same bucket :

P(similar items falling in same bucket) ≥ P d′

1

P(dissimilar items falling in same bucket) ≤ P d′

2 (3.2)

Given the background on LSH, we now adapt it to select a set of tagging action

groups that are similar in their tagging behavior based on locality sensitive hashing.

Recall that our input is the set G of n tagging action groups (i.e., n d-dimensional

tag signature vectors, where d is the cardinality of the global set of tag topics

mentioned in Section 3.2.2) using a pair-wise comparison function F ′′
p (g1, g2, tags,

similarity) that operates on group tag signature vectors in order to optimize tag

similarity. Our expected result is a set of k tagging action groups Gopt such that they

have the least average pair-wise distance between them

Note that, our LSH based algorithms works for Problems 1, 2 and 3 in Table 3.1

maximizing tag similarity. We first introduce an algorithm that returns the set of

tagging action groups Gopt, 1 ≤ |Gopt| ≤ k having maximum similarity in tagging

behavior (Column O in Table 3.1) and then discuss additional techniques to include

the multiple hard constraints into the solution (Column C in Table 3.1).

3.4.1.1 Maximizing Similarity based on LSH: SM-LSH

Our LSH based algorithm SM-LSH deals with TagDM problem instances opti-

mizing tag SiMilarity. The classical usage of LSH is to find the nearest neighbor(s) for

a given query item. However, in TagDM problems, there is no specific query item -
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instead, we want to identify a set of k tagging action groups that have high pair-wise

similarity over their tagging behavior. We reconcile these two seemingly different

usages by exploiting the fact that given a bucket, all points in it are highly likely to

be similar. We employ LSH to partition the tagging action groups such that similar

groups fall into the same bucket. The next step is to choose the best set of tagging

groups for a hash table. We identify the best k-subset for each bucket and pick the

best set over all buckets. Different sets are comparable using the dual mining scoring

function. We repeat the process for each hash table and finally choose the best set

among all hash tables.

One of the key requirement for good performance of LSH is the careful selection

of the family of hashing functions. In SM-LSH, we use the LSH scheme proposed by

Charikar [18] which employs a family of hashing functions based on cosine similarity.

It is possible to utilize other distance measures such as Euclidean, Jaccard, Earth-

Movers etc. The only change involves how the hash functions are chosen and how

the probability values P1 and P2 are computed. As discussed in Section 3.2.2, the

cosine similarity between two group tag signature vectors is defined as the cosine of

the angle between them and can be defined as:

cos(θ(Trep(gx), Trep(gy))) =
|Trep(gx).Trep(gy)|√
|Trep(gx)|.|Trep(gx)|

The algorithm computes a succinct hash signature of the input set of n tagging

action groups by computing d′ independent dot products of each d-dimensional group

tag signature vector Trep(gx), where gx ⊆ G with a random unit vector r⃗ and retaining

the sign of the d′ resulting products. This maps a higher d-dimensional vector to a

lower d′-dimensional vector (d′ ≪ d). Each entry of r⃗ is drawn from a 1-dimensional

Normal distribution N(0,1) with zero mean and unit variance. Alternatively, we

can generate a spherically symmetric random vector r⃗ of unit length from the d-
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dimensional space. The LSH function for cosine similarity for our problem is given

by the following Theorem 3.4.1 adapted from [18]:

Theorem 3.4.1. Given a collection of n d-dimensional vectors where each vector

Trep(gx) corresponds to a gx ⊆ G, and a random unit vector r⃗ drawn from a 1-

dimensional Normal distribution N(0,1), define the hash function hr as:

hr(Trep(gx)) =

 1 if r⃗.Trep(gx) ≥ 0

0 if r⃗.Trep(gx) < 0

Then for two arbitrary vectors Trep(gx) and Trep(gy) :

P [hr(Trep(gx)) = hr(Trep(gy))] = 1− θ(Trep(gx), Trep(gy))

π

where θ(Trep(gx), Trep(gy)) is angle between two vectors.

The proof of the above Theorem 3.4.1 establishing that the probability of a

random hyperplane (defined by r⃗ to hash input vectors) separating two vectors is

directly proportional to the angle between the two vectors follows from Goemans et.

al’s theorem [19]. Any pair-wise dual mining function for comparing tag signatures

must satisfy such properties. We represent the d′-dimensional-bit LSH function as:

g(Trep(gx)) = [hr1(Trep(gx)), . . . , hrd′(Trep(gx))]
T

For d′ LSH functions and from (2), the probability of similar tag signature

vectors gx and gy falling into the same bucket for all d′ hash functions is at least :

P (g(Trep(gx)) = g(Trep(gy))) ≥
(
1− θ(Trep(gx), Trep(gy))

π

)d′

Now, each input vector is entered into the l hash tables indexed by indepen-

dently constructed hash functions g1(Trep(gx)), . . . , gl(Trep(gx)). Using this LSH

scheme, we hash the tag vectors to l different d′-dimensional hash signatures(or,

buckets). The total number of possible hash signatures in each of the l lower dimen-
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sional space is 2d
′
. However, the maximum bound on the number of buckets in each

of the lower dimensional space is n.

While LSH is generally used to find the nearest neighbors for new items, we

take the novel approach of finding the right bucket to output as result of our problem

based on checking for the number of tagging action groups in result set and ranking

by scoring function. For each of the l hash tables, we first check for satisfiability of

1 ≤ |Gopt| ≤ k in each bucket and then rank the buckets based on the scoring function

in order to determine the result set of tagging action groups Gopt with maximum

similarity.

Theorem 3.4.2. Given a collection of n d-dimensional tag signature vectors where

each pair of vectors Trep(gx) and Trep(gy) corresponds to a gx, gy ⊆ G, the probability

of finding result set Gopt of k most similar vectors by SM-LSH is bounded by:

P (Gopt) ≥ max

0, 1−
∑

gx,gy∈Gopt

[
1−

(
1− θ(Trep(gx), Trep(gy))

π

)d′
]

Proof. The probability of finding the set of tagging action groups Gopt, 1 ≤ |Gopt| ≤ k

having maximum similarity in tagging behavior, P (Gopt):

= 1 - P(at least one of kC2 vector pairs belongs to different buckets)

≥ 1 -
∑

gx,gy∈Gopt P(Trep(gx),Trep(gy) in different buckets)

≥ 1 -
∑

gx,gy∈Gopt [ 1 - P(Trep(gx),Trep(gy) in same buckets) ]

≥ 1 -
∑

gx,gy∈Gopt

[
1−

(
1− θ(Trep(gx),Trep(gy))

π

)d′
]

Notice that the lower bound provided by Theorem 3.4.2 is conservative. We

start with the probability that at least one of the kC2 vector pair belongs to different

buckets. If Ex,y denotes the event that vectors gx and gy fall in different buckets,

our objective is to estimate P (∪x,y∈GoptEx,y). For this purpose, we use union bound

which states that P (∪x,y∈GoptEx,y) ≤
∑

x,y∈Gopt P (Ex,y). While this a weak bound,
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it still expresses that our method has a probabilistic guarantee, as opposed to other

heuristics. We experimentally validate in Section 3.6.1 that SM-LSH works extremely

well. We leave the derivation of tighter bounds for Theorem 3.4.2 for future work.

Algorithm 4 is the pseudo code of our SM-LSH algorithm. This algorithm may

return null result if post-processing of all l hash tables yields no bucket satisfying

1 ≤ |Gopt| ≤ k. In other words, there are no set of tagging action groups in any

bucket such that they satisfy the constraints (size of set, coverage, user/item overlap)

of our problem instance. This motivates us to tune SM-LSH by iterative relaxation

that varies the input parameter d′ in each iteration. Decreasing the parameter d′

increases the expected number of tagging action groups hashing into a bucket, thereby

increasing the chances of our algorithm finding the result set. We start with an initial

value of d′ and reduce the parameter systematically (in a manner similar to performing

a binary search) such that we find a value of d′ such that it has some buckets that

contain more than k tagging action groups satisfying the constraints. However, the

expected size of bucket must not be too high as that will make the problem of finding

the best k-subset of tagging action groups in a bucket very expensive. (please see

Subsection 3.4.1.3 for additional discussion).

Example 3.4.1. Let us consider one of the Problems 1, 2, or 3 in Table 3.1 where

the objective is to optimize tag similarity. Consider a dataset where the input G of

tagging action groups consists of n = 5 3-dimensional tag signature vectors. Let the

group tag vectors be Trep(g1) = [0.6, 0.2, 0.2], Trep(g2) = [0.1, 0.7, 0.1], Trep(g3) =

[0.1, 0.1, 0.8], Trep(g4) = [0.6, 0.4, 0.0] and Trep(g5) = [0.4, 0.2, 0.4]. The tagging

vectors can be obtained via multiple methods including tf-idf or LDA. The dimen-

sionality d = 3 of the vectors correspond to the tag topics under consideration,

and can be words like love, oscar winning, gory, etc. The tagging action groups
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Algorithm 4 SM-LSH (G, O, k, d′, l): Gopt

//Main Algorithm

1: min = 1
2: max = d′

3: TU
rep ← {}; T I

rep ← {}
4: if C1.m = similarity then
5: TU

rep ← Unarize user vector
6: end if
7: if C2.m = similarity then
8: T I

rep ← Unarize item vector
9: end if
10: for x = 1 to n do
11: Trep(gx) ← TU

rep(gx) + T I
rep(gx) + Trep(gx)

12: end for
13: repeat
14: Buckets ← LSH(G, d′, l)
15: Gopt ← MAX(Rank(Buckets, k))
16: if Gopt = null then
17: max = d′ − 1
18: else
19: min = d′ + 1
20: end if
21: d′ = (min+max)/2
22: until (min > max) or (Gopt ̸= null)
23: return Gopt

//LSH(G, d′, l): Buckets

1: for z = 1 to l do
2: for x = 1 to n do
3: for y = 1 to d′ do
4: Randomly choose r⃗ from d-dimensional Normal distribution N(0, 1)
5: if r⃗.Trep(gx) ≥ 0 then
6: hry(Trep(gx)) ← 1
7: else
8: hry(Trep(gx)) ← 0
9: end if
10: gz(Trep(gx)) = [hr1(Trep(gx)), .., hrd′(Trep(gx))]

T

11: end for
12: end for
13: end for
14: Buckets ← g1(Trep(gx)) ∪ · · · ∪ gl(Trep(gx))
15: return Buckets
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are user-describable. Specifically, let the descriptions of g1 be ⟨gender, female⟩, g2 be

⟨state, texas⟩, g3 be ⟨state, california⟩, g4 be {⟨gender, female⟩, ⟨state, texas⟩} and g5 be

{⟨gender, female⟩, ⟨state, california⟩} respectively. The objective is to identify the result

set Gopt of k = 2 groups having maximum similarity in tagging behavior for the dataset

under consideration. The naive way (Exact Algorithm) would perform
(
n
k

)
=

(
5
2

)
= 10

comparisons to find the best pair, which is not always a feasible solution. Our SM-LSH

algorithm helps us retrieve Gopt in the following manner.

Let the LSH parameters be d′ = 2 and l = 1; let the randomly chosen vectors be

r1 = [+1,−1, 0], r2 = [−1,−1,+1]. We reduce the dimensionality of each vector from

d = 3 to d′ = 2. For a vector Trep(gx), the first component of its corresponding lower

dimensional representation is r1.Trep(gx), while its second component is r2.Trep(gx).

If a component is non negative, we set it to 1 else to 0. As an example, given

vector Trep(g1), its lower dimensional representation is [Trep(g1) . r1, Trep(g1) . r2]

= [0.426,−0.52]. This is then transformed to [1, 0]. Repeating the same procedure

for the other vectors, we get their lower dimensional representations as: g2 = [0, 0],

g3 = [1, 1], g4 = [1, 0] and g5 = [1, 0]. Out of the 2d
′
= 22 = 4 possible buckets,

we have 3 non empty buckets. SM-LSH finds out that the only bucket with at least

k = 2 elements is [1, 0]. This bucket, incidentally, also contains the optimal solution.

This is identified by finding the best k = 2 tagging action groups in the set {g1, g4, g5}

by enumerating all possible pairs. The result Gopt = {g4, g5} can be interpreted as:

female users in the dataset under consideration have similar tagging behavior.

Note that, we have considered one of the Problems 1, 2, or 3 in Table 3.1 in

our running example. Each of the problems could have multiple hard constraints.

Techniques to refine the SM-LSH results for satisfiability of the hard constraints are

discussed later in Sections 3.4.1.2 and 3.4.1.3. �
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Complexity Analysis: For each round, the pre-processing of locality sensitive hashing

time is bounded by O(nld). The number of rounds is logarithmic in d in the worst

case. The time complexity for post-processing phase where the buckets are ordered for

ranking by scoring function depends on the maximum number of non empty buckets

B for any hash table and the size of the largest bucket nb resulting in O
(
Bl

(
nb

k

))
.

Notice that
(
nb

k

)
gives the complexity of finding the best k-subset in a bucket. The

space complexity of the algorithm is O(nl) since there are l hash tables and each table

has at most n buckets.

SM-LSH is a fast algorithm with interesting probabilistic guarantees and is

advantageous, especially for high-dimensional input vectors. However, the hard con-

straints along user and item dimensions are not leveraged in the optimization solution

so far. Next, we discuss approaches for accommodating the multiple hard constraints.

3.4.1.2 Dealing with Constraints (Filtering): SM-LSH-Fi

A straightforward method of refining the result set of SM-LSH for satisfiability

of all the hard constraints in TagDM problem instances is post-processing or Filtering.

We refer to this algorithm as SM-LSH-Fi. For each of the l hash tables, we first check

for satisfiability of the hard constraints in each bucket and then rank the buckets

(satisfying hard constraints) according to the scoring function in order to determine

the result set of tagging action groups Gapp (We represent Gopt as Gapp since LSH

based technique now perform approximate nearest neighbor search) with maximum

similarity. Such post-processing of buckets for satisfiability of hard constraints may

also return null results, if post-processing of hash tables yields no bucket satisfying

all the hard constraints. Therefore, we propose a smarter method that folds the hard

constraints concerning similarity as part of vectors in high-dimensional space, thereby

increasing the chances of similar groups hashing into the same bucket.
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3.4.1.3 Dealing with Constraints (Folding): SM-LSH-Fo

Problems 2 and 3 in Table 3.1 has two out of the three tagging action com-

ponents to be mined for similarity. In order to explore the main idea of LSH, we

Fold the hard constraints maximizing similarity as soft constraints into our SM-LSH

algorithm in order to hash similar input tagging action groups (similar with respect

to group tag signature vector and user and/or item attributes) into the same bucket

with high probability. We refer to this algorithm as SM-LSH-Fo. We fold the user or

item similarity hard constraints in Problems 2 and 3 respectively into the optimiza-

tion goal and apply our algorithm, so that tagging action groups with similar user

attributes or similar item attributes, and similar group tag signature vectors hash to

the same bucket. For each tagging action group gx ⊆ G, we represent the categorical

user attributes or item attributes as a boolean vector and concatenate it with Trep(gx).

We map n vectors from a higher (d +
∑|SU |

i=1

∑|ai|
j=1 |ai = vj|) dimensional space for

users (replace |SU | with |SI | for items) to a lower d′ dimensional space. Similar to

Algorithm 4, we consider l LSH hash functions and then post-process the buckets

for satisfiability of the remaining constraints in order to retrieve the final result set

of tagging action groups Gapp with maximum optimization score. Problem 1 in Ta-

ble 3.1 has all three tagging action components set to similarity. In this case, we

build one long vector for each tagging action group gx ⊆ G by concatenating boolean

vector corresponding to categorical user attributes, boolean vector corresponding to

categorical item attributes and numeric tag topic signature vector Trep(gx). The di-

mensionality of the high-dimensional space for Problem 1 is d +
∑SU

i=1

∑|ai|
j=1 |ai = vj|

+
∑SI

i=1

∑|ai|
j=1 |ai = vj|.

Practical Considerations: While Theorem 3.4.2 establishes the theoretical probabilis-

tic bound of finding the optimal result set, there are a number of practical issues.
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The first issue is how to set the initial values for parameters d′ and l. Ideally,

the parameters must result in buckets such that their expected size be k. This will

ensure that all the tagging action groups in the bucket becomes a candidate output

set. We can use Theorem 1 in [20] to set the initial values to be

d′ = log1/P2

n

k

l =
(n
k

)ρ

where ρ = ln 1/P1

ln 1/P2
. However, there are a number of work including [21, 22, 23] on

LSH-parameter tuning that can be used as well.

An important issue to notice is that LSH is a Monte Carlo randomized al-

gorithm. In other words, while the probability of finding the optimal solution is

reasonable, it is possible that we did not find in our first attempt. There are two

possible ways to boost the success probability. First, we can increase the number

of trials of our algorithm but keeping the same values for parameters d′ and l. An

alternate approach, which we have used in our algorithm, is to reduce the number of

hash functions d′. In both cases, each round of our algorithms are independent. In

other words, the hash functions are chosen from scratch. We then identify the best

set of tagging action groups for each round and choose the best over all rounds.

Consider the approach where we change the parameter d′. Intuitively, as the

value of d′ decreases, the expected number of input items that fall into any bucket

increases. In the extreme case, for d′ = 1, we expect half the points to fall in the

bucket hr(.) = 0 and half in hr(.) = 1. This particular design choice is appealing

as the expected size of buckets increases, the chances of the optimal set of tagging

action groups to belong to the same bucket also increases.

The next design choice involves how to choose the dimensionality d′′ for the

next iteration. For example, we can decrement the current number of hash functions
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to project to the next lower dimension. i.e. d′′ = d′−1. Alternatively, we can be more

aggressive and reduce the dimensionality by some constance factor (such as d′′ = d′

2
).

There is a cost-benefit tradeoff here. On one hand, when the dimensionality is cut

by half, the expected number of items falling into a bucket dramatically increases.

However, there is a corresponding increase in the probability of finding the optimal set

of points also. We choose an approach that balances runtime vs success probability.

If we have not identified enough candidates for a given value of d′, the value for next

invocation is chosen as d′′ = d′

2
. However, if the resulting bucket sizes are too large for

d′′ (thereby finding the best subset of k points in a bucket would be very expensive),

we then choose a new dimension half-way between d′′ and d′. In the worst case, the

value of d′ goes all the way to 1 and our algorithm degenerates to Exact. We note that

there exist a number of theoretical and empirical work on tuning LSH parameters.

The most common techniques to handle failure (in our case, it is the lack of buckets

with atleast k tagging action groups in it) are reducing the dimension [21, 22, 23, 24],

choosing the best parameters based on their performance over different samples over

dataset[25] or based on their distance profiles [21] and finally multiprobing [26]. We

chose the approach of reducing the dimension as it is the most intuitive and requires

the least amount of additional information.

Both SM-LSH-Fi and SM-LSH-Fo are efficient algorithms for solving TagDM

similarity maximization problem instances and readily out-performs the baseline Ex-

act, as shown in Section 3.6. However, there are other instantiations namely, Problems

4, 5 and 6 in Table 3.1 which concern tag diversity maximization. Since it is non-

obvious how the hash function may be inversed to account for dissimilarity while

preserving the properties of LSH, we develop another set of algorithms (less efficient

than LSH based, as per complexity analysis) in Section 3.4.2 for diversity problems.

They are based on the popular Facility Dispersion problem, as described next.
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3.4.2 Diversity Maximization: FDP Based Algorithms

The second of our algorithmic solutions borrows ideas from techniques employed

in computational geometry, which model data objects as points in high dimensional

space and determine a subset of points optimizing some objective function. Such

geometric problem examples include clustering a set of points in euclidean space so

as to minimize the maximum intercluster distance, computing the kth smallest or

largest inter-point distance for a finite set of points in euclidean space, etc. Since

we consider tagging action groups as tag signature vectors, and since the cardinality

of the global set of topics (that, in turn, determines the size of each vector) is often

high, computational geometry based approach is an intuitive choice to pursue.

We focus on a specific geometric problem, namely the facility dispersion prob-

lem (FDP), which is analogous to our TagDM problem instances, finding the tagging

action groups maximizing the mining criterion. The facility dispersion problem deals

with the location of facilities on a network in order to maximize distances between

facilities, minimize transportation costs, avoid placing hazardous materials near hous-

ing, outperform competitors’ facilities, etc. We consider the problem variant in Ravi

et al.’s paper [27] that maximizes some function of the distances between facilities.

The optimality criteria considered in the section are MAX-MIN (i.e., maximize the

minimum distance between a pair of facilities) and MAX-AVG (i.e., maximize the

average distance between a pair of facilities). Under either criterion, the problem

is known to be NP-hard by reduction from the Set Cover problem, even when the

distances satisfy the triangle inequality [28]. The authors present an approximation

algorithm for the MAX-AVG dispersion problem, that provides a performance guar-

antee of 4. The algorithm initializes a pair of nodes (i.e., facilities) which are joined

by an edge of maximum weight and adds a node in each subsequent iteration which

has the maximum distance to the nodes already selected.
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The facility dispersion problem solution provides an approach to determine a set

of tagging actions groups that have maximum average pair-wise distance, i.e., that are

dissimilar in their tagging behavior. In fact, this approach may also be extended to

determine a set of tagging action groups that are similar in their behavior, unlike the

LSH based algorithm in Section 3.4.1 (which works only for similarity, not diversity).

We consider each of the input n tagging action groups as d-dimensional tag signature

vector in a unit hypercube and intend to identify k vectors with maximum average

pairwise distance between them. We compare the input set G of n tagging action

groups using a pairwise comparison function F ′′
p (g1, g2, tags, diversity) that operates

on tagging action group signature vectors; and return the set of tagging groups ≤ k

having maximum diversity in tagging behavior.

Our FDP based algorithms work for Problems 4, 5 and 6 in Table 3.1 maximizing

tag diversity. We first introduce an algorithm that returns the set of tagging action

groups having maximum diversity in tagging behavior (Column O in Table 3.1) and

then discuss additional techniques to handle the multiple hard constraints in the

solution (Column C in Table 3.1).

3.4.2.1 Maximizing Diversity based on FDP: DV-FDP

Our FDP based algorithm DV-FDP handles TagDM problem instances opti-

mizing tag DiVersity. Given an input set G of n tagging action groups, each having a

numeric tag signature vector Trep(gx), where gx ⊆ G, we build the result set Gapp (we

represent the result set as Gapp since the technique returns approximate solution) by

adding a tagging action group in each iteration which has the maximum distance to

the groups already included in the result set. Again, we use cosine similarity measure

between two tag signature vectors for determining the distance since the distance

metric hold triangular inequality property. Thus, our DV-FDP attempts to find one
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tight set of k groups with maximum average pairwise distance between them. The

approximation bounds for this algorithm follows from [27] :

Theorem 3.4.3. Let I be an instance of the TagDM problem maximizing the mining

criterion with k ≥ 2 and no other hard constraints, where the collection of n d-

dimensional vectors are in a unit hypercube satisfying the triangle inequality. Let

Gopt and Gapp denote respectively the optimal set of k tagging action groups returned

by Exact and DV-FDP algorithms. Then Gopt/Gapp ≤ 4.

Algorithm 5 is the pseudo-code of our DV-FDP algorithm. Once the n × n

distance matrix SG is built using the cosine distance function, the implementation

exhaustively scans S for determining the best add operation in each of the subsequent

iterations. If A represents the result set, the objective is to find an entry from G−A

to add to A, such that its total sum of weight to a node in A is maximum.

Algorithm 5 DV-FDP (G, O, k): Gapp

//Main Algorithm

1: SG ← Compute n× n Distance Matrix(G)
2: {gx, Ix, gy, Iy } ← MAX(SG)
3: A ← [gx, gy]
4: while A ̸= k do
5: gz ← Σ{z′∈[A],z∈[G−A]}MAX(SG−A)
6: A ← [A, gz]
7: end while
8: Gapp ← A
9: return Gapp

Example 3.4.2. Let us consider one of the Problems 4, 5, or 6 in Table 3.1 where

the objective is to optimize tag diversity. Let us consider the same dataset and input

set G of tagging action groups, as in Example 3.4.1. The objective is to identify the

result set Gapp of k = 3 groups having maximum diversity in tagging behavior. Using

the cosine distance (computed as 1.0 - cosine similarity score for capturing diversity)
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Table 3.2. Distance matrix SG

g1 g2 g3 g4 g5
g1 0.00 0.54 0.55 0.08 0.10
g2 0.54 0.00 0.72 0.34 0.49
g3 0.55 0.72 0.00 0.83 0.22
g4 0.08 0.34 0.83 0.00 0.26
g5 0.10 0.49 0.22 0.26 0.00

as our distance measure, DV-FDP functions as follows. The first step is to compute

the matrix SG, which is shown in Table 3.2.The pair of tagging action groups with

highest distance between them are g3 and g4. These form our initial approximate

group Gapp = {g3, g4}. Next, we find the tagging action group that has the largest

aggregate distance from g3 and g4. The tagging action group has an aggregate distance

of 0.55 + 0.08 = 0.63 from the set g3, g4. The corresponding values for g2 and g5 are

1.06 and 0.48 respectively. This means that g2 becomes the next member of the output

group and the algorithm returns Gapp = {g2, g3, g4}. Observe that in this example, the

approximate and optimal answers happen to be identical, which may not be the case

in general. The result Gapp = {g2, g3, g4} can be interpreted as: users in California

and Texas have diverse tagging behavior for the dataset under consideration. Note

that, we have considered one of the Problems 4, 5, or 6 in Table 3.1 in our running

example. Each of the problems have multiple hard constraints. Techniques to refine

the DV-FDP results for satisfiability of the hard constraints are discussed later in

Sections 3.4.2.2 and 3.4.2.3. �

Complexity Analysis: The complexity of the implementation of the DV-FDP algo-

rithm is O(n2 + nk), i.e., O(n2) due to operations around the n× n distance matrix

SG. The space complexity of the algorithm is O(n2). Thus the complexity of DV-

FDP is polynomial in the number of groups. Recall that the number of groups n
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is given by
∏

a∈SU∪SI
(|a| + 1), where |a| returns the number of distinct values taken

by the categorical attribute a. For example, if there are two attributes, say gender

and states with cardinality 2 and 50 respectively, the maximum number of groups

induced by these attributes is (2 + 1) × (50 + 1). The additional 1 is added to ac-

count for the scenario when attribute takes no values (e.g., age = ’*’). Note that, the

maximum number of groups is dependent only on the cardinality of user and item

attributes. However, in practice, the actual number of groups is substantially smaller

due to the sparsity of the datasets. Note that, our LSH based algorithms have better

space and time complexity than FDP based algorithms. However, experiments in

Section 3.6.1 show comparable execution time for LSH and FDP based algorithms

in a practical setting. Like SM-LSH, this algorithm does not leverage the hard con-

straints along user and item dimensions into the optimization solution too. We now

illustrate approaches for including the multiple hard constraints into the solution.

3.4.2.2 Dealing with Constraints (Filtering): DV-FDP-Fi

Similar to SM-LSH-Fi, a straightforward method of refining the result set of

groups for satisfiability of all the hard constraints in TagDM problem instances is

post-processing or Filtering. We refer to this algorithm as DV-FDP-Fi. Once the

result set Gapp of k groups is identified, we post-process it to retrieve the relevant

answer set of tagging action groups, satisfying all the hard constraints. Now, such

post-processing of the result set for satisfiability of hard constraints may return null

results frequently and hence we propose a smarter algorithm that folds some of the

hard constraints into DV-FDP, thereby decreasing the chances of hitting a null result.

3.4.2.3 Dealing with Constraints (Folding): DV-FDP-Fo

In contrast to general DV-FDP algorithm whose objective is to add groups to

the result set greedily so that average pair-wise distance is maximized, we want to re-
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trieve the set in each iteration whose members, besides being dissimilar, satisfy many

other constraints. In DV-FDP, the greedy add operation in Line 5 of Algorithm 5

maximizes tag diversity. If the algorithm includes a bad tagging action group to the

result set in an iteration, the algorithm may return null result or an inferior approx-

imate result, after final filtering of the result set for hard constraint satisfiability.

Therefore, we propose our second approach in which hard constraints maximizing di-

versity are Folded into the add operation. We refer to this algorithm as DV-FDP-Fo.

During each new group addition to the result set, we not only check for the pair with

maximum distance, but also check for the satisfiability of the diversity maximization

hard constraints on user and item dimension, if any. The algorithm terminates when

the number of groups in result set equals k. Once the result set of k groups is iden-

tified, we post-process the set for satisfiability of the hard constraint(s) and support

constraint, in order to retrieve the final result of tagging action groups Gapp′ .

3.5 Extensions to TagDM Framework

The TagDM framework in Definition 3.2.6 consists of tagging behavior dimen-

sions (i.e., users, items and tags), a set of constraints and optimization goal, and the

mining function (i.e., similarity and diversity). In this section, we discuss natural

extensions to TagDM framework that allow it to be more expressive and practical,

and design additional algorithms for solving them. Our extensions are two fold: first,

we allow the inclusion of conditions over the dimension(s) in the optimization goal;

second, we generalize the mining function from pair-wise aggregation to arbitrary

dual mining functions.

3.5.1 Conditions in optimization goal: HAC Based Algorithm

Recall that TagDM framework handles a set of social tagging behavior analysis

tasks that optimizes one or more of the tagging action components (i.e., users, items,
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tags), and adds to constraints components which are not part of the optimization goal.

However, the type of optimization goal allowed in the TagDM framework is highly

specific: it operates on one or more dimensions and the objective function maximizes

a similarity or diversity score over the tagging action groups. However in reality, a

user may be interested in adding few conditions over dimensions that are not easily

expressed in terms of similarity or diversity. For example, a user may be interested in

finding tagging action groups that maximize a tag diversity measure and satisfy user

and item similarity constraints, such that the tagging groups have frequent taggers.

Or, a user may be interested in finding groups that maximize a combination of tag

diversity and user diversity measures and satisfy an item similarity constraint such

that the groups have median user age of 30. In other words, the analysis task may

require us to optimize a dimension along with the condition that the dimension satisfy

some property over its distribution.

We observe that it is not easy to extend the previously described algorithms to

handle such conditions. First, the hash functions used in LSH do not accommodate

any technique for additional conditions. The algorithm SM-LSH-Fo was possible be-

cause the constraints F1, F2 and F3 were based on similarity. Had they been based on

other properties such as frequency, the folding technique would have been inadequate.

While the FDP based algorithms can fold the constraints, it is tied to maximizing the

average pair-wise distance between the facilities (i.e., the groups). Hence, we need a

general algorithm that can seamlessly handle arbitrary conditions over dimensions in

the optimization goal, for both similarity and diversity mining problems.

We propose an algorithm based on hierarchical agglomerative clustering (HAC)

that has the following advantages:

• It can handle both similarity and diversity maximization problems, unlike LSH

and FDP based which can handle similarity and diversity respectively.
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• It is capable of similarity/diversity maximization along with some property of

the distribution associated with the target optimization function, while LSH

and FDP based methods cannot. Moreover, by changing how the clusters are

merged, it can handle any objective function.

Hierarchical agglomerative clustering is a popular bottom-up clustering tech-

nique in which each data observation is treated as a singleton cluster at the outset,

and then successively merged pair-wise until all clusters have been merged into a

single cluster containing all data observations [29]. This unsupervised technique out-

puts an informative tree-like structure (known as dendogram) efficiently. It takes a

symmetric matrix of distances between data observations as input, thereby helping

us accommodate both tag similarity and tag diversity maximization problems. The

merge operation in each iteration is determined greedily by looking up the distance

matrix for a pair separated by smallest distance (in case of similarity maximization)

and by largest distance (in case of diversity maximization.)

We specifically consider the average linkage HAC variant which merges pair of

clusters with the minimum (or maximum) average distance from any member of one

cluster to any member of the other cluster, since this function is equivalent to our Pair-

Wise Aggregation Dual Mining Function Fpa. For the problem instantiations concern-

ing tag similarity or diversity maximization, we need to compare the input set G of

n tagging action groups using F ′′
p (g1, g2, tags,m), m ∈ {similarity, diversity}

that operates on Trep(gx), where gx ⊆ G. The result set of groups with maximum

tag similarity (or diversity) can be retrieved by determining the k vectors (from n

d-dimensional tag signature vectors) with minimum (or maximum) average pair-wise

distance between them. Our HAC based algorithm is often less efficient than LSH

and FDP based algorithms as we see in Section 3.6.1, but are capable of handling a

wide variety of complex problems which LSH and FDP based techniques cannot.
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We adopt the HAC technique in the following way to handle our problem in-

stances: given an input set G of n tagging action groups, each having a numeric tag

signature vector Trep(gx), where gx ⊆ G, we employ average linkage HAC to merge

clusters in each iteration. Once the dendogram optimizing tag similarity (or diversity)

is generated, we post-process the dendogram in a top-down manner to retrieve the

result set of tagging action groups Gapp (We represent Gopt as Gapp since HAC return

approximate solutions) satisfying the hard constraints. Note that, the handling of

the additional property, i.e., satisfiability of condition in the optimization goal is con-

ducted during the merging of clusters in each iteration. In other words, we construct

clusters such that members of the cluster, besides being similar (or dissimilar), satisfy

additional properties and constraints. Thus, while traditional HAC algorithms are

used for clustering a dataset into different partitions, our algorithm attempts to find

one small group satisfying the constraints and maximizing the conditional criterion.

In our HAC based algorithm optimizing tag similarity (or diversity), the op-

timization function conditions, denoted by FC(G
app, tags), and multiple hard con-

straints are folded into the merge operation. During each merge operation, we not

only check for the pair with maximum (or minimum) average pair-wise cosine sim-

ilarity score, but also check for the satisfiability of the condition along the dimen-

sion, as well as the hard constraints 1 ≤ |Gapp| ≤ k, F ′
P (Gx,Gy, users,m) ≥ q and

F ′
P (Gx,Gy, items,m) ≥ r, where Gx, Gy are intermediate clusters.The algorithm termi-

nates when SupportG
app

G ≥ p, often without having to build the complete dendogram.

Algorithm 6 is the pseudo-code of the HAC based algorithm with average-link

based agglomerative method. The naive implementation of HAC algorithm is O(n3)

since it will exhaustively scan the n × n distance matrix S for determining the best

merge in each of the (n− 1) iterations. However, if the function to compute the pair-

wise distance F ′′
p (g1, g2, tags,m) is cosine similarity, then in conjunction with heap
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Algorithm 6 HAC based (G, O, C, k, p): Gapp

//Main Algorithm

1: S, I, P ←Compute n× n Distance Matrix(G)
2: A ← []; i ← 1; Gapp ← {}
3: while SupportG

app

G ≥ α do
4: Gx ← argmax{i:I[i]=1} P[i].m().distance //Using cosine

//m() ∈ {MAX(), MIN()} for m ∈ {similarity, diversity}
5: Gy ← function( P [i].m().index, FC(G

app, tags), |{Gx,Gy}| ≤ k, F ′
P ({Gx,Gy}, users,m) ≥ q,

F ′
P ({Gx,Gy}, items,m) ≥ r)

6: A.append (⟨Gx,Gy⟩)
7: S, I, P ← Update Priority Queue(C, S, P , x, y)
8: i ← i+ 1

9: end while
10: Gapp ← Post-process(A, k, p, C)
11: return Gapp

//Compute n× n Distance Matrix(G): S, I, P

1: for x = 1 to n do
2: for y = 1 to n do
3: S[x][y].distance ← Trep(gx).Trep(gy)
4: S[x][y].index ← i
5: end for
6: I[x] ← 1
7: P [x] ← priority queue for S[x] sorted on cosine similarity
8: P [x].delete(S[x][x])
9: end for
10: return S, I, P

//Update Priority Queue(S, I, P , x, y): S, I, P

1: I[y] ← 0
2: P [x] ← []
3: for z do
4: if I[z] = 1 ∧ z ̸= x then
5: P [z].delete(C[z][x])
6: P [z].delete(C[z][y])
7: S[z][x].distance ← F ({Gx, gy}, tags,m)
8: P [z].insert(C[z][x]) //Gx is intermediate cluster of gz and gx
9: S[x][z].distance ← F ({Gx, gy}, tags,m)
10: P [x].insert(S[x][z])
11: end if
12: end for
13: return S, I, P
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based priority queues which have O(log n) time for inserts and deletes, the algorithm

will have a complexity of O(n2 log n). In Algorithm 6, the rows of the n× n distance

matrix S are sorted based on distance in the priority queues P . P [x].MAX() or

P [x].MIN() returns the cluster in P [x] which currently has the highest similarity

(or dissimilarity) with Gx, where Gx is the intermediate cluster formed in the xth

iteration. Gx is chosen as the representative of the cluster obtained by merging Gx

and Gy. After each merge operation, the priority queues maintained for each cluster

are updated. The cluster similarity (or dissimilarity) computation takes constant time

if vector sums
∑

gx∈Gx
Trep(gx) and

∑
gy∈Gy

Trep(gy) are available, where Gx and Gy are

intermediate clusters selected for merging. This follows from Theorem 3.5.1 [30]:

Theorem 3.5.1. The group average of the merged clusters for cosine similarity in

average linkage hierarchical agglomerative clustering is given by :

F ′′
P ({Gx,Gy}, tags,m)

=
1

(N)(N − 1)

∑
gx∈Gx

∑
gy∈Gy;gx ̸=gy

Trep(gx).Trep(gy)

=
1

(N)(N − 1)
[(
∑
gx∈Gx

Trep(gx) +
∑
gy∈Gx

Trep(gy))
2 − (N)]

where N = ni + nj, Gx and Gy are intermediate clusters being selected for merging,

Trep(gx) and Trep(gy) are length normalized tag signature vectors of corresponding to

tagging groups gx and gy respectively, . denotes the dot product, nx and ny are the

number of groups in Gx and Gy respectively. Therefore, the distributivity of the dot

product with respect to vector addition aids constant time cluster merge condition

computation. Note that, when the TagDM problem instance optimizes similarity in

tagging behavior, the algorithm merges two most similar clusters having maximum

average pair-wise cosine similarity score; when the problem instance optimizes di-

versity in tagging behavior, it merges two most dissimilar clusters having minimum

average pair-wise cosine similarity score.
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Example 3.5.1. Let us re-examine the problem of identifying the most similar set of

tagging action groups, as in Example 3.4.1. We consider the same dataset and input

set G of tagging action groups. Let us re-define the optimization goal as: identify the

result set Gapp of k = 3 groups having maximum similarity in tagging behavior such

that majority (i.e., more than 50%) of the users in the tagging groups are frequent

taggers (i.e., have tagged at least 25 items, say). Using cosine similarity as the

distance measure, we first build the distance matrix S which is shown in Table 3.3.

Table 3.3. Distance matrix SG

g1 g2 g3 g4 g5
g1 1.00 0.46 0.45 0.92 0.90
g2 0.46 1.00 0.28 0.66 0.51
g3 0.45 0.28 1.00 0.17 0.78
g4 0.92 0.66 0.17 1.00 0.74
g5 0.90 0.51 0.78 0.74 1.00

The pair of tagging action groups with highest similarity between them are g1

and g4. If the multiple hard constraints in the problem (such as constraints along user

and item dimensions, etc.) as well as the additional condition in the optimization goal

is satisfied, we merge these two groups to a single cluster G1. If the constraints and

conditions are not taken care of, we proceed with the second most similar pair of

tagging action groups, namely g1 and g5. Assume, we merge g1 and g4 to G1. Next,

we update the similarity between the remaining groups g2, g3 and g5 with G1 using

the average link similarity. In other words, similarity between {g1, g4} and say g2 is

computed as the average of similarities between pairs (g1, g2) and (g4, g2). Using the

updated matrix, we observe that the cluster G1 = {g1, g4} and tagging action group

g5 have the highest similarity. We check for the satisfiability of the conditions and

constraints, and find out that {g1, g4, g5} do not satisfy the frequent tagger condition in
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the optimization goal. That is, less than 50% of users belonging to the set {g1, g4, g5}

are frequent taggers. Hence, we do not proceed with this merge operation and move

to the second best merge option that satisfies the frequent tagger condition and all

the hard constraints - we merge the cluster G1 = {g1, g4} and tagging action group

g2 (say). The merged cluster G2 has k = 3 tagging action groups, and also satisfies

the support condition (say). Hence, we terminate our algorithm and return the set

Gapp = {g1, g2, g4} as the solution. The result Gapp can be interpreted as: female users

in Texas are frequent taggers and have similar tagging behavior for the dataset under

consideration. �

Complexity Analysis: The complexity of the efficient implementation of the HAC

based algorithm is O(n2 log n). A priority queue requires O(log n) time for inserts

and deletes, resulting in O(n log n) time for n priority queues as opposed to O(n2)

distance matrix update time in naive implementation.

3.5.2 General dual mining functions: HC Based Algorithm

One factor responsible for bringing in variations in TagDM problem instances

is which measure (similarity or diversity) a user is interested in applying to which

tagging components (users, items, or tags). All the algorithmic solutions proposed

consider pair-wise aggregation dual mining function in Function 3.2.4. However, a

user may be interested in more general mining measures which cannot be computed

over pairs of tagging action groups, as discussed in Section 3.2.4. Transitioning from

pair-wise to general dual mining functions allows one to characterize holistic prop-

erties that occur at the global level in the optimal set of groups instead of simply

aggregating local (and pair-wise) properties. Every dual mining function that a user

may want to explore can be placed in the spectrum between local and global prop-

erties. While holistic properties increases the expressive power of the TagDM frame-
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work, they also necessitate the development of generic algorithms that can handle

arbitrary dual mining functions. Without additional knowledge of dual mining func-

tion properties (such as monotonicity, sub-modularity or even metric property), it is

often difficult to describe deterministic algorithms that have any meaningful approx-

imation guarantees. The Exact algorithm needs to check an exponential number of

combinations and is simply not scalable.

We extend ideas from our earlier work [1] and propose a hill-climbing (HC)

based technique that is capable of handling all the problem instances we have dis-

cussed so far, with general dual mining defined in Definition 3.2.7, instead of pair-wise

aggregation mining function with limited scope defined in Definition 3.2.4. We build

a lattice of all possible tagging action groups (which are structurally describable by

user and/or item attributes), where the nodes correspond to user describable and

item describable groups and the edges correspond to parent/child relationships. Note

that the number of nodes in the lattice of TagDM framework is usually higher than

that in the lattice of MRI in [1], since the latter has either user-describable lattice (for

item-based query) or item-describable lattice (for user-based query). Also, the scalar

numeric rating values have been replaced with numeric vectors in this framework.

Our HC based algorithm is advantageous over all the previously discussed algorithms

in the following ways:

• It can handle general dual mining measures for similarity and diversity mining

which LSH, FDP and HAC based algorithms cannot. Therefore, this algorithm

is capable of solving a wide range of analysis tasks that none of the other three

algorithms can.

• It can handle both similarity and diversity maximization problems like HAC

based, unlike LSH and FDP based which can handle similarity and diversity

respectively.
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• It is also capable of similarity/diversity maximization along with some condition

in the optimization goal like HAC based, while LSH and FDP based cannot.

A straightforward adoption of the random restart hill climbing [10] technique

involves the following steps: we first randomly select a set of k tag signature vectors

(corresponding to k tagging action groups) as the starting seed; the process then

continues by replacing one group in the current set with one of its neighbors3 not in

the set as long as the substitution maximizes or minimizes the general dual mining

function; the algorithm stops when no improvements can be made indicating a local

optima has been reached. The process is repeated with multiple diverse seed sets to

increase the probability of finding the global optima that satisfies the conditions and

constraints. However, this simple application of hill climbing does not suffice because

of the inclusion of constraints and/or conditions in the tasks. For any given set of

groups randomly chosen as the starting set, the probability of it satisfying all the

constraints is fairly small, thereby necessitating a large number of restarts.

Therefore, we consider the Randomized Hill Exploration Algorithm [1](RHE)

which first initializes a randomly selected set of k vectors as the starting set. However,

instead of immediately starting to improve the target function, it explores the hill

to detect sets of k tagging vectors in the neighborhood that satisfy the conditions

and constraints. This new set of k group tag signature vectors is then adopted as

the starting point for the tag similarity or diversity maximization, with the added

condition that an improvement is valid only when the constraints and conditions hold.

The details of the algorithm are shown in Algorithm 8. Intuitively, we begin

with the construction of the tagging vector lattice LT . The algorithm starts by

picking k random groups in the lattice to form the initial seed set GC . For each

group gi in GC , we swap gi with each of its neighbors gj in the lattice, while the

3Two tagging action groups are neighbors if they are directly connected in the lattice.
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other groups in GC remain fixed, to generate a new combination. The exploration

phase continues till it finds the best set of k tagging action groups that satisfies all the

constraints and conditions. The resulting set then acts as the initial condition for the

second phase of the optimization to maximize (or minimize) the general dual mining

function F measuring tag similarity (or diversity). The configuration that satisfies

the constraints and conditions, and incurs the optimum value of F is the best tagging

behavior explanation for the query.

Example 3.5.2. Once again, we re-examine the problem of identifying the most

similar set of tagging action groups, as in Example 3.4.1 and 3.5.1. We consider the

same dataset and input set G of tagging action groups. The objective is to identify

the result set Gapp of k = 3 groups having maximum similarity in tagging behavior

using the HC-based algorithm. Recall that, here we consider a general dual mining

function, defined in Definition 3.2.7, instead of the pair-wise aggregation cosine sim-

ilarity measure used in Examples 3.4.1, 3.4.2, and 3.5.1. The tagging action groups

are concisely represented as a lattice LT , as shown in Figure 3.3. We can see that

there are 3 tagging action groups that can be described using a single attribute and 2

that are described using two user attributes.

When the algorithm starts, it randomly picks 3 groups from LT . Suppose, it

picks the groups containing all female users and the users from Texas and California,

i.e., GC = {g1, g2, g3}. Our algorithm explores the neighboring groups for each of the

candidates in GC. One of the candidates is g4, the set of female users from Texas.

If G′
C = {g1, g3, g4} improves the aggregate score (measured by general dual mining

function) as compared to GC = {g1, g2, g3} while satisfying the multiple constraints

and conditions, we update GC to G′
C. We explore the remaining neighbors (i.e.,

g5) and update GC in a similar fashion. Suppose, GC = {g1, g3, g5} has the highest

aggregate score. When there are no more neighbors that can increase the aggregate
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Algorithm 7 HC based (G, O, C, k, p): Gapp

- Build lattice LT of all tagging action groups, as in [1].

//Main Algorithm

1: GC ← randomly select k groups/nodes from LT

2: if SupportGC
G ≥ α, FC(GC , tags), F ′

p(g1, g2, users,m) ≥ q and
F ′
p(g1, g2, items,m) ≥ r then

3: C ← satisfy-constraints(GC , LT )
4: end if
5: C ← optimize-dual-mining-function(C,LT )
6: Gapp ← best C so far
7: return Gapp

// satisfy-constraints(GC , LT ): C

1: while true do
2: val ← coverage(GC , LT )
3: for each group gi in GC , each neighbor gj of gi do
4: C ′ ← GC − gi + gj
5: val′ ← SupportC

′
G ≥ α

6: if val′ ≥ α, FC(C
′, tags), F ′

p(g1, g2, users,m) ≥ q and F ′
p(g1, g2, items,m) ≥

r then
7: C ← C ′

8: return C ′

9: end if
10: end for
11: end while

// optimize-dual-mining-function(C,LT ): C

1: while true do
2: val ← F (C,LT ) // F is general dual mining function
3: C = ∅
4: for each group gi in C, each neighbor gj of gi do
5: C ′ ← C − gi + gj
6: if SupportC

′
G ≥ α, FC(C

′, tags), F ′
p(g1, g2, users,m) ≥ q and

F ′
p(g1, g2, items,m) ≥ r then

7: add (C ′, F (C,LT )) to C
8: end if
9: end for
10: let (C ′

m, val
′
m) ∈ C be the pair with minimum F

11: if val′m ≥ val then
12: return C // we have found the local minima
13: end if
14: C ← C ′

m

15: end while
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score, the algorithm terminates since it has reached the local maxima. The result

Gapp = {g1, g3, g5} is returned, which can be interpreted as: female users from California

have similar tagging behavior.

G e n d e r = F

G e n d e r = F ,  S t a t e = T X Gende r=F ,  S t a t e=CA

S t a t e = T X S t a t e = C A

Figure 3.3. Lattice representation of tagging action groups for example.

Complexity Analysis: The worst case complexity of the hill climbing based algorithm

is exponential in the size of the search space. The space complexity of the search

space, i.e., the number of groups/nodes in the lattice, is a function of the number of

attribute values users and items take.

Discussion: Table 3.4 broadly summarizes our algorithmic contributions for solving

the TagDM problem instances in the general TagDM framework and those in the

extensions of the TagDM framework.

Table 3.4. Summary of our Algorithmic Solutions. Column O.m lists the optimization
O mining criterion (m ∈ {similarity, diversity}), column CO lists if Algorithm
can handle condition(s) in optimization goal, column O.F lists the mining function
(F ∈ {Fp(pairwise), F (general)}) that Algorithm can handle, and the final column
discusses how Algorithm handles hard constraints.

Algorithm O.m Co O.F Additional Techniques

LSH based similarity no Fp fold similarity and

filter diversity constraints

FDP based diversity no Fp fold diversity and

filter similarity constraints

HAC based similarity, yes Fp fold both similarity

diversity and diversity constraints

during merge

HC based similarity, yes Fp, F fold both similarity

diversity and diversity constraints

during exploration
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3.6 Experiments

We conduct a comprehensive set of experiments for quantitative (Section 3.6.1)

and qualitative (Section 3.6.2) analysis of our proposed algorithms for TagDM prob-

lem instances. Our quantitative performance indicators are efficiency of the algo-

rithms and analysis quality of the results produced. The efficiency of our algorithms

is measured by the overall response time, whereas the result quality is measured by

the average pair-wise distance between the k tagging action group vectors returned by

our algorithms. In order to demonstrate that the tagging behavior analysis generated

by our approaches are interesting to end users, we conduct a user study through Ama-

zon Mechanical Turk. We also present interesting case studies to show how results

generated by our algorithms for TagDM problem instances varies.

Real Movie Dataset: We require dataset(s) that contains information about a set

of users tagging a set of items, where attributes associated with users and attributes

associated with items are known. We use the MovieLens4 1M and 10M ratings dataset

for our evaluation purposes. The MovieLens 1M dataset consists of 1 million ratings

from 6000 users on 4000 movies while the 10M version has 10 million ratings and

100,000 tagging actions applied to 10,000 movies by 72,000 users. The titles of movies

in MovieLens are matched with those in the IMDB5 to obtain movie attributes.

User Attributes: The 1M dataset has well-defined user attributes but no tagging

information, whereas the 10M dataset has tagging information but no user attributes.

Therefore, for each user in the 1M dataset with a complete set of attributes, we build

her rating vector and compare it to the rating vectors (if available) of all 72,000 users

in the 10M dataset. For every user in 10M dataset, we find the user in 1M dataset such

that the cosine similarity of their movie rating vector is the highest (i.e., user rating

4http://www.grouplens.org/datasets/movielens/
5http://www.imdb.com/interfaces
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behaviors are most identical). The attributes of user in 10M dataset are obtained

from the closest user in 1M dataset. In this way, we build a dataset consisting of

33,322 tagging and rating actions applied to 6,258 movies by 2,320 users. The tag

vocabulary size is 64,663. The user attributes are gender, age, occupation and zip-

code. The attribute gender takes 2 distinct values: male or female. The attribute age

is chosen from one of the eight age-ranges: under 18, 18-24, . . . , 56+. There are 21

different occupations listed by MovieLens such as student, artist, doctor, lawyer, etc.

Finally, we convert zipcodes to states in the USA (or foreign, if not in USA) by using

the USPS zip code lookup6. This produces the user attribute location, which takes

52 distinct values.

Movie Attributes: Movie attributes are genre, actor and director. There are 19 movie

genres such as action, animation, comedy, drama, etc. The pool of actor values and

director values, corresponding to movies which have been rated by at least one user

in the MovieLens dataset, is huge. We pick only those actors and directors who

belong to at least one movie that has received greater than 5 tagging actions. In our

experiments, the number of distinct actor attribute values is 697 while that of distinct

director is 210.

Mining Functions: The set of tagging action groups is built by performing a carte-

sian product of user attribute values with item attribute values. An example tagging

action group is {gender=male, age=under 18, occupation=student, location=new york,

genre=action, actor=tom hanks, director=steven spielberg}. The total number of pos-

sible tagging action groups is more than 40 billion, while the number of tagging action

groups containing at least one tuple is over 300K. For our experiments, we consider

4535 groups that contain at least 5 tagging action tuples. The user and item similarity

(or diversity) is measured by determining the structural distance between user and

6http://www.grouplens.org/datasets/movielens/http://zip4.usps.com
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item descriptions of groups respectively. For topic discovery, we apply LDA [13] as

discussed in Section 3.2.2. We generate a set of 25 global topic categories for the entire

dataset, i.e., d = 25. For each tagging action group, we perform LDA inference on its

tag set to determine its topic distribution and then generate its tag signature vector

of length 25. Finally, we use cosine similarity (or, some general mining measure) for

computing pair-wise similarity between tag signature vectors.

System Configuration: Our prototype system is implemented in Python. All experi-

ments were conducted on an Ubuntu 11.10 machine with 4 GB RAM, AMD Phenom

II N930 Quad-Core Processor.

3.6.1 Quantitative Evaluation

First, we compare the execution time and result quality of all 6 TagDM problem

instantiations in Table 3.1 for the entire dataset (consisting of 33K tuples and 4K

tagging action groups) using Exact, SM-LSH-Fi, SM-LSH-Fo, DV-FDP-Fi and DV-

FDP-Fo algorithms. We use the name Exact for the brute-force approach on both

tag similarity and diversity maximization instances. We set the number of tagging

action groups to be returned at k = 3, since the Exact algorithm is not scalable for

larger k. Figure 3.4 and 3.5 compare the execution time and quality respectively of

Exact and LSH based algorithms for Problems 1, 2 and 3 (Tag Similarity). Figure 3.6

and 3.7 compare the execution time and quality respectively of Exact and FDP based

algorithms for Problems 4, 5 and 6 (Tag Diversity). The execution time is the time

taken to retrieve the result set. The quality of the result set is measured by computing

the average pair-wise cosine similarity between the tag signature vectors of the k = 3

tagging action groups returned. The group support is set at p = 350 (i.e., 1%);

the user attribute similarity (or, diversity) constraint as well as the item attribute

similarity (or, diversity) constraint is set to q = 50%, r = 50% respectively. For LSH

based algorithms, the number of hash tables is l = 1 while the initial value of d′ is 10.
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Figure 3.4. Execution Time:Problems 1,
2, 3 in Table 3.1.

Figure 3.5. Quality:Problems 1, 2, 3 in
Table 3.1.

Figure 3.6. Execution Time:Problems 4,
5, 6 in Table 3.1.

Figure 3.7. Quality:Problems 4, 5, 6 in
Table 3.1.

We observe that the execution time of our LSH based for similarity and FDP

based algorithm for tag diversity problem instances are much faster than the Exact

equivalent. In Figure 3.4, the execution times of SM-LSH-Fi and SM-LSH-Fo for

Problems 1, 2 and 3 are comparable to each other and is around 2 minutes. In

Figure 3.6, the execution times of DV-FDP-Fi and DV-FDP-Fo for Problems 4, 5

and 6 are slightly more than 3 minutes. Despite significant reduction in time, our

algorithms do not compromise much in terms of quality, as evident from Figure 3.5

and 3.7.
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Figure 3.8. Execution Time:Varying
Tagging Tuples.

Figure 3.9. Quality:Varying Tagging Tu-
ples.

Figure 3.10. Execution Time: Different
Algorithms.

Figure 3.11. Quality: Different Algo-
rithms.

The number of input tagging action tuples available for tagging behavior anal-

ysis is dependent on the query under consideration. For the entire dataset, there are

33K such tuples. However, if we want to perform tagging behavior analysis of all

movies tagged by {gender= male} or {location= ca}, the number of available tu-

ples is 26,229 and 6,256 respectively. Or, if want to perform tagging behavior analysis

of all users who have tagged movies having {genre= drama}, the number of tuples

is 17,368. Needless to say, the number of tagging action tuples can have a significant

impact on the performance of the algorithms since it affects the number of non-empty
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Figure 3.12. Execution Time: Exact vs
HAC, Exact vs HC.

Figure 3.13. Quality: Exact vs HAC, Ex-
act vs HC.

tagging action groups on which our algorithms operate. As a result, we build 4 bins

having 30K, 20K, 10K and 5K tagging action tuples respectively (assume, each bin is

a result of some query on the entire dataset) and compare our algorithm performances

for one of the tag similarity maximization problems and one of the tag diversity max-

imization problems, say Problem 1 and Problem 6 from Table 3.1 respectively. Both

Problems 1 and 6 have user and item dimension constraints set to similarity. Fig-

ures 3.8 and 3.9 compare the execution time and quality respectively of the Exact

algorithm with our smart algorithms: SM-LSH-Fo for Problem 1 and DV-FDP-Fo

for Problem 6. The group support is set at p = 350 (i.e., 1%); user similarity (or,

diversity) constraint and item similarity (or, diversity) constraint are set to q = 50%,

r = 50% respectively, and k = 3. For each bin along the X axis, the first two vertical

bars stand for Problem 1 (tag similarity) and the last two stand for Problem 6 (tag

diversity). As expected, the difference in execution time between our algorithms and

the Exact is small for bins with lesser number of tagging tuples for both tag similarity

and diversity. However, our algorithms return results much faster than Exact for bins

with larger number of tagging tuples. The quality scores continue to be comparable

to the optimal answer, as shown in Figures 3.9.
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Next, we analyze the performance behavior of the HAC based and HC based

algorithms introduced in Section 3.5. Recall that, both these techniques were devel-

oped to solve a wide variety of complex mining problems which LSH based and FDP

based cannot handle. Before showcasing the power of HAC and HC based algorithms,

we first compare all the four sets of algorithms - LSH based, FDP based, HAC based,

and HC based, under the same settings as above for the 6 TagDM problem instanti-

ations in Table 3.1. Then, we investigate the potential of HAC based and HC based

algorithms to handle analysis tasks which LSH and FDP based cannot.

Figure 3.10 and Figure 3.11 compare the execution time and quality respec-

tively of the four algorithms for the 6 TagDM problem instantiations in Table 3.1 -

the first three dealing with Tag Similarity and the last three dealing with Tag Di-

versity. We employ LSH based technique SM-LSH-Fo for Problems 1, 2, 3 and FDP

based technique SM-FDP-Fo for Problems 4, 5, 6. HAC and HC based techniques

are capable of handling both similarity and diversity mining problems. In order to

compare the algorithms under the same settings, we consider cosine measure as the

dual mining function for HC based algorithm (though it can handle general mea-

sures), since the LSH based, FDP based and HAC based methods can only handle

pair-wise aggregation mining function. Figure 3.10 reveals that the time taken by

the different algorithms are comparable to each other. For Problems 1, 2, 3, SM-

LSH-Fo takes 2 seconds while HAC based and HC based algorithms take around 5

and 6 seconds respectively. For Problems 4, 5, 6, DV-FDP-Fo takes 3 seconds while

HAC based and HC based algorithms take around 5 and 6 seconds respectively. From

Figure 3.11, we see that the quality of results returned by the different algorithms for

the 6 problems are very close to each other. Though the time taken by HAC and HC

algorithms are slightly higher than LSH and FDP based techniques for the same set

of problems, HAC and HC algorithms returns good quality results and are capable of
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handling additional complex mining objectives which LSH and FDP based methods

cannot handle. Therefore, we recommend LSH and FDP based algorithms for the

simple tasks of TagDM framework, and HAC and HC based algorithms for the more

advanced problems belonging to the extended TagDM framework.

In order to evaluate the performance behavior of HAC based algorithm and HC

based algorithm for complex mining tasks, we compare the execution time and result

quality of two complex TagDM problems - one for similarity, one for diversity - using

Exact and HAC based, and Exact and HC based. We use the name Exact for the

brute-force approach on both similarity and diversity maximization instances. We

set the number of tagging action groups to be returned at k = 3, since the Exact

algorithm is not scalable for larger k; the other settings (p, q, etc.) remain same too.

The complex mining tasks that we investigate are as follows:

Problem 7: We extend Problem 3.2.2 to handle additional condition in the opti-

mization goal. The objective is to find similar user sub-populations who agree most

on their tagging behavior for a diverse set of items such that the selected user groups

contain at least one tagger from the list of top 50 frequent taggers in the data. When

the mining measure is general instead of pair-wise, we refer to it as Problem 7’.

Problem 8: We extend Problem 3.2.5 to handle additional condition in the opti-

mization goal. The objective is to find diverse user sub-populations who disagree

most on their tagging for a similar set of items such that the selected user groups

contain at least one tagger from the list of top 50 frequent taggers in the data. When

the mining measure is general instead of pair-wise, we refer to it as Problem 8’.

Figures 3.12 and 3.13 compare the execution time and quality respectively of

Exact and HAC based, as well as Exact and HC based algorithms for Problems 7, 7’

(Tag Similarity) and Problems 8, 8’ (Tag Diversity). We observe that the execution

time of our HAC based and HC based techniques are much faster than the Exact
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equivalent. Despite significant reduction in execution time, our algorithms do not

compromise much in terms of quality, as evident from Figure 3.13.

3.6.2 Qualitative Evaluation

We now validate how social tagging behavior analysis can help users spot inter-

esting patterns and draw conclusions about the desirability of an item, by presenting

several anecdotal results on real data. We also compare the utility and popularity

of the 6 novel mining problems in Table 3.1 in an extensive user study conducted on

Amazon Mechanical Turk (AMT)7.

3.6.2.1 Case Study

First, we present a set of anecdotal results returned by our algorithms for the

same query for different TagDM problem instances. Specifically, we focus on Problems

2, 3, and 4 in Table 3.1 and observe the results returned by our algorithms:

♢ Analyze tagging behavior of ⟨occupation= student⟩ users for movies.

• Problem 2 finds similar user sub-populations who agree most on their tagging

behavior for a diverse set of items. We retrieve that male students use similar

tags dystopia, sci-fi, post-apocalyptic, etc. for diverse movies “Serenity”

and “The Matrix” - the former is a space western movie while the latter is a

science fiction action film.

• Problem 3 finds diverse user sub-populations who agree most on their tagging

behavior for a similar set of items. We identify that male and female students

use similar tags classic, hope, friendship, based on a book, etc. for the

movie “The Shawshank Redemption”.

• Problem 4 finds diverse user sub-populations who disagree most on their tag-

ging behavior for a similar set of items. Our algorithm returns that male and

female students use diverse tags for movies directed by “Quentin Tarantino” -

7https://www.mturk.com
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male reviewers use tags crime, cult film, dark comedy, etc. while female

reviewers use insane, visceral, ultra-violence, etc.

Second, we show how TagDM results change due to addition of conditions in

optimization goal (Section 3.5.1) and consideration of general dual mining function

(Section 3.5.2), other settings remaining the same. Let us consider the problem of

finding diverse user sub-populations who agree most on their tagging behavior for

a similar set of items, and then show how the results change due to inclusion of a

condition in the optimization goal. We observe the result returned for the query:

♢ Analyze tagging behavior of for ⟨genre= romance⟩ movies.

• Young female reviewers and middle-aged female reviewers use similar tags like

classic, sweet, love, etc. for romance movies.

If the task is to find out diverse user sub-populations who agree most on their tagging

for {genre = romance} movies such that majority of the users in the result set have

used the tag love at least once, the result is:

• Young female reviewers and middle-aged female reviewers use similar tags Oscar,

Meg Ryan, Nora Ephron, Julia Roberts, etc. for romance movies.

Thus, we can infer that young and middle-aged female reviewers agree in their

feedback towards romance movies; when these reviewers use the tag love, their agree-

ment is specifically expressed for movies starring Meg Ryan, Julia Roberts, etc.

Let us consider the problem of finding diverse user sub-populations who agree

most on their tagging behavior for a similar set of items, where similarity is either

measured as pair-wise aggregation (cosine) or is computed using a general mining

function. We compare the results returned for the query:

♢ Analyze tagging behavior for ⟨textsfdirector= steven spielberg⟩ movies.

• For pair-wise cosine similarity measure: Male and female use similar tags Oscar,

true story, violence, etc. for war movies “Saving Private Ryan” and “Schindler’s

List” directed by Steven Spielberg.

103



• For general similarity mining measure (say, tagging behavior of result sub-

population is closest to tagging behavior of global population): Old male and

young male use similar tags Oscar, true story, based on a book, etc. for

action movies and fantasy movies directed by Steven Spielberg.

Thus, we can infer that the different mining measures yield different analysis of

tagging behavior. Due to the nature of the general mining measure, it returns groups

that covers a broader spectrum of movies belonging to the query than that covered

by pair-wise cosine similarity aggregation.

Third, we show how results returned by our algorithms for TagDM problem

instances varies with increase in k, i.e., the number of user sub-populations being

returned. We consider the problem of finding similar user groups who have similar

tagging behavior for diverse set of items for the query:

♢ Analyze tagging behavior of ⟨gender= male⟩ users for movies.

• For k = 2 : Young male students use similar tags sci-fi, dystopia, post

apocalyptic, etc. for diverse movies “Serenity” and “The Matrix”. The groups

returned are:

g1 = {⟨gender, male⟩, ⟨age, young⟩, ⟨occupation, student⟩, ⟨title, Serenity⟩,

⟨genre, space western⟩, (sci− fi, dystopia, apocalyptic)}

g2 = {⟨gender, male⟩, ⟨age, young⟩, ⟨occupation, student⟩, ⟨title, The Matrix⟩,

⟨genre, action⟩, (sci− fi, dystopia, apocalyptic, martialarts)}

• For k = 4 : Young male students use similar tags sci-fi, dystopia, cult,

philosophical, etc. for diverse movies “Serenity”, “The Matrix”, “Blade Run-

ner”, and movies directed by “Peter Jackson”. Movies directed by Peter Jackson

include “The Lord of the Rings (film series)”.

• For k = 6 : Young male students use similar tags sci-fi, dystopia, based

on a book, fantasy, etc. for diverse movies “Serenity”, “The Matrix”, “Blade
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Runner”, movies directed by “Peter Jackson”, movies directed by “Joss Whe-

don”, and “Eternal Sunshine of the Spotless Mind”. Movies directed by Joss

Whedon include “Serenity” and “The Avengers”.

Thus, we can infer that young male student reviewers agree in general in their

feedback towards diverse set of movies - a space western movie, a science fiction action

film, a noir detective fiction, a romantic dramedy science fiction film, etc. We can

also infer that diversity of items returned as part of the result broadens with increase

in the value of k.

TagDM analysis tasks can also throw in surprising results, as we see for the

query:

♢ Analyze tagging behavior of ⟨gender= male, location= california⟩ users for movies.

• Old male and young male living in California use similar tags for “Lord of

the Rings” film trilogy of fantasy genre. However, they differ in their tagging

towards “Star Wars” movies having similar genre. This is because, the genre of

the latter series borders between fantasy and science fiction. Surprisingly, old

male likes it while young male does not.

3.6.2.2 User Study

We conduct a user study through Amazon Mechanical Turk to elicit user re-

sponses towards the different TagDM problem instances we have focused on in the

chapter, and investigate if the problems are interesting. We generate analysis corre-

sponding to all 6 problem instantiations for the following randomly selected queries:

⋄ Analyze tagging behavior of ⟨gender= male⟩ users for movies.

⋄ Analyze tagging behavior of ⟨occupation= student⟩ users for movies.

⋄ Analyze user tagging behavior for ⟨genre= drama⟩ movies.
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Figure 3.14. User Study.

We have 50 independent single-user tasks. Each task is conducted in two phases:

User Knowledge Phase and User Judgment Phase. During the first phase, we estimate

the user’s familiarity about movies in the task using a survey, besides her demograph-

ics. In the second phase, we ask users to select the most preferred analysis, out of the

6 presented to them, for each query. Since there are 3 queries and 50 single-user tasks,

we obtain a total of 3 × 50 = 150 responses. The first phase eliminates 5 of the 50

single-users. Therefore, our user study is based on a total of 3× 35 = 135 responses,

which are aggregated to provide an overall comparison between all problem instances

in Figure 3.14. The height of the vertical bars represent the percentage of users,

preferring a problem instance. We also place the numerical number of user responses

against each of the vertical bars. It is evident that users prefer TagDM Problems

2 (find similar user sub-populations who agree most on their tagging behavior for a

diverse set of items), 3 (find diverse user sub-populations who agree most on their

tagging behavior for a similar set of items) and 6 (find similar user sub-populations

who disagree most on their tagging behavior for a similar set of items), having di-

versity as the measure for exactly one of the tagging component: item, user and tag

respectively.
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3.7 Demonstration

We propose a system ViSTaR for interactive mining and exploration, as well as

geo-visualization of social tagging and rating behavior. We choose to focus on short

user feedback (ratings and tags) since its aggregated view over numerous user-item

interactions is informative, unlike long textual reviews that require semantic analysis.

Our system carefully aggregates the rapidly growing data in collaborative content

sites and allows a user to analyze how ratings and tags are assigned by certain users

to certain items. In contrast to Maprat in Section 2.6, our system performs simul-

taneous mining on both rating and tags. Our proposed solution extends the dual

mining framework in this chapter to additionally include rating as the fourth dimen-

sion. By applying the notion of similarity and diversity on the different dimensions

namely users, items, ratings and tags, our system can identify multiple interesting

patterns that cannot be extracted by traditional state-of-art analysis.

3.7.1 Architecture

There are two major components in ViSTaR: Dual Mining and Visualization.

Dual Mining: This module accepts a query q (consisting of user attributes u or item

attributes i or a combination of both) from the front-end and collects all the cor-

responding feedback tuples Rq. The set of user attribute based groups and item

attribute based groups that has at least one feedback tuple in Rq are then con-

structed. Depending on the user requirements, we formulate it as a constrained

optimization problem as defined by the TagDM framework. Based on whether the

optimization target is similarity or diversity, we invoke variants of LSH or FDP based

algorithms discussed in this chapter. The output of this component is a set of inter-

esting groups that maximizes the user criterion. Using a combination of aggressive

data pre-processing, result pre-computation and caching techniques, the latency of

our system is minimized.
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Visualization: This module takes a set of groups returned by the dual mining module

as input and visualizes the results, so that any user of ViSTaR can quickly examine

the trends for making decisions. We identify that location of a reviewer is a natural

attribute over which social feedback behavior can be effectively visualized. Such geo-

visualization allows quick cognition of the behaviors, highlights geographical trends in

user feedback patterns (if any) and also provides a mechanism to overlay explanations

from different result sets. The dual mining module ensures that all groups that are

selected have the location attribute associated with them.

This module has to visualize results generated for two forms of feedbacks, ratings

and tags. The set of groups that are generated by maximizing the objective functions

based on the user query can be considered as feedback interpretation object. Each

set of such objects are then rendered as a Choropleth map [12] using the average

group rating for shading. Dark red corresponds to lowest rating while dark green

denotes the highest and the intermediate values are represented by the red-green

gradient. For each object, the tags associated with are visualized using tag clouds.

Tag clouds are a particularly appealing mechanism to visualize user feedback in the

form of tags. Popular tags are shown at a higher font size. Additionally each tag in

the tag cloud is also proportionally colored based on the topic it is associated with.

The tag to topic assignment is identified by performing LDA on Rq. Each group

is also annotated with icons that identify the attribute value pairs used to define

it. The set of these Choropleth maps form an exploration. Such an exploration is

formed from the same set of input feedback tuples Rq and constraints, but provide

different perspective in terms of meaningful rating interpretations. As an example,

one exploration might identify set of reviewer groups that provide similar tags for

diverse items while the next would identify the reviewer groups that provide diverse

tags for the same. Collectively, the different visualizations provide a comprehensive
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insight into reviewer feedback patterns. The system also allows a user to drill deeper

and view lower level aggregate statistics. For example, if the original geo-condition

was over a state, the drill down provides city level rating and tagging statistics.

3.7.2 User Interface

The ViSTaR system can work on any collaborative content site that provides

data as described in Section 3.6. For the purpose of the demo, we use the 1M rating

data from MovieLens. We integrate the MovieLens data with information available

from IMDB, in order to include additional item attributes such as actors and directors.

ViSTaR is a web based system that allows a user to enter queries about re-

viewers, items or both. The primary UI for entering is shown in Figure 3.15. A user

can enter a conjunctive query by entering one or more attribute values for reviewers

and/or items. The item based queries include attribute values for movie title, actor,

director and genre. The user based queries involve reviewer gender, age, occupation

and location. The user can enter additional search settings such as the maximum

number of groups to be returned and its feedback coverage. The user can also enter

additional soft constraints on the reviewer and item dimensions that influences the

chosen groups. Finally, the user chooses the optimization goal on one or both of

ratings and tags. It is also possible not to specify any attribute value pairs on the

input interface - the system then performs mining on the entire dataset.

Suppose a user wants to identify a diverse set of items for which a similar

group of users, say young male reviewers, share similar rating and tagging behavior.

Figure 3.15 is the corresponding input query interface. The user enters Young as the

reviewer age and Male as the reviewer gender for query; the item dimension is left

blank. In the Mining Criterion section, the user selects diversity for item dimension,

similarity for tag dimension and similarity for rating dimension. If the user wants to
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identify diverse items for which young male reviewers have used similar tags, she needs

to enter similarity for tag dimension and keep the rating dimension blank. Again,

if the user wants to identify similar items for which young male reviewers have used

diverse ratings and tags, she needs to select similarity for item dimension, diversity

for tag dimension and diversity for rating dimension. In this way, the user can choose

from a set of options to mine results for a series of different analysis tasks. Note that,

a user is also capable of exploring the feedback behavior of different sub-populations

by submitting different combinations of the reviewer attributes as the query.

VisTaR identifies that diverse item groups ⟨actor, Jennifer Aniston⟩ and ⟨actor,

Justin Timberlake⟩ receives similar feedback from young male reviewers, as seen in

Figure 3.16. Each distinct item group is displayed in a carousel; the user can flip

through the arrows to view the other groups. Each item group is associated with a

map which highlights the states that have significant number of user feedback. For

example, in Figure 3.16 (left), male users from Texas and California have the highest

proportion of feedback for the item group ⟨actor , Jennifer Aniston⟩.

If the query results in reviewer groups, then each such group always specify

the state as their geo-condition in order to allow rendering of the explanation in the

map. The average rating of the group is used for highlighting the state. We use a red

(rating 1.0) to green (rating 5.0) Likert Scale for depicting the average rating. The

tag feedback provided for each group is presented as a tag cloud on the right. The

reviewer attributes associated with a group are highlighted through visual cues such

as icons. The color of the pin holding the icons depicts the age of the sub-population.

3.7.3 Demo Plan

Our demo allows the audience to use a web interface and specify arbitrary

search query involving reviewer and/or movie attributes. The audience can spec-
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Figure 3.15. Primary User Interface of ViSTaR.

Figure 3.16. ViSTaR Result for Query in Figure 3.15 - ⟨actor, Jennifer Aniston⟩ in
left, ⟨actor, Justin Timberlake⟩ in right.

ify other search settings and soft constraints on different dimensions in the mining

criterion section for personalized mining. Based on the query, the constraints and

the optimization criterion, our system will display the result set which the audience

can examine to have a better understanding of the social feedback trends for the

query. The audience can also filter the results by additional constraints for a more

fine-grained analysis. Such exploration will give the audience a deeper appreciation
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of our system’s utility to aid users make informed judgments about movies quickly. It

will also clearly show the superiority of ViSTaR to explain social feedback behavior

for items over information presented in existing content sites.

Thus, we develop a comprehensive framework for mining and exploring social

feedback behavior in order to help future customers make purchasing decisions ef-

fectively and efficiently. Now, we move to the second part of the dissertation that

concerns exploratory mining of collaborative social content to help content producers

improve business.
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PART II

EXPLORATORY MINING OF COLLABORATIVE CONTENT

FOR CONTENT PRODUCERS

“If you don’t understand people, you don’t understand business.”

- Simon O. Sinek
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CHAPTER 4

New Item Design

4.1 Introduction

The widespread use and popularity of online collaborative tagging sites has

created new challenges and opportunities for designers of web items such as electronics

products, travel itineraries, popular blogs, etc. Various websites today (e.g., Flickr

for photos, YouTube for videos, Amazon for different products) encourage users to

actively participate by assigning labels or tags to online resources with a purpose to

promote their contents and allow users to share, discover and organize them. An

increasing number of people are turning to online reviews and user-specified tags

to choose from among competing items. Products with desirable tags (e.g., modern,

reliable, etc.) have a higher chance of being selected by prospective customers. This

creates an opportunity for designers to build items that are likely to attract desirable

tags when published. In addition to traditional marketplaces like electronics, autos

or apparel, tag desirability also extends to other diverse domains. For example, music

websites such as Last.fm use social tags to guide their listeners in browsing through

artists and music. An artist creating a new musical piece can leverage the tags that

users have selected, in order to select the piece’s attributes (e.g. acoustic and audio

features) that will increase its chances of becoming popular. Similarly, a blogger

can select a topic based on the tags that other popular topics have received. We

investigates this novel tag maximization problem, i.e., how to decide the attribute

values of new items and to return the top-k best items that are likely to attract the

maximum number of desirable tags. We provide more details as follows.
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Assume we are given a training data of objects (i.e., products), each having a

set of well-defined features (i.e., attributes) and a set of user-submitted tags (e.g., cell

phones on Amazon’s website, each described by a set of attributes such as display size,

Operating System and associated user tags such as lightweight, easy to use). From

this training data, for each distinct tag, we assume a classifier has been constructed for

predicting the tag given the attributes. Tag prediction is a recent area of research (see

Section 7 for discussion of related work), and the existence of such classifiers is a key

assumption in our work. In addition to the product’s explicitly specified attributes,

other implicit factors also influence tagging behavior, such as the perceived utility and

product quality to the user, the tagging behavior of the user’s friends, etc. However,

pure content-based tag prediction approaches are often quite effective − e.g., in the

context of laptops, attributes such as smaller dimensions and the absence of a built-in

DVD drive may attract tags such as portable.

Given a query consisting of a subset of tags that are considered desirable, our

task is to suggest a new product (i.e., a combination of attribute values) such that

the expected number of desirable tags for this potential product is maximized. This

can be extended to the top-k version, where the task is to suggest the k potential

products with the highest expected number of desirable tags. In addition to the

set of desirable tags, our problem can also consider a set of undesirable tags, e.g.

unreliable. The optimization goal in this case is to maximize the number of desirable

tags and minimize the undesirable ones - a simple combination function is to optimize

the expected number of desirable tags minus the expected number of undesirable tags.

In our discussion so far, we have not explained how the set of desirable and undesirable

tags are created. Although this is not the focus of this chapter, we mention several

ways in which this can be done. For example, domain experts could study the set

of tags and mark them accordingly. Automated methods may involve leveraging the
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user rating or the sentiment of the user review to classify tags as desirable, undesirable

or unimportant.

The dynamics of social tagging has been an active research area in recent years.

However related literature primarily focuses on the problems of tag prediction, in-

cluding cold-start recommendation to facilitate web-based activities. To our best

knowledge, tags have not been studied in the context of product design before. Of

course, real-world product design is a complex task, and is an area that has been

heavily studied in economics, marketing, industrial engineering and more recently in

computer science. Many factors like the cost and return on investment are currently

considered. We argue that the user feedback (in the form of tags of existing competing

products) should be taken into consideration in the design process, especially since

online user tagging is extremely widespread and offers unprecedented opportunities

for understanding the collective opinion and preferences of a huge consumer base. We

envision user tags to be one of the several factors in product design that can be used

in conjunction with more traditional factors - e.g., our algorithms return k potential

new products that maximize the number of desirable tags; and this information can

assist content producers, who can then further post-process the returned results us-

ing additional constraints such as profitability, price, resource constraints, product

diversity, etc. Moreover, product designers can explore the data in an interactive

manner by picking and choosing different sets of desirable tags to get insight on how

to build new products that target different user populations − e.g., in the context of

cell phones, tags such as lightweight and powerful target professionals, whereas

tags such as cheap, cool target younger users.

Solving the tag maximization problem is technically challenging. In most prod-

uct bases, complex dependencies exist among the tags and products, and it is difficult

to determine a combination of attribute values that maximizes the expected number
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of desirable tags. Herem we consider the very popular Naive Bayes Classifier for tag

prediction 1. Extending our work for other popular classifiers is one of our future re-

search directions. As one of our first results, we show that even for this classifier (with

its simplistic assumption of conditional independence), the tag maximization problem

is NP-Complete. Given this intractability result, it is important to develop algorithms

that work well in practice. A highlight of our work is that we have avoided resorting

to heuristics, and instead have developed principled algorithms that are practical and

at the same time possess compelling theoretical characteristics.

Our first algorithm is a novel exact top-k algorithm ETT (Exact Two-Tier Top-

k algorithm) that performs significantly better than the naive brute-force algorithm

(which simply builds all possible products and determines the best ones), for moderate

problem instances. Our algorithm is based on nontrivial adaptations of top-k query

processing techniques (e.g., [32]), but is not merely a simple extension of TA. The

complexity arises because the problem involves maximizing a sum of terms, where

within each term there is a product of quantities which are interdependent with the

quantities from the other terms. Our top-k algorithm and has an interesting two-tier

architecture. At the bottom tier, we develop a sub-system for each distinct tag, such

that each sub-system has the ability to compute on demand a stream of products in

order of decreasing probability of attracting the corresponding tag, without having to

pre-compute all possible products in advance. In effect, each sub-system simulates

sorted access efficiently. This is achieved by partitioning the set of attributes into

smaller groups (thus, each group represents a partial product), and running a separate

merge algorithm over all the groups. The top tier considers the products retrieved

from each sub-system in a round-robin manner, computes the expected number of

1Naive Bayes Classifiers are often effective, rival the performance of more sophisticated classifiers,
and are known to perform well in social network applications. For instance, Pak and Paroubek [31]
show that Naive Bayes performs better than SVM and CRF in classifying the sentiment of blogs.
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desirable tags for each retrieved product, and stops when a threshold condition is

reached. Although in the worst case this algorithm can take exponential time, for

many datasets with strong correlations between attributes and tags, the stopping

condition is reached much earlier.

However, although the exact algorithm performs well for moderate problem

sizes, it did not easily scale to much larger sized datasets. Heuristic techniques like

hill-climbing, branch and bound, etc. does not guarantee any sort of worst case be-

havior, either in running time or in item quality. Designing approximation algorithms

with guaranteed behavior is challenging, since no known approximation algorithm for

other NP-Complete problems can be easily modified for our case. Our exact algo-

rithm ETT can be modified to serve as an approximation algorithm - we can change

the threshold condition such that the algorithm stops when the threshold is within a

small user-provided approximation factor of the top-k product scores produced thus

far. This algorithm can guarantee an approximation factor in the quality of products

returned, but would run in exponential time in the worst case. In this work, we

develop a novel approximation algorithm PA (Poly-Time Approximation algorithm)

that runs in worst case polynomial time, and also guarantees a provable bound on

the approximation factor in item quality. The principal idea is to group the desirable

tags into constant-sized groups, find the top-k items for each sub-group, and output

the overall top-k items from among these computed items. Interestingly, we note

that in this algorithm we create sub-problems by grouping tags; in contrast in our

exact algorithm we create sub-problems (i.e., subsystems) by grouping attributes.

For each sub-problem thus created, we show that it can be solved by a polynomial

time approximation scheme (PTAS) given any user-defined approximation factor. For

each sub-problem thus created, we show that it can be solved by a polynomial time

approximation scheme (PTAS) given any user-defined approximation factor. The al-
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gorithm’s overall running time is exponential only in the (constant) size of the groups,

thus giving overall a polynomial time complexity.

We experiment with synthetic as well as real datasets crawled from the web

to compare our algorithms. User study on the real dataset demonstrates that the

items suggested by our algorithms appear to be meaningful. With regard to effi-

ciency, the exact algorithm performs well on moderate problem instances, whereas

the approximation algorithm scaled very well for larger datasets.

4.2 Problem Framework

We model a collaborative tagging site D as a triple ⟨U , I,R⟩, representing the

set of reviewers (i.e., users), the set of items (i.e., products) and the feedback (i.e,

tag vocabulary), respectively. Let {p1, p2, ..., pnp} be a collection of np products,

where each entry is defined over the item schema IA = ⟨pa1, pa2, ..., pamp⟩ and the

tag dictionary space T = {T1, T2, ..., Tnc }. For the ease of representation (and since

we do not consider user details in the framework), let mp be m. A product p is a

set of attribute values, p = ⟨pv1, pv2, ...., ⟩ where each pvy is a value for the attribute

pay ∈ IA. Each attribute pay can take one of several values pvy from a multi-valued

categorical domain Di, or one of two values 0, 1 if a boolean dataset is considered. A

tag Tj is a bit where a 0 implies the absence of a tag and a 1 implies the presence of

a tag for product p. Each product is thus a vector of size (m + nc), where the first m

positions correspond to a vector of attribute values, and the remaining nc positions

correspond to a boolean vector.2,3

We assume such a dataset has been used as a training set to build Naive Bayes

Classifiers (NBC), that classify tags given the attribute values (one classifier per tag).

2Our framework allows numeric attributes, but as is common with Naive Bayes Classifiers, we
assume that they have been appropriately binned into discrete ranges.

3A more complex framework which leverages the frequencies of tags is left for future work.

119



The classifier for tag Tj defines the probability that a new item p is annotated by the

tag Tj:

Pr(Tj | p) = Pr(Tj | pv1, pv2, ..., pvm)

=
Pr(Tj).Π

m
i=1Pr(pvi | Tj)

Pr(pv1, pv2, ..., pvm)
(4.1)

where pvi is the value of p for attribute pai. The probabilities Pr(pvi | Tj) are

computed using the dataset. In particular, Pr(pvi | Tj) is the proportion4 of items

tagged by Tj that have pai = pvi. Pr(Tj) is the proportion of items in the dataset

that has Tj.

Similarly, we compute the probability Pr(Tj
′ | p) of an item p not having tag

Tj:

Pr(Tj
′ | p) =

Pr(Tj
′).Πm

i=1Pr(pvi | Tj′)
Pr(pv1, pv2, ..., pvm)

(4.2)

We know that Pr(Tj | p) + Pr(Tj
′ | p) = 1; hence from Equations 4.1, 4.2 we

get :

Pr(pv1, pv2, ..., pvm) = Pr(Tj).Π
m
i=1Pr(pvi | Tj) +

Pr(Tj
′).Πm

i=1Pr(pvi | Tj′) (4.3)

From Equations 4.1, 4.3,

Pr(Tj | p) = Pr(Tj | pv1, pv2, ..., pvm)

=
Pr(Tj).Π

m
i=1Pr(pvi | Tj)

Pr(Tj).Πm
i=1Pr(pvi | Tj) + Pr(Tj′).Πm

i=1Pr(pvi | Tj′)

=
1

1 +
Pr(Tj′)
Pr(Tj)

Πm
i=1

Pr(pvi|Tj′)
Pr(pvi|Tj)

For convenience we use the notation

Rj =
Pr(Tj

′)

Pr(Tj)
Πm

i=1

Pr(pvi | Tj′)
Pr(pvi | Tj)

(4.4)

4The observed probabilities are smoothened using the Bayesian m-estimate method [33]. We note
that more sophisticated Bayesian methods that use an informative prior may be employed instead.
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Consider a query which picks a set of desirable tags T d = {T1, . . . , Tz} ⊆ T. The

expected number of desirable tags Tj ∈ T d that a new item p, characterized by (pv1,

pv2, ..., pvm) is annotated with, is given by:

E(p, T d) = Σz
j=1

1

1 +Rj

(4.5)

We are now ready to formally define the main problem.

Problem 4.2.1. Tag Maximization Problem: Given a dataset D of tagged items {p1,

p2, ..., pn}, and a query T d, design k new items that have the highest expected number

of desirable tags they are likely to receive, given by Equation 4.5.

We explain our algorithms in a boolean framework, which can be readily gen-

eralized to handle the case of categorical data. We also assume that all tags are of

equal weight− if tags are of varying importance, Equation 4.5 can be re-written as a

weighted sum, and all our proposed algorithms can be modified accordingly.

4.3 Complexity Analysis

In this section, we analyze the computational complexity of the main problem.

Clearly, the brute-force exhaustive search will require us to design all possible 2m

number of products and compute E(p, T d) for each of them. This naive approach

will run in exponential time. However, we next give a proof sketch that the Tag

Maximization problem is NP-Complete, which leads us to believe that in the worst

case we may not be able to do much better than the naive approach.

Theorem 4.3.1. The Tag Maximization problem is NP-Complete even for boolean

databases and for k = 1.

Proof : The membership of the decision version of the problem in NP is obvious.

To verify NP-hardness, we reduce the 3SAT problem to the decision version of our

problem. We first reduce the 3SAT problem to the minimization version of the op-
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timization problem, represented as Emin(p, T d) and then reduce the minimization

problem to the problem of maximization of expected number of tags being present.

Reduction of 3SAT to decision version of Emin(p, T d) :

3SAT is the popular NP-complete boolean satisfiability problem in computa-

tional complexity theory, an instance of which concerns a boolean expression in con-

junctive normal form, where each clause contains exactly 3 literals. Each clause Cj is

mapped to a tag Tj in the instance of Emin(p, T d) and each variable xi is mapped to

attribute value ai. We make the following assignments so that if there is a boolean

assignment vector a⃗ = [a1, ..., am] that satisfies 3SAT, then Emin(p, T d) equals zero

(and if a⃗ does not satisfy 3SAT, then Emin(p, T d) has a non-zero sum).

• For a variable xi specified as positive literal in 3SAT, set Pr(pvi = 0 | Tj) = 1

• For a variable xi specified as negative literal in 3SAT, set Pr(pvi = 1 | Tj) = 1

• For a particular clause and for the unspecified attributes (variables), set Pr(pvi

= 0 | Tj) = Pr(pvi = 1 | Tj) = 1

For example, consider 3SAT instance (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x4). For

each tag, we create two products. For instance for the first tag, x1 (that corresponds

to A1) is negative and hence for both the first and second product it is A1 = 1. x4 is

missing from the first tag, hence for the first product it is A4 = 0 and for the second

it is A4 = 1.
Table 4.1. Table of boolean attributes and tags

Attributes Tags
A1 A2 A3 A4 T1 T2

1 0 1 0 1 0
1 0 1 1 1 0
0 1 0 1 0 1
0 1 1 1 0 1

Reduction of Emin(p, T d) to E(p, T d) :
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If we have a boolean assignment vector a⃗ = [a1, ..., am] that minimizes the

expected number of tags being present, we have the corresponding Pr(Tj
′ | pv1, pv2,

..., pvm). Hence, we get Pr(Tj | pv1, pv2, ..., pvm) = 1 - Pr(Tj
′ | pv1, pv2, ..., pvm) that

maximizes the expected number of tags being present. �

Section 4.4.1 and Section 4.4.2 next describe our algorithmic solutions to this

NP-Complete problem in a boolean framework.

4.4 Algorithms

4.4.1 Optimal Algorithm

A brute-force exhaustive approach (henceforth, referred to as Naive) to solve

the Tag Maximization problem requires us to design all possible 2m number of items

and compute E(p, T d) for each possible item. Note that the number of items in

the dataset is not important for the execution cost, since an initialization step can

calculate all the conditional tag-attribute probabilities by a single scan of the dataset.

Although general purpose pruning-based optimization techniques (such as branch-

and-bound algorithms) can be used to solve the problem more efficiently than Naive,

such approaches are only limited to constructing the top-1 item, and it is not clear

how they can be easily extended for k > 1.

In the following subsection, we propose a novel exact algorithm for any k based

on interesting and nontrivial adaptations of top-k query processing techniques. This

algorithm is shown in practice to explore far fewer item candidates than Naive, and

works well for moderate problem instances.

4.4.1.1 Exact Two-Tier Top-k Algorithm

We develop an exact two tier top-k algorithm (ETT) for the Tag Maximization

problem. For simplicity, henceforth we refer to desirable tags as just tags. The main
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idea of ETT is to determine the best items for each individual tag in tier-1 and

then match these items in tier-2 to compute the globally best items (across all tags).

Both tiers use pipelined techniques to minimize the amount of accesses, as shown in

Figure 4.1. The output of tier-1 is z unbounded buffers (one for each tag) of complete

items, ordered by decreasing probability for the corresponding tag. These buffers are

not fully materialized, but may be considered as sub-systems that can be accessed on

demand in a pipelined manner.

In tier-2, the top items from the z buffers are combined in a pipelined manner

to produce the global top-k items, akin the Threshold Algorithm (TA) [32]. In turn,

tier-2 makes GetNext() requests (see Figure 4.1) to various buffers in tier-1 in round-

robin manner. In tier-1, for each specific tag, we partition the set of attributes into

subsets, and for each subset of attributes we precompute a list of all possible partial

attribute value assignments, ordered by their score for the specific tag (the score will

be defined later). The partial items are then scanned and joined, leveraging results

from Rank-Join algorithms [34] that support top-k ranked join queries in relational

databases, in order to feed information to tier-2. A single GetNext() for a specific

tag may translate to multiple retrievals from the underlying lists of partial items in

tier-1, which are then joined into complete items and returned.

Figure 4.1. Two-Tier Top-K Algorithm Framework.
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4.4.1.2 Tier-1

Suppose we partition them attributes into l subsets, where each subset hasm′ =

m
l
attributes as follows: {pv1, . . . , pvm′}, {pvm′+1, . . . , pv2m′}, . . ., {pvm−m′+1, . . . , pvm}.

We create partial item lists Lj1, . . . , Ljl for each tag Tj. Each list Lji has 2
m′

entries

(partial items). Consider the first list Lj1. The score of a partial item pp ∈ Lj1 with

attribute values pv1, . . . , pvm′ for Tj is

Epartial(p
p, {Tj}) = l

√
Pj.Π

m′

i=1

Pr(pvi | Tj′)
Pr(pvi | Tj)

(4.6)

where Pj=
Pr(Tj′)
Pr(Tj)

. Note that the l-th root of Pj is used in order to distribute the

effect of Pj from Equation 4.4 to the l lists, such that when they are combined using

multiplication, we get Pj.

Lists Ljl are ordered by descending 1
Epartial

, since Rj appears on the denomi-

nator of Equation 4.5. The l lists are accessed in round-robin fashion and for every

combination of partial items from the lists, we join them to build a complete item

and resolve its exact score by Equation 4.5.

An item is returned as a result of GetNext() to tier-2 if its score is higher than

the MPFS (Maximum Possible Future Score), which is the upper bound on the score

of an unseen item. To compute MPFS, we assume that the current entry from a list

is joined with the top entries from all other lists :

MPFS =
1

1 +max((sj1.hj2.. · hjl), (hj1.sj2.. · hjl), .., (hj1.hj2.. · sjl))
(4.7)

where sji and hji are the last seen and top entries from list Lji respectively.

4.4.1.3 Tier-2

In this tier, the z unbounded buffers, one for each tag, are combined using the

summation function, as shown in Equation 4.5. Each item from one buffer matches

125



exactly one entry (the identical item) from each of the other buffers. Items are

retrieved from each buffer using GetNext() operations, and once retrieved we directly

compute its score for all other tags by running each Naive Bayes classifier, without

using the process of tier-1. An item is output if its score is higher than the threshold,

which is the sum of the last seen scores from all z buffers. A bounded buffer with

the k best results so far is maintained. On termination, this buffer is returned as the

top-k items.

The pseudocode of ETT is shown in Algorithm 8.

Table 4.2. Example tagged items dataset

Attribute Tag
ID A1 A2 A3 A4 T1 T1

1 0 0 0 1 0 0
2 0 1 0 0 0 1
3 0 1 0 1 0 0
4 0 1 1 1 1 1
5 1 0 0 0 1 0
6 1 0 0 1 0 1
7 1 0 1 1 1 1
8 1 1 0 1 0 1

Example 4.4.1. Consider the boolean dataset of 10 objects, each entry having 4

attributes and 2 tags in Table 4.2. We partition the 4 attributes into groups of 2

attributes : (A1, A2) form list Lj1 and (A3, A4) form list Lj2. We run NBC and

calculate all conditional tag-attribute probabilities. The algorithm framework for the

running example is presented in Figure 4.2. List L11 and L12 under tag T1 is sorted

in decreasing order of 1
Epartial

, given by Equation 4.6 (and, similarly for L21 and L22

under tag T2).

In iteration 1, call to Threshold() in tier-2 calls GetNext() for T1 and T2 respec-

tively in tier-1. During GetNext(T1), join-1 builds item 1010, whose score1(1010) =
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Algorithm 8 ETT (Naive Bayes probabilities, attributes per group m′, k):
top-k exact items

//Main Algorithm

1: Top-k-Buffer ← {}
2: for j = 1 to z do
3: Bj ← {} // unbounded buffer of candidate results-items per tag
4: for i = 1 to l do
5: sji, hji ← top entry from list Lji

6: end for
7: end for
8: Call Threshold()

//Method Threshold() – Tier-2

1: while true do
2: for j = 1 to z do
3: (pj, scorej(pj) ← GetNext(j)
4: ExactScore(pj) ← Compute for pj by Equation 4.5
5: end for
6: Update Top-k-Buffer with new items if necessary
7: MinK ← lowest score in Top-k buffer
8: α ←

∑
j scorej(pj) // Threshold

9: if MinK ≥ α then
10: return top-k items
11: end if
12: end while

//Method GetNext(j) : (pj, scorej(pj)) – Tier-1

1: while true do
2: Compute MPFS by Equation 4.7
3: // scorej(p) for item p is defined as 1/(1 +Rj) (Rj defined by Equation 4)
4: if Bj has an item p with scorej(p) > MPFS then
5: return (p, scorej(p)) AND remove it from Bj

6: end if
7: Retrieve next entry pp from a list Lji in round robin and advance sji
8: Join pp with all combinations of partial items from other lists and create all

items NewItems
9: Add NewItems to buffer Bj of candidate results-items
10: end while
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0.95 and MPFS(1010) =0.95. Since score1 ≥ MPFS, (1010,0.95) is returned to

tier-2. GetNext(T2) returns (1111,0.93) to tier-2. In tier-2, call to Threshold() re-

turns ExactScore(1010) =1.70, ExactScore(1111) =1.75. Now, top-k-buffer gets 1111;

MinK=1.75 and α=1.88. Since MinK ≤ α, we continue to iteration 2. In iteration

2, we proceed similarly. GetNext(T1) returns (1011, 0.92) and GetNext(T2) returns

(1110,0.88) to tier-2. Call to Threshold() in tier-2 gives ExactScore(1011) =1.76, Ex-

actScore(1110) =1.77. The top-k-buffer is updated to 1110; MinK=1.77 and α=1.79.

Since MinK ≤ α, we continue to iteration 3. In tier-1 of iteration 3, GetNext(T1)

returns (0010,0.89) and GetNext(T2) returns (0111,0.84) to tier-2. Then Threshold()

is called and we get ExactScore(0010) =1.76, ExactScore(0111) =1.77. The Bounded

Buffer continues to be 1110; MinK=1.77 and α=1.74. We see that MinK ≥ α. Hence,

ETT terminates and returns 1110 as the top-1 item. Thus, ETT returns the best item

by just looking up 6 items, instead of 16 items (as in Naive algorithm). �

Figure 4.2. Iteration 1: Exact Two-Tier Top-K Algorithm for Example in Table 4.2.
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Grouping of Attributes: The ETT algorithm partitions the set of attributes into

smaller groups (each group representing a partial product), which we join to retrieve

the best product to feed to tier-2. We can employ state-of-art techniques to cre-

ate a graph, where each node corresponds to an attribute and an edge between two

attributes is weighed by the absolute value of the correlation between them, and

then perform graph clustering techniques for partitioning the attributes into as many

groups as the desired number of lists. If the sets of attributes are highly correlated,

such grouping of attributes would make our ETT algorithm reach the stopping con-

dition earlier than it would if the attributes are grouped arbitrarily.

4.4.2 Approximation Algorithm

The exact algorithm of Section 4.4.1.1 is feasible only for moderate instances

of the problem. For larger problem instances, in this section we discuss a principled

approximation algorithm (PA, or polynomial time approximation algorithm) that pro-

vides guarantee in the quality of the top-k results as well as running time.

4.4.2.1 Polynomial Time Approximation Algorithm

The main idea is to group the desirable tags into constant-sized groups of z′ tags

each, find the top-k items for each subgroup, and output the overall top-k items from

among these computed items.5 For each sub-problem thus created, we show that it

can be solved by a polynomial time approximation scheme (PTAS) [35], i.e., can be

solved in polynomial time given any user-defined approximation factor ϵ (function of

compression factor σ and m; details later in Theorem 2). The overall running time

of the algorithm is exponential only in the (constant) size of the groups, thus giving

overall a polynomial time complexity.

5Interestingly, we note that in this algorithm we create (z/z′) sub-problems by grouping tags;
in contrast in our exact ETT algorithm we create sub-problems (i.e., subsystems) by grouping
attributes.

129



We now consider a sub-problem consisting of only a constant number of tags, z′.

We also restrict our discussion to the case k = 1 (more general values of k are discussed

later). We shall design a polynomial time approximation scheme (PTAS) for this sub-

problem. A PTAS is defined as follows. Let ϵ > 0 be any user-defined parameter.

Given any instance of the sub-problem, let PTAS return the item pa. Let the optimal

item be pg. The PTAS should run in polynomial time, and ExactScore(pa) ≥ (1 −

ϵ).ExactScore(pg).

In describing the PTAS, we first discuss a simple exponential time exact top-1

algorithm for the subproblem, and then show how it can be modified to the PTAS.

Given m boolean attributes and z′ tags, the exponential time algorithm makes m

iterations as follows: As an initial step, it produces the set Su
0 consisting of the single

item {0m} along with its z′ scores, one for each tag. In the first iteration, it produces

the set containing two items Su
1 = {0m, 10m−1} each accompanied by its z′ scores,

one for each tag. More generally, in the ith iteration, it produces the set of items

Su
i = {{0, 1}i × 0m−1} along with their z′ scores, one for each tag. Each set can be

derived from the set computed in the previous iteration. Once m iterations have been

completed, the final set Su
m contains all 2m items along with their exact scores, from

which the top-1 item can be returned, which is that product for which the sum of

the z′ scores is highest. However, this algorithm takes exponential time, as in each

iteration the sets double in size.

The main idea of the PTAS is to not allow the sets to become exponential in

size. This is done by compressing each set Si, having the same form as Su
i and Si ⊆ Su

i ,

produced in each iteration to another smaller set S ′
i, so that they remain polynomial

in size. Each item entry in Si can be viewed as points in a z′-dimensional space,whose

z′ co-ordinates correspond to the item scores for z′ individual tags respectively, by

Equation 4.5. Essentially, we use a clustering algorithm in z′-dimensional space. For
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each cluster, we pick a representative item that stands for all other items in the cluster,

which are thereby deleted. The clustering has to be done in a careful way so as to

guarantee that for the items that are deleted, the representative item’s exact score

is be close to the deleted item’s exact score. Thus when the top-1 item of the final

compressed set S ′
m is returned, its exact score should not be too different from exact

score of the top-1 item assuming no compression was done.

The pseudocode of PA is shown in Algorithm 9.

Algorithm 9 PA (Naive Bayes probabilities, attributes per group z′, com-
pression factor σ): top-1 approximate item in polynomial time

//Main Algorithm

1: Partition tags T into z/z′ groups T1, . . . , Tz/z′
2: for r = 1 to z

z′
do

3: pr ← PTAS(Tr)
4: Compute ExactScore(pr) by Equation 4.5
5: end for
6: return pr with max ExactScore

//Method PTAS(Tr) : p

1: S ′
0 ← {0m} // boolean vector of size m with all 0’s

2: for i = 1 to m do
3: Si = S ′

i−1 ∪ S ′′
i−1 // S ′′

i−1 : S
′
i−1 with ith attribute value set to 1

4: // Compress Si to S ′
i using compression factor σ

5: S ′
i ← {}

6: repeat
7: p ← representative item in S ′

i−1

8: S ′
i ← S ′

i ∪ {p}
9: Delete from Si all items p′ such that ∀Tj ∈ Tr,

|E(p, {Tj})− E(p′, {Tj})| ≤ σE(p, {Tj})
10: until Si is empty
11: end for
12: return item p in S ′

m with largest |E(p, Tr)|

Example 4.4.2. We execute PA on the example in Table 4.2 without any grouping

of tags (i.e., z = z′ = 2, z
z′
= 1), so that execution of PA is equivalent to the execution
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of PTAS. We also execute the exponential time top-1 algorithm (henceforth referred

to as Exponential) which was adapted to the PTAS. Let the compression factor σ

be 0.5. We start with S ′
0 = {0000}. In iteration 1 of PA as well as Exponential,

S1 = {0000, 1000} and Su
1 = {0000, 1000} with each item having two-dimensional

co-ordinates (0.31, 0.20) and (0.51, 0.38) respectively. We compress S1 in PA and

get S ′
1 = {1000}. 1000 is the representative item of 0000. In iteration 2 of PA,

S2 = {1000, 1100} with two-dimensional co-ordinates (0.51, 0.38) and (0.31, 0.58)

respectively. However, iteration 2 of Exponential has Su
2 = {0000, 1000, 0100, 1100}

from Su
1 , i.e., 22 = 4 items with two-dimensional co-ordinates (0.31, 0.20), (0.51,

0.38), (0.16, 0.38) and (0.31, 0.58) respectively. After compression in PA, we get S ′
2 =

{1000, 1100}. In other words, no compression is possible for the σ under consideration.

In iteration 3 of PA, we get S3 = {1000, 1100, 1010, 1110} with co-ordinates (0.51,

0.38), (0.31, 0.58), (0.95, 0.75) and (0.89, 0.88) respectively from S ′
2. In iteration 3 of

Exponential, we have Su
3 = {0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110} from Su

2 ,

i.e., 23 = 8 items. After compression in PA, we get S ′
3 = {1000, 1100, 1110}. Item 1010

is represented by 1110. In the final iteration 4 of PA, S4 = {1000, 1100, 1110, 1001, 1101,

1111} with co-ordinates (0.51, 0.38), (0.31, 0.58), (0.89, 0.88), (0.37, 0.52), (0.20, 0.72)

and (0.82, 0.93). After compression we get S ′
4 = {1000, 1100, 1111}. On the other

hand, Su
4 has all 16 items as we see in Figure 4.3. The top-1 approximate item is 1111

with score 1.75 while the optimal item is 1110 with score 1.77. Figure 4.3 shows the

compression in the four iterations. The boolean items in underlined red font are the

cluster representatives.�

Theorem 4.4.1. Given a user defined approximation factor ϵ, a constant sized group

Tr of z′ tags, and for k = 1, if we set the compression factor σ = ϵ/2m, then:
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Figure 4.3. Compression in PA Algorithm (left column) vs. Exponential time Algorithm
(right column) for Example Dataset of Two Tags in Table 4.2.
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1. For every product p in the uncompressed set Su
m, there is a product p′ in the

compressed set S ′
m for which E(p, Tr) ≤ (1 + σ)mE(p′, Tr)

2. The output of PTAS(Tr) has an exact score that is at least 1
(1+ϵ)

times the exact

score of the optimal product

Proof of Part 1: Let pui indicate a product belonging to uncompressed set Su
i =

{{0, 1}i × 0m−i} in the ith iteration where Su
i has all 2i products. Let pi indicate a

product belonging to set Si having the same form as Su
i , Si ⊆ Su

i . Let p′i indicate

an product in compressed set S ′
i, S

′
i ⊆ Si. Note that in the ith iteration, Si is built

from products in the compressed set in (i − 1)th iteration Si−1, while S ′
i is built by

compressing Si. Intuitively, the idea is : for a single tag Tj, if scores of two products

pui and p′i in Si are close to each other (so that pui is represented by p′i in S ′
i, and pui

does not exist in S ′
i), scores of products pui+1 and p′i+1 are also close to each other,

where pui+1 is pui and p′i+1 is p′i with (i + 1)th bit flipped. In Example 4.4.2, product

0000 in uncompressed set S1 is represented by product 1000 in S ′
1 since they are close

to each other; therefore, a product 0100 in uncompressed set Su
2 (but not in S2 due to

its removal from S ′
1) must be close to some product belonging to S ′

2 (which happens

to be 1100 in our example).

The score of product pui in uncompressed set Su
i for tag Tj from Equation 4.5

is:

E(pui , Tj) =
1

1 +
Pr(Tj′)
Pr(Tj)

Πm
i=1

Pr(pvi|Tj′)
Pr(pvi|Tj)

=
1

1 + PQ
(say)

where P =
Pr(Tj′)
Pr(Tj)

Πi
1
Pr(pvi|Tj′)
Pr(pvi|Tj) and Q =

Pr(Tj′)
Pr(Tj)

Πm
i+1

Pr(pvi|Tj′)
Pr(pvi|Tj) are proportional to the

product of probabilities for the first i in pui and the remaining (m − i) attributes in

pui respectively. Similarly, the scores of products p′i, p
u
i+1 and p′i+1 for tag Tj are:
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E(p′i, Tj) =
1

1 + P ′Q

E(pui+1, Tj) =
1

1 + PQ′

E(p′i+1, Tj) =
1

1 + P ′Q′

where P ′ and Q′ are proportional to the product of probabilities for the first i in p′i

and the remaining (m − i) attributes in pui+1, p
′
i+1 in which the (i + 1)th attribute

value is flipped from pui .

Note that, for a single tag Tj, the score of a product is merely proportional to

Πi
1
Pr(pvi|Tj′)
Pr(pvi|Tj) . Therefore, the scores of products pui , p

′
i, p

u
i+1 and p′i+1 for tag Tj can be

simplified and re-written as:

E′(pui , Tj) = PQ

E′(p′i, Tj) = P ′Q

E′(pui+1, Tj) = PQ′

E′(p′i+1, Tj) = P ′Q′

We need to show that for a tag Tj, if ∆1 =
E′(p′i,Tj)

E′(pui ,Tj)
≤ (1 + ϵ1), then ∆2 =

E′(p′i+1,Tj)

E′(pui+1,Tj)
≤ (1 + ϵ2) ≤ P (n)(1 + ϵ1), where P(n) is a polynomial in n.

Assume E′(pui , Tj) is close to E′(p′i, Tj), so that p′i represents p
u
i and that P ′ ≤ P

so that the product of probabilities decrease (i.e., score of product increases) when

the ith attribute value is flipped. The difference in exact score between pui and p′i can

be expressed as:
∆1 =

E′(pi, Tj)

E′(pui , Tj)

=
P ′Q

PQ

=
b

a
≤ (1 + ϵ1)(say) (4.8)
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The relationship between E′(pui+1, Tj) and E′(p′i+1, Tj) can be similarly expressed as:

∆2 =
E′(p′i+1, Tj)

E′(pui+1, Tj)

=
P ′Q′

PQ′

=
P ′QQ′

Q

PQQ′

Q

=
bc

ac
≤ (1 + ϵ2)(say), where c =

Q′

Q

=
b

a
≤ (1 + ϵ1) i.e., ϵ1 = ϵ2 (4.9)

Note that the above formulation is analogous to the classic NP-Complete Sub-

set Product problem. Since there are m iterations, the score of a product p in

an uncompressed set can at most be (1 + σ)m times away from the score of a

product p′ representing p in the uncompressed set. Therefore, for a single tag Tj,

E(p, Tj) ≤ (1 + σ)mE(p′, Tj).

Next, we investigate how the relationship between the score of product p and p′

extends for a set of tags Tr, i.e., multi-dimensional Subset Product problem. Let us

consider two tags Tr = {T1, T2}, for which the products (optimal) in the uncompressed

set are p1 and p2 and the products (approximation) in the compressed set are p′1 and

p′2 respectively. Recall that, our algorithm clusters two products if their scores along

each each dimension (i.e., for each tag) lie within the compression factor. We get:

E(p, T1) ≤ (1 + σ)mE(p′, T1)

E(p, T2) ≤ (1 + σ)mE(p′, T2) (4.10)

∴ E(p, T1) + E(p, T2) ≤ (1 + σ)m{E(p′, T1) + E(p′, T2)}

i.e., E(p, {T1, T2}) ≤ (1 + σ)mE(p′, {T1, T2})

or, E(p, Tr) ≤ (1 + σ)mE(p′, Tr)
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Proof of Part 2: Consider any tag group Tr, and let pOPT be the optimal product

for this group, and pAPP be the product returned by PTAS. From Part 1, for every

product p in the set Su
m (assuming no compression was used in any iterations), there

is a product o′ in the compressed set S ′
m that satisfies

E(p, Tr) ≤ (1 + σ)mE(p′, Tr) (4.11)

In particular, the following holds

E(pOPT , Tr) ≤ (1 + σ)mE(pAPP , Tr) (4.12)

Since σ = ϵ/2m, we get:

E(pOPT , Tr) ≤ (1 +
ϵ

2m
)mE(pAPP , Tr)

≤ e
ϵ
2E(pAPP , Tr)

≤ (1 + ϵ)E(pAPP , Tr) (4.13)

Therefore, the output of PTAS(Tr) p
APP has an exact score that is at least 1

(1+ϵ)
times

the exact score of the optimal product pOPT . �

Theorem 4.4.2. Given a user defined approximation factor ϵ, a non-constant number

of tags z grouped into z
z′

groups of z′ tags per group, and for k = 1, if we set the

compression factor σ = ϵ/2m, then:

1. The output of PA has an exact score that is at least z′

z(1+ϵ)
times the exact score

of the optimal product

2. PA runs in polynomial time

Proof of Part 1: The analysis in Theorem 5.4.1 is for a single tag group Tr having

constant number of tags z′. Since there are z/z′ tag groups in totality, it is easy to see

that this introduces an additional factor of z′/z to the overall approximation factor,

i.e., the output of PA has an exact score that is at least z′

z(1+ϵ)
times the exact score

of the optimal product.
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Proof of Part 2: To show that PA is a polynomial time algorithm, the main task is

to show that the compressed lists are always polynomial in length. We first observe

that probability quantities such as Pr(pvi | Tj) are rational numbers, where both the

numerator as well as the denominator are integers bounded by n (i.e., the number

of products in the dataset). From Equation 4.5, note that the score of a product

involves m such probability quantity multiplications, where m is the number of at-

tributes. Therefore, the score of any product for any single tag can be represented

as a rational number, where the numerator and denominator are integers bounded

by O(nm). Thus, we can normalize each such score into an integer by multiplying it

with O(nm).

Next, consider a z′-dimensional cube with each side of length L = O(nm). We

partition the cube into z′-dimensional cells as follows: Along each axis, start with

the furthest value L, and then proceed towards the origin by marking the points

L/(1 + σ), L/(1 + σ)2, and so on. The number of points marked along each axis is

log(1+σ) L = O(m log(1+σ) n) which is a polynomial in m and n. Then at each marked

point we pass (z′ − 1)-dimensional hyperplanes perpendicular to the corresponding

axis. Their intersections creates O(poly(m,n)z
′
) cells within cube Lz′ .

Due to this skewed method of partitioning cube into cells, we see that the cells

that are further away from the origin are larger. Consider the ith iteration of the

PTAS algorithm. Each product in Si may be represented as a point in this cube.

Though within any cell there may be several points corresponding to products of Si,

after compression there can be at most only one point corresponding to a product

of S ′
r, because two or more points could not have survived the compression process.

The length of any compressed list in the PTAS algorithm is at most O(poly(m,n)z
′
).

When z′ is a constant, it leads to an overall polynomial running time for PA. �
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Extending from Top-1 to Top-k: Our PA algorithm can be modified to return top-

k products instead of just the best product. For the tag group Tr, once a set of

products Si is built, we compress to form the set S ′
i. However, every time a cluster

representative is selected, instead of deleting all the remaining points in the cluster,

we remember k − 1 products within the cluster and associate them with the cluster

representative (and if the cluster has less than k products, we remember and associate

all the products with the cluster representative). When all the m iterations are

completed, we can return the top-k products as follows: we first return the best

product of S ′
m along with the k − 1 products associated with it. If the number

of associated products are less than k − 1, the second best cluster representative

of S ′
m and the set of products associated with it are returned, and so on. When

the approximate top-k products from all tag groups have been returned, the main

algorithm returns the overall best top-k products from among them. It can be shown

that this approach guarantees an approximation factor for the score of the top-k

products returned.

Grouping of Tags: The PA algorithm partitions the set of tags into constant-sized

groups. We can employ techniques similar to the grouping of attributes technique

for ETT algorithm in order to group related tags together in a principled fashion.

However, the bounds and properties of PA algorithm are not affected by this.

4.5 Experiments

We conduct a set of comprehensive experiments using both synthetic and real

datasets for quantitative and qualitative analysis of our proposed algorithms. Our

quantitative performance indicators are efficiency of the proposed exact and approxi-

mation algorithm, and approximation factor of results produced by the approximation

algorithm. The efficiency of our algorithms is measured by the overall execution time
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and the number of products that are considered from the pool of all possible products,

whereas approximation factor is measured as the ratio of the acquired approximate

result score to the actual optimal result score. We also conduct a user study through

Amazon Mechanical Turk study as well as write interesting case studies to qualita-

tively assess the results of our algorithms.

Real Camera Dataset : We crawl a real dataset of 100 cameras6 listed at Amazon7.

The products contain technical details (attributes), besides the tags customers asso-

ciate with each product. The tags are cleaned by domain experts to remove synonyms,

unintelligent and undesirable tags such as nikon coolpix, quali, bad, etc. Since the

camera information crawled from Amazon lacks well-defined attributes, we look up

Google Products8 to retrieve a rich collection of technical specifications for each prod-

uct. Each product has 40 boolean attributes, such as self-timer, face-detection, red-eye

fix, etc; while the tag dictionary includes 40 unique keywords like lightweight,

advanced, easy, etc.

Real Car Dataset : We crawl another real dataset from Yahoo! Autos9. We focus

on new cars listed for the year 2010 spanning 34 different brands. There are several

models for each brand, and each model offers several trims.10 Since each trim defines

a unique attribute-value specification, the total number of trims that we crawl are the

606 products in our dataset. The products contain technical specifications as well as

ratings and reviews, which include pros and cons. We parse a total of 60 attributes:

25 numeric, and 35 boolean and categorical (which we generalize to boolean) such as

air-conditioning, sunroof, etc . The total number of reviews we extract is 2180. We

6As discussed earlier, the number of products in the dataset is not important for the execution
cost; analysis in Figure 4.9.

7http://www.amazon.com
8http://www.google.com/products
9http://autos.yahoo.com/

10Trims denote different configurations of standard equipment.
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extract tags from the reviews using the keyword extraction toolkit AlchemyAPI11.

We process the text listed under pros in each review to identify a set of 15 desirable

tags such as fuel economy, comfortable interior and stylish exterior. A car

is assigned a tag if one of its reviews contains that keyword.

Synthetic Dataset : We generate a large boolean matrix of dimension 10,000 (prod-

ucts) × 100 (50 attributes + 50 tags) and randomly choose submatrices of varying

sizes, based on our experimental setting. We split the 50 independent and identically

distributed attributes into four groups, where the value is set to 1 with probabilities of

0.75, 0.15, 0.10 and 0.05 respectively. For each of the 50 tags, we pre-define relations

by randomly picking a set of attributes that are correlated to it. A tag is set to 1 with

probability p if majority of the attributes in its pre-defined relation have boolean 1.

For example, assume tag T1 is defined to depend on attributes A13, A25 and A40. T1

is set to 1 with a probability of 0.67 if 2 out of A13, A25 and A40 are 1.

We use the synthetic datasets for quantitative experiments, while the real data

are used in user and case study.

System configuration: Our prototype system is implemented in Java with JDK 5.0.

All experiments were conducted on an Windows XP machine with 3.0Ghz Intel Xeon

processor and 2GB RAM. The JVM size is set to 512MB. All numbers are obtained

as the average over three runs.

4.5.1 Quantitative Evaluation

Exact Algorithm: We first compare the Naive approach with our ETT. Since the

Naive algorithm can only work for small problem instances, we a pick a subset from

the synthetic dataset having 1000 products, 16 attributes and 8 tags. Figures 4.4

11http://www.alchemyapi.com/api/keyword/
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Figure 4.4. Execution time for varying m
(Synthetic data).

Figure 4.5. Number of products for vary-
ing m (Synthetic data).

Figure 4.6. Execution time for varying
m′ (Synthetic data).

Figure 4.7. Number of products for m′

(Synthetic data).

Figure 4.8. Execution time for varying z
(Synthetic data).

Figure 4.9. Execution time for varying n
(Synthetic data).

and 4.5 compare the execution time and the number of candidate products considered,

for Naive and ETT respectively, when the number of attributes (m) varies (number of

products = 1000, number of tags = 8). Note that the number of products considered

by ETT is the number of products created in tier-2 by joining products from tier-1.
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The Naive algorithm considers all 2m products. We used as number of attributes

per group m′ = 2, 2, 4, 5, 4, 7, 4, 6 for m = 4, 6, 8, 10, 12, 14, 16, 18 respectively in ETT

(more analysis of m′ in Figures 4.6 and 4.7). As can be seen, Naive is orders of

magnitude slower than ETT.

Next, we study the behavior of attribute groupings on ETT. For a sub-sample

picked from our synthetic dataset having 20 attributes, 1000 products and 8 tags,

we experiment with different possible attribute groupings, m′ = 1, 2, 4, 5, 10, 20.

Figures 4.6 and 4.7 shows the effect of m′ on the performance of ETT when attributes

are grouped arbitrarily. The execution time and number of products considered for

m′ = 1 is not reported in Figures 4.6 and 4.7 as it was too slow. The trade-off of

choosing m′ is: a small m′ means there are many short lists in tier-1, so that the

cost of joining the lists is high. In contrast, a large m′ indicates fewer but longer lists

in tier-1 resulting in increased cost of creating the lists. We observe that the best

balance is struck when m′ = 4 attributes forming 5 lists, each having 24=16 products.

We also employed the grouping of attributes technique in Section 4.4.1.1 to

partition the set of 20 attributes, and investigate if the execution time and number

of products considered improves (i.e., decreases). We create a graph of 20 nodes

(corresponding to the 20 attributes) and 20C2 = 190 edges. We use the absolute

value of the Pearson correlation to determine the edge weight because even if two

attributes are anti-correlated, they should be grouped together and the 1 from one

will be combined with the 0 from the other to create a high-scored entry (we use

0.5 for dont care). Then, we employ a graph partitioning algorithm for partitioning

the 20 attributes into as many groups as the desired number of lists. Specifically,

we use the publicly available software METIS-4.012 for partitioning the attributes.

We observe that when we partition the 20 attributes into 4 clusters (i.e., m′ = 5

12http://glaros.dtc.umn.edu/gkhome/views/metis
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attributes forming 4 lists), the execution time is 1
6
the execution time in case of arbi-

trary grouping of attributes (Figure 4.6); the number of products looked up by ETT

decreases from 3639 to 1713 (Note that the number of products looked up by Naive

for this data is 1048576). Again, if we partition the 20 attributes into 5 clusters (i.e.,

m′ = 4 attributes forming 5 lists), the execution time and the number of products

looked up by ETT remains the same as in case of arbitrary grouping of attributes

(Figure 4.6). This is because clustering of attributes into 4 groups generated stronger

partitioning (i.e., attributes grouped together have stronger correlation) than cluster-

ing of attributes into 5 groups. Therefore, if the data is highly correlated and yields

well-defined clusters or partitions, ETT benefits significantly by employing principled

grouping of attributes.

Next, we vary the number of tags z and number of products n in the dataset

to study the behavior of ETT. We pick a subset from the synthetic dataset having

1000 products, 16 attributes and 16 tags, and consider further subsets of this dataset.

Figure 4.8 reflects the change in execution time with increasing number of tags for

the synthetic data (number of products = 1000, number of attributes = 12, attribute

grouping = 3). The increase in number of tags increases the number of GetNext()

operations in ETT, and hence the running time rises steadily. Figure 4.9 depicts how

an increase in the number of products in the dataset (number of attributes = 12,

number of tags = 8, attribute grouping = 3) barely affects the running time of ETT

since an initialization step calculates all conditional tag-attribute probabilities.

Approximation Algorithms: We observe in Figure 4.4 that the execution time of

ETT outperforms that of Naive, for moderate data instances. However, ETT is

extremely slow beyond number of attributes (m) = 16, which makes it unsuitable for

large real-world datasets having many attributes and tags. Therefore, we move to

our approximation algorithm PA, and compare their execution time and sub-optimal
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product score in Table 4.3. We pick three different subsets of 1000 products from

the synthetic dataset: (number of attributes = 8, number of tags = 4), (number of

attributes = 12, number of tags = 8) and (number of attributes = 16, number of

tags = 8). We execute PA algorithm at an approximation factor (0.8). The execution

time of PA for a moderately large dataset (1000 products, 16 attributes and 12 tags)

indicates that it is unlikely to scale to large (real) datasets. Nevertheless, it is an

algorithm which provides worst case guarantees in both time complexity and result

quality.

Table 4.3. PA Performance (Synthetic data)

User-Defined Execution Time Obtained

Approx Factor(ϵ) (in ms) Approx Factor

0.5 406.0 0.93
0.4 749.0 0.94
0.3 2796.0 0.97
0.2 41094.0 0.98

4.5.2 Qualitative Evaluation

4.5.2.1 User Study

We now validate how designers can leverage existing product information to

design new products catering different groups of people in a user study conducted on

Amazon Mechanical Turk (https://www.mturk.com) on the real camera dataset. We

also consult DPreview (http://www.dpreview.com), a website about digital cameras

and digital photography. There are two parts to our user study. Each part of the

study involves thirty independent single-user tasks. Each task is conducted in two

phases: User Knowledge Phase where we estimate the users’ background and User

Judgment Phase where we collect users’ responses to our questions.
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In the first part of our study, we build four new cameras (two digital compact

and two digital slr) using our HC algorithm by considering tag sets corresponding to

compact cameras and slr cameras respectively. We present these four new cameras

along with four existing popular cameras (presented anonymously) and observe that

65% of users choose the new cameras, over the existing ones. For example, users over-

whelmingly prefer our new compact digital camera over Nikon Coolpix L22 because

the former supports both automatic and manual focus while the latter does not, thus

validating how our techniques can benefit designers.

Figure 4.10. Users Classify Cameras Correctly.

The second part of the study concerns six new cameras designed for three groups

of people : young students, old retired and professional photographers. Domain ex-

perts identify and label three overlapping sets of tags from the camera dataset’s

complete tag vocabulary, one set for each group and we then build two potential new

cameras for each of the three groups. For each of the six new cameras thus built,

we ask users to assign at least five tags by looking up the complete camera tag vo-

cabulary, provided to them. We observe that majority of the users rightly classify

the six cameras into the three groups. The correctness of the classification is vali-
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dated by comparing the tags received for a camera to the three tag sets identified

by domain experts; we also validate the correctness by consulting data available in

Dpreview. For example, the cameras designed by leveraging tags corresponding to

professional photographers draw tags like advanced, high iso, etc. while cameras

designed by leveraging tags corresponding to old retired draw tags like lightweight,

easy, etc. Figure 4.10 shows the percentage of users classifying the six cameras cor-

rectly. Thus, our technique can help designers build new products that are likely to

attract desirable tags from different groups of people.

4.5.2.2 Case Study

We present few interesting anecdotal results returned by our framework on the

real car dataset to validate that our algorithms help us draw interesting conclusions

about the desirability of certain car specifications (attribute values). Our HC algo-

rithm indicates that cars having child safety door locks, 4-wheel anti lock brakes,

AM/FM radio, keyless entry, telescoping steering wheel, compass, air filter, trunk

light, smart coinholder and cup holder, etc. are the features likely to elicit positive

feedback from the customers (i.e., features that maximize the set of desirable tags for

real car dataset). When we design new cars by considering only those car instances

as our training set which have received the tag economy, we observe that some luxury

features like heated seats, in-dash CD changer system, sunroof/moonroof and leather

upholstery are returned by our framework. This indicates that users prefer selective

luxury features when buying economy cars. Also, sports cars designed using our algo-

rithm (by considering only those car instances as our training set which have received

the tag sports) are found to contain safety features, thereby indicating that safety

features have become a high priority requirement for users buying sports cars.
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CHAPTER 5

Item Snippet Generation

5.1 Introduction

The widespread use and growing popularity of online collaborative content sites

has created rich resources for users to consult in order to make purchasing decisions

on various items such as e-commerce products, travel movies, restaurants, etc. Col-

laborative content sites (e.g., Amazon, Yelp, etc.) contain millions of web items (i.e.,

products available over web). For example, the review site Yelp contains more than

25,000 restaurants listed only for New York. Faced with such overwhelming choices,

it is becoming increasingly important for the producers/manufacturers (e.g., owner

of a restaurant, Dell - for laptops, Canon - for cameras) or retailers (e.g., Amazon,

eBay, Etsy) of such products to help an user quickly discover the products she is

interested in from the list of products returned as a result of her search query. A

popular technique is to associate each product with a short description that provides

the first impression of the profuct, i.e., only the necessary and interesting details to

help a user in making a decision. Such succinct summarizations of web item descrip-

tions are referred to as snippets. Typically, an item snippet only involves a fraction

of the item attributes. For example, a laptop that highlights the features 2nd Gen

Intel-R Core i7 processor and 14′′ LED display, 0.9′′ thin, 4lbs weight in

its snippet is likely to influence a prospective customer decision in its favor, espe-

cially if she is looking for portable and powerful laptop. However, the snippets shown

with items today (faceted navigation) are pre-defined and static. A user searching

for stylish laptop would not benefit from the above item snippet.
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Various websites today (e.g., Amazon for e-commerce products, Flickr for pho-

tos, etc.) encourage users to actively participate by assigning tags to online resources

with a purpose to promote their contents and allow users to share, discover and orga-

nize them. We exploit the availability of user feedback in collaborative content sites

in the form of tags to automatically generate item snippets that are likely to maximize

its visibility among users. We perform aggregate analytics over item attributes and

tags to identify the salient features that were responsible for the positive feedback

the item has received so far and that would be highlighted in its snippet. In addi-

tion to traditional marketplaces, such snippets can also increase chances of a musical

piece becoming popular, an e-book (in which case, the snippet is referred to as blurb)

receiving many view/download requests, etc.

Web advertising dates back more than ten years, when short text advertise-

ments began to appear among the results of queries to search engines (known as

Sponsored Search) and in the content of web pages (known as Content Match and

Display Ad). In recent times, computational advertisement has emerged as a new sci-

entific sub-discipline that aims to find the best ad to be presented to a user engaged in

a given context. There are several research challenges associated with finding the best

ad, such as designing the appropriate mathematical optimization model to maximize

value for users, advertisers, and publishers; integrating user’s past browsing history

and behavioral attributes; minimizing expected user effort to comprehend snippets,

etc. We focus on the novel aspect of building an item snippet as a succinct summary

of its specifications that highlights the features, that were responsible for the posi-

tive feedback left by the past users. For users with specific preferences (expressed

through search query), the item snippet highlights those necessary and interesting

details which best match the user requisite. For example, if a user is looking for

an adventurous and budget-friendly Europe backpacking trip package, a returned
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trip snippet must highlight the relevant related features youth-hostel, Eurail Youth

Pass and free city-attractions to draw her attention. Intuitively, we discover in the

database of trips, those attributes that are responsible for the trip receiving the tags

adventurous and budget-friendly by past users.

We refer to this problem as the Informative Snippet Design (ISD) Problem for a

single item, that identifies the relevant item attributes to be highlighted in its snippet

in order to maximize the probability of the user preference (available in the form

of search query) being satisfied. This can be extended to the top-k version where

we return the top-k snippets, which can be post-processed by the manufacturers,

retailers, etc. to accommodate the more traditional factors. We also envision the

utility of dynamic snippet, as opposed to regular pre-defined and static summaries

(e.g., in faceted navigation of Amazon and eBay) to match a user’s search query

effectively. For example, a user looking for stylish digital camera would benefit more

from the snippet in the bottom row of Figure 5.1 than that in the general (pre-defined,

static) description in the top row of Figure 5.11. Though our work is similar in essence

to research dedicated to automatically generating textual summaries of web pages,

we tap into the rich resource of collaborative content and perform aggregate analytics

to build snippets. Such snippets would highlight the outstanding item features as per

the past users, and therefore would also depict a succinct summary of the positive

reviews.

The ISD problem intends to identify the relevance of a snippet to a user search

query. In this work, we consider the following three categories of conjunctive queries2:

(i) General-purpose queries - User search queries that do not express specific user

preferences (e.g., laptop, digital camera, cellphone, etc.). For this type of queries, the

1Our snippets are not influenced by, or biased towards, any brand.
2However, our framework (i.e., function) can be modified to handle other complex queries.
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Figure 5.1. Top: Pre-defined and static snippet for camera, Bottom: Informative
snippet for camera for query stylish digital camera.

ISD goal is to maximize the probability of an item snippet receiving all positive tags

that existing items have received in the past.

(ii) Tag-driven queries - User search queries that express a user’s preference by short

keywords or tags (e.g., lightweight laptop, modern cellphone). For this type of queries,

the ISD goal is to maximize the probability of an item snippet receiving the user-

specified tags (and its synonymns).

(iii) Attribute-driven queries - User search queries that express a user’s preference by

attribute values (e.g., SLR camera, 3g cellphone). For this type of queries, the ISD

goal is to maximize the probability of an item snippet receiving all positive tags that

existing items (in the same category) with similar attribute values have received so

far.

Henceforth, we refer to the set of tags associated with the user search query

as the desirable tags. Note that, in addition to a product’s technical specifications,

several other implicit factors such as product quality and utility, user behavior, etc.

influence tagging behavior. We refer to related literature [5] and choose to focus on

content-based tagging feedback to identify the salient features of an item.
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The list of products returned as a result of user search query are often very

similar to each other, and hence would have similar snippets generated. Therefore, it

is necessary to diversify the snippets associated with the returned products in order to

increase the chances of an user liking any one of the top returned products. Extracting

a set of diverse features, that covers the various aspects of the underlying dataset, is

a problem of automated facet discovery which is known to improve user experience

in the web. While faceted search employed by sites (e.g., Amazon, eBay) performs

pre-defined top-down navigation on the concept hierarchy, where all features of the

currently selected concept are displayed, our objective is to highlight the important

features as well as diverse features. In this chapter, we study the problem of Diversified

Informative Snippets Design (DISD) Problem for a list of products returned by a

search query, to find snippets that highlight the most relevant and the most diverse

features. Our notion of diversity is based on exclusivity and coverage since our goal

is to help a user quickly choose from several similar items returned as a result of

her search query. For example, a user looking for travel-purpose point-and-shoot

digital camera would benefit more from the diversified snippets in the bottom row of

Figure 5.2 for Cameras 1 and 2, than the snippets in the top row of Figure 5.2. This

specifically distinguishes our work from the Google Webmaster Tool for generating

rich snippets (containing meta-description, average rating, photos, etc.) for webpages.

The Google tool creates a snippet per webpage (i.e., item) and does not consider

diversification of the snippets, as we do to maximize visibility. We measure diversity

as a function of exclusivity and coverage of attributes in the snippets of items, while

ensuring that the snippet selected for each of the items has a score close to the best

possible snippet score for that item. In other words, we aim to find snippets that

highlight the most relevant and the most diverse features. Note that, the focus of this

problem is not to advocate one particular diversity measure over another. Rather,
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Figure 5.2. Top: Informative snippets, Bottom: Diversified Informative snippets for
Cameras 1 and 2 returned for query travel-purpose digital camera.

we focus on formalizing the problem and and proposing algorithmic solutions that

benefit from the triangular inequality satisfiability of distance/diversity metric. Our

framework can be extended to handle other definitions of diversity.

Solving the informative snippet design problem is technically challenging. Com-

plex dependencies exist among tags and item attributes. Additionally, the task of

finding the best set of attributes maximizing the probability of an item snippet re-

ceiving all desirable tags requires us to exhaustively evaluate an exponential number

of combinations. A general Bayesian Network model (where item attributes and tags

would form nodes and edges would represent conditional dependencies between a pair

of nodes) to identify the best snippet for an item would be computationally expen-

sive. In this chapter, we consider the very popular Naive Bayes Classifier with the

simplistic conditional independence assumption for tag and attribute modeling be-

cause of its success in [5]. We analyze its computational complexity when Naive

153



Bayes classifier is used for finding the probability of an item snippet drawing tag,

introduce the idea of composite tag, and propose efficient algorithmic solutions that

are shown to work well in practice. Our first algorithm is a exact top-k algorithm that

performs significantly better than the naive brute-force algorithm. We formulate the

ISD problem of retrieving the top-k snippets for an item as subset sum combinatorial

optimization problem [39] and propose a novel approximation algorithm that runs in

worst case polynomial time, and guarantees a provable bound on the approximation

factor in snippet quality.

Diversification of search has been studied in recent times in several contexts

with many different approaches, majority of which focuses on a scoring function that

takes both query relevance and diversity into consideration [40][41]. In this chapter,

we emphasize word sense diversification in the snippets for diversity and measure

categorical distance, while ensuring that the selected snippet’s score is not much less

than the best snippet score for that item. Our DISD problem is conspicuously differ-

ent from diversity aware search: diversity aware search aims to find the top-k relevant

items from the set of all n relevant items returned as a result of search query; the

DISD problem aims to find a result (i.e., snippet) for each of the n relevant items,

where each item has a set of top-k results to choose from. The first of our algorithmic

solutions for DISD is a novel exact top-k algorithm based on non-trivial adaptation

of top-k query processing technique in [40][42]. We also propose an approximation

algorithm that is based on techniques employed in computational geometry for the

facility dispersion problem [43] and has theoretical bounds on quality. We experiment

with both synthetic and real data crawled from the web to demonstrate the effective-

ness of our algorithms for the problems and conduct user studies to validate that our

item snippets are helpful to draw user attention, especially when several competing

items are available as a result of a query.
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5.2 Problem Framework

Once again, we model a collaborative tagging site D as a triple ⟨U , I,R⟩, rep-

resenting the set of reviewers (i.e., users), the set of items (i.e., products) and the

feedback (i.e, tag vocabulary), respectively. Let {p1, p2, ..., pnp} be a collection of np

products, where each entry is defined over the item schema IA = ⟨pa1, pa2, ..., pamp⟩

and the tag dictionary space T = {T1, T2, ..., Tnc }. For the ease of representation (and

since we do not consider user details in the framework), let mp be m. A product p is

a set of attribute values, p = ⟨pv1, pv2, ...., ⟩ where each pvy is a value for the attribute

pay ∈ IA. Each attribute pay can take one of several values pvy from a multi-valued

categorical domain Di, or one of two values 0, 1 if a boolean dataset is considered. A

tag Tj is a bit where a 0 implies the absence of a tag and a 1 implies the presence of

a tag for product p. Each product is thus a vector of size (m + nc), where the first m

positions correspond to a vector of attribute values, and the remaining nc positions

correspond to a boolean vector.3,4

Consider a query which picks a set of desirable tags T d ={ T1, ..., Tz } ⊆ T. The

objective of ISD problem is to determine s of m attributes for building the snippet

Sp of a product p, such that the probability of attracting all desirable tags Tj ∈ T d is

maximized. The top-k snippets of product p are represented as S1
p , S

2
p , . . . , S

k
p .

Given a training set as the dataset described above, we build Naive Bayes

Classifier (NBC), that classify tags given attributes (one classifier per tag). defines

the probability that a snippet Sp is annotated by tag Tj. If {pv1, pv2, ..., pvs} are the

attribute values in Sp, the classifier for tag Tj defines the probability that snippet Sp

of product p draws tag Tj, as:

3Our framework allows numeric attributes, but as is common with Naive Bayes Classifiers, we
assume that they have been appropriately binned into discrete ranges.

4A more complex framework which leverages the frequencies of tags is left for future work.
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Pr(Tj | Sp) = Pr(Tj | pv1, pv2, ..., pvs)

=
Pr(Tj).Π

s
i=1Pr(pvi | Tj)

Pr(pv1, pv2, ..., pvs)
(5.1)

Pr(Tj
′ | Sp) =

Pr(Tj
′).Πsi=1Pr(pvi | Tj′)

Pr(pv1, pv2, ..., pvs)
(5.2)

Since Pr(Tj | Sp) + Pr(Tj
′ | Sp) = 1, from Equations 5.1, 5.2:

Pr(pv1, pv2, ..., pvs) = Pr(Tj).Π
s
i=1Pr(pvi | Tj) +

Pr(Tj
′).Πsi=1Pr(pvi | Tj′) (5.3)

From Equations 5.1, 5.3:

Pr(Tj | Sp) = Pr(Tj | pv1, pv2, ..., pvs)

=
Pr(Tj).Π

s
i=1Pr(pvi | Tj)

Pr(Tj).Πsi=1Pr(pvi | Tj) + Pr(Tj′).Πsi=1Pr(pvi | Tj′)

=
1

1 +
Pr(Tj′)
Pr(Tj)

Πs
i=1

Pr(pvi|Tj′)
Pr(pvi|Tj)

(5.4)

The probability of snippet Sp of an item p drawing all desirable tags T d ={T1,

..., Tz} ⊆ T is:

f(Sp, T
d) = Pr(T1, ..., Tz | Sp)

= Pr(T1 | Sp)....P r(Tz | Sp)

= Πz
j=1

1

1 +
Pr(Tj′)
Pr(Tj)

Πs
i=1

Pr(pvi|Tj′)
Pr(pvi|Tj)

(5.5)

Note that the task of finding the best snippet that maximizes Equation 5.5 is

difficult for boolean data and k = 1, and it follows from [5]. The best item snippet

that maximizes T1 may not be the same as the one that maximizes T2, and so on.

Hence, we introduce the idea of composite tag.

156



Composite Tag: Composite tag is a single tag T that consists of the collection of

desirable tags in T d. The consideration of composite tag alleviates the computational

challenges associated with the ISD problem for k = 1 (the ISD problem is NP-

Complete for k > 2, as shown in Section 5.3), since from Equations 5.4 and 5.5, we

have:

f(Sp, T ) = f(Sp, T
d)

= Pr(T1, ..., Tz | Sp)

= Pr(T | Sp)

=
1

1 + Pr(T ′)
Pr(T )

Πs
i=1

Pr(pvi|T ′)
Pr(pvi|T )

(5.6)

If there are sufficient instances in the training dataset that have T d ={T1, ..., Tz}

⊆ T , we can compute probabilities of the form Pr(pvi | T ), P r(pvi | T ′), i = 1(1)m.

If the number of instances is insufficient, we compute the probabilities by considering

conditional independence in the following way:

Pr(pvi | T ) = Pr(T | pvi).
P r(pvi)

Pr(T )

= Pr(T1, T2, . . . , Tz | pvi).
P r(pvi)

Pr(T )

= Pr(T1 | pvi).P r(T2 | pvi) . . . P r(Tz | pvi).
P r(pvi)

Pr(T )

Quantities of the form Pr(pvi | T ′) are difficult to resolve as they cannot be

reduced using the conditional independence assumption. However, since we know that

Pr(T ) is small, Pr(T ′) is large ≈ 1. Therefore, we approximately estimate Pr(pvi |

T ′) by computing Pr(pvi | I). The consideration of composite tag eliminates some

of the computational challenges associated with the problem (details in Section 5.3).

We are now ready to formally define the two main problems considered in this

work.
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Problem 5.2.1. Informative Snippet Design (ISD) Problem: Given a user search

query expressed as a composite tag T (i.e., the set of desirable tags T d) and an item

p from a dataset D of tagged items {p1, p2, ..., pnp}, design k snippets S1
p , S

2
p , . . . ,

Sk
p of size s for p that have the highest score of receiving all desirable tags, given by

Equation 5.6.

Problem 5.2.2. Diversified Informative Snippet Design (DISD) Problem: Given

a list of n items {p1, p2, . . . , pn} returned by search engine from a dataset D

of np items for user search query T , and the top-k snippets {{S1
p1
, S2

p1
, . . . , Sk

p1
},

{S1
p2
, S2

p2
, . . . , Sk

p2
}, ..., {S1

pn , S
2
pn , . . . , S

k
pn}} of size s for each of the n items, deter-

mine n snippets Sp1 , Sp2 , . . . , Spn for the n items respectively such that:

• Spiϵ {S1
pi
, S2

pi
, . . . , Sk

p1
}, ∀i = 1(1)n

• diversity(Spx , Spy) ≥ τ , ∀ (px, py) ∈ {p1, . . . , pn}

• sum (f(Sp1 , T ), . . . , f(Spn , T)) is maximized

For the rest of the chapter, we consider boolean attributes and explain our

algorithms in a boolean framework; they can be readily generalized to handle other

data types.

5.3 Complexity Analysis

In this section, we discuss the computational complexity of our ISD and DISD

problems

ISD Problem Computational Complexity: The ISD Problem objective is to identify

the top-k snippets of size s (we select s out ofm attributes) which maximizes the scor-

ing function in Equation 5.6. The scoring function involves the quantity Πs
i=1

Pr(pvi|T ′)
Pr(pvi|T )

,

which can be expressed as a (logarithmic) sum, Σs
i=1 log

Pr(pvi|T ′)
Pr(pvi|T )

. Therefore, the prob-
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lem can be expressed as s-SUM Problem, which is a parameterized version of the well

known combinatorial optimization problem SUBSET SUM and aims to find a subset

of size s from input set X = {x1, x2, . . . , xn} such that Σs
i=1xi ≤ t. The target sum t

is the score of the best size-s subset, which is trivial to obtain. The s-SUM problem

is fundamentally connected to several NP-hard problems and is proved to be W[1]-

hard [44], and it has been shown to be solved in O(n⌈
k
2⌉) time. Our ISD problem,

when formulated as s-SUM problem would return the top-1 subset, and we extend

this idea to develop our approximation algorithm in Section 5.4.1.2.

DISD Problem Computational Complexity: The DISD Problem objective is to iden-

tify the best combination of snippets for n items, where each item has a set of top-k

snippets to choose from, such that the total score (i.e., relevance to query) of chosen

snippets is maximized, subject to diversity constraints being satisfied. In other words,

if there are n subsets having k entries in each so that there are nk entries in total,

the goal is to choose n out of nk entries, so that no two of the n results belong to the

same subset, subject to relevance and diversity optimization. This problem can be

expressed as the Facility Dispersion Problem in computational geometry literature,

where the task is choose p out of n facilities, so as to maximize some function of the

distances between facilities. Because of the consideration of both relevance and diver-

sity in the optimization task, we consider the variant MAXSUMDISPERSION [45]

having the objective of maximizing the sum of all pairwise distances (measuring rel-

evance and dissimilarity ) between the selected faciliities. The problem is proved to

be NP-Hard, and there exists a 2-approximation algorithm for the problem if the

distance measure is a metric. Our DISD problem can be formulated as the MAX-

SUMDISPERSION problem, and we extend the idea to develop our approximation

algorithm in Section 5.4.1.2.
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5.4 Algorithms

5.4.1 ISD Algorithms

In this section, we propose efficient algorithms for solving the Informative Snip-

pet Design (ISD) problem.

A brute-force exhaustive approach (henceforth, referred to as Naive-ISD) to

solve the problem requires us to design all mCs possible snippets S
1
p , S

2
p , . . . , S

mCs
p for

item p and composite tag T , and compute f(Sp, T ) for each possible snippet in order

to identify the top-k snippets. If the snippet size s and the total number of attributes

m are small, Naive-ISD is capable of returning the top-k results in reasonable amount

of time. However, since m and s are usually large in real data, we develop efficient

and practical algorithms that work well in practice. Note that, the number of items

in the dataset is not important for the execution cost, since an initialization step can

calculate all the conditional tag-attribute probabilities by a single scan of the dataset.

5.4.1.1 Exact-ISD : E-ISD

Our first algorithm is an exact top-k technique, Exact-ISD (E-ISD) based on

an interesting adaptation of Fagin’s Threshold Algorithm (TA) [32].

We create s identical lists L= {L1,L2, . . . ,Ls} for identifying snippets {S1
p , S

2
p , . . . ,

Sk
p} of size s for item p where each list Li containsm values of the form s

√
Pr(T )
Pr(T ′)

. Pr(pvi|T )
Pr(pvi|T ′)

corresponding to the m attributes in descending order of magnitude. The sorting is

done on the contributions made by attributes to maximize the scoring function in

Equation 5.6. The lists are accessed in round robin fashion and for every combina-

tion of attributes from the lists, we join them to build a snippet. A join is considered

to be valid if the number of distinct attributes in the join is equal to s and the join

combination (without considering the order of attributes participating in join) is not
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already included in the result set. The complete score of the valid join (i.e., the

snippet) is resolved by Equation 5.6. We maintain a buffer of size k, called top− k

buffer, in order to store the k best snippets {{S1
p , S

2
p , . . . , S

k
p} for item p. A snippet is

stored in the top− k buffer if its score is higher than the MPFS (Maximum Possible

Future Score) at a point, which is the upper bound on the score of an unseen snippet.

MPFS is computed using the currently indexed entry of a list and top (s− 1) entries

of any one of the lists, since they are identical.

MPFS =
1

1 + (c.h1.h2. . . . .hs−1)
(5.7)

where, c is the score of the currently indexed entry and h1 to hs−1 are the scores of

the top (s − 1) entries from any list. Algorithm 10 is the pseudo-code of our E-ISD

algorithm.

Algorithm 10 E-ISD (Naive Bayes probabilities, p, s, k): S1
p , S

2
p , . . . , S

k
p

Create identical lists L = {L1,L2, . . . ,Ls} for p where each list contains m values

of the form s

√
Pr(T )
Pr(T ′)

. Pr(pvi|T )
Pr(pvi|T ′)

in descending order of magnitude

//Main Algorithm

1: Top-k-Buffer ← ∅
2: while Top-k-Buffer.size() ̸= k do
3: Retrieve next snippet S in round robin manner by Join(L1,L2, . . . ,Ls)
4: if VALID JOIN: S.size()=s and S/∈Top-k-Buffer then
5: Add entry {S, Score(S)}to CandidateList //Equation 5.6
6: Calculate MPFS //Equation 5.7
7: if CandidateList has entry with Score≥MPFS then
8: Add entry to Top-K Buffer
9: Remove entry from CandidateList
10: end if
11: end if
12: end while
13: return Top-k-Buffer
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Example 5.4.1. Consider a boolean dataset of 10 items where each item has 6 at-

tributes and 2 tags, as shown in Table 5.4.1.1. Our objective is to find the top-3

snippets of size 3 (i.e., s = 3, k = 3) for item with ID=4, O4 in Table 5.4.1.1. We

create 3 identical lists L1, L2 and L3 of size 6, where each list is sorted in decreasing

order of 3

√
Pr(T )
Pr(T ′)

. Pr(pvi|T )
Pr(pvi|T ′)

, where T is the composite tag and pvi ∈ O4. At each iter-

ation, entries from the lists are accessed in round robin fashion. The first four joins

are (A3, A3, A3), (A5, A3, A3), (A5, A5, A3), (A5, A5, A5), (A4, A3, A3) are all invalid

joins. The first valid snippet/join is (A3, A4, A5) for which E-ISD computes Score and

MPFS. Since score of (A3 = 1, A4 = 1, A5 = 1) ≥ MPFS, as shown in Figure 5.3, it

is stored in the Top-K Buffer. We next skip several invalid joins and obtain the sec-

ond valid join (A3, A5, A6), compare its Score with MPFS and decide to store it in

the Top-K Buffer. Thus, the top-2 snippets are obtained. The third and fourth valid

joins do not satisfy the condition to be stored in the Top-K Buffer, as we see in Fig-

ure 5.3. The fifth valid join (A1, A3, A5) again satisfies the threshold condition and is

passed on to the Top-K Buffer. Thus we obtain our top-3 snippets by looking up only

5 snippets, without having to explore all 6C3 = 20 snippets. �

Table 5.1. Example Tagged Item Dataset

Attribute Tag
ID A1 A2 A3 A4 A5 A6 T1 T2
1 0 0 0 1 0 0 0 0
2 0 1 0 0 0 1 0 1
3 0 1 0 1 0 0 0 0
4 0 1 1 1 1 0 1 1
5 1 0 0 0 1 0 1 0
6 1 0 0 1 0 1 0 1
7 1 0 1 1 1 1 1 1
8 1 1 0 1 0 1 0 1
9 1 0 1 0 1 1 1 0
10 1 0 1 1 0 1 0 1
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Figure 5.3. Exact-ISD Algorithm for Item ID 4 in Table 5.4.1.1 .

5.4.1.2 Approximation-ISD: A-ISD

The exact algorithm of Section 5.4.1.1 has exponential time complexity in the

worst case. Therefore, for larger problem instances (i.e., larger number of attributes

and snippet size), we propose an approximation algorithm, A-ISD that provides guar-

antee in the quality of results as well as run time.

We model the ISD problem as the subset sum problem which , given a set of

integers and an integer target, finds out if there is a non-empty subset that sums

to the target. An instance of the subset sum problem is a pair (X, t), where X =

{x1, x2, . . . } is a set of positive integers and t (known as the target) is a positive

integer. The decision version of the subset sum problem asks for a subset Y of X

whose sum is as large as possible, but not larger than t; the optimization version

returns the subset Y of X, if it exists. In our problem, the input set X, consists

of the quantities Pr(pvi|T )
Pr(pvi|T ′)

for item p, i=1(1)m, pvi = {0, 1} ∈ o and T ∈ {0, 1}; pvi

values are dependent on p whose snippet is being built and T values are dependent

on the user query. The target sum t is the maximum logarithmic sum of the s highest
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quantities in X, and the pvi-s corresponding to these s quantities in our subset Y1

gives snippet S1
p for p. Besides X and t, we have two additional parameters - snippet

size, s (i.e., number of quantities summing up to t) and the k of top-k (i.e., number

of subsets/snippets to be returned). Note that the quantities in X are real values

and not integers, which do not come in way of adapting the PTAS algorithm for

traditional subset sum to our problem. The second best snippet S2
p looks for a subset

Y2 of size s from X whose sum is as large as possible, but not larger than t. In this

way, we find (k−1) size-s subsets Y2, Y3, . . . , Yk (i.e., snippets S
2
p , S

3
p , . . . , S

k
p ) less than

target t, where Y2, Y3, . . . , Yk are sorted in decreasing logarithmic sum of quantities

in the respective subsets.

The exponential algorithm for solving the subset sum takes input set X and

target value t and iteratively computes sorted list Li, the list of sums of all subsets

of {x1, ..., xi} that do not exceed t by merging Li−1 with {Li−1 + xi}. The algorithm

returns the the maximum value in Ln, and is exponential since Li can have as many

as 2i items. The polynomial-time approximation scheme (PTAS) algorithm [39] for

subset sum trims (i.e., clusters) each list Li by removing as many elements as pos-

sible such that every element that is removed is approximated by some remaining

element; and then calls the merge operation. The trimming factor δ is a function of

the user-defined approximation factor ϵ and the number of items in X, and equals

ϵ/2×(number of items in X). The solution returned is proved to be within a factor of

(1 + ϵ) of the optimum and running time is polynomial in both number of items in

X and ϵ. We adapt this idea to solve ISD problem having two additional parameters

- s and k - in the following way:

• Instead of maintaining a single list Li in each iteration, we maintain s lists,

where a list Lj
i (1 ≤ i ≤ m, 1 ≤ j ≤ s) stores all subset sums till ith iteration

comprising of j quantities from X. Therefore, we merge Lj
i with {L

j−1
i + xi} to
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obtain Lj
i+1 and we employ s trim operations with compression factor δ′ = δ

s
=

ϵ
2ms

.

• During trim operation, instead of storing one quantity that represents all the

remaining quantities that it approximates, we store upto (k − 1) quantities.

Therefore, the (k − 1) members belonging to the final compression cluster in

Ls
m would be the size-s subsets Y2, Y3, . . . , Yk (i.e., snippets S2

p , S
3
p , . . . , S

k
p re-

spectively).

Algorithm 11 is the pseudo-code of our A-ISD algorithm; and Theorem 5.4.1

discusses its theoretical properties.

Theorem 5.4.1. A-ISD is polynomial time approximation scheme for the ISD prob-

lem.

Proof : First, we examine the approximation quality of results returned by A-ISD.

When a list Lj
i is trimmed, we introduce a relative error of at most (1+ δ/s) between

the representative quantities remaining and the members of the list; the aggregated

relative error is therefore (1+δ). If yopt is the top-1 solution to the exact ISD problem,

then there exists a top-1 solution yapprox using A-ISD such that:

yapprox ≤ yopt ≤ yapprox.(1 + δ)m

Now, (1 + δ)m = (1 + ϵ/2m)m ≤ (1 + ϵ).

Thus, the top-1 result is guaranteed to lie within a factor of (1+ϵ) of the optimal

top-1. A-ISD retrieves the (k−1) members belonging to the final compression cluster

in Ls
m, all of which are within a factor of (1 + ϵ) of the optimal, as the final solution.

The guarantee that the final compression cluster in Ls
m would have at least (k − 1)

subsets to be returned as the final solution follows from the following lemma, the

proof of which is skipped for space constraints.

Lemma 5.4.1. If the trim operation in (i−1)th iteration maintains k quantities dur-

ing a compression, the trim operation in ith iteration would store at least k quantities.
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Algorithm 11 A-ISD (Naive Bayes probabilities, p, s, k, ϵ): S1
p , S

2
p , . . . , S

k
p

Build set X of m quantities of the form Pr(pvi|T )
Pr(pvi|T ′)

for p and determine target t by

computing best snippet S1
p for p

//Main Algorithm

1: {L0
0, L

1
0, . . . , L

s
0} ← ⟨0⟩

2: for i = 1→ m do
3: for j = 1→ s do
4: Lj

i ← Merge(Lj
i−1, {L

j−1
i−1 + xi})

5: end for
6: for j = 1→ s do
7: Lj

i ← Trim(Lj
i ,

ϵ
2ms

, k)

8: Remove from Lj
i every quantity greater than t

9: end for
10: end for
11: return Top-k-Buffer

//Method Trim(Lj
i , δ

′, k): L′

1: η ← |Lj
i |

2: L′ ← ⟨x1⟩
3: last ← x1

4: for l = 2→ η do
5: if last > (1 + δ′)xl then
6: Append xl onto end of L′

7: last ← xl

8: else
9: Store upto (k − 1) quantities xl with last in L′

10: end if
11: end for
12: return L′

Let us now look at the size of Lj
i to analyze running time. After trimming, suc-

cessive representative quantities in Lj
i must differ by at least (1 − ϵ/2ms), and each

representative quantities maintains at most (k − 1) remaining quantities that it ap-

proximates. Therefore, the total number of quantities in Lj
i is at most k.log(1−ϵ/2ms)t.

This value is polynomial in size of the input (i.e., logt plus some polynomial in m and

s) and in 1/ϵ.
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Since A-ISD produces a solution that is within a factor (1 + ϵ) of optimal and

it’s running time is polynomial in size of the input, A-ISD is PTAS. �

Example 5.4.2. Let us consider the dataset in Table 5.4.1.1 of 10 items having 6

attributes and 2 tags. Suppose, we want to identify the top-3 snippets of size (i.e.,

s = 3, k = 3) for item with ID=4. First, we build set X = {1.25, 1.25, 2.5, 1.4286,

1.6667, 1.4286} for attributes A1, A2, . . . , A6, and sort the values in X. Consid-

ering the top-3 entries in X, we get S1
p = (A3, A4, A5) and the subset sum deter-

mines target t = 5.5953. We call A-ISD with ϵ = 0.01, which would return S2
p and

S3
p . In the first iteration, we have L1

1 = {1.251}; L2
1 and L3

1 are empty. We trim

L1
1 and it remains the same. In the second iteration, we have L1

2 = {1.25, 1.25},

L2
2 = {2.5}; L3

2 is empty. We trim L1
2 to obtain L1

2 = {1.25}; L2
2 remains the

same after trimming. We iterate four more times so that in the final(sixth) it-

eration, we have: L1
6 = {1.25, 1.4286, 1.6667, . . . }, L2

6 = {2.5, 2.6786, 2.8572, . . . },

L3
6 = {4.1072, . . . , 5.1786, 5.4167}. We look up L3

6 and identify the top-2 subset

sums: 5.1786 and 5.4167. The snippets corresponding to these two scores are: S2
p

= (A1, A3, A5), S
3
p = (A3, A4, A6). Thus, we determine the top-3 snippets using A-

ISD which lie within 0.01 factor of the optimal; we observe that two of the best three

snippets match the results returned by E-ISD. �

5.4.2 DISD Algorithms

In this section, we propose efficient algorithms for solving the Diversified Infor-

mative Snippet Design (DISD) problem.

The objective of DISD is to diversify the snippets of items returned as a result

of search query in order to maximize the chances of a user liking at least one of the top

items. Similar to related research on diversity aware search, we intend to determine

the item snippets based on both their relevance to the search query as well as their
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dissimilarity to the other selected snippets. We emphasize word sense diversification

in the snippets for diversity and measure diversity as categorical distance, based on

the Hamming metric. The relevance score of a snippet is computed by Equation 5.6.

Diversity: Given attribute set A = {A1, A2, . . . , Am} where each attribute Ai can

take one of several values ai from a multi-valued categorical domain Di, or one of two

values {0, 1} if a boolean dataset is considered, we build feature (i.e., description)

vectors d⃗ of length nd = Σm
i=1Di, where values in d⃗ are set to 1 or 0 depending on the

snippet under consideration. The diversity between snippets Spx and Spy of products

px and py having description vectors dpx and dpy is:

diversity(Spx , Spy) = Σnd
j=1(dpx [j] ̸= dpy [j]) (5.8)

where j is the vector index and dpx [j] ̸= dpy [j] is measured as 1, ∀j. For exam-

ple, {A1 = make}, which takes values from {Nikon,Canon}, {A2 = color}, which

takes values from {black,white, red}, and {A3 = type}, which takes values from

{compact, SLR}, the feature vectors would be of length nd = 7. If item p1 has

the best snippet S1
p1

= ⟨Nikon, SLR⟩ and item p2 has the second best snippet S2
p2

= ⟨Canon, red⟩, dp1 = ⃗1000001, dp2 = ⃗0100100; diversity(S1
p1
, S2

p2
) = 4. The con-

sideration of such a Hamming distance like metric, satisfying triangular inequality,

facilitates the development of an efficient algorithm as shown in Section 5.4.2.2. In

this study, it is not our goal to advocate one particular diversity measure over an-

other. Rather, we focus on formalizing the problem and developing efficient solutions

to it.

Our DISD problem is conspicuously different from the body of work in diversifi-

cation of search results [41][40]. Diversity aware search aims to find the top-k relevant

items from the set of all n relevant items returned as a result of search query. On
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the other hand, the DISD problem aims to find the top-1 result (i.e., snippet) for n

relevant items, where each relevant item has a set of top-k results (i.e., combination

of snippets) to choose from. A brute-force exhaustive approach (henceforth, referred

to as Naive-DISD) to solve the problem requires us to explore kn combinations, and

compute sum Σn
i=1(f(Spi , T ),subject to diversity(Spx , Spy) ≥ τ , for all pairs of px and

py. Thus, we develop efficient and practical algorithms.

5.4.2.1 Exact-DISD : E-DISD

We introduce an exact algorithm for any k (though, DISD problem objective

is determining the top − 1) based on interesting and non-trivial adaptations top-k

querying techniques in [40][42]. The main idea of our Exact-DISD (E-DISD) is:

We create n lists L = {L1,L2, . . . ,Ln} corresponding to the n items returned by

search engine for a user query. Each list Li contains the top-k snippets {S1
pi
, S2

pi
, . . . , Sk

pi
}

for item pi having scores (given by Equation 5.6) sorted in decreasing order of score.

The lists are accessed in round robin fashion and for every join, we check if it is a valid

join. A join is considered to be valid if the diversity constraint is satisfied, i.e., any

two snippets Spx and Spy for items px and py (Spx ∈ {S1
px , S

2
px , . . . , S

k
px}, similarly for

Spy) are dissimilar and have diversity(Spx , Spy) exceeding a user-provided threshold,

τ . The complete score of the join is resolved by summing over the snippet scores,

i.e., Σn
i=1f(S

j
pi
, T ), j ∈ {1, k} . Our objective is to identify the top-1 combination

which would return the n snippets Sp1 , Sp2 , . . . , Spn for the n items, where Spiϵ

{S1
pi
, S2

pi
, . . . , Sk

p1
}, ∀i = 1(1)n. The top-1 result is returned if its score is higher than

the MPFS (Maximum Possible Future Score), which is the upper bound on the score

of an unseen combination. To compute MPFS, we assume that the current entry from

a list is joined with the top entries from all other lists, as given below:
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MPFS =
1

1 +max((c1.h2 . . . .hn), (h1.c2 . . . .hn), . . . , (h1.h2 . . . .cn))
(5.9)

where, where ci and hi are the last seen and top entries from list Li respectively.

Algorithm 12 is the pseudo-code of our E-DISD algorithm.

Algorithm 12 E-DISD ({p1, . . . , pn}, n, s, k, {{S1
p1
, . . . , Sk

p1
}, {S1

p2
, . . . , Sk

p2
}, ...,

{S1
pn , . . . , S

k
pn}}, τ): Sp1, Sp2, . . . , Spn

Create lists L = {L1,L2, . . . ,Ln} for n items where each list contains the top-k
snippets for the item (corresponding to the list) sorted in decreasing value of score
(given by Equation 5.6).

//Main Algorithm

1: Top-k-Buffer ← ∅
2: while Top-k-Buffer.size() ̸= k do
3: Retrieve the next combination C (i.e., set of n snippets) in round robin manner

by Join(L1,L2, . . . ,Ls)
4: if VALID JOIN: diversity(Spx , Spy) ≥ τ , ∀ (px, py) ∈ {p1, . . . , pn} then
5: Add entry {C, TotalScore (C)}to CandidateList // TotalScore =

Σn
i=1f(S

j
pi
, T ), j ∈ {1, k}

6: Calculate MPFS //Equation 5.9
7: if CandidateList has entry with TotalScore≥MPFS then
8: return entry // entry = {Sp1 , Sp2 , . . . , Spn}
9: end if
10: end if
11: end while

Example 5.4.3. Let us consider the dataset in Table 5.4.1.1 of 10 items having 6

attributes and 2 tags. Suppose, a user search query returns item with ID=1, 2, 3,

and 4. The top-4 snippets of size 3 (i.e., k = 4, s = 3) of each item is known by

employing E-ISD. Our objective is to find the top-1 combination (i.e., snippets for the

4 items). Let the diversity threshold be set at τ = 2. We create 4 lists L1, L2, L3,

and L4 containing the top-4 size-3 snippets corresponding to the 4 items, as shown in
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Figure 5.4. Exact-DISD Algorithm for Item IDs -1, 2, 3, 4 in Table 5.4.1.1 .

Figure 5.4. The first join is: S1
1 = (A1, A2, A4) from L1 with S1

2 = (A1, A2, A6) from

L2 and S2
3 = (A1, A2, A4) from L3 and S1

4 = (A3, A4, A5) from L4, which is invalid

since the diversity constraint is not satisfied. We access the lists in a round-robin

fashion to get the first valid join, as shown in Figure 5.4. The total score of the join

is 1.469, while MPFS is 1.553. Since 1.469¡1.553, we move to the next valid join. In

this way, we finally obtain S2
1 , S

1
2 , S

1
3 , S

1
4 as the top-1 combination by looking up only

8 valid combinations, without having to explore all 44 = 256 combinations. �

5.4.2.2 Approximation-DISD: A-DISD

The exact algorithm of Section 5.4.2.1 has exponential time complexity in the

worst case. Therefore, we propose an approximation algorithm A-DISD which bor-

rows idea from methods to handle the facility dispersion problem, that deals with

location of facilities on a network in order to maximize distances between facilities,

minimize transportation costs, avoid placing hazardous materials near housing, etc.

We consider the facility dispersion problem variant in Ravi et al.’s paper [27]

that maximizes some function of the distances between facilities to select p out of n fa-

cilities. The optimality criteria considered in the work are MAX-MIN (i.e., maximize
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the minimum distance between a pair of facilities) and MAX-AVG (i.e., maximize the

average distance between a pair of facilities). Under either criterion, the problem is

known to be NP-hard by reduction from the Set Cover problem, when the distances

satisfy the triangle inequality. The approximation algorithm for the MAX-AVG dis-

persion problem is as follows: it initializes a pair of nodes (i.e., facilities) which are

joined by an edge of maximum weight and adds a node in each subsequent itera-

tion which has the maximum distance to the nodes already selected. Recall that, our

DISD problem wants to maximize both relevance and diversity (i.e., distance between

facilities), and hence we develop the following distance function, which is shown to

be metric in [46]:

dist(Spx , Spy) = f(Spx , T ) + f(Spy , T ) + 2λ.diversity(Spx , Spy) (5.10)

Also, recall that the DISD objective is to select n entries (one snippet for each

item) from nk entries such that no two of the n entries belong to the same item.

We adapt Ravi et al.’s MAX-AVG algorithm to solve our DISD problem having this

additional parameter - k - in the following way:

• In order to ensure that the selected n snippets belong to n different items, we

set dist(Si
px , S

j
px) = 0,∀(i, j) ∈ {1, k}. This ensures that the top-k snippets

belonging to the same snippets do not join with each other.

Algorithm 13 is the pseudo-code of our A-DISD algorithm; and Theorem 5.4.2

discusses its theoretical properties, which follows from [27].

Theorem 5.4.2. Let OPT and APP denote respectively the optimal set and approx-

imate set of n snippets selected out of nk snippets, such that no two of the n snippets

belong to the same item. If the distance between the snippets (dist) satisfies triangular

inequality, OPT/APP ≤ 4.
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Algorithm 13 A-DISD ({p1, . . . , pn}, n, s, k, {{S1
p1
, . . . , Sk

p1
}, {S1

p2
, . . . , Sk

p2
}, ...,

{S1
pn , . . . , S

k
pn}}): Sp1, Sp2, . . . , Spn

//Main Algorithm

1: M I ← Compute nk × nk distance matrix using dist in Equation 5.10 //Set
dist(Si

px , S
j
px)=0, ∀{i, j}=1(1)k in M I ; I is input set of all nk snippets

2: {Spx , Spy} ← MAX(M I)
3: J ← {Spx , Spy}
4: while J ̸= n do
5: Spz ← Σ{Spz∈[I−J ]}MAX(M I−J)
6: J ← [J, Spz ]
7: end while
8: Gapp ← J
9: return Gapp // Gapp = {Sp1 , Sp2 , . . . , Spn}

Example 5.4.4. Let us again consider the dataset in Table 5.4.1.1 of 10 items having

6 attributes and 2 tags. Let the user search query returns item with ID = 1,2,3 and

4. The top-4 snippet of size 3 (i.e., k = 4, s = 3) of each item is known by employing

E-ISD. The objective is to find the top-1 diversied combination (i.e, snippets for the 4

items). Let, Sij denote the jth snippet returned by E-ISD for the ith product. List of

snippets for ID = 1,2,3 and 4 are shown in upper part of Figure 5.4 as L1, L2, L3,

and L4 respectively. The distance between two snippets are caluclated using Equation

5.10. Here is the distance from S11 to all the other snippets {S11: 0 , S12: 0 , S13

: 0 , S14: 0, S21: 3.62, S22: 4.53, S23: 5.51, S24: 3.48, S31: 1.63, S32: 2.51, S33:

3.51,S34: 3.48, S41: 4.86, S42: 6.86, S43: 4.83, S44: 5.83}. For a particular snippet of

an item, all other snippets of that item will have a distance of zero. Next, as depicted

in Algorithm 13, we choose the snippets with maximum distance. Here, S21 and S41

has the maximum distance(6.95) among all pair of snippets. So we choose S21 and

S41 and put into the result set J . Then, we contiue the iteration until we find snippet

for each individual item. Inside the while loop, in line 4 of Algorithm 13, we choose

a snippet and from either item 1 or item 3. For each snippet which is not already
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selected, we take the distance from each selected snippet and take the sum over them.

The snippet which have the highest sum is added to the result. Snippet S13 has the

highest sum of 9.30( 5.53 + 3.77) considering the distances from S21 and S41. So we

add S13 to J and J is now {S21, S41, S13}. We will contiune to iterate in similar

manner until the result set has the size of total number of items (here, number of

items, n = 4). In the next iteration, we find a snippet from item 3 which has the

maximum sum of distance from the already selected snippets. S34 has the maximum

sum of 11.786(2.57 + 5.81 +3.39) considering the distance from the snippets in J .

We append S34 to J and J = {S11, S42, S32, S34 }. Then the algorithm terminates

and return J as the size of J is equal to the number of items returned as the result of

the query. �

5.5 Experiments

We conduct a set of comprehensive experiments using both synthetic and real

datasets for quantitative (Section 5.5.1) and qualitative analysis (Section 5.5.2) of our

proposed algorithms. Our quantitative performance indicators are (a) efficiency of

the proposed algorithms measured by running time and the number of combinations

that are considered from the pool of all possible combinations; (b) approximation

factor of results produced by the approximation algorithm measured as the ratio of

the acquired approximate result score to the actual optimal result score. We also

conduct a detailed use-case evaluation, where we show how our snippets are helpful

to draw user attention.

Real Car Dataset : We crawl a real dataset of 606 cars5 spanning 34 brands from

Yahoo! Autos(http://autos.yahoo.com/) for the year 2010. The products contain

5Recall that, the number of items in the dataset is not important for the execution cost.
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technical specifications as well as ratings and reviews, which include pros and cons.

We parse a total of 60 attributes: 25 numeric, and 35 boolean and categorical (which

we generalize to boolean). The total number of reviews we extract is 2,180. We

process the text listed under pros in each review to identify a set of 15 desirable tags

such as fuel economy, stylish exterior, etc, using the keyword extraction toolkit

AlchemyAPI (http://www.alchemyapi.com/).

Synthetic Dataset : We generate a large boolean matrix of dimension 10,000 (items)×100

(50 attributes + 50 tags) and randomly choose submatrices of varying sizes, based

on our experimental setting. We split the 50 independent and identically distributed

attributes into four groups, where the value is set to 1 with probabilities of 0.75,

0.15, 0.10 and 0.05 respectively. For each of the 50 tags, we pre-define relations by

randomly picking a set of attributes that are correlated to it. A tag is set to 1 with

a probability p if majority of the attributes in its pre-defined relation have boolean

value 1.

We use the synthetic datasets for quantitative experiments, while the real

dataset is used in the qualitative study.

System configuration: Our prototype system is implemented using C#. All experi-

ments were conducted on an Windows 7 machine with 2.30Ghz Intel i5 processor, 64

bit Operating System and 6GB RAM.

5.5.1 Quantitative Evaluation

We first compare the performance behavior of the ISD algorithms - Naive-ISD,

E-ISD, and A-ISD in Figures 5.5, 5.6, and 5.7. Since Naive-ISD can only word for

small problem instances, we pick a subset from the synthetic dataset containing 1000

items, 50 attributes, 10 tags. Figure 5.5 compares the execution time of the ISD
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Figure 5.5. ISD: Execution time for vary-
ing m (Synthetic data).

Figure 5.6. ISD: Execution time for vary-
ing s (Synthetic data).

Figure 5.7. ISD: Execution time for vary-
ing k (Synthetic data).

Figure 5.8. DISD: Execution time for
varying n (Synthetic data).

Figure 5.9. DISD: Execution time for
varying k (Synthetic data).

Figure 5.10. Currently Available Snip-
pets for 2010 Suzuki SX4 Sport GTS.
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algorithms for 1000 items, 10 tags, having snippet size s = 5 and top-k’s k = 5,

with varying number of attributes, m. We observe that our E-ISD and A-ISD (with

an approximation factor ϵ = 0.1) outperforms the Naive-ISD method as the number

of attributes increases. Table 5.2 also validates that our algorithms are superior

to Naive-ISD for the same synthetic data instance and varying m. The number of

snippets looked up by E-ISD is orders of magnitude less than that by Naive-ISD.

Table 5.2. ISD - Number of snippets looked up (Synthetic data of 1000 items, 10
tags, snippet size s = 5, k = 5).

Number of attributes Naive-ISD E-ISD
8 56 84
12 792 210
16 4368 252
32 201376 462

Next, we analyze the time taken by the three algorithms when the snippet

size, s varies in Figure 5.6. We consider a synthetic data containing 1000 items, 20

attributes, 10 tags, k = 10, and vary s from 4 to 16. We observe that the time taken

by Naive-ISD is again much more than that taken by our methods - E-ISD and A-

ISD. We also observe that the time taken by E-ISD is affected by s, since the number

of lists considered is equal to the snippet size. However, A-ISD is fairly stable with

increase in s. Figure 5.7 compares the execution time of Naive-ISD, E-ISD and A-

ISD for varying k. We consider a synthetic data containing 1000 items, 30 attributes,

10 tags, s = 10, and vary k from 2 to 32. As expected, the running time of all

three algorithms increases with increase in k. We do not evaluate the ISD algorithms

for varying number of items (since number of items in dataset is not important for

execution cost), and number of tags (since we consider composite tag).
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Figures 5.8 and 5.9 compares the execution time of our DISD algorithms -

Naive-DISD, E-DISD, and A-DISD. Recall that, the computational complexity of

the DISD problem is dependent on the number of relevant items n and the k of

top − k. Therefore, we evaluate the performance behavior of our DISD algorithms

by varying n and d. Figures 5.8 shows how the execution time of Naive-DISD and

E-DISD rises sharply with increase in the number of relevant items, when synthetic

data of 1000 items, 30 attributes, 10 tags, snippet size, k of top-k 10, and τ = 2.

Our A-DISD performs extremely well with increase in the number of relevant items,

while Theorem 5.4.2 guarantees result quality. Figure 5.9 is similar in behavior to

Figures 5.8 for a similar synthetic data instance, and clearly shows how our A-ISD

algorithm is effective for large real datasets.

We empirically demonstrate the quality of results generated by our approxima-

tion algorithms A-ISD and A-DISD, as shown in Table 5.3. For A-ISD on a synthetic

data having 1000 items, 40 attributes, 10 tags, snippet size 5, and τ = 2, the obtained

approx factor is the ratio of the score for the top-1 snippet to the score of the optimal

snippet returned by E-ISD. For A-DISD on a synthetic data having 8 items with each

item having top-4 snippets, the obtained approx factor is the ratio of the relevance

score (Σn
i=1f(Spi , T )) for the best snippet combination to the score of the optimum

returned by E-DISD. Note that, A-DISD does not have an user-submitted ϵ as input.

The diversity threshold in the results obtained by E-DISD and A-DISD is 2.

Table 5.3. A-ISD and A-DISD: Quality(Synthetic data).

Algorithm User-Defined Approx factor
Approx factor ϵ Obtained

A-ISD
0.5 0.97
0.2 0.98
0.1 0.99

A-DISD - 0.98
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5.5.2 Qualitative Evaluation

We use the real cars dataset to confirm that our algorithms draw interesting

snippets highlighting the desirability of certain car specifications (attribute values),

as opposed to the snippets that are currently returned by the search engines. For a

user looking for a used japanese sports car, one of the top cars returned by the search

engine is “Suzuki SX4 Sport”. For the 2010 Suzuki SX4 Sport GTS, the usual snippets

displayed by the search engine and/or the retail sites are shown in Figure 5.10. As

we see, the snippet compositions are not striking and discuss the usual high-level car

specifications, that other cars returned by the search query mostly display. Our E-

ISD algorithm returns the following snippet, that highlights salient and query-relevant

attributes like mileage, horsepower, safety features, etc.

2010 Suzuki SX4 GTS: $13,380 based on 24,000 driven miles; 23 mpg

city / 30 mpg hwy; 148 hp; MPFI Engine; KYB(R) Shock Absorbers and Sport

Ride Type

Next, we study how diverse snippets are returned by our A-DISD algorithm.

For a user looking for a used audi a4, suppose the top cars returned by the search

engine include “FrontTrak Multitronic”, “Quattro Manual”, “Quattro Tiptronic”,

and “Avant Quattro Tiptronic”. The cars share several attributes in common, and

are hence likely to generate similar snippets. However, our A-DISD algorithm iden-

tifies several unique features that these used cars have such as front fog-light

in FrontTrak Multitronic, first-aid kit in Quattro Manual, garage door-opener

in Quattro Tiptronic, and delayed courtesy light in Avant Quattro Tiptronic.

Thus, the diverse snippets returned to an user looking for an used Audi A4 are likely

to increase the chances of the user clicking on one of them.
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CHAPTER 6

Technical Item Recommendation

6.1 Introduction

When shopping for a new laptop in the traditional way, customers would walk

into a shop and rely on the experience of a shopping assistant to help them select the

best laptop for their needs. A good shopping assistant would ask questions intelligible

to non-expert users, for instance, “Do you intend to use the laptop for playing modern

computer games?”, while mapping the answers to technical product specifications,

such as, “The customer will need at least 4 gb of ram.” E-commerce has disrupted

this custom in two ways. First, customers shop online, from their homes, without any

human interaction involved. Second, catalogs of online shops are so big and with so

many continuous updates that no human, however expert, can effectively comprehend

the space of available products. As a consequence, the customers are left without any

guidance to understand their needs and map them to a product.

In this chapter, we propose a system that addresses this need. Our system,

called ShoppingAdvisor, draws inspiration from a recent marketing strategy called

“Which product should I buy?” flowchart. Each box in these flowcharts asks the

prospective shopper a question, and the sequence of answers leads the shopper to

the suggested shopping option. Figure 6.1 shows an example flowchart to choose the

right version of the Amazon Kindle e-book reader1. At each level the user should

look at a question on the left side (e.g., “Input Method”), choose one of the available

options (e.g., 5-way controller, Touch or Keyboard) and note down the “orange word”

1http://theunderstatement.com/pickyourkindle/
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Figure 6.1. Example of “Which Kindle should I buy?” flowchart.

in the box. At the end of the flowchart, the correct version of Kindle will be made by

the concatenation of “orange words” along the path chosen by the user. The kind of

questions asked by the flowchart requires a high level of technical knowledge, to make

an informed decision. For example, to understand the “Reader Features” question

the user should know that X-Ray is a feature to allow to view a list of all passages

from the book that mention an idea, person, or topic.
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“Which product should I buy?” flowcharts present two problems. First, design-

ing such flowcharts manually is time consuming. Second, they rely on questions about

technical attributes, which an average shopper might not understand. For example,

the flowchart guide to buying a laptop might ask the question “Do you need more

than 4GB of RAM?”, and expect the shopper to understand the purpose of RAM. We

address both problems by automatically designing flowcharts that help shoppers se-

lect the best product for their needs. An important design principle of our approach

is that we distinguish between two types of features: (i) features in a user space,

which contain user information such as demographics, life-style preferences, and in-

terests; and (ii) features in a product space, which contain technical information of

the products, e.g., the cpu speed of a laptop.

ShoppingAdvisor generates a tree-shaped flowchart, in which the internal

nodes of the tree contain questions addressed to the users. These questions involve

only attributes from the user space, that non-expert users can understand easily. For

instance, “Are you a student?” or “Would you be storing videos in your laptop?”.

A potential shopper, starts from the root of the ShoppingAdvisor tree, answers

questions, follows the control flow, and descends towards a leaf of the Shopping-

Advisor tree, where they find a ranked list of product recommendations. In fact, a

user can stop answering at any level in the tree as a ranking is available at each node,

not only at leafs.

At a high-level, the ShoppingAdvisor tree resembles a decision-tree, and

our method for learning its structure resembles decision-tree learning algorithms.

However, there are important differences. First, given a set of users with similar

features, our system induces a ranking on all the existing products, based on the

attributes of the products. Thus, unlike traditional decision trees in which each

node is a weak decision maker, each tree node in our model is a strong classifier and
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it outputs a ranking on products instead of class labels. Thus, unlike traditional

decision trees in which each node outputs a class label, we learn trees in which each

node outputs a ranking of products. Second, unlike other tree-based methods, in our

model the splitting and ranking domains are different. Indeed, the ShoppingAdvis-

or tree partitions the users on the basis of user attributes, so that similar users will

end up in the same nodes, under the assumption that they will prefer similar products.

However, the ranking of products at each node depends on their technical attributes.

In this way, if the system learns that, say, the storage capacity of a laptop is an

important feature for a particular user segment, the system will weigh this feature

appropriately and will rank high other laptops with large hard disks. Thus, the system

learns the implicit relationship between user attributes and product attributes, and

identifies the best recommendations for a particular set of users. This identification of

implicit relationships between user and product attributes lets the system deal with

both new users and with new items, alleviating cold-start problems.

Figure 6.2 shows an example of a “Which camera should I buy?” flowchart

with technical questions (left) and an equivalent example with non-technical questions

produced by ShoppingAdvisor (right). A shopper answering yes to both questions

“Do you want a camera for traveling?” and “Do you want a camera for backpacking

trips?”f is more likely to be recommended a ultra-compact camera2.

We demonstrate the effectiveness of our interactive recommendation system for

two categories of products: cars and cameras. In addition to the conceptual contribu-

tions – introducing a new problem definition and developing novel methods to solve

this problem – we also show how to mine publicly available data to create datasets

required by our problem definition, namely, integrating information regarding users,

2Our ShoppingAdvisor recommendations are not influenced by, or biased towards, any partic-
ular brand.

183



Figure 6.2. Example of “Which camera should I buy?” flowchart (left) and its
equivalent non-technical ShoppingAdvisor flowchart (right).

products, and reviews. For our first use case, cars, we extract information from Yahoo!

Autos.3 We collect car specifications (numerical, boolean and categorical attributes),

as well as ratings and reviews submitted by users. Each user review includes pros and

cons, short free-text snippets that highlight positive and negative aspects of the car.

We employ standard text-mining techniques to extract tags such as fuel economy,

stylish and performance from the reviews. We use those tags as user attributes:

we represent each user by the set of tags that the user has used in the pros section of

his reviews. We take a different route for cameras and use data from flickr.4 In this

case the tags used by each user to describe their photos are used as a proxy to user

interests. We extract the cameras used to take the photos with such tags from the

metadata, and we retrieve their technical specifications from CNET5. Rather than

3http://autos.yahoo.com
4http://www.flickr.com
5http://www.cnet.com
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using review scores from CNET, we choose to test our framework in a different set-

ting, where review scores might not be available, and use popularity of a camera in

flickr as a proxy. For each tag, we count how many pictures were taken with a given

camera, and use this number to rank the cameras. We use mean reciprocal rank

(MRR) to evaluate ShoppingAdvisor, and we show how the performance increases

by more than 50% along the path from root to leaf. We also show how collaborative

filtering algorithms such as k-nearest neighbor benefits from feature selection done

by ShoppingAdvisor. We obtain results of comparable quality by using only a

subset of user attributes, i.e., features for k-NN, while producing more interpretable

recommendations.

6.2 Problem Framework

Once again, we model a collaborative content site D as a triple ⟨U , I,R⟩, rep-

resenting the set of reviewers (i.e., users), the set of items (i.e., products) and the

feedback, respectively. Each feedback r can be considered as a triple itself, represented

as ⟨u, p, s⟩, where u ∈ U , i ∈ I, (r, T ) ⊂ R, respectively. We define a user schema,

UA = ⟨ua1, ua2, . . .⟩, to represent each user as a set of attribute values conforming to

the user schema: u = ⟨uv1, uv2, . . .⟩ ∈ U , where each uvx is a value for the attribute

uax ∈ UA. The corresponding user table U contains information about the users and

it has dimensions nU×mU . That is, we consider information for nU users from D, and

each user is described with mU attributes. We do not make any explicit assumption

regarding what type of information we have, it may be any kind information, for ex-

ample, registration information such as demographics, or implicitly provided informa-

tion, such as tags used on social-media sites, or browsing behavior. Such information

expresses the interests and lifestyle preferences of users. We use the notation ui to

refer to the i-th user. Similarly, we define an item schema, IA = ⟨pa1, pa2, . . .⟩, to
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represent each item as a set of attribute values, i = ⟨pv1, pv2, . . .⟩, where each pvy is a

value for the attribute pay ∈ IA. The corresponding product table P, is of dimensions

nP ×mP and contains product information. We assume that we have information for

nP products, and each product is described with mP technical attributes in IA, typi-

cally provided by the manufacturer. For instance, for cameras the attributes contain

information such as resolution, zoom, aperture, and weight. We use the notation pj to

refer to the j-th product. The third table created from D is the review table R with

dimensions nC × 3, and each row describing a reviewing action (ui, pj, sij). This row

contains data about user ui evaluating product pj with score sij. We may think of

sij as a numeric rating, say, sij ∈ [1, 5], where sij = 1 reflects a negative opinion and

sij = 5 is positive. Obviously, many other scoring schemes are possible.

Table 6.1. An example user table U.

uid Gender Age Travel Family Live Video

1 female young 1 1 0 0
2 male old 0 1 1 0
3 female young 0 0 1 1
4 male teen 1 0 0 1

Table 6.2. An example product table P.

pid Weight Resolution

1 5.0 lbs 36.3 MP
2 1.7 lbs 10.1 MP
3 2.0 lbs 14.0 MP
4 4.5 lbs 28.1 MP

Table 6.3. An example review table R.

uid pid Rating

1 3 4.5
2 2 3.5
3 1 4
3 3 3

Examples of a user table, a product table, and review table are shown in Ta-

bles 6.1, 6.2, and 6.3, respectively. Note that a user may review more than one

product, and a product may be reviewed by more than one user. For ease of ref-

erence, we denote by P the set of all products and by U the set of all users in our
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system. The set of all user attributes is denoted by A. Note that |P| = nP , |U| = nU ,

and |A| = mU .

The system we design and build here, ShoppingAdvisor, is a decision tree

that guides the users in making their shopping decisions. We denote this tree by T .

The internal nodes of the ShoppingAdvisor tree T correspond to user attributes

in A. A potential shopper is supposed to use the tree T as a flowchart for receiving

product recommendations. A user starts from the root of the tree. The root, as any

internal node, contains a user attribute a ∈ A. The attribute a is perceived as a

question by the user. For example, if a is a demographics attribute, the question

can be “Are you in the a demographics group?”, while if a is a tag, the question

can be “Are you interested in tag a?” The user, by answering this question, follows

the left or right subtree, and continues recursively answering questions in internal

nodes of T until they reach a leaf node or they decide to stop.6 The leaf nodes of

T correspond to an ordering of the products in P . Once a shopper reaches a leaf

node ℓ ∈ T , by following the internal nodes of T and answering questions, Shop-

pingAdvisor recommends to the shopper products in the order specified by the

leaf node ℓ. In practice, we assume that ShoppingAdvisor recommends the top-k

products in the ordering, although the user may select a “more k products” button.

We leave such system details outside our discussion and focus on the algorithmic

abstractions.

We now define the main problem we address in this chapter.

Problem 6.2.1 (ShoppingAdvisor ). We are given as input a product table P, a

review table R, a user table U, and integers h and k. The task is to learn a Shop-

pingAdvisor tree T . Each internal node of the tree contains a question formed by

6In this chapter, we focus on identifying the attribute of interest, and not on the task of for-
mulating the question in a human-interpretable way. We assume that this problem can be solved
independently, even with human supervision of the designers of the ShoppingAdvisor application.
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a user attribute a ∈ A. Each tree node contains a top-k ranked list of the products P.

The height of the tree is restricted to be h.

The objective of the tree T is to provide relevant recommendations on prod-

ucts P. A new shopper, starting from the root, traverses down the tree T , answering

at most h questions, until reaching a leaf node, where the user receives the top-k rec-

ommendations contained at that leaf node. The quality of the learned tree T reflects

the quality of such recommendations made to a new user/shopper.

To make the definition of our problem precise, we need to quantify how we

evaluate recommendations made by the ShoppingAdvisor tree T . For this task,

we use ten-fold cross-validation. Users in the evaluation fold have reviewed products

– their scores are contained in the review table R – and thus we can evaluate the

quality of T ’s recommendations. As we need to evaluate a ranked list we can employ

standard measures from information retrieval.

As already mentioned, we model our ShoppingAdvisor system as a decision

tree. We learn the structure of the tree by partitioning the set of users in the training

set recursively on the basis of available user attributes – such as, demographics,

tagging behavior, and so on – and then match a test user, to the leaf node of users

with whom the user shares their preferences. For each group of users, we also learn

the product attribute weights and generate a ranking of top-k products in the training

set, in order to identify the top products for recommendation.

6.3 Algorithms

6.3.1 General Algorithm

We first introduce a general algorithmic framework for solving the Shopping-

Advisor problem. Our algorithmic framework uses two functions as black boxes.
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The first is a payoff function, used to choose the best question to ask at any node of

the ShoppingAdvisor tree T . In other words, the function payoff determines the

best user attribute a ∈ A to partition the set of users at any node of the tree T .

The second function is a rank function, used to determine the ranking of the products

recommended to users. Learning the rank function can be seen as learning weights

on the attributes of products, which in turn can be used to rank all products in P ;

and subsequently select the top-k products.

Typically, decision trees are constructed in a top-down fashion, where each

internal node splits the training instances into two or more subspaces according to

the output of a certain function evaluated on the input data. In the Shopping-

Advisor tree T , each internal node of the tree corresponds to the set of users whose

attributes match the attributes at all internal nodes on the path from the root to

that node. Thus, we recursively partition the set of users at each internal node. The

partition criterion is that the users within each side of the split should agree on their

ratings on the products. The goal is to select the user attribute, so that when we

perform the split based on that attribute, the uniformity criterion on the user ratings

is maximized. As an example, if it so happens that avid hikers tend to prefer a

certain camera, for its weight, ruggedness, and ability to take high-quality outdoors

photos, then the hiking tag should be used to split the active users at that step of

the construction of the tree.

Each tree node contains a ranking of products, induced from a learning-to-rank

model that uses the ratings of the users belonging to that node. Consider a shopper

who has cascaded until a node q of the tree T . If q is a leaf node, the shopper is

provided with a top-k list of product recommendations. If q is an internal node, the

shopper is asked the question that corresponds to q, and depending on the answer

cascades to one of the two subtrees of q. The shopper is also given the possibility
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not to answer the question and receive the current recommendation at node q. This

is possible since a product ranking is available at each node. For simplicity, in the

evaluation performed in this chapter, we assume that shoppers navigate until tree

leafs.

6.3.1.1 Learning the tree structure

Determining the structure of the tree T is equivalent to choosing which user

attribute a ∈ A to use for a question at each node.

Formally, consider a tree node q and the set of users Uq who correspond to q,

namely, the set of users whose attributes match the attributes at all internal nodes on

the path from the root of the tree until q. Given a candidate splitting user attribute

a ∈ A, two subsets of Uq can be defined: the set of users Uq(a) who match attribute

a, and the set of users Uq(a) who do not match attribute a. For simplicity, we assume

that Uq = Uq(a) ∪ Uq(a) and Uq(a) ∩ Uq(a) = ∅, although it is not required as our

framework can handle overlapping subsets. The root node of the tree comprises all

nU users of the user table U. To determine the best user attribute a ∈ A to split Uq

at node q we evaluate the pay-off function associated with the sets of users resulting

from the split. In particular, we consider a combine function that maps the pay-off

of the two subsets to a single-valued measure.

payoff(q, a) = combine(payoff(Uq(a)), payoff(Uq(a)), |Uq(a)|, |Uq(a)|, |Uq|),

where the function payoff(U) evaluates the quality of ranking induced by a set of

users U . There are a number of natural options for the combine function, such as

sum, arithmetic mean, geometric mean and harmonic mean.

One has to consider all possible user attributes a ∈ A, and choose as splitter

the one that maximizes the pay-off.
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splitter(q) = argmax
a∈A

payoff(q, a). (6.1)

The idea behind such a posterior goal of maximizing pay-off is to partition

the set of users into two groups, which have similar preferences, and which rank the

products in P in a similar way. Furthermore, we aim at leveraging hidden correlations

among the set of user attributes and the set of product attributes. For instance, in the

previous example with hikers preferring certain lightweight cameras, our tree should

learn the fact that the weight of a camera is an important feature for that specific

subset of the population, and thus, it should tend to rank lightweight cameras higher,

even if they have not been explicitly rated.

Note that our recursive algorithm is an instantiation of a greedy heuristic. In

principle, selecting the best splitter at a certain node according to Equation (6.1)

may lead to globally suboptimal solutions. However, this is a cost we have to pay

due to the NP-hardness of the ShoppingAdvisor problem.

6.3.1.2 Learning product rankings

We next consider the problem of learning to rank the products in P at a given

tree node q. The input consists of users Uq belonging to node q. We also have access

to the product table P and the review table R. In fact, we only need the rows of the

review table R corresponding to Uq, and denote the sub-table as Rq.

The objective is to learn a function rank : P → R which, given a product p ∈ P

specified by its technical attributes (i.e., by a row in the product table P), returns a

value rank(p), which in turn can be used to induce a ranking on the set P . We opt

for a linear function, and thus the task is to learn weight coefficients for the product

attributes. Note that in order to handle categorical attributes of products with our

linear ranking function we convert such categorical attributes into a set of boolean

attributes, and then treat them as numerical 0–1 values.
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To learn the function rank we can use any learning-to-rank algorithm, such as

Regression, RankSVM, or GradientDescent. To employ such a learning-to-

rank algorithm we need to assign a score to each product p in P. Such a score is

computed as the average rating of p in the review table Rq, that is, the average rating

of p over the set of users who correspond to the node q under consideration.

6.3.1.3 Putting the learning components together

We now discuss the interaction of the two learning ingredients: learning the tree

structure and learning the product ranking. We first observe that the ranking function

we learn at a tree node q depends on the set of users (and their ratings on products)

who correspond q. We write rankU to emphasize the dependance of the ranking

function from a set of users U . The quality of ranking can be evaluated using a quality

measure eval. Functions such as precision, recall, normalized discounted cumulative

gain (ndcg), and mean reciprocal rank (mrr) can be used as eval functions. We

write eval(rankU) to denote the quality of a rankU ranking measured by such an eval

measure. Finally, we recall that a good user attribute to split a tree node q is a user

attribute that induces sub-populations with good rankings in each one. The quality

of the ranking should be reflected in the payoff function used. Thus we set

payoff(U) = eval(rankU). (6.2)

In the next section we discuss our considerations for the functions payoff, rank,

and eval.

6.3.2 The LearnSATree algorithm

Our proposed algorithm, LearnSATree, for learning ShoppingAdvisor tree

is an instance of the general algorithm presented in the previous section, with judicious

choices for the functions payoff, rank, combine, and eval. We now discuss more in
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detail those choices. We first introduce our learning-to-rank model and we define the

function rank that learns weights of product attributes.

6.3.2.1 Learning to rank

The goal is to learn a weight vector w = {w1, . . . , wmP
} for the mP technical

attributes of the products P . As discussed in the previous section, the learn-to-rank

algorithm is applied to each tree node q. Assume that for a node q we have a set

Pq of training instances. Those training instances are a subset of products of P

accompanied with review scores from the users associated with node q. Following

the notation of the previous section, the training instances are the result of joining

the product table P with the review sub-table Rq. For learning the ranking function

rank we employ a pairwise RankSVM method [47]. In this approach, the training

instances under consideration are expanded into a set of preference pairs. Namely,

we create ordered pairs of products (pi,pj) where the product pi has higher score

than the product pj from the users in the tree node q. Let us denote the set of

such ordered pairs by P2
q. We then find the weight vector w = {w1, . . . , wmP

} by

optimizing a pairwise objective function:

min
w∈RmP

λ

2
∥w∥2 +

∑
(pi,pj)∈P2

q

loss
(
wT · (pi − pj)

) ,

where loss is a suitably-defined loss function, such as hinge loss, i.e., loss(y) =

max(0, 1− y). For the class of linear ranking functions, the objective of attaining an

optimal ranking function rank∗, i.e., finding the weight vector w so that the number

of inversions is minimized, is NP-hard [48], and the RankSVM algorithm provides

an approximate solution. Once the weight vector w is learned, the rank function is

defined as rank(p) = wT · p, and it induces a ranking on the whole set of products P

by rank(p1) ≥ . . . ≥ rank(pnP
).
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Besides promoting the popular products belonging to the training instances

for the users of node q, our method ensures that all products will be ranked, even

products that have not been reviewed by the set of users in node q. This property

helps us handle the cold-start problem, where a new product arrives in the system

and initially there is very little feedback available for that product.

Next we evaluate the quality of the ranking generated by our method, which

according to Equation (6.2) defines the payoff function.

6.3.2.2 Evaluating the ranking

The learning-to-rank model induces a ranking rank(p1) ≥ . . . ≥ rank(pnP
) on

the products in P . The quality of this ranking is measured by the eval function. Our

eval function measures the number of correctly-ranked pairs in the ranking generated

for the products in Pq, that is, the products in our training set in the node q. So,

assuming that the set Pq contains n products, we have

eval(rank) =
2 |{(pi,pj) ∈ P2

q | rank(pi) > rank(pj)}|
n(n− 1)

.

Note that the reason why we use this evaluation function, rather than other measures

mentioned before such as precision, recall, and ndcg, is that minimizing the number

of inversions is the most common way to optimize a pairwise learning-to-rank function.

In other words, our choice of the eval function stems from the RankSVM approach.

Likewise, we choose to use sum as the combine function. Indeed, by summing

the number of correctly ranked pairs we are guaranteed by RankSVM that the eval

function is monotonically increasing with the height of the tree. In analogy with

decision trees, this property allows for effective pruning strategies while building the

tree.
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6.3.2.3 Stopping criterion

The construction of a decision tree has another critical element: deciding when

to stop growing the tree. Ideally, the algorithm will stop its recursive partitioning

of the subspaces along one (or both) direction(s) if the perfect ranking is achieved in

the left and right children nodes, i.e., the payoff associated with splitting by attribute

a ∈ A for node q is 0. In reality, we first grow the tree to its entirety, and then employ

post-pruning with the aim of removing sections of the tree that provide little power

to capture user preferences. For example, for a node q split by tag travel, if its child

node is split by the near-synonomous tag vacation, our post-pruning rules should

trim the child node (or, the associated set of nodes). We employ pruning rules on

the validation set. Our most significant stopping condition, in addition to the regular

rules, follows from the observation that – the number of inversions due to our ranking

model on a set of training instances belonging to a node montonically decreases with

the decrease in size of the training set along a root-to-node path.

6.4 Experiments

We evaluate our ShoppingAdvisor system with both real and synthetic data.

Our primary objective is to demonstrate the effectiveness of our system by compar-

ing the quality of recommendations returned by our system with recommendations

made by baseline system(s) not leveraging user attributes. We highlight how pop-

ular collaborative recommendation technique(s) benefit from our system. Besides a

quantitative comparison of the recommendation quality, we also conduct a detailed

use-case evaluation, where we show that recommendations with consideration of shop-

pers’ personal preferences are superior to those by traditional state-of-art systems.

We also show the scalability of our algorithm by studying the running time under

varying parameters.
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Real Car Dataset: Our first dataset is extracted from Yahoo! Autos. We focus on

new cars listed for the year 2010 spanning 34 different brands. There are several

models for each brand, and each model offers several trims.7 Since each trim defines

a unique attribute-value specification, the total number of trims that we crawl are the

606 products in our dataset. The products contain technical specifications as well as

ratings and reviews, which include pros and cons. We parse a total of 60 attributes:

25 numeric, and 35 boolean and categorical (which we generalize to boolean). The

total number of reviews we extract is 2 180. In this dataset we do not have user

information, and thus we consider that each user has reviewed only one car. Thus,

the total number of users is also 2 180. Since the ShoppingAdvisor system considers

tags as form of user feedback, we extract tags from the reviews using the keyword

extraction toolkit AlchemyAPI 8. We process the text listed under “pros” in each

review to identify a set of 15 desirable tags such as fuel economy, comfortable

interior and stylish exterior.

Real Camera Dataset: Our second dataset is on cameras. For extracting user prefer-

ences for this dataset we take a different route. Rather than using an e-commerce site

such as Yahoo! Shopping or Amazon, we use a social-content site such as flickr. Our

intention is to capture user preferences by the tags that people use to describe their

photos. So we assume that flickr tags such as food, nature, animal and landscape

are meaningful representations of user preferences. Furthermore, we intend to lever-

age the hidden associations between photo tags and cameras. As an example, of the

3 000 photos in our flickr dataset tagged as food, Canon EOS 20D, Canon EOS 350D,

Canon EOS 400D and Nikon D80 have been used 1 200 times while 550 other cameras

have been used the rest of the times. Therefore, a shopper looking for a camera for

7Trims denote different configurations of standard equipment.
8http://www.alchemyapi.com/api/keyword/
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taking food photos will be recommended a camera from among Canon EOS 20D,

Canon EOS 350D, Canon EOS 400D and Nikon D80. The technical specifications

of the cameras are retrieved from CNET. Our flickr dataset sample has 135 025 pho-

tos uploaded by 37 064 users using 9 365 cameras; the tag vocabulary size is 422 240.

We clean the dataset to consider only those instances in which (i) the cameras have

well-defined set of technical specifications in CNET and are not phone cameras or

digital camcorders; (ii) the tags are valid English words; and (iii) a user has used at

least two cameras. Our final reduced flickr dataset has 11 468 photos and 10 845 tags

from 5 647 users and 654 cameras. Since the number of tags is huge, we use latent

Dirichlet allocation (LDA) technique and aggregate the tags into 25 topics based on

their co-occurrence. We then express user preferences at the level of LDA topics.

Thus, our camera dataset has 11 468 instances in the review table R. It has 5 647

users described by 25 attributes (tag topics) in the table U. And it has 654 cameras

in the table P. Some indicative user attributes, i.e., tag topics, are the following:

wildlife (tags: birds, zoo, etc.), food (tags: fruit, market, etc.), sports (tags:

car, tennis, etc.), and so on. Those tag topics correspond to the questions required

to build the ShoppingAdvisor tree.

Synthetic Dataset: We generate a large matrix of dimension 4 000 × 12 corresponding

to the review table R. There are 200 products in the product table P, each having 20

boolean attributes and 1 000 users in the user table U, and 20 tags in the review table

R. We randomly assign the products to the users for the 4 000 comments. We split

the 20 independent and identically distributed attributes into four groups, where the

value is set to 1 with probabilities of 0.75, 0.15, 0.10 and 0.05, respectively. For each

of the 10 tags, we pre-define relations by randomly picking a set of attributes that

are correlated to it. A tag is set to 1 with a certain probability if the majority of the

attributes in its pre-defined relation have boolean value 1. In order to generate rating
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scores for each of the 4 000 user-item interactions, we randomly distribute the 1 000

users into ten categories. For each user category, we pre-define relations by randomly

picking a set of tags that are preferred by the users in that category. A user rates a

product high, medium or low based on the proportion of his preferred tags in the tag

vector corresponding to the product she has reviewed.

In order to evaluate our recommender system, we partition each of our datasets

into training and test sets via ten-fold cross-validation. We use the training set for

building our ShoppingAdvisor system, and measure its performance on the test set.

We also consider a part of the training set as a validation set in order to optimize the

model parameters, i.e., in order to post-prune the decision tree. The main evaluation

metric that we use in our experiments to measure the quality of recommendations is

mean reciprocal rank (MRR), which is a meaningful measure for single-item retrieval.

Mean reciprocal rank (MRR): In information retrieval MRR measures how far away

from the first retrieved document the first relevant one is. In our datasets, with one

relevant item per test user, we measure the recommendation quality by finding out

how far from the top of the list the relevant item is. The reciprocal rank of a test

user is the multiplicative inverse of the rank of the relevant item for that test user.

The mean reciprocal rank is the average of the reciprocal ranks of results for all test

cases

MRR =
1

k

k∑
i=1

1

ranki
,

where k is the number of instances in the test set and ranki is the position of the i-th

test user’s relevant item in the ranked list of items returned. Note that, we partition

our dataset into training and testing in such a way that the test set consists of users

who have rated items high. In this way, for each user in the test set there is a highly

relevant item and thus the MRR measure is meaningful.
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Our second quantitative indicator is efficiency, i.e., running time for training;

testing is fast as it only involves descending down the ShoppingAdvisor tree and

receiving a recommendation at a leaf. The training time involves building the decision

tree, as well as learning the ranking model for each possible split in a node. Clearly,

the learning to rank module, i.e., RankSVM is an expensive operation especially

since it requires to build the preference matrix each time. We employ techniques

to pre-materialize part of the preference matrix, and thus reduce training time. We

also present a detailed report of anecdotal evidence for real data in Section 6.4.2 as

a qualitative validation of the effectiveness of the system.

Parameter Settings: In our experiments, we use Quinlan’s C4.5 algorithm to build

the decision tree. For RankSVM, we use Olivier Chappelle’s RankSVM implemen-

tation, and we set the training error penalization parameter C to 0.001 for synthetic

and car datasets, and 0.0001 for the camera dataset. The total number of instances in

the car dataset available for partitioning into train and test set is around 10 000. We

select a subset of the total data for training and testing (maintaining ten-fold cross-

validation requirements) in order to avoid running out of memory. For the camera

and the synthetic dataset, we work with the complete data.

To validate the effectiveness of ShoppingAdvisor, we compare its perfor-

mance with baseline RankSVM.

RankSVM: This is a pairwise learning-to-rank algorithm that generates recommen-

dations by learning item-feature weights. Our LearnSATree algorithm employs

RankSVM for learning to rank, therefore we can consider this technique equivalent

to the ranked list returned by ShoppingAdvisor at the root, before a potential

shopper answers any question. We also compare the performance of k-NN with a

variant, described below in order to demonstrate how ShoppingAdvisor is useful

to existing recommendation techniques:

199



k-NN: This is standard collaborative-filtering algorithm that matches a test user to a

set of users in the training set, and returns a ranked list of items by aggregating the

item lists for the top neighbor users in the training set.

SA.k-NN: Feature selection and weighting has an important role in improving the

effectiveness of a k-NN learner. ShoppingAdvisor allows k-NN to select a subset of

features, i.e., tags by traversing down the tree, and then perform k-NN (user-based or

item-based) on the reduced feature space. It is particularly useful since collaborative

recommendation algorithms assume the availability of user preferences for matching

similar users with similar interests, which may not be the case in reality. Moreover,

user preferences drift rapidly over time and it is better to elicit user responses before

making recommendations.

System Configuration: Our prototype system is implemented in Java and Matlab.

All experiments were conducted on an Windows 7 machine with 2.30Ghz Intel i5

processor, 64 bit Operating System and 6GB RAM.

6.4.1 Quantitative Evaluation

Table 6.4 presents a comparison of recommendation quality, measured by av-

erage MRR over 10 folds, of ShoppingAdvisor with RankSVM, and k-NN with

SA.k-NN for both the synthetic and the real datasets. The average height of the

trees for the car, camera, and synthetic datasets are 15, 19 and 7, respectively. The

average number of questions users in test set answer to receive their recommendation

in the leaf nodes of ShoppingAdvisor are 12, 12 and 6, respectively.

We observe that leveraging shopper preferences clearly yields better quality

recommendations (i.e., at the leaf nodes of ShoppingAdvisor) than those returned

when the user does not answer any questions (i.e., RankSVM at the root node). The

increment in quality is around 50% for both real datasets from root to leaf (see last two
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Table 6.4. MRR comparisons of ShoppingAdvisor with RankSVM and k-NN with
SA.k-NN for Car, Camera, and Synthetic datasets.

Dataset RankSVM ShoppingAdvisor k-NN SA.k-NN

Car 0.013 0.019 0.020 0.022
Camera 0.012 0.019 0.029 0.029
Synthetic 0.060 0.231 0.604 0.580

Table 6.5. Training time of ShoppingAdvisor for Car, Camera, and Synthetic
datasets. Dataset Training Features Materialized Time

Set Size (tags) Preference Pairs (in sec)

Car 1900 15 36000 256
Camera 5000 25 50000 2168
Synthetic 3500 10 40000 1950

Table 6.6. Training time increases rapidly when exact preference matrix is considered
(Synthetic dataset).

Training Exhaustive Train Time MRR Materialized Train Time MRR
Set Size Preference Pairs (in sec) Preference Pairs (in sec)

50 965 0.948 0.045 483 0.726 0.045
100 3766 6.029 0.097 1883 1.472 0.093
150 8382 46.366 0.131 4191 2.549 0.128
200 14831 209.462 0.199 7416 3.375 0.196
250 23089 649.030 0.204 11545 5.927 0.203
300 33204 1526.300 0.200 16602 9.935 0.200

columns in Table 6.4). The averageMRR score for k-NN and SA.k-NN are comparable

for all three datasets. This indicates that SA.k-NN returns recommendations of very

high quality to the users by asking a smaller number of questions than what the k-NN

method would be asking. For the camera dataset, the k-NN method reaches a quality

score of 0.029 by asking 25 questions (since the number of tag topics in the dataset

is 25) while SA.k-NN achieves the same accuracy by asking only 12 questions, on

average. Furthermore, an additional benefit of SA.k-NN compared to k-NN is that

SA.k-NN does not require the recommender to be aware of the shopper preferences,

and is therefore useful in handling new users.
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Note that our ShoppingAdvisor system is also capable of handling new prod-

ucts, without existing reviews, by using their technical attributes, while the rec-

ommendations of k-NN are restricted to products with reviews in the training set.

Finally, the tree structure in ShoppingAdvisor and SA.k-NN provides a logical

explanation of the recommendations being returned, while the recommendations of

k-NN are not easily interpretable.

Next, we present the time taken for training our system for synthetic and real

datasets. The training time is the time taken to build the tree, which includes the

time to execute RankSVM for all possible user attributes in a node. For example, in

order to decide the splitting question for the root node from the pool of 15 questions

in the car dataset, our algorithm has to perform RankSVM 30 times (15 for each

children node). RankSVM is an expensive operation since it builds the preference

matrix from the set of training instances belonging to a node.

The first section of Table 6.6 shows the increase in training time, averaged over

10 folds, with increase in number of training instances for synthetic data. MRR is

obtained on a set of 20 test instances sampled from the synthetic data. Employing this

method for the camera and car datasets, which have a few thousand instances in the

training set, would be very expensive. Therefore, we materialize a preference matrix

for all training instances in a dataset, and use that to acquire the preference pairs

to be considered for a RankSVM operation. However, such materialized preference

matrices for the camera and car datasets would take several days to build and would

be several gigabytes in size. Therefore, for each item in training set, we make a

random selection of preference pairs from the space of all training instances, instead

of opting for all possible pairs. The second section of Table 6.6 shows the train time

and the recommendation quality when 50% of the preference pairs are considered

from the pool of all possible preference pairs, under the same framework settings.
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Figure 6.3. ShoppingAdvisor for the Car dataset.

Table 6.7. Example of top car recommendations at three nodes of tree in Figure 6.3

ShoppingAdvisor Top Cars For Recommendation

Stylish Exterior = NO Jeep Grand Cherokee SRT-8
Dodge Challenger SRT-8
Volvo XC60 AWD

Stylish Exterior = NO Jeep Grand Cherokee SRT-8
Fuel Economy = NO Dodge Challenger SRT-8

Audi Q5 Premium quattro Tiptronic
Stylish Exterior = NO Lincoln MKS 3.5L EcoBoost AWD
Fuel Economy = YES Jeep Grand Cherokee SRT-8

Ford Escape Hybrid

We observe that while training time drops sharply, there is hardly any decrease

in MRR. This indicates that we achieve faster training time without compromising

RankSVM performance quality. When the number of training instances drops in

the deeper level nodes, the number of preference pairs that can be retrieved from

the materialized preference matrix may fall too, thereby requiring to generate the

preference pairs at run time. On the other hand, classifying a test user is extremely

fast. Table 6.5 shows the training time for the different datasets, along with the

number of materialized preference pairs in input.

6.4.2 Qualitative Evaluation

Figures 6.3 and 6.4 present snapshots of ShoppingAdvisor trees built for the

datasets car and camera, respectively. In Figure 6.3, a user is asked if they would
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Figure 6.4. ShoppingAdvisor for the Camera dataset.

Table 6.8. Example of top camera recommendations at three nodes of tree in Fig-
ure 6.4.

ShoppingAdvisor Top Cameras For Recommendation

Photoshoot = YES Canon EOS Digital Rebel XS
Nikon D80
Fujifilm FinePix S3

Photoshoot = YES Canon EOS Digital Rebel XS
People = NO Olympus E-3

Nikon D50
Photoshoot = YES Canon EOS Digital Rebel XS
People = YES Canon EOS 30D

Nikon D80

like to buy a stylish car. A yes takes her to the next question about the interior of

the car. If the user does not express any requirement for a comfortable and roomy

interior, ShoppingAdvisor specifically asks if they are interested in a great audio

system inside the car. On the other hand, a user who wants a car that has good fuel

economy is immediately asked if acceleration is important, since fuel-efficient cars

have slower acceleration.

Table 6.7 presents the top recommendations at three nodes of the tree shown in

Figure 6.3. We observe that inclusion of the fuel economy condition brings in a hybrid

car and an ecoboost car in the top recommendations, while exclusion of requirements

of a fuel-efficient car makes ShoppingAdvisor recommend a Audi, which is known

to compromise mileage for performance. Again, the presence of Jeep Grand Cherokee

SRT-8 in all three nodes reflects its popularity in 2010.
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Similarly in Figure 6.4, a user is asked if they are interested to buy a camera

for photoshoot purposes, and if the photoshoot to be conducted is for people, and

if it is focused on face shots. Thus, we see that ShoppingAdvisor narrows down

the preferences of the shopper, and helps recommend cameras tailored to her needs.

The camera recommendations at three nodes of the tree are shown in Table 6.8. For

example, one of the top cameras recommended to her, Canon EOS 30D, introduced an

auto image rotation feature in order to make better use of the LCD display especially

during portrait-orientated shots. Again, for the shopper who is looking for a camera

for shooting events and not people, ShoppingAdvisor recommends Olympus E-3

which happens to be a lightweight digital SLR camera. The presence of the Canon

EOS Digital Rebel XS in all three nodes reflects its popularity among flickr members.
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CHAPTER 7

Related Work

We now present related work in the literature that focuses on (i) sub-areas

reasonably aligned to our research of exploratory mining of collaborative content;

and (ii) techniques which we have adapted to solve some of our problems.

User feedback mining: In this dissertation, we have primarily focused on two

forms of user feedback namely ratings and tags. Recall that, we extract short key-

words, i.e., tags when user feedback is available in the form of reviews. Tag mining

has been used in multiple applications including tag recommendations [49], item rec-

ommendations [50, 51], document navigation [52], and tagging motivation [53] How-

ever, most of these works are tailored to specific datasets and none of them defines

a general mining problem, studies its complexity and develops efficient generic al-

gorithms. There is a large body of work related to processing the text of reviews

that focused on identifying sentiment and product features [54, 55, 56] or a combi-

nation thereof [57, 58]. In [58, 59], the authors extract individual product features

and users’ sentiments towards those features. Our problem of collaborative content

analysis in Chapters 2 and 3 is clearly different from review mining and summariza-

tion [58, 60], which aims to produce a sentiment summary (i.e., positive or negative)

using NLP and data mining techniques. Those studies are therefore tangential to our

study and do not address the question of aggregating and interpreting ratings. The

lone exception is [61], where the authors develop a method to label individual item

reviews with the bias of a reviewer. Unlike our work, this study adopts a priori rules

for comparing groups and does not provide an object measure based framework on
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which formal optimization problems can be defined. The dynamics of social tagging

has been an active research area in recent years, with several papers focusing on the

tag prediction problem. A recent work [62] proposes a probabilistic model for per-

sonalized tag prediction and employs the Naive Bayes classifier. Related research in

text mining [31] found that the Naive Bayes classifier performs better than SVM and

CRF in classifying blog sentiments. Another study that indirectly supports the use

of Naive Bayes for tag prediction is done by Heymann et al. [63], who found that

tag-based association rules can produce very high-precision predictions. The process

of collaborative tagging has been studied in [64]. While [65] discusses how to improve

tag selection for tag clouds, we argue that tag clouds are inefficient methods to sum-

marize the preferences of a set of user sub-population. Other related work investigates

tag suggestion, usually from a collaborative filtering and UI perspective; for example

with URLs [67] and blog posts [66]. Due to the popular adoption of recommendation

systems by online sites such as Amazon and Netflix, explaining recommendations has

also received significant attention. Herlocker et. al [68] provides a systematic study

of explanations for recommendation systems, while [69] describes how explanations

can be leveraged for recommendation diversification. Bilgic and Mooney [70] convinc-

ingly argues that the goal of a good explanation is not necessarily promotion, but to

enable users to make well-informed decisions. Our study of user feedback interpre-

tation in Chapters 2 and 3 is one step towards the ultimate goal of providing users

with meaningful explanations to make informed decisions, and manufacturers with

automatically mined knowledge to conduct better business.

Item designing and positioning: The problem of item design has been studied

by many disciplines including economics, industrial engineering and computer sci-

ence [71]. Optimal item design or positioning is a well studied problem in Operations
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Research and Marketing. Shocker et al. [72] first represented products and consumer

preferences as points in a joint attribute space. Later, several techniques [73, 74]

were developed to design/position a new item. Work in this domain requires direct

involvement of consumers, who choose preferences from a set of existing alternative

products. Miah et al. [75] study the problem of selecting product snippets given a

user query log, in order for the designed snippet to be returned by the maximum

number of queries. However, none of these work has studied the problem of item

design in relation to social rating and tagging, as we do in Chapter 4.

Web advertisement and snippet: There has been a lot of work on web ad-

vertisement and snippet construction [38], most of which leverage text mining and

natural language processing techniques to identify the top sentences to display [76]

or in response to user search query [77], and evaluated by click-based metrics [82].

There are several research challenges associated with finding the best ad, such as

designing the appropriate mathematical optimization model to maximize value for

users, advertisers, publishers, etc. [78][79]; integrating user’s past browsing history

and behavioral attributes [36]; revamping ad selection technology to bring relevance

and appropriateness of ads closer to the other content served on the web [80]; im-

proving advertiser’s experience by increasing the value that the advertiser gets from

online advertising [81]; minimizing expected user effort to comprehend snippets [37],

etc. We consider the novel task of snippet generation in Chapter 5, i.e., identifying

the most informative item features to highlight in snippet, by leveraging collabora-

tive tagging feedback. While faceted search employed by sites like Amazon, eBay,

etc. performs pre-defined top-down navigation on the concept hierarchy, where all

features of the currently selected concept are displayed, our objective in Chapter 5 is

to highlight the important features.
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Recommendation in e-commerce: Recommendation is traditionally formulated

as the problem of estimating ratings for items that have not been seen by a user [83].

Once these ratings are estimated, a recommendation is built by picking the items

with highest rating. A more recent formulation makes this assumption explicit, and

casts the recommendation task as a ranking problem [84]. Given this formulation,

techniques from the learning-to-rank literature can be applied to learn personalized

ranking functions. Application of recommender systems to e-commerce dates back

to the ’90s [85]. While early works often mined transaction logs, more recent works

focus on user ratings, especially for digital media like movies and news. The ex-

plosion of the size of digital catalogues has made recommendation a necessity. [86]

provide an overview of recommender systems and their categorization into content-

based, collaborative filtering and hybrid. Amazon’s “customers who bought” feature

is based on co-buying information [87]. Similarly, [88] create a recommender system

for e-commerce based on mining transaction logs that uses a probabilistic graphical

model to handle skew and sparseness in data. Our work in Chapter 6 does not rely on

transaction logs and only takes into account implicit or explicit user feedback. Our

system bears some resemblance to Bayesian networks, where each node is a decision

tree and each edge represents consumer information [89]. In our case the network is

a decision tree with sharp constraints, consumer information is elicited explicitly via

questions and nodes are instances of a learning-to-rank algorithm. As the recommen-

dations provided by our system derive from eliciting user preferences, they are also

easy to explain to the user. Explanation of recommendation has been shown to be

effective in increasing the acceptance of recommendations [68]. Our recommendation

system naturally lends itself to a keyword-style explanation, which has been found to

be the most effective kind of explanation [70]. [90] present an interactive system that

is similar to ours in spirit. The system recommends technical products by a asking
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a series of questions that start from high-level needs of the user and transition to

technical features of the item. Users are clustered into “target groups” according to

their similarity in evaluation structure. While the idea is similar to ours, the authors

only describe the interaction between the system and the user. The paper does not

address how such a system would be built and which algorithm would power the

recommender system. Indeed, our system is able to automatically build a question

tree that could drive the interaction described by the authors.

OLAP and data analytics over databases: Our idea of using structurally

meaningful cuboids as the basis for user feedback interpretation is inspired by studies

in data cube mining, first proposed in Gray et. al [8] and Ramakrishnan et. al [91].

Most of those studies, however, focus on how to efficiently compute aggregate mea-

sures for all cuboids and are therefore orthogonal to our approach in Chapters 2 and

3. Keyword-Driven Analytical Processing (KDAP) [92] combines intuitive keyword-

based search with the power of aggregation in OLAP, without having to spend consid-

erable effort in organizing the data. This technique focuses on ranking results in dy-

namic facets to allow users to explore the aggregation space efficiently. Our work dif-

fers from KDAP in that it aims to retrieve the global top-k item rating interpretations

covering all dimensions, without giving precedence to one dimension over another.

Sathe and Sarawagi’s work [93] on intelligent roll-ups in multidimensional OLAP

data proposes a cost-based operator that automatically returns easy-to-interpret sum-

maries of all possible maximal generalizations along various roll-up paths around a

specific problem. Quotient Cube [94] provides a succinct summary of the data cube,

preserving roll-up/dill-down semantics and grouping similar cuboids/scenarios (iden-

tical aggregate values) into classes. We, in turn, seek to find the top-k interpretations

that best describe an item rating set. Moreover, the consideration that adjacent
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cuboids share common aggregate values frequently [94] is not always true in our con-

text. However, none of these adopts formal objective measures based on user ratings

like in our work. To the best of our knowledge, our work in Chapter 2 is the first

to leverage structurally meaningful descriptions for collaborative rating analysis. A

recent work [95] introduces the problem of promotion analysis in a multi-dimensional

space. The authors propose a compact cube structure that quickly locates promotive

subspaces and effectively prunes out un-interesting subspaces for a target object per-

taining to the promotion query. We focus on the problem of item rating interpretation

in a multi-dimensional cube space.

Top-k algorithms : Our top-k pipelined algorithm is inspired by the rich work

on top-k algorithms ([32, 34]). A recent survey by Ilyas et al. [96] covers many of

the important results in this area. The classic setting of these works is that each

list contains an attribute of an object and a monotone aggregate function is used

for ranking. The top tier of our pipelined top-k algorithm in Chapter 4 is adapted

from this setting, where each list has the probability of a tag for each assignment

of attribute values. In contrast, in the bottom tier of our algorithm, an entry from

one list can match with any entry from the other lists. This setting is adapted from

the problem of top-k join [34]. The top-k techniques in Chapter 5 are also inspired

by [34].

Learning to rank: Our framework in Chapter 6 uses a learning-to-rank algo-

rithm as a basic building block to generate recommendations. We chose to use SVM-

rank [47], but other algorithms like RankBoost [97] would be equally viable. Proba-

bilistic Boost Tree (PBT) [98] works in a way similar to our system. PBT builds a

tree in which each node is an instance of a boosting algorithm. The tree is expanded

by splitting the training instances based on the classification performed at each node.
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However, the goal of the two systems is different: PBT performs classification while

our algorithm performs ranking. TreeRank [99] uses a tree-based algorithm to solve

the bipartite ranking problem, where each element has a binary relevance label and

the goal is to rank all relevant items on top. However, in our case binary relevance is

not adequate to express complex user preferences.

Locality sensitive hashing: Locality Sensitive Hashing (LSH) was first intro-

duced in [17, 20] for nearest-neighbor and approximate nearest-neighbor search in a

high-dimensional vector space. In [18], Charikar constructed the LSH function for

cosine similarity, which supports fast similarity between two high-dimensional vec-

tors by reducing them to bit-arrays of much smaller dimensions. This result has been

used in several problems, including efficient noun clustering and duplicate detection.

In our work in Chapter 3, we show how we adapt LSH to rank and choose the best

bucket containing our collaborative content analysis results.

Facility dispersion problem:: Facility Dispersion Problem (FDP) was first in-

troduced in [100]. It deals with the location of facilities on a network in order to

maximize distances between facilities, minimize transportation costs, avoid placing

hazardous materials near housing, outperform competitors facilities, etc. One of the

foremost work to map the objective of diversification to those used in facility disper-

sion is [101]. In our work in Chapter 3 as well as in Chapter 5, we use the problem

variant in [27] to serve the tag diversity problem instantiations, and also explain how

the same may be extended to solve similarity problems.
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CHAPTER 8

Conclusions

8.1 Summary of Contributions

We develop a framework for collaborative social content mining and identify

a family of novel exploratory mining problems that benefit experience and decision-

making of content producers and consumers. To the best of our knowledge, how

user and item attributes influence social rating and tagging behavior have not been

studied in the context of collaborative user-generated content before. We formalize

the problems, majority of which are proved to be NP-Complete, and design a suite of

algorithms - exact, approximation with theoretical properties, and efficient heuristics

- that account for the technical challenges associated with the tasks and solve them.

We perform detailed evaluation over synthetic data and real data crawled from the

web order to validate the effectiveness of our algorithms and utility of our framework.

8.2 Research Frontiers

Exploratory mining of collaborative social content is a reasonably young and

promising research field, and offers several exciting future research directions. We

now illustrate few of them:

8.2.1 Medium Term Research Agenda

We first present medium term goals for future work that builds on the work

presented in the dissertation.

(i) Beyond Traditional Marketplace: One immediate research goal is pushing the

boundaries of information management in social media beyond traditional market-

places to foster social betterment , as discussed below:
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- Healthcare: A survey of U.S. consumers by PwC in 2012 reveal that a third of

U.S. consumers use social media sites such as Facebook and Twitter to seek med-

ical information and track and share symptoms1. Another report by Pew Internet

& American Life Project in 2012 reveals that 72% of internet users look online for

health information2. The number of niche social networking sites dedicated to health-

care professionals and consumers has proliferated too. Consumers engaging in health

information seeking via the Internet want (i) to find information quickly, and (ii)

to have information streamlined. Therefore, a collaborative content mining frame-

work capable of providing the right abstraction of pertinent information is becoming

increasingly important, especially since more than 70,000 websites providing health

care information are available today. It will facilitate consumers evaluate and leverage

other users knowledge, experience and feedback before making health care decision.

Collaborative content, which largely consists of user feedback on items (i.e., health

services) can also help healthcare providers, practitioners and pharmaceutical com-

panies review and improve their quality of service.

- Recreation: The rise of Web 2.0 has led to a worldwide increase in socially connected

people, along with increase in interconnectivity and interactivity of web-delivered con-

tent such as blogs, videos, photos, etc. Significant innovations emerge from collabo-

rations and creative pursuit cannot be an exception. Therefore, the vast amount of

user-generated opinion available in collaborative content sites can be readily explored

to enable the discovery of new work. For example, an artist creating a new musical

piece can leverage the ratings and tags that users have selected for existing popular

songs, in order to identify the pieces attributes (e.g. acoustic, audio features, theme,

etc.) that will increase its chances of becoming popular. Similarly, a blogger or a

1http://www.pwc.com/us/en/health-industries/publications/health-care-social-media.jhtml
2http://pewinternet.org/Commentary/2011/November/Pew-Internet-Health.aspx
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photo-journalist can select a topic based on the tags that other popular topics have

received. Besides new item (i.e., new music, new blog, new photo, etc.) creation,

user feedback behavior mining can also help viral marketing of new content across

the web, positioning of news articles in sites in order to draw maximum traffic to the

news sites, etc.

8.2.2 Long Term Research Agenda

Last, we present the long-term goals of our research.

(i) Leveraging user-user interaction: In this dissertation, we have primarily focused on

user-item interaction in the form of short user feedback for web items. However, the

rise of social media and social networking sites has triggered the evolution of user-user

interaction, along with user-item interaction. User-user interaction exists in the form

of friendship links in social networking sites, responses to content shared by other

people in the friendship network, etc. For example, an average Facebook user has 130

friends in her network, and clicks the like button 9 times (which is an user-user inter-

action) per month, and writes 25 comments per month (which is another user-user

interaction)3. Recent research has seen the emergence of applications that leverages

such user-user interactions in social networks, since such meaningful interactive re-

lationships are critical to improving trust and reliability in the content. Our long

term goal includes leveraging user-user interactions, in conjunction with user-item

interactions for effective knowledge-rich mining of collaborative social content.

(ii) Towards a general framework: Our ultimate goal is to develop a general collabora-

tive content mining system that caters to any community featuring two-way commu-

nication between producers and consumers (e.g., manufacturer and buyer, healthcare

3www.facebook.com/press/info.php?statistics

215



service provider and patient, musical artist and listener, blogger and reader, etc.)

and handles all kinds of mining problems in the context of collaborative social con-

tent sites. The mining problems and the solutions presented in this dissertation can

be extended to handle most other related problems, since they provide the basis for

modeling correlation between user feedback and item attributes and user attributes.

However, we intend to investigate the scope of additional exploratory mining prob-

lems in order to broaden the scope of the framework. It would also be interesting

to collaborate the different types of collaborative content for mining interesting in-

sight from social media (e.g., use demographics driven healthcare information to help

recommend vacation packages). In addition to the original research challenges (i.e.,

information explosion, information overload, and user-item interaction intractabil-

ity), building such a generic framework would introduce additional challenges such as

data cleansing to handle the huge volume of inaccurate information the internet con-

tains (especially, for healthcare social content mining), data integration from multiple

heterogeneous sources, etc.
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