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In this article we generalize the sentence compression task. Rather than simply shorten a sentence by
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1. INTRODUCTION

Recent years have witnessed increasing interest in text rewriting. The problem of how
to best reformulate natural language text applies to many applications ranging from
summarization [Barzilay and McKeown 2005] to question answering [Lin and Pantel
2001] and machine translation [Callison-Burch 2007]. Text rewriting is often used as
an umbrella term for different tasks. Examples include modeling paraphrase relation-
ships between sentences or phrases [Barzilay 2003], simplifying text by identifying
utterances in a document that pose reading difficulty and substituting them with sim-
pler alternatives [Chandrasekar and Srinivas 1996], and rendering sentences shorter
with minimal information loss while preserving their grammaticality [Jing 2000]. The
latter sentence compression task has found use in summarization [Lin 2003; Martins
and Smith 2009; Zajic et al. 2007], headline generation [Dorr et al. 2003], the display
of text on small-screen devices such as PDAs [Corston-Oliver 2001], the generation of
subtitles from spoken transcripts [Vandeghinste and Pan 2004], and as a reading aid
for the blind [Grefenstette 1998].
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41:2 T. Cohn and M. Lapata

Most prior work has focused on a specific instantiation of sentence compression,
namely word deletion. Given an input source sentence of words, w1, ws...w,, a target
compression is formed by dropping any subset of these words [Knight and Marcu
2002]. The simplification renders the task computationally feasible, allowing efficient
decoding using dynamic programming [Knight and Marcu 2002; Turner and Charniak
2005; McDonald 2006]. Furthermore, constraining the problem to word deletion affords
substantial modeling flexibility. Indeed, a variety of models have been successfully de-
veloped for this task ranging from instantiations of the noisy channel model [Knight
and Marcu 2002; Galley and McKeown 2007; Turner and Charniak 2005], to large mar-
gin learning [McDonald 2006; Cohn and Lapata 2009], and integer linear programming
[Clarke 2008; Martins and Smith 2009]. However, the simplification also renders the
task somewhat artificial. There are many rewrite operations that could compress a
sentence besides deletion, including reordering, substitution, and insertion. In fact,
professional abstractors tend to use these operations to transform selected sentences
from an article into the corresponding summary sentences [Jing 2000].

In this article we consider sentence compression from a more general perspective
and generate sentence-level abstracts rather than extracts.! In this framework, the
goal is to find a summary of the original sentence which is grammatical and conveys
the most important information without necessarily using the same words in the same
order. Our task is related to, but different from, paraphrase extraction [Barzilay 2003].
We must not only have access to paraphrases (i.e., rewrite rules), but also be able to
combine them to generate new text, while attempting to produce a shorter resulting
string. More similar is the approach of Quirk et al. [2004] who present an end-to-end
paraphrasing system inspired by phrase-based machine translation that can both ac-
quire paraphrases and use them to generate new strings. However, their approach was
limited to only lexical substitution—no reordering takes place—and is lacking the com-
pression objective. A variety of models have been proposed for sentence compression,
however, they are specifically designed with word deletion in mind and are thus un-
able to model consistent syntactic effects such as reordering, changes in nonterminal
categories, and lexical substitution.

Once we move away from extractive sentence compression we are faced with two
problems. First, we must validate that abstractive sentence compression is a meaning-
ful task. Can humans do it and if yes, what kinds of rewrite operations do they employ?
For instance, they may compress sentences mostly by deletion in which case there
isn’t much need for an abstractive compression model. Our second problem concerns
the modeling task itself. Ideally, our learning framework should handle structural
mismatches and complex rewriting operations. A related issue concerns finding appro-
priate training data for such a model. Although some compression corpora are available
(e.g., Clarke and Lapata [2008]), they only provide examples based on word deletion.
And existing paraphrase corpora (such as the Multiple-Translation Chinese and Arabic
corpora?) do not normally contain compressions.

In what follows, we first demonstrate that abstractive compression is a valid task
by conducting an experimental study where participants are asked to freely compress
sentences. We show that participants use a variety of rewrite operations in addition
to deletion. We also find that abstractive compressions have a lower compression rate3

1Herein we refer to the general task as abstractive sentence compression, and the deletion-only approach as
extractive sentence compression.

2Available from the LDC, catalog numbers LDC2002T01, LDC2003T17, LDC2004T07, LDC2006T04,
LDC2003T18, and LDC2005T05.

3The term refers to the percentage of words retained from the source sentence in the compression. A low
compression rate means that a large percentage of words were dropped.
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An Abstractive Approach to Sentence Compression 41:3

in comparison to extractive compressions. Based on this experimental study, we create
a new corpus for abstractive compression in order to obtain useful data for modeling
purposes. We then present a tree-to-tree transducer capable of transforming an in-
put parse tree into a compressed parse tree. Our approach is based on Synchronous
Tree Substitution Grammar (STSG) [Shieber and Schabes 1990; Eisner 2003], a for-
malism that can account for structural mismatches, and is trained discriminatively.
Specifically, we show how the model of Cohn and Lapata [2009] can be applied to our
abstractive task and present a novel tree-to-tree grammar extraction method which ac-
quires paraphrases from bilingual corpora. We also develop a number of loss functions
suited to the abstractive compression task.*

The remainder of this article is structured as follows. Section 2 provides an overview
of related work. Sections 3 and 4 detail our experimental study and corpus collection,
respectively. Section 5 presents the compression model we employ in our experiments
and Section 6 discusses our evaluation framework. We present our results in Section 7
and conclude the article with discussion of future work.

2. RELATED WORK

Sentence compression has been extensively studied across different modeling
paradigms, most of which are based on supervised learning. Compression models are
typically trained on a parallel compression corpus and decide which words and con-
stituents to retain or delete. The retained words are then taken in order to form the
compressed output. Relatively few approaches dispense with the parallel corpus and
generate compressions in an unsupervised manner using either a scoring function [Hori
and Furui 2004; Clarke and Lapata 2008] or compression rules that are approximated
from a nonparallel corpus such as the Penn Treebank [Turner and Charniak 2005].
Most generative compression models are instantiations of the noisy channel model.
The key idea here is to treat sentence compression as a translation task within the same
language. To give a specific example, Knight and Marcu’s [2002] seminal model consists
of two components, a language model P(y) whose role is to ensure that the compression
output is grammatical and a channel model P(x|y) capturing the probability that the
source sentence x is an expansion of the target compression y. Their decoding algorithm
searches for the compression y which maximizes P(y)P(x|y). Their channel model is a
stochastic Synchronous Context-Free Grammar (SCFG) [Aho and Ullman 1969], which
when ground with a source string is equivalent to generating from a CFG. Knight
and Marcu learn the grammar rules from a parallel corpus of long sentences and
their corresponding compressions. The rules have weights that are estimated using
maximum likelihood. Improvements upon this model include Markovization [Galley
and McKeown 2007] and the addition of specialized rules to model syntactically complex
expressions [Turner and Charniak 2005]. Discriminative approaches include decision-
tree learning [Knight and Marcu 2002], maximum entropy [Riezler et al. 2003], support
vector machines [Nguyen et al. 2004], large margin learning [McDonald 2006; Cohn
and Lapata 2009], and minimum classification error learning [Hirao et al. 2009].
Despite differences in formulation, all the preceding models are restricted to word
deletion and are therefore not readily applicable to the more challenging task of ab-
stractive sentence compression. A common assumption underlying previous work is
that the tree structures representing the source sentences and their target compres-
sion are isomorphic, that is, there exists an edge-preserving bijection between the
nodes in the two trees. Although this assumption is mostly justified for deletion-based

4A preliminary version of this work was published in Cohn and Lapata [2008]. The current article contains
a more detailed description of our approach, presents several novel experiments, and a comprehensive error
analysis.
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(extractive) compression, it rarely holds for abstractive sentence compression and text
rewriting in general. A notable exception is Galley and McKeown [2007] who learn
a sentence compression model from a corpus containing both substitutions and dele-
tions. Their main motivation is to obtain improved SCFG estimates by exploiting larger
amounts of data than previous approaches. Their model is, however, limited to word
deletion. As it only has a notion of binary variables for keeping versus discarding nodes
in the source tree, it cannot perform substitutions or any other rewrite operations such
as reordering.

The literature is rife with methods that extract paraphrase rules [Lin and Pantel
2001; Barzilay and McKeown 2001; Barzilay and Lee 2003; Pang et al. 2003; Barzilay
and Elhadad 2003; Bannard and Callison-Burch 2005; Callison-Burch 2008; Bhagat
and Ravichandran 2008], that could in theory be used to reformulate a sentence in
a more concise manner. However, relatively little emphasis has been placed on the
rewriting task itself, that is, on algorithms that use paraphrases to generate a target
sentence. A notable exception is Quirk et al. [2004] who model paraphrase generation
as a monolingual machine translation problem. Similar to Knight and Marcu [2002],
their approach consists of a language model and a translation model that captures the
probability of a source sentence given its target paraphrase. The translation model is
phrase-based® [Koehn et al. 2003], but their approach is limited to monotone trans-
lation in the paraphrase generation algorithm. This means that it can capture lexical
substitutions but no phrase reorderings or complex structural mismatches.® Zhao et al.
[2009] extend this approach by using multiple phrase tables. Their rationale is that
monolingual corpora are in short supply in comparison to bilingual text and as a result
give rise to relatively sparse phrase tables. Thus combining multiple resources into a
single phrase table mitigates this problem. Although Quirk et al. [2004] aim at gener-
ating target sentences that are meaning preserving and do not delete any information
from the source, Zhao et al. [2009] show that a phrase-based model can generate
compressed sentences by selecting only translations where the target phrases are
shorter than the source ones. More recently, Ganitkevitch et al. [2011] generalize Quirk
et al.’s model to syntactic paraphrases and discuss how such a model can be adapted to
sentence compression by augmenting the feature set with compression target features
and by optimizing appropriately the system’s training objective in a fashion similar to
Zhao et al.

Our own work builds on the model developed by Cohn and Lapata [2009] and
formulates abstractive compression as a tree-to-tree rewriting task. Specifically, the
model uses STSG [Shieber and Schabes 1990; Eisner 2003] to capture the space of all
possible rewrites. STSG is especially suited to the abstractive task as it can describe
nonisomorphic tree pairs and provides expressive power to model consistent syntactic
effects such as reordering, changes in nonterminal categories, and lexical substitution.
The model is trained discriminatively using the large margin technique proposed
by Tsochantaridis et al. [2005]. This framework is attractive in that it supports a
configurable loss function that can be tailored to the task at hand. An important part
of the model we present here is the synchronous grammar itself, which must be able
to model paraphrases. We develop a novel tree-to-tree grammar extraction method
which acquires paraphrases from bilingual corpora and show how it can be used

5Phrase translation tables do not only contain single-word entries, but multiword entries. These are called
phrases, but this concept means nothing more than an arbitrary sequence of words, with no sophisticated
linguistic motivation.

61t would be possible to extend their approach to allow reordering, however, it is unlikely that the basic
reordering models used in phrase-based machine translation would be sufficient for modeling abstractive
text compression.
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to generate abstractive compressions. In contrast to previous sentence compression
work, our model is not limited to word deletion and can be trained on corpora with
arbitrary rewrites. We also differ from previous work on paraphrase generation in
that we are able to model rewriting operations other than lexical substitutions while
taking advantage of syntactic information. Furthermore, as our model is trained with
a specific compression objective, it learns which rules yield valid compressions, rather
than simply discarding words to produce a shorter string.

3. EXPERIMENTAL STUDY

Since abstractive sentence compression is not as well studied as extractive sentence
compression, we first needed to establish whether the task is meaningful. To do this, we
designed an online experiment where participants were asked to compress sentences,
without being restricted to word deletion. Our instructions were taken from Clarke
and Lapata’s [2008] extractive compression study and modified so as to encourage
annotators to use any rewrite operation that seemed suitable, including adding new
words, deleting words, substituting, or reordering them as long as they: (a) preserved
the most important information in the source sentence (without distorting its meaning)
and (b) the compressed sentence remained grammatical. It was emphasized that their
goal was to render the source sentence shorter rather than merely substitute or reorder
words without reducing its length.

Participants were given several examples with rewrite operations they could ap-
ply. They were given ample flexibility in creating compressions, but were disallowed
from rewriting a sentence as two or more sentences or deleting a sentence from the
document. They were also informed that some sentences may be short or contain no
extraneous information and thus may not be amenable to compression. When coming
across such sentences, participants were asked not to perform any rewriting operations,
such that the original and compressed sentence are identical. Finally, participants were
instructed to ensure that the final compressed document was coherent on its own, that
is, the compressions did not distort the meaning of the source document, change the
order of events, or change their logical progression.

We randomly selected five documents from a news corpus created by Clarke and
Lapata [2008]. The corpus contains 82 newspaper articles (1,433 sentences) from the
British National Corpus (BNC) and the American News Text corpus.” Each source
sentence is associated with a human-authored target compression, created using word
deletion (i.e., extractive compression). Although in our experiment participants saw the
uncompressed documents only, we also made use of the accompanying compressions
in analyzing whether the abstractive sentences differed substantially from extractive
ones. The study was conducted over the Internet using WebExp [Keller et al. 2009],
an interactive software package for administering Web-based psychological experi-
ments. Documents were randomly assigned to subjects and each subject compressed
one document. The experiment was completed by 15 volunteers, all native speakers of
English. Examples of the compressions our subjects produced are given in Table I. For
comparison, we also show the extractive compressions available with our corpus.

As can be seen, the abstractive compressions are less wordy than their extractive
counterparts. The examples illustrate several rewrite operations such as lexical substi-
tution (high winds is paraphrased as bad weather conditions, hampered as are preventing,
but as despite, dashed hopes of as prevented, 400 Ib of dynamite as explosives) and reorder-
ing (in the third sentence the order of main and subordinate clause is reversed).We
examined more formally the differences between the source sentences and their targets
by computing Translation Edit Rate (TER) [Snover et al. 2006], a measure commonly

"The corpus can be downloaded from http:/jamesclarke.net/research/resources.
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41:6 T. Cohn and M. Lapata

Table I. Abstractive Compressions Produced by Naive Subjects

S Snow, high winds and bitter disagreement yesterday further hampered attempts to tame Mount Etna,
which is threatening to overrun the Sicilian town of Zafferana with millions of tons of volcanic lava.

Tp Snow, winds and bitter disagreement hampered attempts to tame Mount Etna, which is threatening
the Sicilian town of Zafferana with millions of tons of lava.

T4 Bad weather conditions are preventing attempts to halt Mount Etna from swamping the town of
Zafferana.

S The wall of molten lava has come to a virtual halt 150 yards from the first home in the town, but
officials said yesterday that its flow appeared to have picked up speed further up the slope.

Tp The wall of molten lava has come to a halt 150 yards from the first home, but officials said that its
flow appeared to have picked up speed further up the slope.

T4 Although the molten lava has come to a halt, experts believe that it has picked up speed.

S A crust appears to have formed over the volcanic rubble, but red-hot lava began creeping over it
yesterday and into a private orchard.

Tp A crust formed, but red-hot lava began creeping over it yesterday and into a private orchard.
T4 Lava has begun to pour into a private orchard, despite a crust having already formed.

S Bad weather dashed hopes of attempts to halt the flow during what was seen as a natural lull in the
lava’s momentum.

Tp Bad weather dashed attempts to halt the flow during a lull in the lava’s momentum.
T4 The weather prevented attempts to stop the lava flow.

S Some experts say that even if the eruption stopped today, the sheer pressure of lava piled up behind
for six miles would bring debris cascading down on to the town anyway.

Tp Experts say even if the eruption stopped, the sheer pressure of lava piled up for miles would bring
debris down on to the town.

T4 Even if the eruption stopped, the town could be destroyed anyway.

S Some estimate the volcano is pouring out one million tons of debris a day, at a rate of 15ft per second,
from a fissure that opened in mid-December.

Tp The volcano is pouring out one million tons of debris a day, at 15 ft per second, from a fissure that
opened in mid-December.

T4 Since December the volcano is estimated to be pouring out 1 million ton of debris a day.

S The Italian army yesterday detonated nearly 4001lb of dynamite 3,500 feet up Mount Etna’s slopes.
Tp The army yesterday detonated 400 1b of dynamite 3,500 feet up Mount Etna.

T4 The army have used explosives.

S is the source sentence, Tp the extractive target, and T4 the abstractive target.

used to automatically evaluate the quality of machine translation output. TER is de-
fined as the minimum number of edits required to change the system output so that it
exactly matches a reference translation
TER — Ins + Del 4+ Sub + Shft’ 1)
n,
where n, is the length of the reference sentence. The number of possible edits include
insertions (Ins), deletions (Del), substitutions (Sub), and shifts (Shft). TER is similar
to word error rate, the only difference being that it allows shifts. A shift moves a
contiguous sequence to a different location within the the same system output and is
counted as a single edit. When multiple references are available, the edits from the
closest reference (i.e., the reference with the least number of edits) are divided by the
average reference length. The perfect TER score is 0, however, note that it can be
higher than 1 due to insertions. We use Snover et al.’s implementation of TER® to find
approximately the sequence of edit operations with the minimum error rate.
In our setting, we have a source (long) sentence and several target compressions pro-
vided by our participants. We compute pairwise TER scores between source and target

Shttp://www.cs.umd.edu/~snover/tercom/.
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Table Il. Comparative Statistics over the Five Different Texts in the New Compression Corpus

) (b) Number of edits by type — inser-
(a) TER scores for abstractive (TER4) and extrac- tjons, deletions, substitutions, shifts —

tive sentence compression (TERp) with correspond- needed to convert source sentences into

ing compression rates (CompR 4 and CompRp). abstracts.

\ | TERp CompRp | TER4 CompRy | | | Ins  Del Sub Shft
Text1 | 0.30 748 0.54 754 Text1 | 0.3 7.0 174 22
Text2 | 0.30 72.8 0.69 62.6 Text2 | 0.9 301 98 13
Text3 | 0.27 74.1 0.61 67.8 Text3 | 0.2 307 73 10
Text4 | 0.38 83.0 0.38 75.0 Text4 | 11 260 113 16
Text5 | 0.64 73.2 0.64 66.7 Text5 | 0.4 367 114 12

(Al | 038 75.6 | 057 695 | [ALL [08 261 115 15 |

for each participant and report the mean. Table II(a) shows TER scores per document
and overall. For comparison, we also calculate TER scores for the extractive compres-
sions provided with our corpus, and report the compression rates for abstractive and
extractive compressions.

Perhaps unsurprisingly, we see that the abstractive compressions yield higher
TER scores compared to extractive compressions. This means that the participants
choose to employ additional edit operations, such as shifts, substitutions, and inser-
tions. Moreover, the compression rate for the abstractive sentences is lower, indicating
that these operations yield shorter output. Table II(b) tabulates the number of inser-
tions, substitutions, deletions, and shifts needed (on average) to convert the longer
sentences into abstracts. The comparatively high numbers of deletions are consistent
with the overall compression aim of rendering the source sentence shorter. However,
participants resort to further rewrite operations when given instructions that are not
deletion specific. These additional operations are mostly substitutions, indicating that
subjects use paraphrases to abbreviate the source sentence, followed by shifts and in-
sertions. The majority of substitutions involve substituting a longer expression with
a shorter one. The latter is on average 2.4 words shorter compared to the original
expression. It is also worth noting that target sentences exhibit at least one shift on
average (see the last column in Table II(b)).? Therefore, the assumption that the order
of words in the compression remains unchanged, as is typically the case with extractive
approaches, may be too restrictive to model the full range of compression phenomena.

4. CORPUS COLLECTION

The experimental study just described demonstrates that nonexpert participants can
produce abstractive compressions while using rewrite operations that are not confined
to word deletion. Our results suggest that an ideal compression model ought to han-
dle lexical substitution and insertion and word reordering. Creating such a model is
challenging; it must not only rewrite the source sentence (employing some form of
paraphrases) but do so in a way that produces a shorter string that is both meaningful
and grammatical. Technical difficulties aside, an additional stumbling block concerns
the lack of widely available corpora for model training and testing. Previous work has
been conducted almost exclusively on Ziff-Davis, a corpus derived automatically from
document-abstract pairs [Marcu 1999; Knight and Marcu 2002], or on human-authored
corpora [Clarke 2008]. These data sources are not suited to our problem as they do not

9Note that TER tends to underestimate the number of shifts, so it is likely that there is more reordering
than reported in Table II(b). TER will only use the shift operator to facilitate exactly matching tokens; when
there is paraphrasing TER often misclassifies shifts as substitutions, insertions, or deletions. This incurs a
lower edit cost than performing both a shift and then substituting each of the paraphrased tokens.

ACM Transactions on Intelligent Systems and Technology, Vol. 4, No. 3, Article 41, Publication date: June 2013.
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contain rewrite operations other than word deletion. Galley and McKeown [2007] ob-
tain a larger version of the Ziff-Davis corpus by gathering sentence pairs containing
substitutions'? in addition to deletions. Unfortunately, this version is not publicly avail-
able and, besides, was limited to only two types of rewrite operations, whereas our aim
is to model a broader spectrum of rewrites including insertions and reordering.

Although there is a greater supply of paraphrasing corpora, such as the Multiple-
Translation Chinese (MTC) corpus!! and the Microsoft Research (MSR) Paraphrase
Corpus [Quirk et al. 2004], they are also not ideal, since they have not been created
with compression in mind. An obvious avenue would be to align sentential paraphrases
differing in length under the assumption that longer sentences are the source and the
shorter ones their target compression. Initial experiments with this approach revealed
two difficulties. First, the automatic word alignments were noisy, presumably because
the sentences varied considerably in terms of vocabulary and syntactic structure. Sec-
ond, target sentences were often inappropriate compressions; they either compressed
the source too much or changed its meaning drastically. This is somewhat expected
given the erroneous alignments and the fact that the paraphrases did not explicitly
target information loss.

Our own experimental study (see Section 3) yielded some useful data, however, it is
relatively small scale (five documents, 110 sentences) and potentially a nonrepresen-
tative sample of the complexity and range of the task. For these reasons, we created
a larger abstractive compression corpus. We collected 30 newspaper articles (625 sen-
tences) from the British National Corpus (BNC) and the American News Text corpus,
for which we obtained manual compressions. Five of these documents were compressed
by two annotators (not the authors) in order to measure inter-annotator agreement.
The annotators were given instructions that explained the task and defined sentence
compression with the aid of examples. They were asked to paraphrase while preserv-
ing the most important information and ensuring the compressed sentences remained
grammatical and meaning preserving. They were encouraged to use any rewriting
operations that seemed appropriate, for example, to delete words, add new words, sub-
stitute them, or reorder them. Annotation proceeded on a document-by-document basis,
and annotators were specifically instructed to ensure that the resulting (compressed)
document was coherent on its own. The full set of instructions given to the annotators
is listed in Appendix A.

Assessing inter-annotator agreement is notoriously difficult for paraphrasing tasks
[Barzilay 2003] since there can be many valid outputs for a given input. Also our task
is doubly subjective in deciding which information to remove from the sentence and
how to rewrite it. In lieu of an agreement measure that is well suited to the task and
takes both decisions into account, we assessed them separately. We first examined
whether the annotators compressed at a similar level. The compression rate was 56%
for one annotator and 54% for the other. We also assessed whether they agreed in their
rewrites by measuring TER [Snover et al. 2006] and BLEU [Papineni et al. 2002]. The
inter-annotator TER score was 0.728, whereas annotator agreement with the source
yielded a worse TER score of 0.939. As far as BLEU is concerned, inter-annotator
agreement was 23.79% (the precision of unigrams, bigrams, trigrams, and fourgrams
was 58.8%, 35.8%, 23.1%, and 15.1%, respectively), whereas agreement with the source
was only 12.22%. In other words, the annotators agreed much more with one another
than with the source. These results taken together with the comparable compression
rate indicate that the annotators agreed in what to compress even though they did not

10Gpecifically, they gathered sentence pairs with up to six substitutions using minimum edit distance
matching.
11,DC, Catalog Number LDC2002T01, ISBN 1-58563-217-1.
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Table Ill. Compression Examples from Our Corpus

la. The future of the nation is in your hands.

1b. The nation’s future is in your hands.

2a. As he entered a polling booth in Katutura, he said.

2b.  Entering a polling booth in Katutura, he said.

3a. Mr Usta was examined by Dr Raymond Crockett, a Harley Street physician spe-
cialising in kidney disease.

3b. Dr Raymond Crockett, a Harley Street physician, examined Mr Usta.

4a. High winds and snowfalls have, however, grounded at a lower level the powerful
US Navy Sea Stallion helicopters used to transport the slabs.

4b. Bad weather, however, has grounded the helicopters transporting the slabs.

5a. Toexperts in international law and relations, the US action demonstrates a breach
by a major power of international conventions.

5b.  Experts say the US are in breach of international conventions.

Sentences marked (a) are the input and (b) are the human-authored output compressions.

always employ the same rewrites. The remaining 25 documents were compressed by
a single annotator to ensure consistency. All our experiments used the data from this
annotator.!2

Table IIT illustrates some examples from our corpus. A fully compressed docu-
ment can be found in Appendix B. As can be seen, some sentences contain a single
rewrite operation. For instance, a Prepositional Phrase (PP) is paraphrased with a
genitive (see (1)), a subordinate clause with a present participle (see (2)), a passive
sentence with an active one (see (3)). However, in most cases many rewrite deci-
sions take place all at once. Consider sentence (4) where the conjunction high winds
and snowfalls is abbreviated to bad weather and the infinitive clause to transport to the
present participle transporting. Note that the prenominal modifiers US Navy Sea Stallion
and the verb used have been removed. In sentence (5), the verb say is added and the
NP a breach by a major power of international conventions is paraphrased by the sentence
the US are in breach of international conventions.

5. ABSTRACTIVE SENTENCE COMPRESSION AS TREE TRANSDUCTION

In order to model the problem of abstractive compression we resort to statistical ma-
chine learning techniques, the aim being to develop an algorithm which can automat-
ically generate an abstractive compression for a given test sentence. As demonstrated
in the preceding examples, abstractive compression is a complex linguistic process.
Like most natural language processing tasks, to replicate human performance would
require deep knowledge of syntax, semantics, pragmatics, and world knowledge. In-
stead of modeling the full complexity of the problem, we opt for a shallow approach
using only syntax. This makes the model considerably simpler to formulate while also
limiting its expressive power such that it can be learned directly from data.

5.1. Modeling Framework

Our work builds on the model developed by Cohn and Lapata [2009] who formulate
sentence compression as a tree-to-tree rewriting task using a weighted synchronous
grammar. The model learns from a parallel corpus of input (uncompressed) and output
(compressed) pairs (X1,y1)...(Xy, yn) to predict a target labeled tree y from a source
labeled tree x. The dependency between x and y is captured as a weighted STSG. The
grammar encodes various tree-based transformations including deletions, structural
transformations, and lexical substitutions (paraphrasing). Our model associates a score

Rhttp://www.dcs.shef.ac.uk/~tcohn/t3/#Corpus.
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Fig. 1. Illustration of the production which converts from active tense to passive tense. The dotted lines and
boxed indices denote ~, the alignments between frontier nonterminals in the two elementary trees. Note the
tense of the verb must change between past tense (VBD) and past participle (VBN).

with each complete derivation as a linear function of its rules and the n-grams in the
compressed output string. In this framework decoding amounts to finding the best
target tree licensed by the grammar given a source tree.

In Section 5.2, we define STSGs and the means by which we extract a grammar from
a parallel corpus. We introduce our scoring function in Section 5.3, explain our training
algorithm in Section 5.5, and discuss our decoding procedure in Section 5.4.

5.2. Synchronous Grammar

Synchronous grammars generate pairs of related strings, much as standard grammars
generate single strings. This is achieved by the recursive application of rewrite rules,
where each rule is applied synchronously to both strings. Synchronous grammars can
be treated as string transducers by reasoning over the space of possible sister strings for
a given string. In this work we use a synchronous grammar to define a tree transducer
which operates over input and output trees rather than strings.

Our model is based on synchronous tree-substitution grammar [Shieber and Schabes
1990; Eisner 2003], which uses as rewrite rules pairs of arbitrarily large tree fragments.
STSG is a simple grammar formalism, and consequently has efficient inference algo-
rithms while still being complex enough to model a rich suite of tree edit operations.
More formally, an STSG is a 7-tuple, G = (N7, No, 1, Qo, P, Ry, Rp) where N are the
nonterminals and Q are the terminals, with the subscripts I and O indicating input
and output, respectively, P are the productions, and R; € N7 and Rp € Ny are the dis-
tinguished root symbols. Each production is a rewrite rule for two aligned nonterminals
X e Nyand Y € Np in the input and output

(XY) = {a,y,~),

where @ and y are elementary trees rooted with the symbols X and Y, respectively. Non-
terminal leaves of the elementary trees are referred to as frontier nodes or variables.
These are the points of recursion in the transductive process. A one-to-one alignment
between the frontier nodes in « and y is specified by ~. This is illustrated in Figure 1
which shows an example production.

Our model uses an STSG as a tree transducer, where the input tree is given and the
output tree is generated. The generative process starts with the given input tree and
an output tree consisting of only the root symbol Rp, which is aligned to the root of
the input tree. Next, each frontier nonterminal in the output tree is rewritten using a
production in the grammar which also consumes a fragment of the input tree rooted at
the aligned node. This process continues recursively and terminates when there are no
remaining frontier nonterminals. At this point we have a complete output tree and the
input tree has been completely consumed. The sequence of productions is referred to
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(S, S) — (NPg [VP VBDg NPy, NP5 [VP VBDg NPg])
<NP<SN[S>§ — EEP%[V§’ VBDg NPgl, NPy [VP was [VP VBN [PP by NPg]]])
g — (he, him
(NP, NP) — (he, he)
(NP, NP) — (he, Peter)
(VBD, VBN) — (sang, sung)
(NP, NP) — (a song, a song)

[S [NP He] [VP [VBD sang] [NP a song]]

[S [NP Him] [VP [VBD sang] [NP a song]]]

[S [NP Peter] [VP [VBD sang] [NP a song]]]

[S [NP A song] [VP was [VP [VBN sung] [PP by [NP he]]]]

[S [NP A song] [VP was [VP [VBN sung] [PP by [NP him]]]]]
[S [NP A song] [VP was [VP [VBN sung] [PP by [NP Peter]]]]]

—_

Fig. 2. Example grammar (top) and the space of output trees (bottom) licensed when given the input tree
[S [NP He] [VP [VBD sang] [NP a song]]]]. Numbered boxes in the rules denote linked variables.

as a derivation, and the output string is the yield of the output tree, given by reading
the terminals from the tree in a left-to-right manner. Figure 2 shows an example STSG
and the set of output trees licensed for a given input tree. We refer the reader to Eisner
[2003] and Cohn and Lapata [2009] for a more detailed exposition of STSG.

Our discussion of STSG has so far focused on the details of the grammar formalism
without explaining how such a grammar can be obtained. Creating an STSG by hand
is one option, although this would require considerable manual effort and is unlikely
to generalize well to new datasets. Instead we define a data-driven procedure for
extracting a grammar automatically which is simple and robust, and can make use
of two different types of parallel corpora. The first type is parallel compression data,
consisting of pairs of input sentences and their target compressions, and the second
is parallel bilingual text, consisting of sentences and their translations in a foreign
language. Compression corpora do not occur naturally (they have to be either created
manually or automatically, e.g., by matching sentences found in an abstract and its
corresponding document) and as a result the grammar extracted from such data is
likely to have low coverage, especially with regard to paraphrases. We view bilingual
corpora as a complementary data source. By being more readily available and overall
larger, they can potentially yield a larger number of paraphrase rules. In the following
we present two algorithms for extracting a synchronous grammar from these data
sources, starting with the algorithm for parallel compression data.

5.2.1. Direct Grammar Extraction. The algorithm takes a parsed parallel compression cor-
pus from which it extracts a set of elementary trees, which are then aggregated to form
the grammar. We adopt the grammar extraction technique of Cohn and Lapata [2009]
which we now briefly outline. The algorithm proceeds in three stages: word alignment,
constituent alignment, and rule extraction. Word alignment seeks to automatically find
which input and output words correspond to one another in each sentence pair. For this
we use models designed for word-based translation between different languages [Brown
et al. 1993; Och and Ney 2004], where in our setting the input and output are treated
as the two languages. The second step is constituent alignment, which uses a heuristic
process to identify alignments between nodes in the parse trees by projecting via the
word alignment (inspired by finite state transducer induction techniques in phrase-
based translation [Och and Ney 2004; Koehn et al. 2003]). Finally, the rule extraction
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They
would
have
sacked
Jeffrey

Fig. 3. Example sentence, its compression, and word alignment. Parse trees are also shown for the input
and output sentences on the horizontal and vertical axes, respectively. Unary productions (e.g., NP — NN)
have been omitted for clarity. The word alignment is displayed as a binary matrix where black cells denote
an alignment between the pair of words on the given row and column, and white cells denote no alignment.

step identifies aligned tree fragments which collectively form the elementary trees in
the grammar.

Let us illustrate the algorithm by way of an example (for a formal exposition
we refer the interested reader to Cohn and Lapata [2009]). Figure 3 shows an ex-
ample of the parse trees and word alignment for the input sentence “If they had
known, Jeffrey would have been kicked out” and its target compression “They would have
sacked Jeffrey.” In the example, all the output words are aligned to at least one input
word, denoting 1-1 alignments, for example, they—They, or multiword alignments, for
example, kicked out—sacked. A number of the input words are not aligned to anything,
for example, the empty column for “If” which denotes word deletion.

The second stage is to identify pairs of constituents in the two trees whose yields are
aligned to one another in the word alignment (fully or partially, which allows for words
to be deleted or inserted). This is illustrated in Figure 4 which shows the derived con-
stituent alignment for the earlier example. Note that word alignments are also included
as constituent alignments, while new alignments between higher-level constituents are
also included, for example, [NP They] aligned with [NP If they had known]. Some con-
stituents in one sentence do not align to constituents in the other sentence, for example,
[VP sacked Jeffrey], and are therefore absent from the constituent alignment.

The next step is to generalize the aligned subtree pairs by replacing aligned child
subtrees with variable nodes. For example, in Figure 4 when we consider the pair of
aligned subtrees [SBAR If they had known] and [NP theyl], we could extract the rule

(SBAR,NP) — ([SBAR [IN If] [S [NP they] [VP [VBD had] [VP knownl]]], [NP Theyl). (2)

However, this rule is very specific and consequently will not be very useful in a trans-
duction model. In order for it to be applied, we must observe the full SBAR subtree,
which is unlikely to occur in another sentence. A more robust approach is to generalize
the rule so as to match many more source trees, and thereby allow transduction of
previously unseen structures. In the example, the node pairs labeled (S, NP) and (NP,
NP) can be generalized as these nodes are aligned constituents. In addition, the nodes
IN, VP, VBD, and VP in the source are unaligned, and therefore can be generalized
using e-alignment to signify deletion. Performing as many generalizations as possible
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Fig. 4. Constituent-level alignment for the example in Figure 3. Each red rectangle denotes an alignment
between constituents with matching spans on the horizontal and vertical axes.

for the preceding example, we would produce the rule
(SBAR,NP) — ([SBAR IN_, Sy, NPy), (3

which encodes that we can transform a subordinate clause (SBAR) into a noun phrase
(NP) by way of deleting its preposition child (IN) and then transforming its declarative
clause (S) child into an NP. There are many other possible rules which can be extracted
by applying different legal combinations of the generalizations. In this work we extract
maximally generalized rules, thus avoiding a combinatorial explosion in the number of
grammar rules. Figure 5 shows the full set of maximally general rules derived from the
running example. These rules describe structural transforms (including reordering),
deletion, and paraphrasing. Note that in order to delete an input constituent, we require
that its entire subtree be covered using epsilon-aligned rules, thus necessitating the
bottom five rules in the figure which explicitly encode lexical deletion.

5.2.2. Pivoted Grammar Extraction. The algorithm presented before extracts synchronous
grammar rules directly from a parallel abstractive compression corpus. Overall this
results in a high-quality grammar with rules encoding the syntactic and paraphrase
transformations used by humans when compressing text. However, this grammar alone
is insufficient for describing the full range of compression phenomena, due largely to
the small size of the parallel corpus from which the rules are derived. There will be
many unobserved paraphrases, no matter how good the extraction method. One way to
achieve a higher level of robustness would be to use a corpus many orders of magnitude
larger. However, this kind of data is not readily available and would be expensive to
create. For this reason we develop an alternative technique for deriving rules from
bilingual parallel corpora, which are in plentiful supply. Our approach extracts a sec-
ond, much larger, grammar, which is used to augment the original directly extracted
grammar. Crucially, the second grammar will not contain explicit compression rules,
just paraphrasing ones. We leave it to the model to learn which rules serve the com-
pression objective.

The paraphrase grammar extraction method uses bilingual pivoting to learn para-
phrases over syntax tree fragments. These paraphrase pairs of tree fragments are
treated as rules and added to our synchronous grammar. The central assumption
underlying the pivoting technique is that strings (elementary trees in our case) are
paraphrases if they share the same translation(s) in a foreign language [Bannard
and Callison-Burch 2005]. Practically, this is equivalent to treating the paraphrasing
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(s
(VBN, ¢

= ([.], €
— ([VBN been], €)

(S, Sy — ([S SBAR. NPy [VP MDg, [VP VBg VPl ],
[S NPg [VP MDg; [VP VB [VP VBN NP]]
(SBAR, NP) — ([SBAR INg Sy, NPp)
(S, NP) — ([S NPy VP, NPg)
(VP, VBN) — ([S VBN VP_], VBNp)
(NP, NP) — ([NP they], [NP They])
(NP, NP) — ([NP Jeffrey], [NP Jeffrey])
(MD, MD) — ([MD would], [MD would])
(VB, VB) — ([VB have], [VB have])
(VP, VBN) — ([VP [VBN kicked] [PRT out]], [VBN sacked])
(o= (LLLD
(IN, ¢) — ([IN If],e)
(VBD, €¢) — ([VBD had], ¢)
(VP ) — ([VP knownl], )
€)
)

Fig. 5. Minimal synchronous grammar rules extracted from the example in Figure 3.

problem as a two-stage translation process, which works by translating some English
text into a foreign language, and then translating it back into English. The original and
doubly translated text are then considered to be paraphrases, and the foreign language
is said to be the pivot. The process is formulated as a statistical model of paraphrasing
e into ¢’ as

pele) =Y pe| fp(fle). @)
f

where p(f|e) is the probability of translating an English string e into a foreign string f
and p(e’|f) the probability of translating the same foreign string into some other
English string ¢’. We thus obtain English-English translation probabilities p(e’|e) by
marginalizing out the foreign text.

In contrast to previous work that used only strings for paraphrasing [Bannard and
Callison-Burch 2005], we instead use elementary trees in English. These elementary
trees are translated into foreign language strings, which are then retranslated into
English elementary trees. This results in pairs of elementary trees which encode syn-
tactic paraphrases, that is, an STSG. To translate between elementary trees and foreign
strings we use a bilingual grammar extraction algorithm designed for syntax-based ma-
chine translation [Galley et al. 2004]. This algorithm is similar to our direct grammar
extraction algorithm presented earlier, except that it works over pairs of trees and
strings rather than pairs of trees. As input it uses a bilingual word-aligned parallel
corpus with parse trees in one language and tokenized sentences in the other, from
which it extracts a set of rules. Each rule is a pair of an elementary tree and its cor-
responding translation string fragment. Figure 7 illustrates the output rules produced
when applied to the sentence pair in Figure 6. Note that the English rules and foreign
strings shown include variable indices where they have been generalized. We refer the
reader to Galley et al. [2004] for a more detailed exposition of the bilingual grammar
extraction algorithm.

The translation rules are extracted from a bilingual corpus and their counts are used
to compute conditional frequencies estimates for p(e|f) and p(f|e) in (4) where e are
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Fig. 6. Sample bilingual sentence pair in French and English. The English parse tree shown on the left has
been simplified by removing unary productions.

NP —
ADVP —
DT —
NN —

NP —
VP —

S —

[NP 1], je)

[ADVP too], aussi)

[DT this], ce)

[NN slogan], slogan)

[NN DTy NNgl, [2])

[VP [VB take] [PRT up] NPg], reprendre (1)

[S [TO to] VP, 1)

[S NPy ADVPg [VP [MD would] [VP [VB like] S]], [2] voudrais - [3])

o~ o~ o~~~ o~~~

S —

Fig. 7. Translation rules extracted from the sentence pair in Figure 6 using the method of Galley et al.
[2004].

English elementary trees and f are foreign strings. Finally, we apply (4) by marginal-
izing over all foreign strings to find the weighted set of elementary tree paraphrases,
thus forming our paraphrase grammar. To allow matching of different reordering pat-
terns, we first normalize rules such that the variable markers are sorted in increasing
order in the foreign string, for example, (NP JJz NNgl) — (2] va [1]) is normalized to
(INP Jdz NNpl) — (1] va [2)). This means that compatible foreign strings are rendered
string identical.

Figure 8 illustrates the process for the [take up NP] fragment, showing four of its
translations in French and their corresponding translations back into English. In our
experiments we marginalize over a number of different foreign languages, not just a
single language as shown in the example. Overall the pivoting method results in a
large grammar covering a broad range of paraphrases and their syntactic contexts,
which is used to supplement the higher precision but lower coverage directly extracted
grammar.

5.2.3. Copy and Delete Rules. Aggregating the synchronous grammar rules from direct
extraction and pivoting results in a large grammar, however, it still does not have
perfect coverage on unseen trees to be processed at test time. These trees may contain
unknown words or unseen CFG productions, and therefore no derivations are possible
under the transduction grammar. For this reason we add new copy and delete rules
to the grammar, which allow test source trees to be fully covered. Copy rules copy
a CFG production verbatim into the target, which trivially allows the transducer to
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prendre m VP
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Fig. 8. Illustration of the pivoting process for finding paraphrase tree fragments for the fragment ‘take
up NP’. The process works by translating the fragment into a string in a foreign language (French here)
and then translating the string into an English fragment. Pairs of the resulting fragments are included as
synchronous rules in the grammar. Notice that category transformations can occur, as seen in the top-right
fragment which has a prepositional phrase (PP) child.

cover the source. However, this constrains the model to retain all unknown words and
productions, which limits its ability to compress the data. For greater flexibility, we
also add rules to delete all or part of the CFG production. Partial deletion rules are
created to delete each contiguous subsequence of the child nodes of the production.

5.3. Linear Model

A synchronous grammar defines a transducer capable of mapping a source tree into
many possible target trees, however, it is of little use without a weighting towards
grammatical trees which yield fluent compressed target sentences. Following Cohn
and Lapata [2009], we use a linear model which assigns a score to each derivation!3

score(d; w) = (W(d), w), (5)

where d is a derivation consisting of a sequence of STSG rules which uniquely specifies
the source, x = source(d), and target trees, y = target(d); w are the model parameters;
V¥ is a vector-valued feature function; and the operator (., -) is the inner product. The
parameters, w, are learned during training, described in Section 5.5.

13The model applies to derivations rather than target trees or strings for the reason of tractability. In STSGs
many derivations can produce the same target tree, and properly accounting for this would incur a significant
increase in time and space complexity.
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The feature function, W, returns a vector of feature values for a derivation

v(d) = Zd)(r, source(d)) + Z Y (m, source(d)), (6)

red me kgrams(d)

where r are the rules of a derivation, kgrams(d) are contiguous sequences of words'#
up to length &, and ¢ is a feature function returning a vector of feature values for each
rule. This is a very general feature representation, allowing features to weight not just
the rules in the grammar but also over the word sequence in the output string. The
later is used to include as a single feature the log probability of the output sentence
under a trigram language model. This feature is critical for generating fluent output,
as also evidenced by the ubiquity of language models in models of statistical machine
translation [Koehn et al. 2003], another task in which output fluency is paramount.
In addition to the language model, we extract features for each rule, (X)Y) —
{a, y, ~), to encode the rule’s syntax, lexical items, and compression operations. These
features were developed specifically for the abstractive compression task and are in-
stantiated according to the templates detailed next. Most of the templates give rise
to binary indicator features, except for the count and frequency features. The indica-
tor features perform a boolean test, returning value 1 when the test succeeds and 0
otherwise. Our templates resulted in 196,419 features on our compression corpus.

Origin. This is the source of the rule, which is either: (a) directly extracted from
training, (b) extracted via bilingual pivoting, and/or (c) explicitly created as a copy
or delete rule. These features allow the model to learn a preference for the different
knowledge sources.

Frequency. This is the log count of the rule, logc((X,Y) — («, y, ~)) and its compo-
nent parts logc(a) and logce(y). These features are real-valued rather than binary
indicator features. They allow the model to represent the forward and backward
conditional probabilities, which have both proven critical features in machine trans-
lation systems. These three features are replicated to allow separate treatment of
directly extracted rules and pivoted rules.

Default. This is a default feature with value 1, which counts the number of rules
used in a derivation.

Length. This is the number of terminals in y, to allow better modeling of the output
length and balance the language model log probabilities.

Variable counts. These are the number of variables in y and the difference in the
number of variables between « and y, allowing a bias over different granularity of
segmentation of the target and the amount of deletion.

Rule match. These are the input and output tree fragments, « and y, and both trees
as a pair. This allows the model to learn a specific weight for each rule and specific
to each input or output elementary tree. We also include an indicator feature to test
whether a = y.

Root categories. These are the nonterminal categories X, Y, and the pair (X, Y). This
allows the model to learn a preference for different segmentations of the source tree
and target trees, and to discourage the nonterminal category to be changed.

Preterminal compatibility. If both X and X are preterminals (special nonterminals
that permit only one terminal child), this feature tests whether their root cate-
gories and/or terminals are identical. This allows the model to learn a preference

14These are called n-grams in the rest of the article, but here we use % for clarity of notation, as n is already
used to refer to the sentence length in words.
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for paraphrases which maintain the same part-of-speech, separate to the aforesaid
feature which also operates over higher-level nodes in the trees.

Yield maich. If the yield terminals of « and y match, similarly for the preterminal
sequence. These allow rules that change the structure of the tree but preserve the
words or part-of-speech tags to be rewarded.

Compression. This tests whether the yield of y is a subsequence of the yield of «,
that is, if it could form part of and extractive compression.

Yield difference. This is the number of common, dropped, and inserted words when
comparing the two yields, and a lexicalized variant which includes the word identity.
These allow the model to learn a bias towards including or excluding specific words,
and a general bias for the different edit operations.

5.4. Decoding

Decoding aims to find the best target tree for a given source tree. The synchronous

grammar defines a space of possible target trees for the source tree. For all but the

simplest grammars, there are an exponential number of possible trees, and the decoding

algorithm aims to find efficiently from these options the tree with the highest score.
Decoding finds the maximizing derivation,® d*, of

d* = argmax score(d;w), (7
d: source(d)=x

where x is the (given) source tree, source(d) extracts the source tree from the deriva-
tion d, and score(-) is defined in (5). The maximization is performed over the space
of derivations for the given source tree using an approximate beam search algorithm
[Cohn and Lapata 2009], which we now summarize.

For simplicity of exposition, we first present an exact dynamic programming algo-
rithm for finding the best scoring tree under a model with only rule features, but no
string n-gram features, before presenting its extension to approximate search with
these additional features.!'® The algorithm builds a chart in a bottom-up fashion, by
performing postorder traversal over the source tree, at each node v computing the best
target compression trees for the subtree rooted at v. Each entry is referred to as the
“chart cell” for v. The grammar licenses change in nonterminal symbols (e.g., a PP
becoming an NP), and therefore we store the best target tree for each different root
nonterminal category. The algorithm terminates at the root node, at which point we
have recovered the best target tree, namely the chart entry with nonterminal symbol
Rp. The central part of the algorithm is to compute the value of the chart cell for each
node v. This is done by finding grammar rules whose source sides match the subtree
rooted at v, and from these recording the target side of the rule with the best score
(for each different root nonterminal). Scoring fully lexicalized rules is straightforward,
simply requiring the computation of an inner product of the rule’s features and the
model weight vector. The score for grammar rules with frontier nonterminals is de-
fined recursively, by adding to the rule’s score the score for the best target trees for
each frontier node in the source tree. These values will have been computed earlier in
the traversal of the source tree, and can thus simply be looked up in the chart. All of
the different transductions for node v are pooled together, and the best scoring tree for
each nonterminal category is taken and stored in the chart.

15 As mentioned before, for tractability of computation we deal with derivations in place of target trees. The
target tree is recovered using y* = target(d*).

16The decoding algorithm presented here is similar to algorithms used for decoding in statistical machine
translation for tree-to-string models [Huang et al. 2006; Liu et al. 2006].

ACM Transactions on Intelligent Systems and Technology, Vol. 4, No. 3, Article 41, Publication date: June 2013.



An Abstractive Approach to Sentence Compression 41:19

Although efficient, this chart-based algorithm does not support n-gram features,
which cannot be evaluated locally to each node in the source tree. The target trees for
sibling nodes in the source need to be known in order to evaluate the n-grams overlap-
ping between neighboring target trees. For this reason we adapt the algorithm to defer
the evaluation of border n-grams until there is sufficient context. This necessitates
storing a list of possible options in each chart cell, rather than only the best tree for a
given nonterminal (we have no way of knowing if a seemingly low-scoring tree will have
high-scoring n-grams until these are evaluated later on). To store the exhaustive set of
all trees is intractable, necessitating approximation.!” We base our approach on those
developed for grammar-based machine translation [Chiang 2007], which solves a sim-
ilar maximization problem. Specifically, we use a beam search by pruning the entries
for a cell to a fixed constant number. Low-scoring entries are pruned from the search,
where an entry’s score is defined as its local score plus an approximation of its nonlocal
score (a unigram estimate of the language model log probability). Pruning occasionally
eliminates the globally best solution, however, we have found empirically that search
error is quite modest. Further, we also use the cube pruning heuristic [Chiang 2007] to
further limit the number of items considered for inclusion in the beam, resulting in an
asymptotic time complexity linear in the size of the source tree, grammar, and beam.
We refer the interested reader to Cohn and Lapata [2009] for further details.

5.5. Training

In the preceding, we assumed that the model parameters, w, were given. Now we
turn to the problem of estimating w from data, using a supervised learning setting
where examples of sentences and their compressions are given. The challenge for the
learning algorithm is to find parameters which model the training data accurately and
generalize well to unseen data. This is framed as a maximum margin optimization
problem using SV M7t [Joachims 2005; Tsochantaridis et al. 2005]. Here we present
a summary of the algorithm and refer the interested reader to Cohn and Lapata [2009]
for a more detailed exposition.
The training algorithm finds the approximate minimizer of

1 ¢
rgv_ig§||w||2+ﬁizzlsi, 5 =0 ®)

Vi, Vd : source(d) =x; Ad #d; : (w, ¥(d;) — ¥(d)) > Ald, d;) — &,

where i indexes the training examples, (X;,y;), IV is the number of training examples,
and d; is a derivation linking x; and y; (we use a heuristic to select one of the many
possible derivations, opting for the one using the most STSG productions). The con-
straints ensure that for each training example the true derivation scores more highly
under the model than alternative derivations (subject to the slack variables, &; dis-
cussed later). The magnitude of the difference must exceed the loss, A(d, d;), which
quantifies the difference between the prediction and the truth. Alternative derivations
which differ only slightly from the true value need only a small margin of separation,
while wildly incorrect derivations require a much larger margin. In this work the loss
function computes the total number of words in the predicted compressions which are

17We can improve matters by recognizing that only 2(k — 1) tokens cannot be processed locally: Z — 1 on the
extreme left and right ends of the yield, where % is the Markov order of the language model. However, even
if we account for this the time and space complexity is still exponential in %.
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not in the reference, subject to a length penalty

Ald, d;) = Z [w ¢ yield(d;)] + max (|yield(di)| — |yield(d)], 0) ,
weyield(d)

where yield(d) returns the yield of the compressed tree (token sequence) specified by
d and [-] returns 1 if the condition is true and 0 otherwise. If the predicted string
is shorter than the reference, then each omitted word is treated as being incorrect.
This penalty serves to discourage overly short output, for example, predicting nothing
would otherwise be considered perfect. Note that the loss function is asymmetric,
A(d, d;) # A(d;, d), due to the treatment of word tokens versus word types in yield of the
first and second arguments, respectively, and the length penalty which is asymmetric by
design. Cohn and Lapata [2009] show that this loss function (referred to as Hamming
loss) is more effective than more elaborate variants such as edit distance and F1,
which is most likely a consequence of this loss function permitting more accurate
approximation.

Slack variables, &;, are introduced for each training example to allow for nonseparable
input, where it is impossible (or undesirable) to achieve zero training error. These allow
constraints to be violated with a penalty term in the objective function. Finally, C is a
constant that controls the trade-off between training error minimization and margin
maximization. This constant is chosen using manual tuning for optimal performance
on a development set.

The optimization problem in (8) is approximated using an algorithm proposed by
Tsochantaridis et al. [2005]. This algorithm finds a small set of constraints from the
full-sized optimization problem that ensures a sufficiently accurate solution. Specifi-
cally, it constructs a nested sequence of successively tighter relaxations of the original
problem using a (polynomial time) cutting plane algorithm. For each training instance,
the algorithm keeps track of the selected constraints defining the current relaxation.
Iterating through the training examples, it proceeds by finding the output that most
radically violates a constraint. In our case, the optimization relies on finding the deriva-
tion which is both high scoring and has high loss compared to the gold standard. This
requires finding the maximizer of

H(d) = A(d;, d) — (w, ¥(d;) — ¥(d)). 9)

The search for the maximizer of H(d) in (9) can be performed by the decoding al-
gorithm presented in Section 5.4 with some extensions. Firstly, by expanding (9) to
H(d) = A(d;,d) — (¥(d;), w) + (¥(d), w) we can see that the second term is constant
with respect to d, and thus does not influence the search. The decoding algorithm max-
imizes the last term, so all that remains is to include the loss function into the search
process. This amounts to augmenting each chart entry to also store a tuple (TP, FP)
representing the number of terminals in the target tree which are also in the reference
(True Positives, TP) and those that are not in the reference (False Positives, FP). By
design, this decomposes with the derivation such that the values of TP and FP from
child chart cells can simply be added together as part of calculating the tuple value for
parent chart cells. Finally the loss of the maximizing tree can be computed from the
chart entry for the root node, A = FP + max(|yield(d;)| — (TP + FP), 0).

6. EXPERIMENTAL SET-UP
In this section we present our experimental setup for assessing the performance of our
model.’® We give details on the corpora and grammars we used, model parameters and

18The software can be downloaded from http:/staffwww.dcs.shef.ac.uk/people/T.Cohn/t3.
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features, the systems employed for comparison with our approach, and explain how
model output was evaluated.

6.1. Model Selection

The framework presented in Section 5 allows great flexibility in modeling abstrac-
tive compression. Depending on the grammar extraction strategy, choice of features,
and loss function, different classes of models can be derived. Before presenting our
results on the test set, we discuss how these modeling choices were instantiated in our
experiments and motivate the reasons for their selection.

The STSG lies at the core of our model. It therefore makes sense to experiment
with a variety of grammars in order to assess how the type and number of rules affect
model performance. We compared a grammar using rules obtained from our abstrac-
tive compression corpus (using the 503 sentence training partition; a further 20 and
110 sentences are reserved for development and testing, respectively), the extractive
compression corpus (1510 training sentences),'® and the union of both corpora. The
corpora were word-aligned using the Berkeley aligner [Liang et al. 2006] initialized
with a lexicon of word identity mappings, and parsed with Bikel’s [2002] parser. We
extracted grammar rules following the technique described in Section 5.2.

As mentioned earlier, the rules obtained from compression corpora will exemplify
many structural transformations but will have relatively few paraphrases. To give
our model the ability to perform a wider range of rewrite operations such as substi-
tutions we also complemented the aforesaid grammars with rules extracted from bi-
texts. Specifically, we obtained a pivot grammar by harvesting rules from the French-
English, Czech-English, German-English, Spanish-English, and Hungarian-English
Europarl version 2.2° These language pairs were selected so as to represent a range of
language families (Slavic, Romance, Germanic, and Finno-Ugric) exhibiting variation
in word order and more generally syntactic structure as well as morphology. When
using only one pivot language, problems can arise for terms with very general transla-
tions (e.g., gender or case information being lost), resulting in large sets of poor-quality
paraphrases for the terms. Using many different languages as pivots ameliorates this
problem because a term with overly general translations in one language often has
better translations in the other languages; effectively this smoothes out the effect of
pivoting errors. The parallel corpora contained approximately 688K sentences for each
language pair. Again, we obtained alignments using the Berkeley aligner and parsed
the English side with Bikel’s parser. We extracted minimal tree-to-string rules using
our implementation of Galley et al. [2004]. To ameliorate the effects of poor alignments
on the grammar, we removed rules appearing less than twenty times and used only the
five best translations for each source fragment when pivoting. The final paraphrase
rules were further pruned to exclude those with conditional probability less than the
maximum of 1073 and 1% of the highest probability paraphrase for each source.

An important question concerns the size of the pivot grammar and its bearing on the
quality of paraphrase rules. Unfortunately, it is not feasible to conduct a detailed study
on the trade-off between grammar size and compression quality; to do so convincingly
would require repeated human evaluations as the compression task has no widely
accepted automatic evaluation metric. Nonetheless, experiments with grammars ob-
tained from a single language pair (e.g., fr-en) as opposed to multiple pairs (see the row
“all merged” in Table IV) revealed that good paraphrases can be obtained from less data
(see also Cohn and Lapata [2008]). However, as with research in machine translation,

19The abstractive compression corpus was created for a subset of the input sentences used in the extractive
compression corpus. The development and test input sentences are identical.
20http://www.statmt.org/europarl/.
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Table 1V. Composition of Pivoted Paraphrase Rules

Language pair | Clone Same yield Delete Other edit‘ Total

cz-en | 13720 6409 1217 14993 36339
de-en | 14951 4709 555 18958 39173
es-en | 16761 6418 516 23091 46786

fr-en | 15861 5316 414 20781 42372
hu-en | 16102 7101 792 15196 39191

all merged | 37483 20486 3230 70812 132011

The total count of rules is shown, which is divided into mutually exclu-
sive categories for rules which make no syntactic or lexical changes (Clone),
otherwise make no lexical changes (Same yield), delete some lexical items
(Delete), or include other edits such as reordering, paraphrase, or insertion
(Other edit). The statistics are shown for each parallel corpus and after these
have been merged. Duplicate rules were removed in the merging process.

better coverage can be obtained by using large parallel corpora. We also experimented
with less strict rule pruning parameters, but found that these did not significantly
alter the models’ performance. This was despite their resulting in significantly larger
grammars, and correspondingly slower inference.

The statistics of the pivoting rules are shown in Table IV. This shows the majority of
rules extracted encode edits other than deletion, such as substitution, reordering, in-
sertion, or some combination. Surprisingly few rules perform purely lexical deletion—a
total of 3,230 from a grammar of 132,011 rules—although if we consider rules which
combine deletion with other edits, the total number rises to 6,356. We attribute this
to our choice of corpora: translations of parliamentary proceedings need to remain
faithful to the original, and accordingly there are few instances where information
is dropped or added during translation. The deletion rules predominantly performed
minor syntactic and stylistic changes, such as dropping the title from a proper name.
We considered including the deletion rules in a purely extractive compression system,
however, in informal evaluations we noticed little difference between the model pre-
dictions when trained with or without the pivoted deletion rules. For this reason, we
did not include the pivoted rules in our extractive compression system in the following
experiments.

In addition to these grammar rules, we also scanned the source trees in the compres-
sion corpus to supplement the grammar with further rules to ensure complete coverage,
that is, ensuring that a derivation exists for each tree. We created rules to either copy
each CFG production, delete it entirely, or selectively delete any subsequence of its
children. This is illustrated in Table V where the rules flagged with a C are a selec-
tion of those derived from the CFG production NP — DT JJ NN. All trees are rooted
with a distinguished TOP nonterminal which allows the explicit modeling of sentence
spanning subtrees. The grammars each had 7,870 (directly extracted from abstrac-
tive training), 16,424 (directly extracted from extractive training), 132,011 (bilingual
pivoting), and 24,118 rules (coverage copy/delete rules).

We trained different compression models using the extractive or abstractive rules
and their union. In addition, we trained a model with both the pivot and union rules
(Extract+Abstract+Pivot).?! All grammars included the coverage rules, ensuring that
predictions could be made for all test input trees. The total size of each of these gram-
mars used in each system are reported in Table VI; note that these sizes are less than

21We also experimented with other grammar combinations such as Extract+Pivot and Abstract+Pivot;
however, these models did not outperform the Abstract+Extract+Pivot combination and we omit them for
the sake of brevity.
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Table V. Sample Grammar Rules Showing the Source(s) from Which They Were Extracted

(NPNP) — ([NP DT JJg NNgJl, NP DT JJz NNpgJh) E,ACP
(NPNP) — ([NP DT JJg NN, [INP DTz NN]) E,A C
(NPe) — (INP DT JJg NN, €) E, A C
(NPNN) — ([NP DTz JJg NNy, NNg) E A
(NPNP) — ([NP DT Jdg NN, [NP NNf) C
(NPNP) — ([NP DT JJg NN, [NP DT JJ5 NNSg|l) P
(NPNP) — ([NP DT JJg NN, [INP DT5 NNPg NNP)l) P
(NPNP) — ([NP DT JJg NN]l, INP NPy CCz NP]l) P
(ADJP,PP) — ([ADJP [JJ due] [PP [TO to] NPpjl], [PP [RB because] [IN of] NPgl) P
(ADJPJJ) — ([ADJP [RB very] [JJ good]], [JJ outstanding]) P
(JJ,RB) — ([JJ first], [RB initially]) AP
(JINNP) — ([JJ first], [NNP prime]) P
(JJ,JJ) — ([JJ first], [JJ initial]) P
(S,S) — (IS S [CC and] S, S S [CC and] Sjl) P

E = extractive compression corpus, A = abstractive compression corpus, C = coverage of test sen-
tences (copy or delete rules), P = pivoting using multilingual corpora.

the sum of their component grammar sizes because of duplicate rules. As well as using
different grammars, each of these models was trained on the corresponding dataset:
the extractive compression training set, abstractive compression training set, or the
union of both. The models’ performance was evaluated on development set compris-
ing 22 sentences taken from the abstractive compression corpus. 110 sentences were
reserved for testing and used in the experiments reported in Section 7. We used the
features described in Section 5.5, the Hamming loss function over tokens, and a tri-
gram language model trained on the BNC (100 million words) using the SRI Language
Modeling toolkit [Stolcke 2002], with modified Kneser-Ney smoothing.

We next asked two human judges to rate on a scale of 1 to 5 the system’s compressions
when optimized for different grammar rules. To get an idea of the quality of the out-
put we also included human-authored abstractive reference compressions (Reference).
Sentences given high numbers were both grammatical and preserved the most im-
portant information contained in the source sentence (without drastically altering its
meaning). The mean ratings are shown in Table VI. As can be seen, the extractive com-
pression system is rated higher, which is not surprising. By being more restrictive—it
only performs deletions—this model has less scope for error and thus produces more
grammatical output. Training our model only on the abstractive compression corpus
obtains inferior performance, due partly to the smaller training set and also to the task
being considerably more difficult. Moreover, while the abstractive compression system
has access to some paraphrase rules, it has only few such rules (compared to the vast
number of possible paraphrases) and little evidence of when they should be applied. The
union of the extract and abstract rules improves over using the abstract rules alone.
However, this model still has little knowledge of paraphrasing. Enhancing the union
rules with pivot rules harvested from multilingual data improves the system output
considerably. Finally, note that all model variants fall short of the human output which
receives an average rating of 4.79 (in comparison, the extractive compression model
has a rating of 2.84 and the best abstractive compression system a rating of 2.79).
The differences between the various grammars are illustrated in Table VI. While the
grammar extracted from the abstractive compression corpus contains many deletion
rules, it has comparatively few paraphrases or reordering patterns, which is not sur-
prising due to the small size of the training set. In contrast, the pivoted grammar
contains a richer variety of paraphrases, covering many different words and phrases,
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Table VI. Mean Ratings on System Output
(development set) for Models Trained with Various
Different Grammars

‘ Grammar Rating Rules
Extract 2.84 51,011
Abstract 2.63 26,778
Extract+Abstract 2.68 54,213
Extract+Abstract-+Pivot 2.79 180,142
Reference 4.79 —

Also shown are the number of rules in each gram-
mar.

and therefore licenses a much broader set of abstractive compressions for input trees
at test time.

Evaluation. Sentence compression output is commonly evaluated by eliciting hu-
man judgments. Following Knight and Marcu [2002], we asked participants to rate
the grammaticality of the target compressions and how well they preserved the most
important information from the source. In both cases they used a five-point rating scale
where a high number indicates better performance.

We randomly selected 30 sentences from the test portion of our corpus. These sen-
tences were compressed automatically by two configurations of our model: one trained
on the union of extractive and abstractive compression rules (Extract+Abstract) and
another one trained on the union and pivot rules (Extract+Abstract+Pivot). We also
compared the output of these systems against a purely extractive one [Cohn and Lapata
2009]. Note that the latter model is a state-of-the-art extractive compression system,;
it performed significantly better than competitive extractive approaches [McDonald
2006] across a variety of corpora. All three systems were tuned so as to provide a simi-
lar compression rate.?2 We also asked participants to rate the gold-standard abstractive
compressions. Our materials thus consisted of 120 (30 x 4) source-target sentences. We
collected ratings from 27 unpaid volunteers, all self-reported native English speakers.
The study was conducted over the Internet using the WebExp software package [Keller
et al. 2009]. The experimental instructions are given in Appendix C.

7. RESULTS

Our results are summarized in Table VII, where we show grammaticality and impor-
tance mean ratings for the extractive compression system (Extract) and two versions of
our abstractive compression system (Extract+Abstract and Extract+Abstract+Pivot).
We first performed an Analysis of Variance (ANova) to examine the effect of different
system compressions. The ANova revealed a reliable effect on both grammaticality and
importance (significant over both subjects and items at p < 0.01).

We next examined in more detail between-system differences. Post hoc
Tukey tests revealed that the grammaticality ratings obtained for Extract and
Extract+Abstract+Pivot are not significantly different, indicating that both systems
produce comparable output. The Extract+Abstract system is significantly worse than
Extract and Abstract+Extract+Pivot (o < 0.05), again with regard to grammatical-
ity. This is not entirely surprising, as the model attempts to use paraphrase rules

22Tt would be preferable to compare the output of the systems at their natural compression rates, however,
this is difficult to do objectively. This is because the evaluation metrics (automatic and manual) are strongly
biased towards longer outputs. It is much more difficult to compress well at lower compression rates while
remaining grammatical and not discarding key information. To eliminate this bias we compare compression
outputs with similar average compression rates.
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Table VII. Mean Ratings on Compression Output Elicited by Humans

‘ Models Grammaticality Importance CompR  Words/Sent ‘
Extract 3.67* 3.20* 78.7 21.7
Extract+Abstract 2.96*1 3.30* 80.0 22.4
Extract+Abstract+Pivot 3.65% 3.60*} 78.5 21.9
Reference 4.69 4.18 58.0 154

*: significantly different from the gold standard; i: significantly different from Extract.
Also shown are the compression rate (macroaveraged) and the average number of
words per sentence (microaveraged); the input had 27.8 words per sentence.

but since it has seen only a few of them, their application is mostly infelicitous, re-
sulting in awkward sentences that our participants rate unfavorably. Compared to a
purely extractive compression system, an abstractive compression model has to work
a lot harder to preserve grammaticality, since it allows for arbitrary rewrites which
may lead to agreement or tense mismatches and selectional preference violations. The
scope for errors is greatly reduced when performing solely deletions.

As far as importance is concerned, our abstractive compression models receive higher
ratings than the extractive compression system and the difference is statistically sig-
nificant for Extract+Abstract+Pivot (@ < 0.01). We conjecture that this is due to the
synchronous grammar we use which is larger and more expressive than the one em-
ployed by the extractive compression system. In the latter case, a word sequence is
either deleted or retained. We may, however, want to retain the meaning of the se-
quence while rendering the sentence shorter, and this is precisely what our model
can achieve, for example, by allowing substitutions. Finally, both the abstractive and
extractive compression outputs are perceived as significantly worse than the gold stan-
dard, both in terms of grammaticality and importance (« < 0.01). This is not surprising:
human-authored compressions are more fluent and tend to omit genuinely superfluous
information. This is also mirrored in the compression rates shown in Table VII. When
compressing, humans employ not only linguistic but also world knowledge which is
not accessible to our model. Although the system can be forced to match the human
compression rate, the grammaticality and information content both suffer. More so-
phisticated features could allow the system to narrow this gap.

We also measured how well our participants agreed in their ratings. We employed
leave-one-out resampling [Weiss and Kulikowski 1991], by correlating the data ob-
tained from each participant with the ratings obtained from all other participants. We
used Spearman’s p, a nonparametric correlation coefficient, to avoid making any as-
sumptions about the distribution of the ratings. The average inter-subject agreement
on grammaticality was p = 0.75 and on importance p = 0.72.22> We believe that this
level of agreement is reasonably good indicating that participants can reliably judge
the output of our systems on the dimensions of grammaticality and importance. The
fact that participants agree with regard to importance is interesting given that the no-
tion can be subjective and was defined rather loosely in our experimental instructions
(see Appendix C).

We next examined the output of our system in more detail by recording the number
of substitutions, deletions, and insertions it performed on the test data. Deletions
accounted for 67% of rewrite operations, substitutions for 27%, and insertions for 6%.
Interestingly, we observe a similar ratio in the human compressions. Here, deletions
are also the most common rewrite operation (69%) followed by substitutions (24%),

23Note that Spearman’s rho tends to yield lower coefficients compared to parametric alternatives such as
Pearson’s r.
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Table VIIl. Compression Examples Including Human and System Output

o

: Kurtz came from Missouri, and at the age of 14, hitch-hiked to Los Angeles seeking top diving
coaches.

: Kurtz came from Missouri, and at 14, hitch-hiked to Los Angeles seeking top diving coaches.

Kurtz hitch-hiked to Los Angeles seeking top diving coaches.

Kurtz came from Missouri, and at 14, hitch-hiked to Los Angeles seeking diving coaches.

The scheme was intended for people of poor or moderate means.

The scheme was intended for people of poor means.

The scheme was planned for poor people.

The scheme was intended for the poor.

He died last Thursday at his home from complications following a fall, said his wife author
Margo Kurtz.

He died last at his home from complications following a fall, said wife, author Margo Kurtz.
His wife author Margo Kurtz died from complications after a decline.

He died from complications following a fall.

But a month ago, she returned to Britain, taking the children with her.

: She returned to Britain, taking the children.

But she took the children with him.

But she returned to Britain with the children.

: Firstly, the Swapo-democrat emblem is placed just above the Swapo emblem on the ballot
paper, meaning that it will be seen first.

: The Swapo-democrat emblem is placed just above the Swapo emblem meaning that it will be
seen first.

: Initially, the Swapo-democrat emblem is above the Swapo emblem on the ballot paper.
: Firstly, the Swapo-democrat emblem, placed above the Swapo emblem, will be seen first.

: That was conceded in an interview yesterday by Dr Kenneth Abrahams, a member of the
National Front and a former Swapo man who was thrown into jail by Mr Nujoma.

: That was conceded in an interview by Dr Kenneth Abrahams, a member of the national front
and a former Swapo man who was thrown into jail by Nr Nujoma.

: That was conceded in an interview of Dr Kenneth Abrahams, a National Front member who
was thrown into jail by Mr Nujoma.

G: Dr Kenneth Abrahams of the National Front conceded that.

olermEoerH

oer ® oermEoeEH

=

>

(O: original sentence, E: extractive compression model, A: abstractive compression model, G: gold
standard).

and insertions (7%). The ability to perform substitutions and insertions increases the
compression potential of our system, but can also result in drastic meaning changes. We
therefore inspected the compressions produced by the automatic systems in Table VII
and the gold standard and recorded whether they preserved the meaning of the source.
In most cases (69%) the compressions produced by the extractive compression system
retained the meaning of the source. The abstractive compression systems performed
better, with Extract+Abstract preserving the meaning of the source 82% of the time,
and Extract+Abstract+Pivot 85%. Humans are clearly better at this, as 96.5% of their
compressions were meaning preserving.

We illustrate example output of our Extract+Abstract+Pivot system in Table VIII.
For comparison we also present the gold-standard compressions and output of the ex-
tractive compression system. In the first sentence the system rendered Kurtz the subject
of hitch-hiked. At the same time it deleted the verb and its adjunct from the first con-
junct (came from Missouri) as well as the temporal modifier at the age of 14 from the
second conjunct. The second sentence shows some paraphrasing: the verb intended is
substituted with planned and poor is now modifying people rather than means. In the
third example, our system applies multiple rewrites. It deletes last Thursday at his home,
moves wife author Margo Kurtz to the subject position, and substitutes fall with decline.
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Unfortunately, the compressed sentence expresses a rather different meaning from
the original. It is not Margo Kurtz who died but her husband. The fourth sen-
tence illustrates a fair degree of compression and paraphrasing: the infinitival clause
meaning that it will be seen first is dropped, the verbal clause is placed is substituted with
is, and the adverbial firstly with initially. Finally, our last example is not as com-
pressed as the human gold standard (the original sentence has 32 tokens and is re-
duced to 10). However, it demonstrates an interesting rewrite: the prepositional phrase
a member of the National Front is paraphrased with the compound noun a National Front
member.

8. DISCUSSION

In this article we have presented an end-to-end text rewriting system that simultane-
ously compresses and paraphrases sentences. We have shown that abstractive sentence
compression is a meaningful task which humans can perform with relative ease while
employing several rewrite operations in addition to deletion. Importantly, the greater
flexibility of the abstractive compression task permits better compression rates com-
pared to word deletion, and thus holds promise for a variety of applications that must
produce shortened textual output.

We have proposed a discriminative tree-to-tree transduction model for the abstrac-
tive compression that can account for structural and lexical mismatches. The model
incorporates a synchronous tree substitution grammar which encodes a large space
of paraphrasing rules and is extracted from bilingual corpora. Experimental evalua-
tion shows that our approach yields shorter target sentences that are grammatical and
(mostly) preserve the meaning of the longer source sentences while using rewrite rules.
Although we have applied this modeling framework to the compression task, we argue
that it can be easily ported to other rewriting applications such as text simplification
[Chandrasekar and Srinivas 1996] and even fully abstractive document summarization
[Daumé IIT and Marcu 2002]. The abstractive compression task itself could also serve
as a testbed for paraphrase induction systems whose rewrite rules are often evaluated
out-of-context.

Possible extensions and improvements to the current model are many and varied.
Firstly, as hinted at earlier, the model would benefit from extensive feature engineering,
including source conditioned features and n-gram features besides the language model.
For example, the model parameters from Galley and McKeown [2007] (e.g., conditioning
deletions on syntactic contexts of variable length, treating head-modifier relations in-
dependently, lexicalization of the synchronous productions) could be easily included as
features in our approach. Importantly, our model can incorporate all kinds of noninde-
pendent features while tailoring the optimization objective more directly to the task at
hand. A richer grammar would also boost performance. This could be obtained from ex-
isting paraphrase resources such as the Multiple-Translation Arabic and Chinese cor-
pora. Wikipedia is another valuable resource for text rewriting. For example, we could
learn rewrite rules from Wikipedia’s revision histories [Yamangil and Nelken 2008].

The approach presented here applies to individual sentences rather than entire
documents. Although extracting a document-level synchronous grammar is computa-
tionally expensive [Daumé III and Marcu 2002] potentially leading to prohibitively
many rules, it is possible to render the model more document aware by incorporat-
ing discourse-specific features [Clarke and Lapata 2010]. For example, decisions on
whether to remove or retain a word (or phrase) could be informed by its discourse prop-
erties (e.g., whether it introduces a new topic, or whether it is semantically related to the
previous sentence). An obvious extension would be to interface our compression model
with sentence extraction, for example, by adopting a two-stage architecture where the
sentences are first extracted and then compressed or the other way round [Lin 2003].
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Finally, an interesting direction for future work is the development of loss functions
that are more suited to the abstractive compression task. The loss function employed
in our experiments was based on the Hamming distance over unordered bags of
tokens. Ideally, we would like a loss that guides the model towards shorter output
that is meaning preserving. Unfortunately, this is not so easy to measure while
maintaining a shallow approach. We could compute meaning equivalence by resorting
to WordNet [Fellbaum 1998] or taking advantage of recent advances in recognizing
textual entailment [Padé et al. 2009] and compositional vector-based models [Mitchell
and Lapata 2010].

APPENDIX
A. ANNOTATION INSTRUCTIONS

This annotation task is concerned with sentence compression. You will be presented
with a selection of newspaper articles. Your task is to read each sentence in the article
and compress it so as to produce a shorter version. The compressed sentence should
be grammatical and retain the most important information of the original sentence
without changing its meaning.

In producing compressions, you are free to delete words, add new words, substitute
them, or reorder them. While doing the task you will find that word deletion is the most
frequent compression operation. You should use substitution, insertion, and reordering
operations only if they render the original sentence shorter. In other words, we are only
interested in rewriting operations that reduce the original sentence. Simply paraphras-
ing the original without reducing its length will not yield appropriate compressions.

There are several rewrite operations you may wish to apply in order to render the
original sentence shorter. For instance, you may delete appositions or parentheticals,
relative clauses, or you may rewrite a passive verb as an active one. In other cases you
may choose to substitute two or more words with a shorter word or phrase that conveys
a similar meaning. You can find a list of examples illustrating a variety of rewrite
operations here.2* We recommend that you study these examples before embarking on
the annotation.

Although there is a certain degree of flexibility in creating compressions, you should
not rewrite a sentence as two or more sentences. In other words you should produce one
sentence (possibly with a main and subordinate clauses) but not multisentence output
(e.g., a discourse). You are also not allowed to delete any sentence from the original
document.

A small number of sentences will be very short or will contain no information and
thus will not be amenable to compression. When you come across such a sentence you
should not perform any rewriting operations. The original and compressed sentence
are identical in this case.

The annotation will proceed on a document-by-document basis. In compressing in-
dividual sentences you should ensure that the resulting (compressed) document is
coherent. This will be relatively easy to enforce and in most cases will come naturally
with your compressions.

There are no correct answers to this task. All compressions produced are considered
valid provided they have been made while considering:

—the most important information in the original sentence;

—the grammaticality of the compressed sentence;

—rewrite operations that reduce the length of the original sentence;
—rewrite operations that do not distort the meaning of the original sentence.

24We omit the list of examples from the sake of brevity; most of these were taken from Dras [1999].
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The interface will present you with a selection of documents to choose from. Once you
are done with your annotation, please hit the “submit” button and your compressions
will be automatically saved. It is also possible to view and revise your compressions;
simply go to the Document Selector, choose the document you wish to change, and hit
the reload button. Once you load a document, you will then be asked for your name
and email address; these are used for tracking purposes and will not be passed onto
any third party.

Each sentence will be followed by a Compressed Sentence box for writing down
its corresponding compression. If the sentence cannot be compressed, then please
copy the original sentence verbatim in the Compressed Sentence box. The interface is
illustrated next.

Source Sentence:

Sergei, who is a licensed surgeon, now practices healing of the spirit, his
only instruments his hands and a bent wire that measures human energy
fields for curses that cause illness and depression.

Compressed Sentence:

Sergei practices healing of the spirit with his hands and a wire measuring
energy fields causing illness and depression.

Before starting the annotation task make sure to study some examples of compressed
sentences. In addition to the individual example sentences mentioned before, we have
also provided you with a fully compressed document. Please read it to get an idea of
how your compressions should look. Finally, if you have any questions or comments
regarding this experiment please contact us.

B. ANNOTATION EXAMPLE

The following table illustrates a source document from our corpus and its compressed
version as created by our annotator.

Source Target

Snow, high winds and bitter disagree- The town of Zafferana is threatened by
ment yesterday further hampered at- Mount Etna, still untamed due to snow,
tempts to tame Mount Etna, which is winds and disagreement

threatening to overrun the Sicilian town

of Zafferana with millions of tons of vol-

canic lava.

The wall of molten lava has come toavir- The lava has stopped 150 yards from the
tual halt 150 yards from the first home town, but its flow is accelerating further
in the town, but officials said yesterday up the slope.

that its flow appeared to have picked up

speed further up the slope.

A crust appears to have formed over the Lava began creeping over the formed
volcanic rubble, but red-hot lava began crust and into an orchard.

creeping over it yesterday and into a pri-

vate orchard.

Bad weather dashed hopes of attempts Bad weather stopped attempts to hold
to halt the flow during what was seen as the lava’s flow.

a natural lull in the lava’s momentum.
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Some experts say that even if the erup-
tion stopped today, the sheer pressure of
lava piled up behind for six miles would
bring debris cascading down on to the
town anyway.

Some estimate the volcano is pouring out
one million tons of debris a day, at a rate
of 15 ft per second, from a fissure that
opened in mid-December.

The Italian army yesterday detonated
nearly 400 1b of dynamite 3,500 feet up
Mount Etna’s slopes.

The explosives, which were described as
nothing more than an experiment, were
detonated just above a dam built in Jan-
uary and breached last week.

They succeeded in closing off the third
of five underground conduits formed be-
neath the surface crust and through
which red-hot magma has been flowing.

But the teams later discovered that the
conduit was dry, suggesting that the lava
had already found a new course.

Rumours have been circulating that ex-
perts are bitterly divided over what to

do.

But in another experiment 50 two-ton
concrete slabs are to be chained together
and dumped from a huge tilting steel
platform about 6,750 ft above sea level.

It is hoped the slabs will block the con-
duit from which the main force of the
lava is said to be bearing down “like a
train”, causing it to break up and cool.

High winds and snowfalls have, how-
ever, grounded at a lower level the pow-
erful Us Navy Sea Stallion helicopters
used to transport the slabs.

Prof Letterio Villari, a noted vulcanolo-
gist, said yesterday he had “absolutely
no faith whatsoever” in the plan.

If Zafferana was saved from the lava,
which could flow for a year or more, it
would be “a complete fluke”, he said.

T. Cohn and M. Lapata

Even if the eruption stopped today, the
lava’s pressure would bring debris on the
town anyway.

One million tons of debris a day is pour-
ing out of a fissure that opened in mid-
December.

The army yesterday detonated 400 lb of
dynamite on the slopes.

The explosives were detonated exper-
imentally above a dam breached last
week.

They closed off the third of five under-
ground magma conduits.
The conduit was dry, suggesting the lava

had found a new course.

Rumour has it experts are divided over
what to do.

In another experiment, concrete slabs
are to be dumped from a 6,750 ft height.

The slabs may block the main lava con-
duit.

Bad weather, however, has grounded the
helicopters transporting the slabs.

Vulcanologist Prof Letterio Villari has no
faith in the plan.

Saving Zafferana from the lava would be
a fluke, he said.

C. EXPERIMENTAL INSTRUCTIONS

In this experiment you will be asked to judge how well a given sentence compresses
the meaning of another sentence. You will see a series of sentences together with their
compressed versions. Some sentence compressions will seem perfectly OK to you, but
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others will not. All compressed versions were generated automatically by a computer
program.

Your task is to judge how well a compressed sentence paraphrases the original sen-
tence. You will judge each compression according to two criteria: (a) grammaticality,
and (b) importance. The grammaticality judgment is based on whether the sentence
is understandable. The importance judgment relates to how well the compression pre-
serves the most important information of the original (without distorting its meaning)
and whether it is adequately compressed. Both judgments are rated on scales from 1
(poor) to 5 (good).

A compression with a low grammaticality score is one that is almost impossible
to understand. Compressions should receive low importance scores if they miss out
important information from the original sentence, change its meaning, or do not remove
any superfluous information even though it is evident that it can be omitted without
drastic information loss. A good compression is one that is readily comprehensible,
retains the most important information from the original sentence, and is meaning
preserving. Good sentence compressions should receive a high grammaticality and
importance scores. For example, if you were asked to rate the following compression
indicated in boldface:

Nonetheless, FBI director Louis Freeh has today ordered a
change—this is being reported by the New York Times—
ordering new restrictions on the sharing of confidential in-
formation with the White House.

Nonetheless, FBI boss ordered change new restrictions
sharing confidential information with White House..

this sentence would probably receive a low grammaticality score (for example, 1 or 2) as
it is difficult to understand. It should receive a low score for importance (e.g., 1 or 2) as
it is not possible to get the gist of the original. Now, consider the following compression
of the same sentence.

Nonetheless, FBI director Louis Freeh has today ordered a
change - this is being reported by the New York Times - order-
ing new restrictions on the sharing of confidential information
with the White House.

FBI director Louis Freeh has today initiated a change -
as reported by the New York Times.

You would give the compression a higher grammaticality score (for example, 4 or 5)
but a low importance score (for example, 1 or 2). The compression preserves the least
important information (the fact that the New York Times is reporting). Now suppose
that you were given the following sentence.

Nonetheless, FBI director Louis Freeh has today ordered a
change - this is being reported by the New York Times - order-
ing new restrictions on the sharing of confidential information
with the White House.

Nonetheless, FBI director Louis Freeh has ordered a
change - this is being reported by the New York Times -
ordering new restrictions on the sharing of confidential
information with the White House.
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Here, the sentence is not compressed very much at all. In fact it is identical to the
original except for the word today. Although this sentence would receive a high score
in terms of grammaticality, it should have a low importance score (probably 1) since it
has not removed any extraneous information. On the other hand, if you were given the
following compression:

Nonetheless, FBI director Louis Freeh has today ordered a
change - this is being reported by the New York Times - order-
ing new restrictions on the sharing of confidential information
with the White House.

FBI director Louis Freeh introduced new restrictions
on information sharing with the White House.

you would probably give it a high number for both grammaticality and importance
(for example 4 or 5). Here, the compression is meaningful (grammatical); it produces a
short version of the original sentence while retaining important pieces of information
(i.e., the changes that have been ordered).

You will be presented with the original sentence and its corresponding compression
which will always be presented in bold. Read the compression then make your judg-
ments. There are no “correct” answers, so whatever numbers seem appropriate to you
are a valid response. While you are deciding a number for a compression, try to ask the
following questions.

—Does the compressed sentence preserve the most important bits of information from
the original sentence?

—Is the compressed sentence easy to understand?

—Has the compressed sentence removed information you deem not very important to
the original sentence?

—Does the compressed sentence seem fluent?

—Has the compressed sentence preserved the meaning of the original sentence?

Use high numbers if the answer to the preceding questions is “yes”, low numbers if
it is “no”, and intermediate numbers for sentences that are understandable, yet not
entirely accurate or natural compressions of the original sentence. Try to make up your
mind quickly and base your judgments on your first impressions. The experiment will
take approximately 20 minutes.
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