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Abstract

Advances in computing hardware and multimedia applications have spurred the development

of mobile devices such as smartphones and PDAs. Amongst the most used applications on

handheld devices are mobile 3D graphics such as 3D games and virtual environments. With

this significant increase of mobile applications, one of the challenges is how to efficiently

transmit the bulky 3D information to resource-constrained mobile devices. They impose

significant demands on the limited battery capacity of mobile devices. Thus deploying

efficient approaches to decrease the amount of streamed data with the aim of increasing the

battery lifetime has become a key research topic.

In this study, we design and implement an adaptive priority-based framework for effi-

ciently streaming 3D textures to mobile devices with limited energy budget over wireless

networks. Our results show that using our proposed adaptations significantly improves the

gameplay quality per unit of energy consumed to download 3D textures in mobile games.

Keywords: Mobile 3D Games, Budget-based Gaming, Context-aware 3D Streaming, Energy-

efficient Mobile Gaming, 3D Texture Streaming, Dynamic and Static Gaming Scenes
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Chapter 1

Introduction

Nowadays with the growing demands of mobile applications together with improvements in

handheld hardware technologies, one can undoubtedly say that mobile computing will soon

replace PC-based computing for the average consumer. Already, more than half of the world

population uses cell phones or other mobile devices [13], more mobile phones are used to

browse the Internet than PCs, and the average person is more likely to use a handheld device

than a PC for a variety of applications [12]. For computing, this is a natural evolution as we

move from the traditional device-centric era (PC) to a new user-centric era, i.e. ubiquitous

or mobile computing. For mobile devices, this trend is the result of the fast progress made

in two areas: capabilities and features of mobile devices, which now have integrated 3D

hardware accelerators, fast CPUs, large memory, Bluetooth and WiFi, as well as the rapid

advancement in wireless networking technologies such as 3G and 4G networks. As a result

of this growth, universities across the globe are including mobile applications design and

development as part of their curricula, and major projects around the world are focusing on

investment in the research and development of applications on the mobile handheld devices

working on the next-generation wireless systems and services [42].

At the same time, we are witnessing a trend towards the mass consumption of new

media. While traditional applications such as email, web browsing, music, and video are

still popular, there is a significant rise in the next generation multimedia and graphics

applications such as online 3D games and 3D virtual environments. Many online game

genres such as Massively Multiplayer Online Games (MMOGs) make it possible for millions

of players to interact with each other simultaneously. MMOGs are not only used for gaming,

but also used for other purposes such as socializing, business, and even academics and

1
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Figure 1.1: Quake 3, an FPS mobile game played on an Android smartphone [2].

scientific experiments. Currently many real companies such as IBM, Intel, CNN have opened

virtual branches in these online games and online virtual environments like in Second Life,

and massive number of players and users spend virtual monies in exchange for real-world

money, or for trading virtual goods. As a popular example, World of Warcraft has gained

over 11.5 million subscribers with a peak of 500,000 players online at a given time [49].

Mobile gaming is also growing with a high rate. There are impressive statistics showing

the significance of mobile gaming: It is estimated that 78.6 million people in the United

States alone played mobile games in 2009, downloads of mobile games increased tenfold

compared to 2003 [43], and mobile games generated more than $1.5 billion annually in

revenue [27]. Newzoo’s mobile gaming trend report [7] shows that the total number of

Americans that play games on their smartphone, tablet or iPod Touch has now surpassed

the 100 million mark, a year-on-year increase of 35%. Europe shows a growth of 15%,

totaling 70 million gamers for seven key territories. Men slightly outnumber women in the

US (52%) as well as in key European countries (55%). Growth rate in terms of time and

money spent is significantly higher. In 2011, mobile gaming took 13% of all time spent on

games worldwide, totaling more than 130 million hours a day, and 9% of total money spent

on games, grossing $5.8bn.

After the integration of 3D APIs into mobile platforms, the mobile gaming world started

to launch its own brand games. There are many online mobile stores such as the popular

Android Market [1] which offers applications and games on Google Play for Android-based

smartphones and tablets. Same with other online mobile stores such as Apple Store [9]

and Nokia Store [8]. With no doubt the growth rate of mobile games is so high that many
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observers believe it can beat the computer gaming industry in the near future. Many popular

games like First Person Shooter (FPS) Games or Role Playing Games (RPG) which once

were played on PCs are now available for mobile devices, enabled with the features for

multiplayer modes. Figure 1.1 shows a screenshot of the popular Quake 3 FPS game on a

smartphone that has support for online multiplayer. For Canada, it is estimated that the

percentages are about the same if not higher, due to very high rate of home and mobile

Internet penetration in Canada, and the fact that Canada is consistently one of the top

5 countries in terms of spending on computer games per capita; in fact it is often ranked

number one [43].

The new interest in 3D media is not just limited to games and virtual environments; it

impacts the whole Web experience as well. Browsers have started to incorporate 3D displays

and processing capabilities as shown by initiatives such as WebGL and O3D, while social

networks, traditionally static 2D environments, are now moving to offer users a rich 3D

experience. Despite the promising nature of these new media, significant challenges remain

to be solved in order to bring them to the mobile devices, the next generation computing

platforms. Millions of people spend their time and money on online games and in online

virtual/social environments, especially using their mobile handheld devices. This has led

researchers to consider mobile 3D gaming as an avenue for research to further manage and

support this emerging massive industry as well as its traffic on the network and user’s quality

of experience [42].

1.1 Motivation

Smartphones and other mobile handheld devices such as PDAs are ubiquitous. From this,

we can easily derive all the other facts about mobile gaming, which is advancing with a

high pace. As hardware prices are continuously falling down and new cellphones have ever-

increasing computational power, they also become ideal gaming devices. Mobile phones

seems to be must-have nowadays, therefore their market is huge. We are witnessing that cell

service providers and companies are offering options to exchange the old-style and classic

mobile phones with the new generation of smartphones with new and incredible options

available in the form of a wide range of applications. In the past years people had to buy

a video game system or a gaming PC in order to play video games. But nowadays they

can get similar functionality from their mobile devices and smartphones, with no additional
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cost. The mobile device is a full functional package; it removes the need to carry a second

dedicated system because everything is integrated in a single package.

Besides the benefit of having to carry only a single device for all our typical daily uses

such as telephony, internet access, and gaming and entertaining needs, another factor which

makes gaming on mobile devices incredibly accessible to much larger audience is the ease

of usability. One can simply choose a game he or she likes, and immediately start to play.

Clearly there is no need to go to a shopping store or download via PC, and furthermore

for example, the USB cable might be lost to transfer the game to the smartphone. All the

processes are done on the device itself maybe simply by pushing several buttons.

The increased processing power and advanced functionality of the current-generation

mobile devices also has a big impression on the game developers. Even the ordinary class

of devices is capable of generating 3D gaming experiences similar to games being played on

the gaming consoles such as Xbox and PS2. Given these capable hardware platforms, we

can also start experimenting with more elaborate games and showcasing our desired testing

benchmarks which is area with so much potential for innovation and research.

Smartphones bought from the service providers are usually accompanied with data plans.

They are not only used for pure telephony anymore but actually is used more for surfing

the Internet. A user having a smartphone is very likely to be connected to the web at any

time. Permanent connectivity opens up a completely new world for mobile gaming: Online

gaming. People can challenge other people in a multiplayer 3D game, or maybe explore

virtual 3D worlds together; and all of this probably occurs on a bus or train!

There are many challenges associated with the mobile online gaming. Due to the limi-

tations in network bandwidth, memory size, battery life and computation resources of the

mobile devices, a good 3D mobile game must balance view, energy, and performance. One

of the challenges to achieving this balance is to efficiently transmit and render bulky 3D

information, such as object textures. These textures are highly important as they are what

the players will see. The failure to receive a texture can have a significant negative impact

on the visual quality of the game and on the user’s experience.

In this thesis, we are trying to tackle problems associated with insufficient available

budgets on the mobile devices by proposing an adaptive framework to efficiently stream

bulky 3D textures. Our goal is to maximize the quality of the 3D textures that are streamed

within an energy budget specified by the user. We assume that the relationship between

energy consumption and the amount of data downloaded is known as in Figure 1.2 so that
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a download budget that achieves the energy budget can be estimated. Our approach is to

selectively reduce the sizes of the textures so that the total amount of data transmitted

to a mobile device satisfies the download budget. In the following section we explain the

research problem more in depth.

1.2 Proposed Research

As previously mentioned, the mobile handheld devices such as smartphones and PDAs are

providing increasing functionality due to rapid improvements in processing power, storage

capacities, graphics, high-speed connectivity, etc. Particularly, the advanced computation

and communication technologies is leading to effectively integrate multimedia and graphics

functions into these battery-powered devices. Understanding power consumption in mo-

bile multimedia is the key for efficient power management of the next-generation mobile

multimedia. Besides that, the increasing power requirements of the new smartphones and

tablets are far outpacing improvements in battery technology. Due to these reasons the

topic of energy efficiency has become very important for mobile battery-operated devices.

Therefore the main problem faced by these devices is energy management, since battery

capacities are not experiencing the same exponential growth as other technologies such as

processing power and storage. While there is ongoing research in discovering and exploiting

ambient energy sources, it is highly likely that energy will remain the key bottleneck for

mobile devices in the near future.

Due to the slow development of battery technologies and limited battery capacities, the

gap between power consumption of mobile multimedia and the limited power source has

been widened. A typical modern smartphone does not last more than about 24 hours with-

out having to be recharged [28]. However, a number of factors have conspired to change

the rate of battery consumption. Firstly, wireless interfaces such as Bluetooth and 802.11

have become ubiquitous, and during data transfer (though not during idle state), they are

relatively hungry consumers of energy. Switching over to superfast 4G networks, is only

going to exacerbate the problem because 4G radio chipsets require a lot more processing

power than current chipsets to decode far greater amounts of data encoded in the LTE wire-

less spectrum [6, 14, 41]. Secondly, mobile devices are getting into more multi-functional

computing devices with the always-on expectation of phones, and at the same time, devel-

opers are producing increasingly more sophisticated and power-hungry applications. Key
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hardware components draining energy in smartphones are the display, the radio, and au-

dio [18, 31]. While the contribution of each component varies according to how they are

used by applications, all of those components significantly affect the energy budget.

WiFi devices need more power to generate a stronger signal compared to other radio-

based interface cards such as Bluetooth and 3G [24, 32]. A recent study precisely measured

energy consumption for different parts of a mobile phone mainly for wireless communication

and other services. The results showed that the WiFi IEEE 802.11 Network Interface Card

uses as much as 24 times more power while downloading data compared to the idle mode [35].

From 802.11 protocols, each frame length is described in detail. It would help calculat-

ing power consumption of single frame or specific data length (e.g., 20MB) exactly working

under specific working modes. This theoretical value of energy consumption can be calcu-

lated using vendor specification of a card working with 802.11 protocols. One can obtain

and compute the energy value from data obtained from real devices. Rahmati, et al [38]

investigated a simple linear-cost energy model for wireless data transfers, assuming con-

stant network conditions throughout a single transfer. They modeled the energy cost for

establishing a connection and transferring n megabytes of data as

E = Ee+ nEt (1.1)

where Ee is the energy cost for connection establishment and Et the energy per MByte of

data transfer. Also in [36] and [16], the authors argue that frame length details for 802.11

protocols can be used to calculate power consumption for specific data lengths. Their results

also show that per-packet energy consumption of network interfaces can be modeled using

Equation (1.1). Figure 1.2 shows the average energy consumed for downloading data of

different sizes against varying inter-transfer times in WiFi.

While modern cellular standards highlight low client energy consumption, existing meth-

ods do not explicitly emphasize reducing power that is consumed when a client is actively

communicating with the network and receiving large amounts of data [15]. The high data

rates and resulting high energy demands of modern networked multimedia systems make

energy-aware adaptations for these widely used mobile applications an important consider-

ation. 3D mobile applications such as games and 3D virtual environments are amongst the

most used multimedia applications. In addition, due to progress in the hardware of mobile

devices, these devices can now support 3D graphics; many in fact use hardware acceleration

and provide GPU-based support of popular 3D formats.
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Figure 1.2: Average energy consumption for downloading data of different sizes over varying
inter-transfer times for WiFi [16].

Anyways, in spite of the promising nature of 3D multimedia and graphics, significant

challenges still remain to be solved in order to bring them into next generation computing

platforms, including mobile devices. As each mobile handheld device has limited capabilities

and resources, such as limited data plan needed for downloading, limited battery life, limited

memory, higher network latency due to the nature of wireless networks, and so on, the

usage of 3D games on mobile platforms is restricted. In addition to this, using more data

for streaming, even if it is available, will contribute to more energy consumption by any

wireless interfaces (e.g. WiFi, 3G, 4G, etc.), and thus faster battery drainage. Therefore,

even with 4G wireless networks that provide bandwidths of up to 100 Mbps, we are not able

to translate the availability of higher bandwidth into the continuous consumption of it.

The focus of this work lies in the streaming aspect of online mobile 3D games. The users

must receive the 3D textures dynamically from the server, based on the importance of the

content and the available energy budget. In our approach, we provide such features based

on which texture is more important for the player in the game, which means our approach

is context-based.

In the case of the mobile online 3D gaming experience, the goal of our proposed frame-

work is for a mobile user to be able to receive the textures that are fit for the defined

limited energy budget. Therefore, it is crucial for our framework to provide a prioritized

and content-aware approach in such a way that it can adapt the 3D textures to the available
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budget, and the same time by providing the maximum possible quality.

Specifically, the goal is to take advantage of both the user’s specific contexts (by taking

into account the importance of data) and limitations (available energy budget), so to offer

a new approach towards the delivery of live 3D game textures for mobile games over the

wireless network. By doing so, we are trying to reduce the amount of streamed textures, and

as a result we can address the challenges of limited download and energy budget that the

mobile handheld devices are faced with. In other words, our research focuses on reducing

the total size of data needed to be streamed from the server and be downloaded by the

clients. Therefore, decreasing the amount of battery usage, memory usage, etc. with aim of

maximizing the total quality is a consequence of our method.

1.3 Research Contributions

As the main contribution of this thesis, we propose an adaptive framework to efficiently

stream bulky 3D textures to mobile devices with limited resources. Our goal is to maximize

the quality of the 3D textures that are streamed within an energy budget specified by the

user. We assume that the relationship between energy consumption and the amount of data

downloaded is known as in Figure 1.2 so that a download budget that achieves the energy

budget can be estimated. Our approach is to selectively reduce the sizes of the textures so

that the total amount of data transmitted to a mobile device satisfies the download budget.

But in short, the thesis consisting of the following novelties:

• We used the concept of Multiple Choice Knapsack Problem in our context to select

all game textures, instead of selecting a part of textures which uses the 0-1 knapsack

problem.

• We classify the game textures into different classes and prioritize them in our studies,

and define a heuristic to make the best use of the available budget to stream the

textures with the aim of maximizing the total quality per unit of consumed energy.

• We define a simple light-weight sampling method similar to a down-sampling approach

to selectively choose texels in a texture to resize textures.

• We compare three different algorithms namely Non-adaptive, Semi-online, and Online

versions for study of dynamic game scenes, with the aim of improving the game quality
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while keeping the available budget constant.

• Simulations and implementation of a proof of concept testbed for validating our design.

1.4 Scholastic Output and Achievements

In addition to meeting its objectives as described above, this research undertaking has also

lead to a few of scholastic achievements and publications, as listed below.

Publications

• “Energy-budget-compliant adaptive 3D texture streaming in mobile games”, Moham-

mad Hosseini, Joseph Peters, and Shervin Shirmohammadi. In Proceedings of the 4th

ACM Multimedia Systems Conference (MMSys ’13), Oslo, Norway, 2013, p 1-11.

• “Energy-aware adaptations in mobile 3D graphics”, Mohammad Hosseini, Alexandra

Fedorova, Joseph Peters, Shervin Shirmohammadi. In Proceedings of the 20th ACM

international conference on Multimedia (MM ’12). Nara, Japan, p 1017-1020.

• “Adaptive 3D Texture Streaming in M3G-based Mobile Games”, Mohammad Hosseini,

Dewan T. Ahmed, Shervin Shirmohammadi. In proceedings of ACM Multimedia

Systems 2012 (MMSys ’12), Chapel Hill, North Carolina, USA, p 143-148.

Awards

• ACM SIGMM Student Travel Award, ACM Multimedia, Nara, Japan, 2012.

• Finalist (among top 10 out of 490 submissions) in Lockheed Martin’s Innovate the

Future Challenge, 2012.

• Travel & Research Award, School of Computing Science, Simon Fraser University,

2012.

1.5 Thesis Outline

The thesis is organized as follows: In chapter 2, we discuss relevant background and previ-

ous work on textures, texture compression, and 3D texture streaming along with adaptive
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media streaming. Chapter 3 explains our initial study of adaptive texture streaming for

static scenes. In this chapter we describe our texture adaptation framework, the texture

compression module, our communication model, along with talking about our 3D proof-of-

the-concept game and the evaluation part. Similarly, chapter 4 explains our detailed study

for dynamic scenes, in which we thoroughly describe our simulation methodology to study

dynamic gaming scenes, along with comparison of three different algorithms, evaluation and

experimental results. Chapter 5 summarizes and concludes the thesis while outlining venues

for future research.



Chapter 2

Background and Related Work

In this chapter we present some relevant background and different categories of state-of-the-

art approaches associated with parts of our proposed framework, and we describe how our

work is related to these approaches.

2.1 Textures

Texturing is a vital part of the visual experience of any type of 3D graphics and games. It

is applicable to First Person Shooter (FPS) games as much as it is to Massive Multi-player

Online (MMO) games, Role Playing Games (RPG), and 3D virtual worlds. A texture is an

image that is used to provide surface covering for a 3D model. 3D textures are a logical

extension of the traditional 2D textures, and have been used in high-end graphic systems to

generate a three-dimensional image map. Figure 2.1 shows two examples of textures used

in a mobile game, a texture for palm tree (left), and a texture for a column (right).

Generally, textures are bitmaps packed into an array or a matrix parallelepiped, with

each dimension constrained to a power of two (64 × 64, 128 × 128, 256 × 256, etc.), and

each cell representing a texture pixel, called a texel, which contains a color value. The

power-of-2 rule for game textures is based on memory buffer sizes of the graphics card, to

get the maximum memory efficiency out of the graphics card. Textures are characterized

by two parameters: the number of texels, and the information content (color depth) per

texel. There are other attributes that are applied to bitmaps but they are derived from

these two fundamental parameters. Texels in a bitmap are RGB formatted, and contain

certain color information. The information content is always the same for all of the texels

11
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Figure 2.1: Two examples of textures used in a mobile game.

in a particular bitmap. Textures are loaded into RAM for 3D environments such as virtual

reality applications and 3D games.

The most straightforward way of storing textures is simply to list the bitmap information.

In this case, the amount of space required for any texture is easy to calculate given the

texture dimensions (N ×M) and color depth in bits (B). The equation for the file size in

KBytes is simply

(KByte) =
(N ×M ×B)

(8× 1024)
(2.1)

where N and M are the number of horizontal and vertical texels, and B is the number of

bits per texel. As an example, a 256× 256 texture with 24-bit color depth would have a file

size of 196608 Bytes, or 196 KB.

2.2 Texture Compression and Resolution

To reduce the amount of texture data that needs to be transmitted, one can use texture

compression, which is a specialized form of image compression designed for storing texture

maps in 3D rendering systems. It is a method of reducing the size, memory, and memory

bandwidth required for textures with a small reduction in visual quality. In certain games,

where a low-resolution texture is used for a large surface (like a sky image), significant color

banding can be seen if texture compression is enabled. A combination of enabling texture

compression and high texture detail results in a good balance of quality and power saving

in many games.
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Currently there are a few texture compression techniques such as S3 Texture Com-

pression (S3TC) [26] and Ericsson Texture Compression (ETC) [47]. S3TC is a group of

related lossy texture compression algorithms used to compress textures in special hardware-

accelerated 3D computer graphics. ETC enables compression and decompression of textures

so that they can be used with ETC-capable handsets, such as Android-based handsets. The

first version of the ETC compression algorithm, ETC1, does not support transparency.

ETC2 is still under development, and is not available in any tools or hardware as of yet

(2012) [48]. It should be noted that all of these texture compression techniques are hardware-

based compressions and not all mobile devices have the hardware to support them. Another

disadvantage is that they involve much decompression overhead at the client side due to

the use of heavy and complicated arithmetics, which makes them unsuitable for battery-

operated devices running applications that use huge numbers of textures such as 3D games.

Furthermore, these texture compression techniques can lead to artifacts in low-resolution

textures which are commonly used in mobile games.

As part of our system, we propose a simple approach for texture compression with neg-

ligible overhead. Unlike the texture compression approaches described above, our approach

does not introduce discoloring artifacts, does not require the client device to have special

hardware, and involves no decompression overhead at the client side.

Another significant feature of textures is resolution, which refers to how large the textures

are. Using larger textures not only increases the streaming delay, but also uses more energy

by requiring the network card to be in the active mode longer, requires the CPU to render

more data, and uses more GPU memory due to the increased memory bandwidth needed. In

some cases, the result is a choppier performance. Although this can be somewhat alleviated

by using texture compression, texture compression itself can exhaust the hardware, and has

the other disadvantages that were mentioned above.

2.3 Adaptive Media Streaming

One of the main approaches for energy saving on mobile devices is adaptive streaming.

Adaptive streaming is a process whereby the quality of a multimedia stream is altered in

real time while it is being sent from server to client. Figure 2.2 shows an overview of how

multimedia adaptive streaming works. This adaptation of quality is controlled by decision

modules on either the client or the server. The adaptation may be the result of adjusting
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Figure 2.2: An overview of multimedia adaptive streaming [11].

various network or device metrics. For example, with a decrease in network throughput,

adaptation to a lower video bitrate may reduce video packet loss and improve the user’s

experience. Similarly, adaptations that reduce the amount of data being received over the

Wireless Network Interface Controller (WNIC) can save energy. Additionally this allows

the WNIC to be put into sleep mode more frequently, similar to the work in [25].

2.4 Related Work

In large virtual environments, users only interact with a subset of the objects that are visible

to them at a given time. Work for 3D content streaming that takes advantage of this fact

can be classified into two major classes: region-based and interest-based streaming.

Region-based approaches only stream the geometry information for the player’s specific

region. Examples include DIVE [23], CALVIN [34], Spline [50], and VIRTUS [40]. In such

systems, the environment is divided into a number of “pre-defined” regions and before the

user interacts with a given region, the full content of the region must be downloaded.

In contrast, interest-based techniques use an Area of Interest (AOI) to determine object

visibility. NetEffect [20] is among such systems. These approaches however do not provide

any mechanism to control the visual quality. They may reduce the amount of game content

for downloading, but the download time might still be too long since in recent high-quality

games, there might be huge numbers of objects inside the AOI.

Another shortcoming of the existing approaches is that they do not prioritize the objects

according to whether the objects are important for a player, and whether a player is actually

interested to receive them. Additionally, existing approaches do not consider the receiver’s

resource restrictions and hence are less suitable for mobile devices.
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Finally, although it is not done for 3D games, Kennedy et al [30] proposed and devel-

oped an interesting approach for adaptive video streaming which analyses the remaining

stream-duration and the remaining battery-life in order to decide whether or not to send

an adaptation order to the dynamic streaming server. When the remaining stream dura-

tion exceeds the remaining battery life, the video quality is adapted. However, unlike video

streaming, game streaming is not deterministic since the actions being taken by the users

are not pre-defined. Also, purely from a gaming perspective, context-aware approaches are

needed since different objects/textures need to have different priority levels. This is very

much an open problem and still needs considerable research work.

In fact, there is currently no work that takes into account adaptive streaming of 3D

graphics for battery-operated devices based on an available energy budget. To the best of

our knowledge, the only research that has used game context as a parameter for object

selection and prioritization in 3D streaming is [37] in which Rahimi et al presented an

activity-centric context-aware object streaming approach for mobile games as a solution to

maximizing the player’s experience in the face of a mandatory reduction of the amount of

data streamed to the mobile device due to download/network limitations. They introduced

the idea of prioritized activity-centric streaming for mobile gaming. In their approach, they

considered the activity of the player to decide which objects are more important for the

accomplishment of that activity. In order to achieve this goal, the importance of each

object for each specific activity in the game is determined a priori by the game designers.

A list of different objects and activities for the current game scene would be provided prior

to running the game and less relevant objects will not be streamed, freeing resources for

objects that are more relevant. While interesting, this work does not distinguish between

objects and textures. The main bottleneck for 3D game streaming is the bulky textures,

not the wireframes of the objects. In our work, we specifically address textures.

In our previous work [27], we studied how to efficiently transmit bulky 3D information

to bandwidth- and computationally-limited mobile devices, by proposing two methods for

improving the transmission delay of 3D content over unreliable and congested networks.

We introduced Object Mesh Similarity as a server-side approach which replaces an original

object by a similar alternative object with less complexity which is then transmitted to

the client side, as well as Texture Stretching as a client-side approach, that leads to the

efficient receipt of textures. However, the goal in [27] was to improve the response time.
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For this study, we build on concepts from [37] and [27] to implement an adaptive priority-

based context-aware framework for efficiently streaming 3D textures to mobile devices with

a limited energy budget over wireless networks.



Chapter 3

Proposed Approach: Static Scenes

In this chapter, we explain our methodology regarding the implementation of different parts

of the adaptive texture streaming system for static scenes. Our design allows for efficient

streaming of 3D textures to mobile devices while satisfying a download budget which is

estimated based on an energy budget as explained in the introduction section, with the aim

of decreasing power consumption.

Figure 3.1 shows a detailed overview of different processes in our framework. As can be

seen in the figure, the system consists of two parts: client-side and server-side. Prior to the

gameplay, the client device sends the current available budget to the server, which the server

uses to optimize the textures that will be streamed based on how important they are in a

given scene of the virtual environment. To achieve this, the system uses a classification list

to prioritize the currently required textures acquired from a texture database. Then, based

on the budget constraint received from the user and the prioritized list, the textures are

selectively compressed, serialized and streamed to the target mobile device. The serializer

serializes various structures describing the graphics state to a buffer. Serializer’s additional

function is to fill the buffers until certain criteria is met (theoretically it can pass the buffer

to compressor after each command which, of course, would not be efficient for networking).

Progressive streaming is used as a complementary technique to send the 3D textures and

the corresponding objects over the network. Finally, the client receives the textures and in

parallel, as a part of the client-side 3D streaming, the 3D renderer adds the newly received

textures and objects to the graphics-layer and continues to render the game.

Receiving an optimum and efficient size of textures during a gameplay experience re-

duces the network bandwidth and thus the energy consumption of the handheld device that

17
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Figure 3.1: Outline of the proposed framework

receives the data as well as other limited resources (such as memory) for less-important

parts of the 3D world, while the streamed textures still fulfill their role in the game.

3.1 Problem Definition

For texture selection and streaming, the most significant factor in both battery and band-

width usage is the amount of data downloaded by the mobile device. As discussed in

Chapter 1, we suppose that a user specifies an energy budget, and a download budget that

achieves the energy budget is estimated. If the total size of the 3D objects and textures to

be streamed does not exceed the download budget, then all of them can be streamed. If

the download budget is insufficient to stream all of the objects and textures, then the total

size must be reduced. In this case, we stream all of the objects leaving a download budget

D for the textures. Every 3D texture has a specific size, and we must decide how to stream

them within the budget D.
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One approach to reducing the total size of the textures that are streamed is to transmit

a subset of them. Let T = (τ1, τ2, τ3, . . .) be the set of textures. Each texture τi has a size

sτi and a associated value vτi which is based on the priority of the corresponding object, or

how important the object is. We just use the term value to represent the importance value.

The goal is to stream a subset of textures T ′ ⊆ T that maximizes the total value of the

streamed textures without exceeding the download budget D. In other words

Maximize {T ′⊆T }
∑
τi∈T ′

vτi subject to
∑
τi∈T ′

sτi ≤ D. (3.1)

This selection scheme is the well-known 0-1 Knapsack optimization problem. The 0-1

Knapsack problem is NP-hard but there are good, efficient, approximation algorithms (fully

polynomial approximation schemes), so this approach is computationally feasible. However,

by using this method, only a subset of the textures would be selected and streamed to

the client, and the visual impact could result in an unsatisfactory gaming experience. For

example, compare Figure 3.14 (I) and Figure 3.14 (II) at the end of Section 3.5 on page 35.

To overcome the shortcomings of the 0-1 Knapsack approach, we propose a heuristic

algorithm that sends all textures, but with different resolutions according to their priorities.

This is the multiple-choice knapsack problem, in which the items (in this terminology,

textures) are subdivided into k different groups, and exactly one item must be taken from

each group. In other words, we are creating groups of textures where the textures in a group

all correspond to the same object but have different resolutions and we choose exactly one

texture from each group.

The idea of multiple-choice knapsack problem has been applied to certain contexts re-

cently. Y. Song et al in their paper [44] investigated the multiple multi-dimensional knap-

sack problem and its applications in cognitive radio networks. In their paper, a centralized

spectrum allocation in cognitive radio networks has been formulated as a multiple knapsack

problem. They proposed a heuristic algorithm with guaranteed performance. Lamani et al

[33] also proposed an end-to-end quality of service in pseudo-wire networks to tackle the

problem of setting end-to-end connections across heterogeneous domains using a multiple

choice knapsack problem. As another previous work, J. Chen et al also in their work [19]

borrowed the idea of multiple-choice knapsack problem for video stream selection used to

propose an online video adaptation system with the aim of reducing the users’ pricing.

In general the idea here is to apply textural compression (described in detail in section
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(I) (II) (III)

(IV) (V)

Figure 3.2: Visual view of applying a texture with different resolutions to a 3D column
object. (I to IV): the texture resolutions are 512 × 512, 256 × 256, 128 × 128 and 64 × 64
with the same depth color. (V): no texture.

3.3) to reduce the resolutions, and hence the sizes, of some of the textures so that a texture

for every object can be streamed within the download budget. Our heuristic algorithm to

choose which textures to compress, and by how much, is described in section 3.2.

Figure 3.2 shows the visual impact of reducing the resolution of a texture which is

applied to a 3D column object. The texture resolutions in Figures 3.2 (I) through (IV) are

512×512, 256×256, 128×128, and 64×64, respectively (all with 8-bit color depth). Figure

3.2 (V) shows the object with no texture applied. The reduction in quality in Figures 3.2 (I)

through (IV) is noticeable, but the impact of even the greatest reduction (Figure 3.2 (IV))

is much less than the impact of not applying a texture. So sending a low quality texture

(around only 4KB for the 64× 64 case) is far more acceptable than sending nothing.
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3.2 Adaptive Texture Streaming

The size of textures plays an important role in resource usage on mobile devices. If textures

are large, but account for less important objects (such as sky background during a fight

with the enemy) or if they are always rendered at a small size in the scene (such as a house

in the far distance), then the mobile device is wasting a lot of resources not only to receive

them via WNIC, but also to render them using valuable CPU/GPU resources. Thus, we

must take into consideration how important textures will be when displayed in the scene.

Streaming data to mobile players in real time is expensive both in terms of bandwidth

and computation. Besides streaming the bulky textures and objects, it requires passing data

related to dynamism regarding the inter-relationship of 3D objects, view change detection,

frustum culling, motion interpolation and extrapolation, and so on. Therefore as a key

part of streaming for networked games, especially for MMOGs, due to the high number of

textures in a 3D scene, the required set of textures is streamed in advance to be stored

locally [21, 39, 45].

In gameplay, some textures are more important than others purely from the gaming

context. As an example, the walls, floor, and some environmental textures in a typical game

are not as important as the players’ avatars, the enemies, and the goal objects. Therefore

the first step in our method is to establish the importance of each texture within a scene of

gameplay. We do this by allowing a designer to tag textures into two different importance

classes: Less-Important (C1) and Important (C2). Currently, some 3D game engines (such

as Unity3D) [10] support multiple levels of tagging (e.g. Player or Enemy tags) to identify

the gaming objects for scripting purposes. Thus, adding a feature of two-level tagging for

textures is not a considerable overhead for game design. In our thorough study in the next

chapter, we will use multiple level of tagging for textures. We have only used two levels in

this initial study for simplicity.

First, a list is created containing all textures classified by their importance class. Each

τij in the list represents a single texture where i signifies the importance class, and j is the

index of the texture within that specific class, as shown in Figure 3.3.

Figure 3.4 is a hierarchical pyramid that shows the possible texture resolutions used in

this study. As can be seen in Figure 3.4, the size of a 128 × 128 texture compared to a

256 × 256 is 1 to 4, if both have the same color depth. Thus for every index i and j, the
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Figure 3.3: An overview of the texture list, showing two different priority classes, C1 and
C2, along with the corresponding textures. The red sign represents a hypothetical available
budget, shown as a cutoff.

following equation can be written:

Size(Li) = 4(i−j) × Size(Lj) i ≥ j > 0 (3.2)

Figure 3.4: Different texture resolutions represented as various levels, along with a hierar-
chical view.

In this initial study, we have used a simple pyramid downsampling approach to compress-

ing the textures. More sophisticated compression methods are available and the compression

can be done in advance. Our approach can be used in these more general settings with only

minor adjustments as long as the relationships among the compression levels are known.

Now we describe how our heuristic algorithm works.

Our problem is to stream textures to a mobile device in a way that maximizes the total

quality of the streamed textures within an energy budget that is specified by the user of

the mobile device. We cannot know the energy consumption associated with textures in
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advance, but as argued in Chapter 2, it is closely related to the sizes of the textures needed

to be streamed to the client. So we estimate a download limit D based on the energy budget.

The size of a texture can be reduced by reducing its resolution, but this also reduces

the quality. To take this into account, we set a user-defined maximum level of compression.

Let Rmax be the maximum reduction in resolution that is acceptable to the mobile user. In

this study, we assume that Rmax = 4i for some i ≥ 0.

As an example, if the original size of a specific texture x is sx and Rmax = 4i with i = 2,

then the size of the smallest acceptable compressed texture will be sx/Rmax = sx/16.

The textures are classified into two importance classes, less-important (C1) and impor-

tant (C2), and each class has an associated relative value (v1 and v2). The assignments to

classes and the associated values are decided by the game designer. We normalize the values

by setting v1 = 1. Let S1 be the total size of textures in C1 before compression, S2 the total

size of textures in C2 before compression, and S=S1+S2.

We assume that the quality of a streamed texture is a function of its size (with maximum

quality corresponding to minimum compression) and its relative value. Our approach is

general and, with minor adjustments, will work with any function that can be effectively

computed. In this initial study, we use the simplest of these functions - the product of

size and value. For example, a texture τi of original size sτi with compression or scaling

factor ri and value vτi has quality
sτi×vτi
ri

. Our goal is to compress textures in a way

that maximizes the total quality subject to the constraints of the download budget D and

maximum reduction Rmax.

Algorithm

Calculate S1 (Total size of all textures in C1), S2 (Total size of all textures in C2), S (S1+S2),

D (Available budget).

• If S ≤ D, then no compression is needed.

• If S
Rmax

> D then the problem cannot be solved within the constraints D and Rmax.

• Otherwise, we solve one of the following subproblems.

Subproblem 1:
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If S2 + S1
Rmax

≤ D then all textures in C2 can be sent uncompressed and the problem is

to compress the textures in C1 in a way that maximizes the quality of the compressed tex-

tures in C1 within the download budget D1 = D − S2.

Subproblem 2:

If S2 + S1
Rmax

> D then we compress all textures in C1 by Rmax and the problem is to

compress the textures in C2 in a way that maximizes the quality of the compressed textures

in C2 within the download budget D2 = D − S1
Rmax

.

Algorithm for subproblem 1:

Calculate i1 such that:
S1
4i1
≤ D1 <

S1
4(i1−1)

. (3.3)

In other words, find the minimum i1 such that all textures in S1 can be streamed within

the budget D1 when they are resized by the factor 4i1 .

Our goal is to maximize the total size of the textures sent within the budget D1. To

achieve this, we compress the first texture in C2 by 4i1 . Suppose that after compression, it

has size x. This leaves a budget of D1 − x for the remaining textures. We then calculate a

new i2 for the remaining textures using budget D1 − x and compress the second texture in

C2 by 4i2 . This is repeated until all textures have been processed.

Algorithm for subproblem 2:

The algorithm is the same as for subproblem 1, except that we are processing textures in

C2 with an available budget D2 = D − S1
Rmax

.

The algorithm iterates over the list of all textures in O(n) time, supposing n is the

number of all textures, and for each of the textures it finds a suitable scaling factor (i1,

i2, etc.) in O(c) time in which c is constant. These two cases make the complexity of the

algorithm O(nc) = O(n), which is a linear processing time.
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Figure 3.5: TCM overall process along with the pseudo-code

3.3 Texture Compression

To make the quality of textures smaller, we designed a fast and efficient Texture Compression

Module (TCM), which given a resizing ratio, β, makes the texture smaller by modifying the

corresponding texture matrix. To achieve this, we simply choose a representative texel

within each [β × β] block in the original texture. This representative texel could be any of

the texels in the window block, or a mathematical mixture of them. In our experiments,

we chose this representative texel to be the most top-left texel of each block. Figure 3.5

illustrates the transformation process along with the TCM pseudo-code. The right matrix

represents a new compressed texture in which each texel is a representative chosen from

each [β × β] block in the original texture. Figure 3.6 shows how TCM provides a 4 × 4

block when applied to a 16× 16 texture with β =2. Choosing the representative texels is a

one-time operation, and our framework caches the produced textures for future uses.

It should be noted that currently there are several image resizing algorithms, such as

Lanczos, bilinear, trilinear, and bicubic algorithm [17]. However, these algorithms are com-

plex and applying them to all textures could cause too much overhead for the CPU and

decrease the system response time. The compression method that we use in this study im-

poses very little demand on the CPU, but could result in lower quality than other methods

depending on how quality is measured. Figure 3.8 shows a comparison of relative execution
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Figure 3.6: An example overview of the TCM procedure when applied to a 16× 16 sample
with β =2. The top-left most texel of each [2 × 2] window block would be chosen as the
representative texel during each iteration.

Figure 3.7: A 128 × 128 stone wall texture produced by TCM (left) compared with the
bicubic resampling algorithm (right).

times for different resizing methods, and Figure 3.7 compares an output texture produced

by TCM with a complex bicubic resizing algorithm. This is an interesting trade-off that

merits further study.

3.4 Communication Channel

HTTP-based progressive streaming has become a de facto standard for web-based data

delivery. Streaming over HTTP also allows multiple clients/devices to receive many possible

streams simultaneously. In addition, HTTP does not cause any NAT/firewall issues as is

the case with other media transport protocols like RTP/RTSP [4].

To take advantage of the above gains, we used HTTP 1.1 as the protocol for the com-

munication channel. Unlike HTTP 1.0 in which a separate connection to the same server is

made for every resource request, HTTP 1.1 can reuse a connection multiple times to down-

load the required resources. HTTP 1.1 communications therefore experience less latency as

the establishment of TCP connections presents considerable overhead [22].
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Figure 3.8: A comparison of relative execution time needed for running bicubic, bilinear
and our proposed algorithm to resize a 512× 512 texture by a ratio of 2 (β =2).

The concept being used in our framework is similar to Dynamic Adaptive Streaming

over HTTP (DASH), which is an adaptive bitrate streaming technology developed under

MPEG, where a multimedia file is partitioned into one or more pieces and delivered to a

client using HTTP. One or more representations (i.e., versions at different resolutions or

bit rates) of multimedia data are typically available, and selection can be made based on

network conditions, device capabilities and user preferences, which enable adaptive bitrate

streaming [46]. In our work we used a DASH-style approach for adaptive and progressive

streaming of textures over HTTP. To the best of our knowledge, no previous work has used

the idea of DASH for streaming of 3D graphics to mobile devices.

3.5 Evaluation

We used the Android port of the free jPCT 3D engine to evaluate our work. We prepared

a benchmark for our experiments, called Ninja Camp, and ran it as a self-runner demo so

that the tests were deterministic and not dependent on different gameplays.

Ninja Camp is a third person streaming-based client/server 3D demo with high polygon

and object count enabled with skeletal animation, consisting of 97 different textures. Based

on the gaming context, the important and less-important textures account for 37.2% and

62.8% of total texture size, respectively.

To make the progressive streaming work, we used a multi-threaded implementation, so in

parallel with streaming the objects/textures from the server, the previously streamed objects
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are built, rendered and added to the 3D world. We used HTTP as a communication protocol

for progressive streaming of 3D textures and objects. 3D objects are not loss-tolerant and

can therefore benefit from the reliable service of HTTP.

Our method uses a prioritization scheme based on the relative values of objects in the

context of the current game scene. As an example, in our demo, the enemy or a health kit

have a higher value than the trees and surrounding plants, so they should be shown with

higher quality in terms of texture resolution, and they should be streamed before lower value

objects. This is different than distance-based approaches that render with higher quality

whatever is closer to the player regardless of their semantic relevance in the current game

context. Figures 3.9 (I) to (III) show screenshots of different stages in the streaming of a

particular scene based on the prioritization streaming approach. Figure 3.9 (III) shows the

scene after all of the objects and textures currently in that scene have been streamed.

In our experiments to evaluate our proposed energy-efficient texture adaptation algo-

rithm, the streaming server was an Intel 3GHz dual core machine running Java 1.7.0 stan-

dard edition. The server was an on-demand HTTP media server responding to HTTP

requests from mobile access. During our experiments, the distance of the client device with

the 802.11g WiFi router was 5 meters, receiving a signal strength of -60 dBmW. Our client

device was an HTC 3D EVO smartphone which has a Snapdragon S3 chipset with a dual

core 1.2 GHz processor. Appendix A provides more detailed information about this develop-

ment smartphone. To calculate the amount of consumed energy, we used PowerTutor [51],

a profiler which measures the power consumption of various hardware components using a

device’s built-in battery voltage sensors. By applying our proposed adaptations, we did not

notice any decrease in the maximum frame rates, and NinjaCamp was able to run having 33

frames per second, which was actually no different than the run before adaptations. There-

fore it is expected that our adaptations can be implemented in real-time at the maximum

frame rate that cloud gaming services provide these days.

To evaluate our proposed texture adaptation algorithm, we ran our ninja benchmark

with the available budget D set to be different percentages of S (total size of all textures).

In particular, we set D to 0.1S, 0.2S, 0.3S, ..., 1.0S corresponding to 10%, 20%, 30%, ...,

100% of the total size of textures. We chose two different values for Rmax (i.e. the maximum

acceptable compression scaling) that resulted in some textures in C2 being compressed for

most values of D. In practice, a user will choose Rmax based on the perceived quality of the

textures in the gaming environment. We also repeated all the experiments with the textures
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(I)

(II)

(III)

Figure 3.9: (I) to (III): Different stages using prioritized progressive game streaming in the
initial demo benchmark. Based on the gaming context, the player’s avatar, the enemies
and goal targets are more important as opposed to trees or grasses, so they are streamed in
earlier stages.
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Figure 3.10: Total energy consumption for WiFi 802.11g Network Interface Controller.

in each importance class sorted by decreasing size. Each trial of our experiment was run

until all objects and textures were fully streamed, and we repeated each test several times to

ensure that the standard deviation of the measurements was within acceptable limits. Using

PowerTutor measurements, Figure 3.10 shows the average energy consumption of the WiFi

802.11 WNIC in Joules with a precision of 0.1J, and showed how it changes as we apply

our texture adaptation approach for ten different values of D (as a percentage of S). We

measured the total energy for both sorted and unsorted texture lists, and for Rmax = 16 and

Rmax = 64. As can be seen, the increase in total energy consumption grows roughly linearly

with the amount of data being received at the client side in agreement with Equation (1.1)

on page 6 and Figure 1.2 on page 7. The dashed line shows the linear trend-line for the

energy consumption of the sorted texture list with Rmax set to 16 (red bar).

Figure 3.11 show the results for the average compression in terms of average scaling

ratio, measured for all textures in C1 and C2, for both sorted and unsorted texture lists. In

Figure 3.11 (top) Rmax = 16, while in Figure 3.11 (bottom), Rmax = 64. In both graphs it

can be seen that sorting improves the average quality by providing a lower average scaling

ratio. Also, the larger value of Rmax results in more scaling, and thus quality sacrifices, for

textures in C1 (i.e. textures tagged as less-important), while preserving more of the original

textures in C2 (i.e. important textures). Also it should be noted that with small download
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Figure 3.11: Average compression in terms of average scales, accounted for C1 (i.e. Less-
Important textures) and C2 (i.e. Important textures), both for sorted and unsorted texture
lists. (Top): Rmax set as 16 (Bottom): Rmax set as 64.

budgets, the larger value of Rmax (Rmax=64) works better since it brings more reduction

in size, and thus can make it more possible to achieve the available budget.

As discussed previously, we assume that the quality of a streamed object is a function of

its size and a relative value assigned by the game designer to its class. If S′1 and S′2 are the

total sizes of the streamed textures in classes C1 and C2, respectively, that are received by

the client, and v1 and v2 are the associated relative values, then we define the total quality

of a scene to be

Total Quality =
v1.S

′
1 + v2.S

′
2

S
(3.4)

where S is the total size of the uncompressed textures. We normalized the relative values
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by setting v1=1.

The total quality is a measure of the effectiveness of an approach to maximizing the

total amount of data based on prioritizations, with larger values being more effective.

Figure 3.12 shows our experimental results for total quality per available budget for

sorted and unsorted texture lists and two different values of Rmax (16 and 64). We used

three different pairs (v1=1, v2) of relative values, (1,1), (1,2) and (1,3), to differentiate the

priorities of textures in C1 and C2. As can be seen in all four graphs, the total quality

increases as the ratio v2
v1

increases, confirming that our proposed approach noticeably distin-

guishes the important textures from the less important ones. Interestingly, the maximum

gap for the growth of the total quality is in the range of 30% to 50% of the available budget

in all four graphs. Based on these figures, it can be concluded that ratios between the

smallest and largest relative values that are larger than 1:3 are not likely to be interesting.

Figure 3.13 shows our results for quality per unit of energy for the same experiments as

in Figure 3.12. As can be seen, in all four graphs, larger v2
v1

ratios result in more quality per

unit of energy consumption. In all of the graphs, the maximum gain in quality is in the range

of 30% to 40% of the available budget suggesting that this the range where our approach

is most effective. This range is related to the ratio of important to less-important textures

in our proof-of-concept game in which 37.2% of all textures are considered important. Our

approach brings maximum in quality when all the less-important-tagged textures (textures

in C1) are compressed by Rmax, and none of the important-tagged textures (textures in

C2) are modified. This specific point is considered as the peak of quality. As we go ahead

with compressing the textures in C2, the gain in quality brought by our approach is being

decreased; a fact which is confirmed by tracking the textures being compressed in C1 and

C2 and along with the achieved quality.

Figure 3.14 shows a visual comparison of a scene with no adaptation and the same scene

using our approach. In both scenarios the available budget of the client device is 50% of the

total size of all textures before compression. In Figure 3.14 (I), due to the budget limit, some

textures have not been transferred, while in Figure 3.14 (II), our proposed texture adaptation

streams all of the textures, but reduces the resolution of less-important textures (i.e. plane,

columns, well, dragon monster, etc.). As can be seen in the screenshots, Figure 3.14 (I) does

not provide a pleasing or acceptable game experience. Compared with the original demo

in Figure 3.9 (III) in which the download budget is unlimited, our method does produce

noticeable differences in quality. However, considering the power savings achieved using our
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Figure 3.12: Comparison of the total quality measured for four situations and three relative
value pairs (v1=1,v2). (Top-Left) Unsorted texture list, Rmax=16. (Top-Right) Sorted
texture list, Rmax=16. (Bottom-Left) Unsorted texture list, Rmax=64. (Bottom-Right)
Sorted texture list, Rmax=64.
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Figure 3.13: Quality per unit of energy for four situations and three relative value pairs
(v1=1,v2). (Top-Left) Unsorted texture list, Rmax=16. (Top-Right) Sorted texture list,
Rmax=16. (Bottom-Left) Unsorted texture list, Rmax=64. (Bottom-Right) Sorted texture
list, Rmax=64.
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(I)

(II)

Figure 3.14: Visual comparison of a gaming scene with a 50% download budget with (I) No
adaptation and (II) after applying our proposed adaptation method. Rmax was set to 16
and the textures list was sorted.
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method, it is reasonable to believe that many players would make this sacrifice in quality

in exchange for respecting their available download and/or energy budgets.

3.6 Shortcomings

In this initial study, we made some simplifying assumptions that are not very realistic. The

main simplifications are the following.

• There is a single static scene and everything is known in advance. All textures are

streamed at the beginning of the game and nothing changes.

• Our algorithms are strictly offline.

• Our study did not include a benchmark.

In the next chapter, we will run a detailed and thorough experimental design that ad-

dresses the above-mentioned shortcomings, focusing on studying mobile games with dynamic

scenes. The idea is to introduce random deviations of the actual energy used to stream a

texture compared to the predicted energy based on the size of the texture. We will intro-

duce three algorithms, an offline version considered as our near-optimum benchmark, and

semi-online and online versions with the aim of reacting to the deviations.



Chapter 4

Proposed Approach: Dynamic

Scenes

In this chapter we present our study for adaptive 3D texture streaming for dynamic scenes.

4.1 Motivation

In our initial study, we studied the streaming of 3D data for an online game scene. The

data consists of textures that are overlayed on the 3D objects. The game is played on a

mobile device with a limited amount of energy in its battery. The energy usage depends

on the amount of textural information that is streamed to the device. If the energy is

insufficient to stream all of the textures, then our approach is to selectively reduce the sizes

of some of the textures by reducing their resolutions. Some textures are more important

than others and there are several choices of resolution. The user specifies an energy budget

and a minimum acceptable resolution, and the game designer assigns relative values to the

textures according to their importance. The value of a streamed texture is its relative

value times its size. This results in a multiple-choice knapsack problem with the goal of

maximizing quality, measured as the total value of the streamed textures, within a specified

energy budget. Our experimental results using simple greedy heuristics showed significant

improvements in quality per unit of energy consumed.

As argued before, the problem that we studied is static in the sense that one scene is

streamed and all information is known in advance. A more realistic scenario is for dynamic

37
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scenes, in which the scene changes as the player moves around in the game space, so some

objects disappear and new ones appear as the game progresses. The goal is now to achieve a

target game session time within a download budget (which depends on the energy budget),

with the best possible quality averaged over the entire game session.

4.2 Definitions

There are n textures T = {τ1, τ2, . . . , τn}, and each τh ∈ T has a full-resolution size sτh ,

and a relative value or importance vτh . The quality of texture τh is qτh = vτh × sτh .

The duration of the game session is T , and the energy budget limits the total size of the

textures that can be downloaded to D.

Let X = {x1, x2, . . . , xn}, be the set of textures that are streamed to the mobile device.

Each xi ∈ X corresponds to an original texture τi ∈ T . Each xi has an arrival time axi

when it becomes visible, a departure time dxi after which the texture can be deleted, and

value vxi = vτi .

The size of a texture xi might be smaller than the size of τi because the download

constraint, D, might force the scaling (reducing the resolution) of some textures.

The size of a streamed texture xi ∈ X is the full-resolution size of the texture τi ∈ T
scaled by a factor of cri for some 0 ≤ ri ≤ k and constant c where Rmax = ck is specified by

the user as the maximum reduction of resolution that can be tolerated. So, the size of xi is

sxi =
sτi
cri . The quality of the streamed texture xi is qxi = vxi × sxi =

vτi×sτi
cri .

We can divide the game time T into p periods where a period is a maximal contiguous

period of time during which there are no changes to the textures that are visible. Let t`

be the time that the `th period ends and let t0 = 0. Then the `th period is (t`−1, t`], and

0 = t0 < t1 < t2 < · · · < tp = T . Each t` will be axi or dxi for at least one xi ∈ X. (Note

that multiple events can happen at each t` including the possibility that the entire scene

changes.)

Let X` ⊆ X be the set of textures visible during the `th period and let X0 = ∅. The

total quality of X` is Q` =
∑
xi∈X`

qxi and the optimization problem is
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maximize
p∑
`=1

Q` × (t` − t`−1) =
p∑
`=1

 ∑
xi∈X`

vxi ×
sτi
cri
× (t` − t`−1)


subject to

p∑
`=1

 ∑
xi∈X`\X`−1

sτi
cri

 ≤ D and ri ≤ logc (Rmax)

These equations can be simplified because most of the values are known in advance. Further-

more, by taking an amortized view of the problem we can eliminate the double summations.

The result of these simplifications is

maximize
∑
xi∈X

qxi × (dxi − axi) =
n∑
i=1

vxi × sτi × (dxi − axi)
cri

subject to
n∑
i=1

sxi =
n∑
i=1

sτi
cri
≤ D and ri ≤ logc (Rmax)

Noting that the quantities vxi , sτi , dxi , and axi are all known in advance, we can define

zi = vxi × sτi × (dxi − axi), 1 ≤ i ≤ n to get

maximize
n∑
i=1

zi
cri

subject to
n∑
i=1

sτi
cri
≤ D and ri ≤ logc (Rmax)

Note that c is a constant (c = 4 in our study), so the only variables are the scaling

factors r1, r2, . . . , rn. These are the values that the algorithm has to determine.

4.3 Simulation Basics

In this section we talk about simulation basics, seed selection, and random number genera-

tion needed for simulating a system.

4.3.1 Random Number Generation

As it is known, one of the key concepts in running simulations is to have functions to generate

random values for variables with a specified statistical distribution. There are two steps for

doing so: First, a sequence of random numbers distributed uniformly between 0 and 1 is

obtained, which we call random number generation. For the second step, the generated

sequence is transformed into another sequence with the aim of generating random values

satisfying the desired distribution. This is called random-variate generation [29].
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4.3.2 Seed Selection

One of the important issues regarding random generations is the generator’s period, which

actually shows how much randomness the generator can generate. But a more important

issue is how we seed or initialize a random number generator.

Seeds are used to initialize a random number generator. They should not affect the

results of the simulation. However, a wrong combination of a seed and a random generator

may lead to flawed conclusions.

As an example to understand the concept, let’s consider Java’s standard generator

java.util.Random. This class uses a 48-bit seed, which causes a period of 248. We can

imagine this random generation is a huge wheel with 248 random cuts [5]. Whenever we cre-

ate an instance of java.util.Random, the wheel starts in a random place, and moves round

by one cut every time we generate a number from that instance. Wherever we start from,

we will end up back at the same place after generating the 248 numbers. If the place where

we begin is truly random, then a sequence length of 248 is probably sufficient to use for our

application. But how do we pick a random place on the wheel to start from? The random

place that we start from is in effect the seed (i.e. the initial state) of the random generator.

The solution which java.lang.Random offers is to use one of the system clocks [5].

In our simulation, for each of our experiments, we generate 5 different random integer

numbers, and use them as our seeds for the random generator functions. For each random

sequence p1, p2, p3, . . . that we need to generate, we use Random class to get a seed p0. We

print p0, and store it in a file and then use p0 as the seed to generate the sequence p1, p2, p3,

and so on. We can use p0 again later if necessary to generate exactly the same sequence.

This way, our experiments are repeatable.

4.3.3 Statistical Distributions

A statistical distribution explains the numbers of times each possible outcome occurs in a

sample. For instance, assume we have 10 test scores with 4 possible outcomes of A, B, C, or

D, a statistical distribution describes the relative number of times an A,B,C, or D occurs.

For example, 2 A’s, 4 B’s, 4 C’s, 0 D’s.

In the following we enumerate a few specific statistical distributions that we used in our

simulation system:

• Uniform Distribution:
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This is one of the simplest distributions to use. A uniform distribution is commonly

used if a random variable is bounded and no extra information is available. The

discrete uniform distribution is used when it is believed that the value is equally likely

over a bounded interval.

• Poisson Distribution:

If the interarrival times are exponentially distributed with mean 1, the number of ar-

rivals n over a given period T has a Poisson distribution with parameter T . Therefore,

a Poisson variate can be obtained by continuously generating exponential variates un-

til their sum exceeds T and returning the number of variates generated as the Poisson

variate.

• Exponential Distribution:

It describes the time between events in a Poisson process, i.e. a process in which events

occur continuously and independently at a constant average rate. In order to generate

exponentially distributed random numbers with a specific mean, we use equation 4.1.

Ln function returns the natural logarithm (base e) of a double value, and rnd variable

is the generated random float number ranging from 0 to 1.

Exponential(mean) : −mean× Ln(1 - rnd) (4.1)

4.3.4 Standard Deviation Estimation

One of the important parts that we should take into account is regarding the length of

the simulations. We should assure that the length of the simulation experiments is properly

chosen. Two situations may occur: If the simulation is too short, the results might be highly

variable. Conversely, if the simulation is too long, the available computation resources might

be unnecessarily wasted. It follows that the simulation should be run until the confidence

interval for the mean response narrows to a desired width [29].

In our simulations, each of the experiments was run for 10 times, and we calculated the

average and the standard deviation of the sample mean of our 10 independent observations.

Based on the results, we noticed that the standard deviation for all the different sets of 10

experiments is within 2% of the averages, which is an acceptable value. This is valid only

if the observations are independent. That’s why we use different seeds to generate random

numbers, so to make sure all the results are independent.
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In the next section we explain how to generate different test sequences for our simulation.

4.4 Test Sequences

As argued before, we have a set T = (τ1, τ2, τ3, . . . , τ97) of full-resolution textures (in some

arbitrary order) and each τh has a full-resolution size sτh . We already have this data from

our initial study. From these, we will generate a set of test sequences for our experiments.

This process only has to be done once.

We used two relative values in our initial study for static scenes, while we use three in

this study. Based on our study for static scenes in Chapter 3, ratios between the smallest

and largest relative values that are larger than 1:3 are not likely to be interesting, so each

texture τh should have a relative value vτh ∈ {1, 2, 3}.
Assume that the game is to be played for time T . We need to generate the arrival time

axi and departure time dxi for each streamed texture xi. We also need to generate deviations

from the energy estimates.

We need to generate several sequences of random numbers to create the test sequences.

Most random number generators produce uniformly distributed random numbers in the

interval (0,1). It is very important to use different seeds for the sequences. As argued

before, using the same seed, for example for both the sequence of arrival times and the

sequence of relative values, will introduce correlations that will invalidate the results [29].

1. Generating 10 random permutations of T : T1, T2, . . . , T10:

For each Tj , we generate a sequence of random numbers and associate each random

number with a texture. We then sort the (random number, texture) pairs according

to the values of the random numbers. This will produce a random permutation of the

textures.

2. Generating a sequence of relative values for each Tj:
For each Tj , we generate a sequence of uniformly distributed random numbers in (0,1).

Each value will be multiplied by 3, and round up to the closest integer to get the relative

value vτi for each texture τi.

3. Generating the times that the textures will be visible for each Tj:
We will add these times to the arrival times to get the departure times. These times are

exponentially distributed, with a mean value of T/5 which based on the experiments can
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be a reasonable choice. While generating these numbers, we throw away any values that

are less than T/10 or greater than T/2 and keep generating values until there are 97

values between T/10 and T/2. Assume calling this sequence of numbers f1, f2, . . . , f97.

4. Generating the arrival and departure times of the textures in each Tj:
These are the times that the textures arrive in the game scene. The usual assumption is a

Poisson arrival process. As said in previous section, this means that the interarrival times

are exponentially distributed (an interarrival time is the time between two consecutive

arrivals). To do this, we generate exponentially distributed random numbers with mean

1: g2, g3, . . . , g97. Next, we calculate the sequence h1 = 0, h2 = h1 + g2, h3 = h2 +

g3, . . . , h97 = h96 + g97. We then scale the values h1, h2, . . . , h97 as follows to get a

sequence of arrival times in the range [0, T − T/10]. Let H = 9T
10h97

. The sequence of

arrival times is a1 = h1 × H, a2 = h2 × H, . . . , a97 = h97 × H and the corresponding

departure times are di = min{ai + fi, T}. It should be noted that each departure time

is no larger than T which is the end of the game.

5. Generating random deviations of energy consumption for the textures in each Tj:
For each Tj , we first generate a sequence of uniformly distributed random numbers in

(0,1), subtract 0.5 from each number, and then multiple each number by .02. This gives

a sequence of numbers e1, e2, . . . , e97 in the range (-.01,.01). In the experiments, we will

multiply these numbers by δ = 5, δ = 10, δ = 15, or δ = 0 to get random deviations of

5%, 10%, 15%, or 0% (no deviations).

4.5 Algorithms

Let T be the duration of the game and let D be the estimated download budget. The

maximum compression that the user will tolerate is Rmax = ck. In our initial study for

static scenes in the last chapter, c = 4. Similarly, let C1 be the class of textures with

relative value 1 in a test sequence showing the least important class of textures, and let

S1 be the total full-resolution size of the textures in C1. Likewise for C2, S2, C3, and S3.

Let S = S1 + S2 + S3 be the total size of all textures. Note that S is the same for all test

sequences, but S1, S2, and S3 will be different. So it should be noted that similar to our

initial study, C1 shows the least important class.

In our experimental setup, we used the same 97 textures as our initial study. We assumed
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Size number of textures

128 23

256 52

512 16

1024 6

Table 4.1: The number of different textures used in our studies

the game is running for 600 seconds (T=600), and we have a variable budget D starting

from 0.1 to 1 (full) share of the total size of the textures. Table 4.1 shows the number of

textures with different sizes.

4.5.1 Non-adaptive Benchmark Algorithm

This algorithm determines the maximum possible quality that can be achieved for a test

sequence if the algorithm knows everything in advance. It provides an upper bound.

For each texture τi in the list, we calculate zi = vτi × sτi × (dτi − aτi). This is the

contribution that τi would make to the average quality of the game if it were sent at full

resolution. We also calculate s′τi = sτi×(1+δeτi). This value is the amount of the download

budget that the texture would use if streamed at full resolution. It should be noted that

s′τi takes into account the actual amount of energy that the texture will use. We then

calculate S′ =
97∑
i=1

s′τi and Dmin = S′/Rmax which is the minimum download budget that

is needed to stream all textures. Same as our initial study, if Dmin > D then the problem

cannot be solved. In the following assume that Dmin ≤ D so the unused download budget

is D0 = D −Dmin.

To determine the compression for each texture, we sort the list by zi/s
′
τi ratio from

largest to smallest. For ease of notation in the following, suppose that the textures are re-

indexed so that the sorted list of textures is τ1, τ2, . . . , τ97. If s′τ1 × (1− 1/Rmax) ≤ D0 then

there is enough unused budget to stream τ1 at full-resolution, so the streamed texture x1 has

sx1 = sτ1 and contributes z1 to the average quality. This leaves an unused download budget

of D1 = D0 − s′τ1 × (1 − 1/Rmax) for the remaining textures after x1 has been streamed.

We repeat for τ2, τ3, . . . until some texture τ` cannot be streamed at full resolution within

the remaining budget D`−1. We then determine the maximum resolution at which it can be
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streamed by calculating the minimum compression r` which similar to Rmax is a power of 4

such that s′τ`/r` ≤ D`−1+s′τ`/Rmax. The streamed texture x` will have size sx` = sτ`/r` and

will contribute z′` = vτi× sx`× (dτi−aτi) to the average quality of the game. The remaining

download budget after streaming x` will be D` = D`−1 − (sτ`/r`) × (1 + δeτ`). We repeat

this process to determine the size, amount of download budget, and quality contribution for

each of the remaining streamed textures x`+1, x`+2, . . . , x97. Finally the total quality and

other statistics are calculated.

The algorithm sorts the list of all textures in O(n · lg(n)) time supposing n is the number

of all textures, iterates over the list of all textures in O(n), and for each of the textures tries

to maximize the resolution which is done in O(c) in which c is constant. These cases make

the total complexity of the algorithm O(n · lg(n) + n · c) = O(n · lg(n)). The memory

complexity of the algorithm is O(n · c) = O(n), in which c is the constant number of the

possible resolution levels for the textures. Also it should be noted that similar to our previous

texture adaptation approach proposed in Chapter 3, firstly the algorithm needs a one-time

implementation prior to the gameplay. Secondly, all the implementations are done on the

cloud, or the server-side. We assume the server has enough available resources which is not

a concern for our study. Therefore the algorithm does not provide any additional overhead

during the game-play, and it is expected to be implemented in real-time at the maximum

frame rate that cloud gaming services provide these days.

Margin Error

Our non-adaptive benchmark algorithm is pretty close to the optimal solution. In the non-

adaptive benchmark algorithm, all information about textures is known in advance, and

therefore the quality contribution of each texture can be calculated, the textures can be

sorted based on their quality contribution, and thus the best solution can be applied to

satisfy the total budget D. Clearly the difference of the non-adaptive benchmark algorithm

with the optimal solution will be caused by the first texture which cannot be streamed at

full resolution. This particular texture is partially rescaled, which causes the non-adaptive

benchmark algorithm not to achieve the maximum capacity of the available budget. Based

on the description of the non-adaptive benchmark algorithm, the process of finding the

maximum resolution for τ2, τ3, . . . is repeated until some texture τ` cannot be streamed at

full resolution within the remaining budget D`−1. The algorithm then tries to find the

maximum possible resolution that can be gained within D`−1.
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The optimum algorithm provides an upper bound solution for the non-adaptive bench-

mark algorithm. Due to the fact that the compression ratios are discrete, and not continuous

(i.e. all scalings are based on a power of 4), the solution of the non-adaptive benchmark

algorithm remains within a specific range from the optimum solution. This is exactly the

cause of approximation or margin error. Assume s`1 is the current size of τ` (i.e. after con-

sidering the deviation), and s`2 is the best resolution of that which the algorithm achieves,

so not to exceed the available budget D`−1. Imagine the optimum solution for the best

resolution of texture τ` is s`′ ; then absolutely there is a larger resolution s`3 equal to or less

than the maximum achievable resolution (i.e. the original resolution) where τ`2<τ`′<τ`3 ;

then the algorithm brings an error of (s`′ - s`2), which is an upper bound on the error

(i.e. the difference of the non-adaptive benchmark algorithm with the optimum solution)

simply due to the reason that some of the unused capacity (s`′ - s`2) could be used by later

textures. In section 4.6 we provide quantitative results for these margin errors by defining

approximation error and approximation ratio.

4.5.2 Semi-online Adaptive Algorithm

This algorithm determines the maximum possible quality that can be achieved for a test

sequence if the algorithm knows everything in advance except the deviations in energy

consumption which it has to handle online. The goal is to study the effects of the deviations

on quality.

Here we do the same calculations as for the Non-adaptive Benchmark Algorithm except

that we substitute sτi for s′τi in the calculations because the Semi-online Adaptive Algorithm

does not know the energy deviations in advance. This gives the same sequence of streamed

textures τ1, τ2, τ3, . . . , τ97 with the same sizes as the Non-adaptive Benchmark Algorithm

with δ = 0.

Next, we adaptively stream the textures in the correct order according to arrival time.

To do this, we first compute a sequence of target values. Suppose that τ1, τ2, . . . , τ97 is

the list of textures to be streamed, but this time ordered by arrival time. We compute the

sequence of target values W1,W2, . . . ,W97 where Wi =
i∑

j=1

sτj is the amount of the download

budget that would be used after the first i textures in the list have been streamed, assuming

that no energy deviations occur.

We then stream τ1 using s′τ1 = sτ1 × (1 + δeτ1) of the download budget. Note that this
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takes into account the actual energy that is used including any deviation. We suppose that

the user tells the server the amount of energy that was actually used so that the server can

adapt. If s′τ1 > W1 then we have used more energy than the target, so we have to adapt by

reducing the size of next texture, which supposedly is the upcoming texture. If s′τ1 < W1

then we increase the size of next texture. In general, we try to keep
i∑

j=1

s′τj which we denote

as W ′i , as close to the target Wi as possible. Based on comparison of W ′i (used budget after

deviations) and Wi (the target value), we decide whether to reduce or increase the size of the

next texture τi+1. The average quality and other statistics are computed in a similar way to

the Non-adaptive Benchmark Algorithm using the size and energy values that were actually

used when the textures were streamed by the Semi-online Adaptive Algorithm. Algorithm

1 describes our heuristic for the semi-online algorithm.

Regarding the time complexity of this algorithm, same as the previous algorithm, it

sorts the list of all textures in O(n · lg(n)) time supposing n is the number of all textures,

iterates over the list of all textures in O(n), and for each of the textures tries to decide

whether to increase or decrease the resolution which is done in O(c) in which c is constant.

Thus similarly these cases make the total time complexity of the algorithm O(n · lg(n) +n ·
c) = O(n · lg(n)). The memory complexity of the semi-online algorithm is also O(n). For

the implementation of this algorithm, the only overhead in addition to the non-adaptive

benchmark algorithm is regarding not knowing the deviations in advance. The only extra

workload the client-side is responsible for doing is comparing the W ′[i] with the target value

W [i], and notifying the server about the result using two extra bits. Since the connection

has been already established, the comparison does not complicate the runtime overhead at

the client-side.

4.5.3 Online Adaptive Algorithm

This algorithm only knows the sizes sτ1 , sτ2 , . . . , sτ97 and relative values vτ1 , vτ2 , . . . , vτ97 of

the full-resolution textures τ1, τ2, τ3, . . . , τ97, the game time T , the download budget D, and

the maximum compression Rmax = ck. Of course, it can also calculate S, S1, S2, S3. It does

not know the arrival and departure times so it cannot calculate zi = vτi × sτi × (dτi − aτi),
and it does not know the deviations in the energy consumption. It is not completely online

because is knows the sizes and values of all of the textures in advance. The goal is to study

the effects on quality of not knowing the arrival and departure times in advance.
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Algorithm 1 Our defined heuristic

. %comment: Textures scaled[ ] represents the list of textures after scaling based on
the benchmark algorithm, and Textures original[ ] represents the list of original sizes of
textures before scaling %

Textures scaled[ ]=T [1 .. numberOfTextures]
Textures original[ ]=Toriginal [1 .. numberOfTextures]
W[i]: Target values: Total size of i transmitted textures

W’[i]:
i∑

j=1

s′τj (Total sizes of i transmitted textures, after deviations)

Rmax: Maximum reduction in resolution that is acceptable
W ′[0]← 0

for i = 1 to Textures[ ].length do
. %comment: We deal with X, the difference of target value W[i], and W’[i]%

X ←W ′[i]−W [i]
next original← Textures original[i]
next← Textures scaled[i]

. %comment: If W’[i] is bigger that W[i], then make the upcoming texture (i) smaller%
if (X > 0) then

. %comment: If not at the minimum size (i.e. previously scaled by Rmax)%
if (next != next original ÷ power(4, Rmax)) then

. %comment: decrease the size of upcoming texture by factor of 4%
next← next÷ 4

end if
break

end if

. %comment: If W’[i] is smaller that W[i], then make the upcoming texture (i) larger%
if (X < 0) then

. %comment: If not at the original size %
if (next != next original) then

. %comment: increase the size of upcoming texture by factor of 4%
next← next× 4

end if
end if
W ′[i]←W ′[i] + next× (1 + deviation(next))

end for
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Our approach here is to adapt the idea of target values from the Semi-online Adaptive

Algorithm. If we have a download budget D spread over the game time T , then the download

budget per unit of time is D/T . Suppose that τ1, τ2, τ3, . . . , τ97 is the list of textures ordered

by arrival time. As with the Semi-online Adaptive Algorithm, we suppose that the user

tells the server the amount of energy that was actually used after it receives each texture

so that the server can adapt. If texture τi arrives at time t, then we compare the download

budget that we have already used for the first i − 1 textures with the target usage tD/T

and choose the compression ratio for τi using the same heuristic as we used for the Semi-

online Adaptive Algorithm. Due to the lack of not knowing both the arrival and departure

times, and deviations, there is no sorting part being done in advance, which makes the time

complexity of the online algorithm to be O(n · c) = O(n) in which similar to the semi-online

algorithm c is a constant (refer to Algorithm 1). The memory complexity of the online

algorithm is also O(n) required at the server-side. Note that these calculations involving

download budgets also account for observed energy deviations, similar to the previous two

algorithms. With the same reasons as in the semi-online algorithm, the only extra workload

the client-side is responsible for doing is comparing the W ′i with the target value Wi, which

does not complicate the runtime overhead and thus the framerate at the client-side.

4.6 Results and Analysis

After performing the random generation and getting the proper values, we got ten test

sequences. Each sequence consists of a randomly permuted list of the 97 textures, and

associated with each texture τi in the list are a relative value vτi , an arrival time aτi , a

departure time dτi , and an energy deviation value eτi . Each experiment consists of running

these ten test sequences and collecting statistics, the average and the standard deviation

as said before. We also run four experiments for each algorithm, one with each of the four

different values of δ. For our simulation we used the same machine that we used for our

initial study, an Intel 3GHz dual core machine running Java 1.7.0 standard edition. We ran

the algorithms with D set to be different percentages of S (total size of all textures). Similar

to our previous study in Chapter 3, we set D to 0.1S, 0.2S, 0.3S, ..., 1.0S corresponding

to 10%, 20%, 30%, ..., 100% of the total size of textures. We chose two different values for

Rmax.

Figure 4.1 to 4.4 show our experimental results for total quality and quality per unit of
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energy measured for two different values of Rmax (16 and 64), each associated with one of

the four values of δ (0, 5, 10, and 15). In order to reduce the scale of the diagrams and

show smaller values on the diagrams, we divided the total qualities by a factor of 1,000,000.

It should be noted that in our simulations, as concluded in our initial study, we assume

the consumed energy is in a linear relation with size, therefore they can easily be converted

to each other. We compute the total quality and the quality per unit of energy according

to Equation 4.2 and Equation 4.3 respectively (for each texture τi in the texture list T ,

as introduced earlier in the definitions, vτi , sτi , dτi , and aτi stand for the value, size, the

departure time, and the arrival time of texture τi). Clearly (dτi − aτi) is the period of time

in which τi is visible during gameplay.

Total Quality:
∑
τi∈T

(vτi × (dτi − aτi)× sτi) (4.2)

Quality per Unit of Energy:

∑
τi∈T (vτi × (dτi − aτi)× sτi)∑

τi∈T sτi
(4.3)

In the following we run a discussion about the diagrams.

As can be seen in all graphs, the total quality achieved by all the proposed three algo-

rithms increases as the available budget increases. Clearly that’s because of the contribution

of size in our defined factor of quality that a specific texture τi contributes which is derived in

equation 4.2. As the available budget increases, there is more space to be filled by textures,

so the total size, and thus, the corresponding total quality will also increase.
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Figure 4.1: Total quality and quality per unit of energy measured for four situations when
δ = 0. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total quality, Rmax=64. (Top-
Right) Quality per unit of energy, Rmax=16. (Bottom-Right) Quality per unit of energy,
Rmax=64.
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Figure 4.2: Total quality and quality per unit of energy measured for four situations when
δ = 5. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total quality, Rmax=64. (Top-
Right) Quality per unit of energy, Rmax=16. (Bottom-Right) Quality per unit of energy,
Rmax=64.
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Figure 4.3: Total quality and quality per unit of energy measured for four situations when
δ = 10. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total quality, Rmax=64. (Top-
Right) Quality per unit of energy, Rmax=16. (Bottom-Right) Quality per unit of energy,
Rmax=64.



CHAPTER 4. PROPOSED APPROACH: DYNAMIC SCENES 54

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

% Available Budget 

Total Quality  (R_Max=16, б=15) 

Offline Semi-Online Online

0

50

100

150

200

250

300

350

400

450

500

10 20 30 40 50 60 70 80 90 100

% Available Budget 

Quality Per Unit of Energy     (R_Max=16, б=15) 

Offline Semi-Online Online

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

% Available Budget 

Total Quality  (R_Max=64, б=15) 

Offline Semi-Online Online

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

% Available Budget 

Quality Per Unit of Energy     (R_Max=64, б=15) 

Offline Semi-Online Online

Figure 4.4: Total quality and quality per unit of energy measured for four situations when
δ = 15. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total quality, Rmax=64. (Top-
Right) Quality per unit of energy, Rmax=16. (Bottom-Right) Quality per unit of energy,
Rmax=64.
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As argued before, we also notice here that the non-adaptive benchmark algorithm is

closer to the optimum solution, and performs better and brings more total quality compared

to the other two algorithms. It is more efficient than the semi-online algorithm since it

knows all the information about the textures in advance, including the deviations and the

arrival/departure times. Obviously to have a knowledge of the deviations of all textures a

priori, it can provide a better adaptation for the best use of the available budget. However

in the semi-online algorithm, the algorithm has to adapt itself with the deviations in an

online way.

Similarly, the online algorithm not only does not know the deviations, but also it does

not have any information about the arrival and departure time of the textures, so it has to

adapt as they arrive. There is no information on the order of arrival time of the upcoming

textures. We compute the share of budget over time, and use them as our target values,

which of course does not represent the exact target values as they are in the semi-online

version. This difference brings an error, which causes the online algorithm to bring less

total size, and thus less total quality compared to the semi-online algorithm. Additionally,

as available budget increases, there will be more growth in this error, which causes the

online algorithm to get behind the other two algorithms. That’s why we notice a bigger

gap between the online and the semi-online algorithms as the available budget increases.

The maximum gaps between the total quality derived by the online and the semi-online

algorithms for pairs of (Rmax = 16, Rmax = 64) are (27.2%, 23.8%) for δ = 0, (22.6%,

22.2%) for δ = 5, (20.0%, 24.4%) for δ = 10, and (20.2%, 25.0%) for δ = 15. It should be

noted that these percentage values are showing the maximum, not the average. The aim of

calculating the maximum gaps was to only show the maximum possible difference that the

three proposed algorithms might lead to.

In the same way, we also computed the average competitive ratios and competitive er-

rors, which places the online algorithm in competition with the non-adaptive benchmark

algorithm that receives more information. In other words, assume Qsemi and Qbench show

the total qualities achieved by the semi-online and the non-adaptive benchmark algorithms.

Then the competitive ratio is simply computed using the ratio Qsemi−Qbench
Qbench

. The difference

of the non-adaptive benchmark algorithm and the optimum solution itself (approximation

error) was also being calculated.

In average, the differences of semi-online algorithm with the benchmark algorithm (rel-

ative competitive error) for pairs of (Rmax = 16, Rmax = 64) are (11.3%, 7.4%) for δ = 5,
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δ Rmax = 16

δ = 0 0.26 0.08 0.09 0.04 0.06 0.03 0.03 0.04 0.03 0.85

δ = 5 0.23 0.10 0.04 0.08 0.23 0.07 0.12 0.18 0.16 0.07

δ = 10 0.06 0.42 0.54 0.39 0.08 0.20 0.13 0.24 0.24 0.98

δ = 15 0.03 0.14 0.14 0.68 0.29 0.69 0.10 0.61 0.31 0.12

Table 4.2: Approximation errors measured for the four different values of δ for Rmax = 16.

δ Rmax = 64

δ = 0 0.04 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.52

δ = 5 0.11 0.10 0.02 0.37 0.23 0.04 0.28 0.27 0.25 0.52

δ = 10 0.14 0.21 0.39 0.15 0.02 0.30 0.35 0.96 0.27 0.86

δ = 15 0.28 0.33 0.24 0.21 0.10 0.23 0.02 0.82 0.19 0.98

Table 4.3: Approximation errors measured for the four different values of δ for Rmax = 64.

(12.8%, 7.8%) for δ = 10, and (9.9%, 5.8%) for δ = 15. Obviously the pairs of competitive

ratios are (88.7%, 92.6%), (87.3%, 92.2%), (90.1%, 94.2%) respectively. As we will talk

later in this section, clearly there is no difference when δ = 0 since both algorithms perform

identically. Also in average, the differences of online algorithm with the benchmark algo-

rithm for pairs of (Rmax = 16, Rmax = 64) are (25.4%, 20.8%) for δ = 0, (23.0%, 20.7%)

for δ = 5, (23.2%, 18.9%) for δ = 10, and (23.7%, 23.4%) for δ = 15. This results in

the competitive ratios of (74.6%, 79.2%), (77.0%, 79.3%), (76.8%, 81.1%), (76.3%, 76.6%).

However these percentages do not follow a specific additive or subtractive pattern, but it

can obviously be seen that with Rmax = 16, the differences are larger. The possible reason

is that bigger values of Rmax causes smaller reserved sizes for textures compared to their

original sizes. That means there are more possible choices for the textures to be increased

in size (log4Rmax brings a larger value), and therefore the rescaling can more precisely be

done.

Table 4.2 and table 4.3 show the differences of the non-adaptive benchmark algorithm

with the optimum solution (which is a margin error or approximation error, representing a

relative error measure) calculated for both Rmax = 16 and Rmax = 64, measured for different

δs. Based on these results, in average, the approximation errors for pairs of (Rmax = 16,

Rmax = 64) are (0.15%, 0.06%) for δ = 0, (0.10%, 0.10%) for δ = 5, (0.04%, 0.07%) for δ =
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Effect of: (Rmax = 16) (Rmax = 64)

Not knowing times (Benchmark & Online) 24.42 22.17

Not knowing deviations (Benchmark & Semi-Online) 11.67 7.33

Not knowing times and deviations (Semi-Online & Online) 23.63 21.84

Interaction of factors 12.46 7.66

Table 4.4: Average effect of not knowing each, or both of the two factors (the arrival and
departure times, and the deviations) for δ = 0 and δ = 10, measured for both Rmax = 16
and Rmax = 64. The values are in percentage (ranging from 0 to 100), and relative to the
non-adaptive benchmark algorithm.

10, and (0.25%, 0.27%) for δ = 15. It results to the approximation ratios of (0.9985,0.9994),

(0.9990,0.9990), (0.9996,0.9993), (0.9975,0.9973) for the previous pairs respectively. As can

seen in the results, the approximation errors are always within 1% of the optimum solution,

which clearly shows and confirms how close the non-adaptive benchmark algorithm is to

the optimum solution. Also it should be noted that unlike the two other algorithms, the

non-adaptive benchmark algorithm does not exceed D, the available budget (compare the

diagram of the non-adaptive benchmark algorithm with the diagrams of semi-online and

online algorithms). The approximation ratio is the ratio between the result obtained by

the near-optimum benchmark algorithm and the optimal version. These percentages do not

follow a specific pattern, so possibly the different values of δ do not bring much difference in

the total quality. This is mainly because the algorithms do not use δ as a factor for decision.

The deviations are applied to the sizes, and then the algorithms make decisions based on

the sizes.

As another part of the analysis of the three proposed algorithms, we should notice that

there are two factors affecting the performance of the online algorithm: deviations, and

arrival and departure times. We can evaluate the effect of each of these two factors simply

by separating. The effect of arrival and departure times can be determined by setting δ=0

(so there are no deviations) and comparing the online algorithm with the non-adaptive

benchmark algorithm. In the same way, we can also determine the effect of deviations

by comparing the semi-online algorithm and the non-adaptive benchmark algorithm. As a

result, we can determine the effect of the interaction of these two factors by comparing the

online algorithm with the non-adaptive benchmark algorithm for various values of δ and

subtracting the individual effects for deviations and for arrival and departure times, which

then only leaves the interaction of the factors.
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Figure 4.5: Total quality measured using constant seeds for δ = 0 and δ = 10. (Top-Left)
Total quality, δ = 0 and Rmax=16. (Bottom-Left) Total quality, δ = 0 and Rmax=64.
(Top-Right) Total quality, δ = 10 and Rmax=16. (Bottom-Right) Total quality, δ = 10 and
Rmax=64.

In order to determine the effect of each of these two factors, we have run our experiments

for δ=0 and a non-zero value of δ (we have chosen δ=10 as an instance) for constant values

of seeds. As argued previously, using a constant seed for random generation always results

to the same random number. This way we can make sure the experimental setup always

remains identical for all experiments, thus the experimental results can be comparable.

Similarly we repeated each experiments for 10 times, and calculated the average so to be able

to obtain a concrete conclusion. Figure 4.5 show the resulting diagrams of total qualities,

for two values of δ (δ=0 and δ=10), and tested for both Rmax=16 and Rmax=64. Table

4.4 also shows the average effect of not knowing each of the above mentioned factors (the

arrival and departure times, and the deviations), the effect of not knowing both of them,

and finally the effect of interaction of the two factors. The values are resulted from the

total qualities achieved by our three proposed algorithms for constant seeds measured for
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both Rmax=16 and Rmax=64. Note that the percentages are relative to the non-adaptive

benchmark algorithm. Based on the interesting results coming from Table 4.4, we can

clearly see that the effect of not knowing the arrival and departure times are relatively more

compared to the effect of not knowing the deviations.

For the quality per unit of energy, we can show interesting conclusion. To achieve the

quality per unit of energy, we assumed energy is in a linear fashion with the size, so the

factor of energy is considered linearly related to the numerator which is a factor of size,

which leads to Equation 4.3. This is the total quality per unit of energy. Unlike the total

quality, we can see that the online algorithm is well tracking the semi-online algorithm,

noting that in some cases it even brings larger values. This shows the effectiveness of the

proposed online algorithm, confirming the fact that it can be used and deployed in our

framework to stream textures in online mobile games.

Another interesting fact regarding the trend of the quality per unit of energy diagrams

is that in all diagrams with Rmax = 16, we are witnessing that the slope gets smaller as

the available budget increases compared to the slope seen in the diagrams associated with

Rmax = 64. That is mainly due to the reason that with Rmax = 16, averagely the amount of

texture compression is not as much compared to Rmax = 64. In other words, with Rmax = 16

it makes less difference for the compression process before and afterwards. Also for the same

reason the gap between the non-adaptive benchmark version and the other two algorithms

gets bigger with the smaller values of Rmax, which therefore causes the semi-online and the

online algorithms to work better with larger values of Rmax. In addition, in should be noted

that all the three algorithms bring more quality per unit of energy with smaller available

budgets when Rmax = 64. However, with Rmax = 16 the later statement is not always true.

As can be seen in the diagrams, the reduction in the quality per unit of energy mostly starts

when the available budget is around 20%. Clearly the three proposed algorithms can not

do much in reduction Rmax = 16 with small portions of budget, something almost around

10%. Therefore with Rmax = 16, the largest quality per unit of energy is mostly gained in

the interval of 20% to 30% of the available budget. Although it is interesting to see that

for smaller portions of available budget, larger quality per unit of energy can be achieved,

which is actually the main aim of our research.

Another point which is worth mentioning is that for δ = 0, the non-adaptive benchmark

and the semi-online algorithms perform identically since there is no deviation in the streamed

textures, and thus no need for the semi-online algorithm to adapt. This can easily be
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concluded by replacing δ with value of 0 according to Algorithm 1 described in the semi-

online algorithm. In other words, for situations in which there is a small energy deviation

during the process of texture streaming (δ is close to 0), we can assure that our semi-online

algorithm will perform fairly similar to the non-adaptive benchmark algorithm, and thus,

similar to the optimum solution.

Figure 4.6 to 4.17 show different experimental results for total quality and quality per

unit of energy with four different values of δ (δ = 0, 5, 10, and 15), measured for C1 (the

less-important textures, which are the textures with value 1, shown in Figures 4.6, 4.9,

4.12, and 4.15), C2 (the mid-important class which are the textures with value 2, shown in

Figures 4.7, 4.10, 4.13, and 4.16), and C3 (the important class or the textures with value

3, as shown in Figures 4.8, 4.11, 4.14, and 4.17). We used the same classification naming

as in our previous study. The aim of these particular measurements was to study how the

three proposed algorithms affect the prioritization of the textures. The results bring some

interesting conclusions. Firstly, regarding the diagrams showing the total quality, as we go

ahead from C1 to C3 (from least important to the most important class of textures), the

gaps between the three algorithms increase. In other words, the diagrams for C3 show larger

differences in the three algorithms compared to C1. This is mainly due to the value asso-

ciated with each texture. Rescaling a texture with larger values simply has more effects on

the quality contribution of this particular texture (refer to equation 4.2) is more compared

to a situation in which a texture with smaller value is rescaled. The possibility of modi-

fication and rescaling textures in the online algorithm is higher than the semi-online, and

that is more than the non-adaptive benchmark algorithm which provides a close-to-optimal

solution. For the same reason, the diagrams in C3 show higher values compared to C2 and

C1.

It is also worth mentioning that mostly for the total qualities, as the δ increases, the

diagrams generally get more saw-like. That’s mainly due to the fact that with larger values

of δ, the deviations in energy are more, and thus the possibility of texture scaling (i.e. incre-

ments and decrements) gets higher, which therefore, more affects the resulted corresponding

quality.

Regarding the quality per unit of energy, it is interesting to see that the corresponding

diagrams do not simply follow a specific pattern. Referring to Equation 4.3, this is mainly

due to the factor of energy on the denominator (which is actually size) and the factor of

size on the numerator. This leaves two factor with type of (d− a)× v (period of visibility,
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and values). However, this is not what our algorithms are optimizing. For generality of our

conclusion, if we assume the period of visibility (d− a) to be constant for all textures, the

diagrams accounting for C3 show higher values compared to C2 and C1 because of larger

relative values (for instance compare 4.14 with 4.13 and 4.12 for δ = 10; note that the scales

on the Y-axis of quality per unit of energy diagrams are not identical). This is actually the

main cause of the remaining factor of v in (d− a)× v.
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Figure 4.6: Total quality and quality per unit of energy of C1 class of textures (textures
with value 1) measured for δ = 0. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total
quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.7: Total quality and quality per unit of energy of C2 class of textures (textures
with value 2) measured for δ = 0. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total
quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.8: Total quality and quality per unit of energy of C3 class of textures (textures
with value 3) measured for δ = 0. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total
quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.9: Total quality and quality per unit of energy of C1 class of textures (textures
with value 1) measured for δ = 5. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total
quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.10: Total quality and quality per unit of energy of C2 class of textures (textures
with value 2) measured for δ = 5. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total
quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.11: Total quality and quality per unit of energy of C3 class of textures (textures
with value 3) measured for δ = 5. (Top-Left) Total quality, Rmax=16. (Bottom-Left) Total
quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.12: Total quality and quality per unit of energy of C1 class of textures (textures
with value 1) measured for δ = 10. (Top-Left) Total quality, Rmax=16. (Bottom-Left)
Total quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.13: Total quality and quality per unit of energy of C2 class of textures (textures
with value 2) measured for δ = 10. (Top-Left) Total quality, Rmax=16. (Bottom-Left)
Total quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.14: Total quality and quality per unit of energy of C3 class of textures (textures
with value 3) measured for δ = 10. (Top-Left) Total quality, Rmax=16. (Bottom-Left)
Total quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.15: Total quality and quality per unit of energy of C1 class of textures (textures
with value 1) measured for δ = 15. (Top-Left) Total quality, Rmax=16. (Bottom-Left)
Total quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.16: Total quality and quality per unit of energy of C2 class of textures (textures
with value 2) measured for δ = 15. (Top-Left) Total quality, Rmax=16. (Bottom-Left)
Total quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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Figure 4.17: Total quality and quality per unit of energy of C3 class of textures (textures
with value 3) measured for δ = 15. (Top-Left) Total quality, Rmax=16. (Bottom-Left)
Total quality, Rmax=64. (Top-Right) Quality per unit of energy, Rmax=16. (Bottom-Right)
Quality per unit of energy, Rmax=64.
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An interesting point regarding our results which is worth analyzing more in depth is

the inexplicable behaviors for a few of the resulting diagrams, especially for the detailed

measurements associated with the subclasses (C1, C2, and C3 classes). As shown in Figure

4.18 (top-left and top-right), we have chosen two of these instances, which accounts for

the resulting total quality separately measured for two of odd-behaving diagrams. These

two diagrams represents a detailed measurements of total quality for C3 class of textures

(textures with value 3) for two different δs (δ = 0 and δ = 10). As can be seen there are

unexpected valleys and peaks in these two diagrams for which there is no logical justifica-

tions. We believe this behavior is possibly due to the randomness caused by the relatively

small size of resulting texture dataset for each class. It should also be noted that due to

the classification of textures (there are three different classes, namely C1 to C3), in average,

statistically the total number of textures belonging to a specific class is one third of the

total number of textures in our original experimental texture dataset, which makes it even

harder to run a firm conclusion derived from the behavior of our proposed algorithms. To

tackle this problem, we enlarged our experimental texture dataset, and repeated our exper-

iments with the larger dataset, with a size of 10 times bigger than the original experimental

texture dataset. Figure 4.18 bottom-left and bottom-right show the results of total quality

achieved from the larger dataset. As can clearly be seen, the new diagrams do not show any

strange peaks or valleys. The corresponding trendlines are still following the trendlines for

the original dataset, which is actually a confirmation of our expectations.

In order to verify our approach and thus, the results derived from choosing a larger

dataset, we computed the linear regression of our data points resulted from each of the

three algorithms for different percentages of available budgets. The dashed linear trendlines

in Figure 4.18 represent the calculated linear regressions. Given a set of data points, linear

regression gives a formula to compute a linear line which is most closely matching those

points. We also computed the resulting R2 (i.e. R-Squared) value, which is interpreted as

how well the resulting trendline matches the original data points, or how well the linear

line is a good prediction. More generally, a higher value of R-Squared means the trendline

can better predict one point of data from another. As can be seen for both δ = 0 and

δ = 10 the trendlines in the diagrams resulted from the larger dataset show higher values of

R2 compared to the results achieved from the original dataset. For δ = 0, the value of R2

increased from 0.71 to 0.87, and from 0.87 to 0.96 for the non-adaptive benchmark algorithm

and the online algorithm respectively (note that when δ = 0, there is no deviations, and
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Figure 4.18: Total quality separately measured for two instances of C3 class of textures
(textures with value 3) for two different δs, along with the corresponding linear trend-
lines (dashed lines) and R2 values. As can be seen the diagrams behave smoothly when a
larger experimental dataset is adopted. (Top-Left) Total quality associated with the origi-
nal dataset, for Rmax=64 and δ = 0. (Bottom-Left) Total quality associated with the large
dataset, for Rmax=64 and δ = 0. (Top-Right) Total quality associated with the original
dataset, for Rmax=64 and δ = 10. (Bottom-Right) Total quality associated with the large
dataset, for Rmax=64 and δ = 10.
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thus both of non-adaptive benchmark algorithm and semi-online algorithm cause identical

results). Similarly, for δ = 10, the value of R2 increased from 0.57, 0.69, and 0.44 to 0.78,

0.82, and 0.97 respectively for the non-adaptive benchmark, semi-online, and the online

algorithms.

The results brought from Figure 4.18 also confirms our claim regarding the effect of ran-

domness in the resulting odd-behaving diagrams, and that applying our proposed algorithms

to larger datasets brings more validity for the resulting total qualities.

The last, but not the least, similar to the results and our corresponding argument in

Chapter 3, we can clearly see that our adaptations results in minor visually perceptible

changes to the scene, yet at the same time they maintain enough detail to ensure a satis-

factory user gaming experience. Considering the power savings and increased playing time

achieved by our adaptations, it is reasonable to believe that many users would be happy

to make some minor sacrifice in exchange for longer battery life. On the other hand, our

adaptations will also bring enough incentive for the game providers to implement these

algorithms in their gaming system and integrate these approaches in existing gaming ser-

vices because of the following two main reasons: Firstly, the increased users’ satisfaction

and better gaming experience causes more marketing revenue and absorbs more customers

especially with the increasing demands of mobile gaming industries. Secondly the proposed

adaptations also brings less traffic, less congestion and more power saving for the cloud

gaming service providers since the corresponding servers are also transmitting less data.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Nowadays with the increasing popularity of mobile 3D graphics applications, online mobile

gaming and the potential application of mobile 3D virtual environments in a variety of

scenarios, it would be advantageous to have these environments work smoothly and quickly,

providing high levels of interactivity for their users. Therefore, the domain of online mobile

gaming is fertile ground for novel approaches and new technologies.

On the other hand, with the improved processing power, graphic quality and high-speed

wireless connection in the state-of-the-art mobile devices and smartphones, it looks more

attractive than ever to introduce networked games on these devices. However, these games

consume higher levels of energy. While device features and application resource requirements

are rapidly growing, the battery technologies are not growing at the same pace. Thus, the

main concern is the limited energy of these handheld devices to support a longer game play.

In this thesis we introduced an adaptive context-aware priority-based framework to

manage progressive streaming of bulky 3D textures to mobile devices based on an available

energy budget. Our approach is to selectively reduce the sizes of the textures so that the

overall amount of data transferred to a mobile device does not exceed a download budget,

with the aim of decreasing the amount of energy needed to download the 3D textures. We

ran two separate studies for both static scenes and dynamic scenes. We tested our pro-

posed methodology by implementing a proof-of-concept benchmark game and evaluating it

through different metrics. Our evaluation results show that our game-context-based texture

adaptation method improves the quality of textures in a gaming experience by making best
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use of the limited resources of mobile devices. Our approach not only reduces resource

utilization at the mobile client, but also increases the quality of streamed textures and thus,

the gameplay as experienced by the player. Our framework can be deployed on any types

of online mobile gaming architecture.

5.2 Future Work

While our presented design accomplishes context-aware 3D texture streaming for mobile

games, assumptions have been made with regard to having a complete game context model

with all the importance factors for all the objects being set in advance by game designers.

These two pre-requisites are outside the scope of this particular work, but in order to conduct

our research and evaluate our proposed texture streaming technique, we implemented a

proof-of-concept game benchmark with importance factors being set and explained how

game designers could use a similar approach to their games to design them in a way that

meets the requirements of our framework.

Therefore, one avenue that can be explored in the future is developing a mechanism

that will allow different textures to have their importance factors set automatically dur-

ing the game, which can be called a self-prioritization approach of the 3D objects, or the

corresponding textures. In this approach, during initial gameplay, different 3D objects will

learn how important they are, and their importance factor will then be set automatically

by the framework and not by game designers in advance. This can be for instance as a

history-based approach in which a one-time prioritization can be done, and then used for

future gameplays. This requires applying a specific method in order for objects to become

intelligent in such a way that they learn from gameplay.

Moreover, as another possible avenue of future work, instead of our gameplay simulations

in chapter 4, we study the exact amount of streaming deviations and thus, battery saving of

the mobile client. This can be done exactly the same as our initial study for the real game

power in an experimental way, by running the game several times and measuring how much

energy deviations will be associated with each texture.

Another possible research could be searching for more complicated texture compression

approaches such as PNG or JPEG compressions instead of a down-sampling approach, which

makes the textures to be compressed by any possible amount. This will remove the necessity

of sampling by the sole factor of 4.
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As another avenue for future work, we are going to look into more complicated heuristics

for use of our semi-online and online algorithms defined in chapter 4. Our future heuristics

will take into account the value of upcoming texture to make decisions.

And last, but not least, we also plan to more precisely estimate a download limit D

based on the energy budget. This can also be measured in an experimental way, by running

the game several times and measuring how much deviation will be caused in average after

downloading of that specific texture.
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Appendix A

HTC Evo 3D Smartphone

HTC Evo 3D smartphone is an advanced smartphone which provides a platform to develop

high-end applications targeting demanding mobile consumers. This smartphone is a proper

tool to develop, test, and to showcase innovative applications which feature rich graphics,

high-performance multimedia, and unparalleled user experience.

The HTC EVO 3D is an Android smartphone developed by HTC which was released

exclusively in the United States, and was first pre-released in May 2012 as the name HTC

Evo V 4G. As a special feature, this is a good device to use for 3D showcases and proof-

of-concept testing benchmarks since it can be used to take photos or video in stereographic

3D, which can be viewed on its autostereoscopic display without the need for 3D glasses.

Reference [3] provides a detailed explanation on the features and the technical specification

of this smartphone.

Figure A.1: An overview picture of a HTC EVO 3D [3]
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