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ABSTRACT
Publishers of 3D models online typically provide two ways to pre-
view a model before the model is downloaded and viewed by the
user: (i) by showing a set of thumbnail images of the 3D model
taken from representative views (or keyviews); (ii) by showing a
video of the 3D model as viewed from a moving virtual camera
along a path determined by the content provider. We propose a
third approach called preview streaming for mesh-based 3D object:
by streaming and showing parts of the mesh surfaces visible along
the virtual camera path. This paper focuses on the preview stream-
ing architecture and framework, and presents our investigation into
how such a system would best handle network congestion effec-
tively. We study three basic methods: (a) stop-and-wait, where the
camera pauses until sufficient data is buffered; (b) reduce-speed,
where the camera slows down in accordance to reduce network
bandwidth; and (c) reduce-quality, where the camera continues to
move at the same speed but fewer vertices are sent and displayed,
leading to lower mesh quality. We further propose a keyview-aware
method that trades off mesh quality and camera speed appropriately
depending on how close the current view is to the keyviews. A user
study reveals that our keyview-aware method is preferred over the
basic methods.

Categories and Subject Descriptors: [Computer Graphics]: Graph-
ics Systems and Interfaces; [Multimedia Information Systems]: Mul-
timedia Streaming

General Terms: Algorithms, Human Factors, Performance

Keywords: Progressive Mesh Streaming, 3D Preview, Camera Path

1. INTRODUCTION
Advances in hardware and software for 3D acquisition, editing,

and viewing, have led to an increasing number of 3D models pub-
lished online. 3D artists can now easily share the 3D models they
build in an online portfolio, using Web sites such as p3d.in1 or

1http://p3d.in
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Sketchfab2. Cultural artifacts are being scanned in 3D and pub-
lished freely online through Web sites such as 3D-COFORM3.

Many of these 3D publishing services provide a way for users
to quickly preview a 3D model before a user decides to download,
view, and interact with the model. A common method is to dis-
play thumbnail images of the 3D model, taken from representative
views (or keyviews). Another method is to provide a video depict-
ing the 3D model from a moving camera that navigates a path that
connects through the keyviews. Image-based preview requires less
transmission bandwidth, but is limited in the amount of informa-
tion about the model conveyed to the users. Users need to mentally
make the connections between the different viewpoints, resulting
in higher cognitive load. On the other hand, video-based previews
allow smooth transitions between the different viewpoints, but de-
mand higher network bandwidth for transmission.

We consider a third approach to preview a 3D model in this pa-
per, which we term as 3D preview streaming. 3D preview stream-
ing, like video-based previewing, displays the 3D model at the
client as viewed from a moving camera that navigates along a pre-
defined path, connecting the keyviews. Unlike video-based pre-
viewing, however, 3D preview streaming downloads and renders
part of the 3D model visible from the current viewpoint.

3D preview streaming has many advantages over video-based
preview. First, if the user decides to interact with and view the
3D model after watching the preview, the 3D model information
has already been (partly) downloaded and can be reused. Whereas
for video-based preview, the video frames are useless for 3D ren-
dering. Second, since 3D rendering is done at the client during
preview, the user can choose to watch the preview under different
rendering parameters (e.g, in different lighting condition, different
surface materials, in wireframe or faceted mode). The video-based
preview approach would require a new video to be produced for
each combination of rendering parameters. Third, depending on the
3D model’s geometric complexity and representation, 3D preview
streaming may require lower bandwidth than video-based preview.
Finally, for a 3D model represented as a progressive mesh, exist-
ing progressive streaming and rendering techniques can be used to
adapt the quality of the model dynamically depending on the avail-
able network bandwidth and on the display resolution. While scal-
able video coding and rate adaptation can be used for streaming
video-based preview as well, the adaptation of quality is done in
the 2D domain, not in the 3D domain, leading to lower perceptual
quality of the 3D model.

2http://shw.gl
3http://www.3d-coform.eu
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(a) 10 second (b) 25 second (c) 40 second (d) 55 second

Figure 1: Comparison between video-based preview (top) and 3D-based preview (bottom).

Figure 1 illustrates the last point above. The figure shows four
views of the Asian Dragon transmitted using video-based preview
(top row) and 3D-based preview (bottom row). Both video and 3D
mesh are transmitted at a constant rate of 40kbps. The video depicts
the mesh as viewed along a 1-minute camera path (see Figure 5);
the 3D mesh is streamed along the same camera path. The snap-
shot at time 10s, 25s, 40s, and 55s, are shown. The video-based
preview is encoded from a rendering of the highest quality mesh
along the camera path into H.264 video format4. We can observe
that blocking artifacts are visible in the video-based preview, and
some details on the surfaces of the mesh are lost. In the 3D-based
preview, the details of meshes are still visible.

To exploit the adaptability of progressive meshes, we focus our
work on preview streaming of 3D progressive meshes.

3D mesh preview streaming has many similarities with video
streaming: (i) Users watch a media content passively as it is being
downloaded; (ii) The media content changes with time, and there
is a deadline on when the downloaded data needs to be displayed;
(iii) To ensure smooth playback (no missed deadline), start-up de-
lay can be introduced to buffer sufficient data; (iv) To perform rate
control, the quality of the data can be lowered to reduce the data
rate (either by lowering the frame rate, frame resolution, or with a
higher compression ratio).

There exist, however, several intrinsic differences between 3D
mesh preview streaming and video streaming. Firstly, the display
rate of a video is constrained by the frame rate. While one can
reduce the data rate of a video stream by exploiting temporal scala-
bility and reducing the frame rate, this leads to reduction of display
rate and undesirable stuttering of video during playback. On the
other hand, for 3D mesh preview, the display rate of the 3D data
is controlled by the rendering rate, whereas the data rate is con-
trolled by the speed of moving camera. To reduce the data rate in
the case of 3D mesh preview streaming, we can reduce the camera

4using FFmpeg 0.11.2 with arguments -vcodec libx264 -b
40k -s 500x500

speed while keeping the rendering rate constant, thus maintaining
smooth playback.

Secondly, in video streaming, the content of every video frame
is normally assumed to be equally, semantically, important. In 3D
mesh preview streaming, however, the keyviews are more impor-
tant and convey more important content than the intermediate view-
points along the camera path.

Thirdly, in video streaming, the rate control decision can be done
independently for a frame or a group of frames. For 3D mesh
preview streaming, different viewpoints may share the same mesh
surfaces, reducing the amount of bits sent for a given viewpoint
could therefore increase the number of bits required for a subse-
quent viewpoint, leading to non-trivial rate control algorithms.

These unique characteristics of 3D mesh preview streaming lead
to new techniques (and challenges) for rate control (and the closely
associate buffering control). In this paper, we explore three such
basic techniques and propose a fourth, hybrid, technique. The first
technique, STOP-AND-WAIT, stops the camera at a keyview when
the sending rate reduces, and starts moving the camera again when
enough data is buffered. This technique is similar to how video
playback pauses when there is insufficient data in the buffer. How-
ever, by stopping at keyviews that are semantically important (and
not arbitrary video frame in video streaming case), users can spend
more time examining the 3D model from the important views. The
second technique, REDUCE-SPEED, slows down the camera move-
ment when the sending rate reduces, and resumes normal camera
speed again when enough data is buffered. This technique is anal-
ogous to reducing the video frame rate, but as explained above, is
able to maintain smooth display rate due to decoupling of render-
ing rate and data rate. The third technique, REDUCE-QUALITY,
exploits the property of progressive meshes and lowers the qual-
ity of the mesh (by sending fewer refinements) when sending rate
reduces (but maintains constant camera speed). This technique is
analogous to sending fewer layers in a scalable video, but with the
reduction of quality done in the 3D domain.
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STOP-AND-WAIT can tolerate the most amount of reduction in
bandwidth, but is most disruptive to the user viewing experience.
We found that for both REDUCE-SPEED and REDUCE-QUALITY,
they can adapt to bandwidth reduction up to a certain threshold
without causing perceptually obvious differences.

To handle larger changes in the sending bandwidth, we propose
to combine both techniques to simultaneously slow down the cam-
era movement and reduce the mesh quality. This hybrid technique
allows the preview to adapt to the importance of the viewpoint and
trades off mesh quality with camera speed. As the camera is near
the keyviews, the mesh quality is reduced as little as possible, while
the camera movement is slowed down. Conversely, the camera
speed is maintained as much as possible when viewing other less
important regions of the mesh, but the mesh quality is reduced.

This paper is the first to propose the notion of 3D mesh preview
streaming. Our contributions are: First, we introduce 3D mesh pre-
view streaming as an approach to preview 3D models (in Section 3).
Second, we explore three basic approaches to adapt to bandwidth
fluctuation, exploiting the unique characteristics of 3D mesh pre-
view streaming (in Section 4). Finally, we propose a hybrid ap-
proach to adapt to bandwidth fluctuation and view importance (Sec-
tion 5) and show that it leads to more perceptually pleasing pre-
views than the baseline approaches in a user study (Section 6).

2. RELATED WORK

2.1 3D Mesh Streaming
We now present previous work on 3D mesh streaming. Previous

work considers situations where users are free to interact with the
model. None has considered the problem of mesh preview stream-
ing, where the camera moves but no interaction is possible. Meet-
ing playback deadline is not a central issue in these works, but is
a core consideration of our approach. The concerns in these previ-
ous works include how to improve the quality of the received mesh
as fast as possible, mitigate distortion of the rendered mesh in the
presence of packet losses, and scale to a large number of users.

Al-Regib and Altunbasak [1], Li et al. [20], and Chen et al. [7] in-
vestigated how to choose between different standard transport pro-
tocols for transmissions, trading reliability and delay. Harris III
and Kravets [16] designed a new transport protocol that exploits
loss tolerance and partially-ordered property of 3D objects that are
organized into trees of bounding volumes.

Several existing works also consider error control techniques at
the application layer. Park et al. [23] and Yan et al. [34] segmented
a progressive mesh into smaller partitions that are loss resilient. Al-
Regib et al. [2] and Chen et al. [7] studied error correction for 3D
transmission, while Park et al. [22] and Tang et al. [29] investigated
error concealment methods. Cheng et al. [10] and Tian [30] used
retransmissions for error control. We do not consider error control
in this paper. We believe many of these methods can be adapted into
3D preview streaming easily, by additionally considering playback
deadline in the error control decision. Such situation is similar to
video streaming and well-known solutions exist.

Cheng et al. studied two ways to scale 3D mesh streaming to
many users. First, a receiver-driven approach with stateless server
is proposed to reduce the computational overhead at the server [9].
Second, a peer-assisted approach is used to reduce the bandwidth
overhead at the server [8]. We consider a client-server architecture
in this work. The computational overhead of the server, however,
is less since the camera path is pre-determined: the server does not
need to compute which vertices are visible given a viewpoint as
when the user interacts with the 3D model. The use of peer-assisted
approach for 3D preview streaming remains an open problem.

The final set of previous work we want to highlight is that of De
Silva et al. De Silva et al. studied 3D progressive mesh streaming
from the user perspective. They characterized how users would
interact with a 3D mesh [11] and measured how well users would
tolerate slow mesh refinements and high response time [12]. The
finding on high tolerance to response time (up to 1s) is relevant
to our work, as it indicates that users are willing to view lower
quality meshes and supports our REDUCE-QUALITY approach to
3D preview streaming. Our user study results validate this finding
as well.

2.2 3D Object Preview
The related work on 3D object preview focuses on automatic

determination of keyviews and generation of camera paths for pre-
views. Many papers have addressed the problem of finding the best
view, or a set of best views for a scene. We focus here on techniques
for a single object, and discard the treatment of a whole scene.
Early work by Kamada and Kawai [18] chose non-degenerated
views. Some recent work focuses on maximizing a criterion based
on the 3D geometry, like maximizing the number of polygons seen
or the area covered [25], the total curvature [28], the viewpoint en-
tropy [32], or the view stability [31]. Dutagaci et al. [13] gave a nice
comparison of state of the art methods. Perceptual criteria have also
been proposed: gathering user experience [35], or tracking eye mo-
tion [4, 24]. Some of these techniques generalize naturally to more
than one view; such as the work of Fiexas et al. [14] which used
the entropy of the same object.

Creating a virtual camera path is a common problem in robotics,
gaming, or virtual walkthrough. The goal, however, is different.
In both contexts, the virtual environment is usually complex scene,
and criteria like collision detection are main concerns, whereas vi-
sual quality may not be as important. The navigation in complex
worlds proposes the use of cinematographic rules [26], or dedi-
cated language [21] or interactions for the camera control [19]. We
indeed have a simplified framework. Here we start from a set of
keyviews, selected by an expert or the content provider for their
aesthetic and relevance for describing the 3D object. We need to
seamlessly, or at least smoothly, link the keyviews corresponding
to the chosen views with an unsupervised approach (we do not want
the user to interact for choosing the path). In [15], Han et al. chose
among the visited keyviews using a shortest path algorithm. We
actually require to visit each chosen keyview and thus need or-
der the chosen keyviews. We also consider a different cost func-
tion between the keyviews; whereas their cost function depends
on the similarity of the keyviews (weighted distance between po-
sition, viewing angles and saliency), our cost function will take
into account the streaming cost. Moreover, their camera path lacks
smoothness between keyviews, which leads to a shaky effect in the
resulting videos. Both Burtnyk et al. [5] and Andújar et al. [3] used
smooth paths, respectively modeled by Bézier or Hermite polyno-
mial curves. Similarly, we use Catmull-Rom splines, in order to
interpolate our keyviews and have a smooth path.

3. A STREAMING FRAMEWORK FOR 3D
MESH PREVIEW

3.1 Background
Before we describe the framework for 3D mesh preview stream-

ing, we need to describe some background terminologies and rele-
vant techniques that enable preview streaming.

Progressive Mesh. We begin by describing how a 3D mesh is
progressively represented, following Hoppe’s model [17]. A 3D
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mesh can be progressively represented by repeatedly performing
the edge collapse operation on the edges in the mesh. Each edge
collapse operation merges two neighboring vertices into one, there-
fore simplifying the mesh by reducing the number of vertices by
one. The simplified mesh after a sequence of operations is called
the base mesh. We can obtain the original mesh from the base mesh
by reversing the edge collapses, using an operation called vertex
split that takes a merged vertex and splits it into two vertices.

A progressive mesh can be represented with a forest of binary
trees, where the root of each tree is a vertex in the base mesh. Every
intermediate node is a vertex split, with its two children as vertices
that are split from the parent. The leaf nodes in the forest form the
vertices of the original mesh.

View-dependent Progressive Mesh Streaming. Streaming of
progressive mesh is done by transmitting over the base mesh, fol-
lowed by a sequence of vertex splits. As the client receives the ver-
tex splits, it updates the base mesh, and renders the updated mesh
with increased levels of detail. As a result, the user sees the mesh
refining itself as more vertex splits are received.

In view-dependent progressive mesh streaming, only vertex splits
that are visible from the current viewpoint are sent. Further, only
vertex splits that cause changes larger than one pixel (in the screen
space area) are transmitted.

There are two ways view-dependent streaming is achieved. In
server-driven approach, the client sends the current viewpoint to
the server. The server determines which vertex splits are visible
and streams them to the client. In receiver-driven approach, the
client estimates the vertex splits that are visible and requests them
from the server.

3.2 Mesh Preview Streaming
We now introduce the notion of 3D mesh preview streaming,

which is a specific form of view-dependent progressive mesh stream-
ing. In 3D mesh preview streaming, there is no interaction between
the user and the 3D model. The sequence of views (viewpoints
and synthetic camera parameters) is predetermined in the form of a
parametric camera path P (·), which is pre-computed by the server
and communicated to the client. In addition to the camera path,
the server also precomputes the in-view vertex splits along the path
before streaming, and transmits the vertex splits in sequence to the
client. The client buffers the base mesh and all the vertex splits of
the initial view before it starts playing back the preview.

The client renders the 3D mesh according to the camera path
P (t) = (Pos(t), C(t)): at time t, the vertices visible from view-
point Pos(t) are rendered using the synthetic camera parametrized
by C(t). C(t) is a set of camera parameters specifying near plane,
far plane, field of view, color model, etc. Ideally, the client has
received all the vertex splits needed to refine the visible part of
the mesh to its full level of detail by time t. The server deter-
mines which vertices to send based on the camera path. Ideally,
the server always sends all vertices visible from viewpoint P (t1)
before the vertices visible only from P (t2) if t1 < t2. Under the
above ideal conditions, the client would playback the preview of the
mesh smoothly at uniform camera speed and at the highest level of
detail as the viewpoint moves along the camera path.

3.3 Bandwidth-Aware Camera Path
We now present our method to compute the camera path. We as-

sume that a set of representative views, called keyviews, is given as
input. These keyviews can be set manually by the content provider,
or can be algorithmically determined using the existing methods
(see Section 2.2). Figure 2 shows some examples of keyviews se-
lected for Lucy (details about this model are given in Section 6).

Figure 2: Four of the chosen keyviews for Lucy.

A good camera path needs to have the following properties: (i)
the camera path must pass through the keyviews, (ii) the path should
travel directly and smoothly between two neighboring keyviews on
the path. For preview streaming, we add two more properties: (iii)
the amount of data shared between two successive keyviews should
be as much as possible, reducing the fluctuations in bandwidth re-
quirements as the viewpoint moves along the camera path, and (iv)
the camera path must be smooth with no sudden changes in the
gradient of the path, especially near the keyviews.

We construct a weighted complete graph G = (V,E,w) where
each vertex in the graph is a keyview. Every two keyviews are
connected with an edge (u, v) with the cost w(u, v) defined to be
|Sm|−|Sp(u, v)|, where Sm is the size of the mesh, and |Sp(u, v)|
is the size of vertices visible from both keyviews u and v. The cost
function favors visiting a neighboring keyview sharing a maximum
of visible vertices.

The problem of finding the sequence of keyviews to visit that
would minimize the total cost is then equivalent to the traveling
salesman problem, which is NP-complete. For our use case, the
number of keyviews (|V |) is small (e.g., we use 12 keyviews for
Lucy) and the path/tour is computed offline, so we use a brute force
approach. We could alternatively, for more complex paths, use a
heuristic by Rosenkrantz et al. [27] to find a tour in G. This tour
yields the ordering of the sequence of keyviews to visit.

We did not consider the distance between two neighboring keyviews
in the camera path in our graph model. Two keyviews can be rela-
tively close and still very little overlap in data if the camera is point-
ing at two very different directions at the keyviews. The converse
is true: two keyviews with positions relatively far from the object
may be far apart and still share large overlaps in the model. Using
distance as a cost to minimize during path construction would lead
to view sequences that swing wildly. Figure 3 shows an example.
We note that, in previous work that constrain the camera position to
be on a bounding sphere with the orientation of the camera pointing
towards the center, such issue does not exist and thus it suffices for
them to find the minimal distance between the neighboring view-
points when determining the visiting order (such as in [33]).

From the ordered sequence of keyviews, we compute the para-
metric camera path P as an interpolating curve (so the property (i)
is insured). Catmull-Rom splines are a classical model of smooth
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Figure 3: Two sequences of keyviews selected by using different costs. Top: using distance between keyview positions. Bottom: using
the number of overlap vertices. The top sequence leads to swinging views, while the bottom sequence is more coherent.

interpolatory curves, since such curves are C1-continuous. Re-
cently, Yuksel et al. [6] have proposed different parameterizations
of Catmull-Rom splines leading to different tension in resulting
curves. For an arbitrary starting time t0, the i-th keyview is visited
at time ti = ti−1+ ||Pos(i)−Pos(i−1)||α, where Pos(i) is the
viewpoint position corresponding to the i-th keyview, α = 0, 0.5,
and 1 correspond respectively to uniform, centripetal and chordal
parameterizations. Figure 4 shows the Catmull-Rom curves for
these three different parameterizations. We choose the chordal pa-
rameterization on the position of the viewpoints. There are three
advantages in choosing this parameterization. First, the behavior
does not depend on the relative difference in the positions of the
keyviews. In particular, the keyviews are far from being uniformly
distributed (since they are chosen for their visual interest), the cho-
sen interpolating curve does stay close to the line joining only suc-
cessive nearby positions. Second, between two far away positions
corresponding to two successive keyviews, a relatively long path is
derived, leading to intermediate keyviews that stay at a relatively
constant distance to the object. The chosen model quite naturally
avoids collision with the model. Finally, the parameterization is
fairly regular, which is important for us as we sample views along
the parametric path: regular parameters thus lead to quite regularly
sampled positions on the path. We use this property in the follow-
ing to get an approximate arc-length parameterization.

3.4 Basic Streaming Algorithm
We now describe how the server and the client work in tandem

to enable 3D mesh preview streaming.
First of all, we need an arc-length parameterization of the camera

path, that is, such that the position Pos(t) is at a distance on the
path of t − t0 from the starting point Pos(t0). To do that, we
compute dense samples on the curve from equally-spaced samples
in the parameter space. The distance on the curve is approximated
by the length of the piecewise linear approximation of the sample
points. This approximated arc length parameterization is used in
the following.

We discretize the camera path into N sample viewpoints corre-
sponding to parameters taken at an equal distance d. The time taken
for the camera to travel between two sampled views is 1 unit time.
The camera speed is therefore d. We assume the camera speed is
constant in the ideal streaming algorithm (unlimited bandwidth).

The server computes M(t), the set of vertices visible from any
point along the curve between P (t) and P (t + 1) (inclusive) that
have not appeared before in any set M(t′) for t′ < t. These are
the vertices that have not been seen before if the client follows the
camera path from P (0) to P (t). The size of the data in M(t) can
also be precomputed. We denote the size ofM(t) asB(t) (in bits).
The playback rate, the rate in which the data are consumed and
display, is B(t) (in bits per unit time) in this ideal case.

The server algorithm is simple: for each time t = 0, 1, . . . , N −
2, the server sends M(t) with the data rate of B(t). Suppose we
start the clock t = 0 at the client one unit time later (plus some de-
lay to account for network latency and jitter) than the server. Then,
assuming that the data rate of B(t) is sustainable, this algorithm
ensures that the client will receive all data of M(t) by time t for
rendering within the next unit time.

Now we consider the case where the server has a maximum send-
ing rate of r. Let Bmax = max{B(i)|0 ≤ i ≤ N − 2}. If r <
Bmax, it is possible that at some time t where B(t) = Bmax, the
client would not have received enough data to display the mesh at
full resolution. To counter the mismatch between the playback rate
and the sending rate, the client can wait for an additional Bmax/r
time before starting to render. This start-up delay ensures that the
client would continue to playback the 3D preview smoothly, and is
analogous to the start-up delay introduced in video streaming.

4. HANDLING BANDWIDTH VARIATIONS
We now consider what would happen if r reduces during stream-

ing. This condition would happen for several reasons. First, there
could be a congestion in the network, causing the server to clamp
down the congestion window, effectively reducing the value of r.
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Figure 4: Path given by Catmull-Rom splines, interpolating the
camera positions of keyviews (black squares). Uniform (red
curve), centripetal (green curve) and chordal (blue curve) pa-
rameterization lead to different tension parameters. Chordal
is chosen since tension is applied on shorter segments (close by
keyviews) and the camera path is less tense on longer segments
(far apart keyviews).

Second, there could be new clients in the system, causing the server
to reduce the value of r for one client to re-allocate the bandwidth
for the new clients.

A reduction in r would cause the client not to download enough
data, since the start-up delay is no longer sufficient to absorb the
difference in playback rate and sending rate. While it is possible
for the client to be conservative and have a higher start-up delay
than Bmax/r to absorb the variation in r, higher start-up delay
sacrifices user experience. Furthermore, if r drops significantly for
a longer period of time, there is no guarantee that the higher start-up
delay is sufficient.

As such, we need to support variation of the sending rate r in
3D preview streaming. In the rest of this section and the next sec-
tion, we introduce three basic techniques and a more sophisticated
technique that is a hybrid of the three, answering the following
question: what should the client (and the server) do when there
is insufficient data to display the mesh at full resolution?

4.1 Pause During Buffering
An obvious solution for the client is to pause the camera at view-

point P (t) until all data in M(t) are completely received. This
method, however, may lead to frequent pausing and jittery camera
movement, and is therefore undesirable.

An alternative is for the client to pause and rebuffer enough data
to ensure smooth playback for the rest of the camera path. Assum-
ing that the current sending rate r(t) stays above a value rmin for
the rest of the playback. Since Bmax(t) = max{B(i)|t ≤ i ≤
N − 2}, if the client stalls for Bmax(t)/rmin before starting to
move the camera again, then there would be sufficient data for the
client to render along the rest of the camera path.

The above techniques, however, do not exploit a unique property
of 3D mesh streaming: some viewpoints are more important and
interesting than others. With such semantic information available,
we note that, if we need to pause, it is better to pause at one of

the keyviews. This idea has led to our first method to handle band-
width variation. The method works as follows: let the sequence
of keyviews along the camera path be P (R1), P (R2), ..., P (Rk),
where P (R1) = P (0). After the initial start-up delay, the client
first waits for all vertices for P (R2) to arrive (which also implies
that all vertices on preceding viewpoints have arrived). The client
then starts moving the camera. Upon reaching the viewpointP (Ri),
if the vertices for P (Ri+1) have not been received, then the client
pauses and waits until the vertices for P (Ri+1) has been received,
before start moving again. This strategy might lead to longer buffer-
ing time initially, but if it needs to pause for rebuffering, it always
does so at a keyview that is interesting and important.

We collectively call the above three methods as STOP-AND-WAIT,
and call the variations as “naive”, “rebuffer”, and “at-keyview” re-
spectively.

Note that, for this technique, the server still sends all the vertex
splits even when r(t) < B(t). The consequence is that the server
will take longer than one unit time to transmitM(t), increasing the
duration of the preview.

4.2 Reducing Mesh Quality
Another obvious strategy for the client, if it has not fully received

M(t) by time t, is to render the set of received vertices anyway, re-
sulting in a mesh of lower level-of-detail. We call this technique
REDUCE-QUALITY. Since progressive mesh is used and the client
already has the base mesh, the client always has some data to dis-
play. The advantage of this approach is that the camera moves con-
tinuously at full speed, leading to smooth movement and preserving
the preview time of the ideal path.

Unlike the previous technique, the server stops sending M(t)
after one unit time and starts sending vertices in M(t + 1). The
server’s camera speed in this case remains constant.

Note however that at the end of the preview, the model will not
be available at full resolution, as indicated in Table 2.

4.3 Reducing Camera Speed
The previous two basic techniques are minor variations of well

known techniques in the domain of video streaming. We now con-
sider the third technique, which capitalizes on the unique property
of 3D mesh preview streaming. Since the rendering rate and play-
back rate are decoupled, we slow down the playback rate by slow-
ing down the camera when the sending rate r(t) reduces. We call
this technique REDUCE-SPEED.

To control the speed of the camera at the client, the client keeps
track of the latest viewpoint received and rendered. Suppose the
client is currently rendering viewpoint P (tdisp) and the latest com-
plete viewpoint received is P (trecv).Consider what happens when
the sending rate reduces. Just like in STOP-AND-WAIT, the server
slows down its camera movement to ensure that full mesh quality is
received at the client, allowing tdisp to catch up with trecv . To con-
trol the camera speed, the client computes periodically, the catch-
up time, tcatch, defined as the time it takes before tdisp = trecv .

If tcatch falls below a threshold, the client slows down the cam-
era. To recover, the client speeds up the camera if tcatch increases
beyond another threshold (up to the original camera speed). We
limit the camera speed to fall within the range [Smin, Smax], where
Smax, the maximum speed, is the original camera speed specified
for the path.

4.4 Discussion
There are a few points we want to highlight about these basic

algorithms before we propose a more sophisticated algorithm.
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First, for ease of exposition, we described STOP-AND-WAIT and
REDUCE-SPEED as resulting in full quality mesh being rendered at
the client. As such, there is actually no need for progressive meshes
to be used. In our system, however, we included an optimization
that adapts the rendering of mesh to the screen resolution (no tri-
angle with screen area below one pixel is sent). We also support
out-of-core rendering for large 3D models, where the out-of-view
region of the mesh is collapsed to reduce memory requirement.
Progressive mesh is needed to support these functionalities.

Second, if r(t) drops significantly for a long period of time,
REDUCE-SPEED could slow the camera to halt, reducing it to a
STOP-AND-WAIT-like scheme. In both STOP-AND-WAIT and REDUCE-
SPEED the duration of the preview is not bounded. At the opposite,
REDUCE-QUALITY could end up showing only the base mesh, as
little or no data is being received. Neither of which is desirable.

Third, REDUCE-SPEED is more appropriate for when P (t) is
close to a keyview, as it gives users more time to view the mesh
near the interesting regions. On the other hand, REDUCE-QUALITY
is not at all appropriate, as it reduces the quality of the mesh around
the interesting regions.

Fourth, we observe that both REDUCE-SPEED and REDUCE-QUALITY
do not decrease the perceptual quality of the mesh significantly, as
long as r(t) does not decrease too much.

The last three points have led us to design a new keyview-aware
scheme that combines all three basic schemes above, to trade off
between speed and quality.

5. KEYVIEW-AWARE STREAMING
Let I(t) be the importance of view P (t). We set I(t) to 1 at each

keyview and 0 at the midpoint between two successive keyviews.
For other points along the camera path, we interpolate I(t) linearly
between 1 and 0.

The server algorithm for the keyview-aware scheme is fairly sim-
ple: for each time t = 0, 1, ..., N − 2, the server computes its
camera speed Ss(t) as the following:

Ss(t) = SminI(t+ 1) + Smax(1− I(t+ 1)).

With the above adaptation, the server’s camera moves at the
slowest speed Smin at the keyviews. Note that the control of the
server’s camera does not (directly) affect the client’s camera speed.
Rather, by slowing down the server’s camera, the server has more
time to transmit more vertices, leading to a higher mesh quality.

To slow down the camera at the client near the keyviews, the
client controls its camera speed Sc(t) in a similar way as the server:

Sc(t) = SmidI(t+ 1) + Smax(1− I(t+ 1))

except that Smid is a speed threshold chosen to be higher than
Smin. We use Smid instead of Smin here, since a large change
in the client’s camera speed is directly perceivable by the user, we
keep the variations in the camera speed smaller.

The control above, however, does not adapt to sending rate r(t).
We need to further adapt the camera speed at the client by consider-
ing the gap between tdisp and trecv , similar to REDUCE-SPEED in
Section 4.3. Unlike REDUCE-SPEED, however, the client’s camera
speed is also dependent on the importance, complicating the calcu-
lation of tcatch. We therefore use a slightly different method. We
let lgap be the distance (along the camera path) between P (tdisp)
and P (trecv), and k be an input parameter that determines how
speed scales with lgap. As lgap becomes narrower due to a lower
r(t), the camera slows down naturally. The updated formula to
compute the camera speed is thus:

Sc(t) = min{k × lgap, SmidI(t+ 1) + Smax(1− I(t+ 1))}

Note that the above camera speed is continuous. If r(t) is too
low, then KEYVIEW-AWARE would pause and rebuffer whenever
the buffer becomes empty, reducing it to STOP-AND-WAIT method.

6. EVALUATION
In this section, we present the evaluation results of different 3D

preview streaming schemes proposed in this paper, as well as a user
study to measure the perception of different solutions.

6.1 Experimental Set Up
We used three 3D models for evaluation: Asian Dragon, Thai

Statue, and Lucy, from the Stanford 3D Scanning Repository. We
converted the models into progressive meshes for streaming. For
Asian Dragon and Thai Statue, the vertex coordinates are encoded
with a lossy compression algorithm [9] and are of reduced size. We
rendered each model on a 500 × 500 pixels canvas with OpenGL.
Table 1 summarizes the meshes we used and some basic perfor-
mance metrics of preview streaming. All measurements are done
with a Linux PC equipped with Intel Core 2 Duo 2.40 GHz CPU, 4
GB memory, and NVIDIA Quadro FX 3500 graphics card.

We conducted three experiments in total. The first two experi-
ments used Lucy, the largest one of the three models. We used Thai
Statue in the third experiment to further validate the results from
the second experiment.

We picked 12 keyviews manually for Lucy and 10 keyviews for
Thai Statue (four of the keyviews for Lucy are shown in Figure 2),
and constructed the camera path as described in Section 3.3.

For evaluation, we implemented six schemes in 3D preview stream-
ing: GROUND-TRUTH, STOP-AND-WAIT naive, STOP-AND-WAIT
at-keyview, REDUCE-QUALITY, REDUCE-SPEED, KEYVIEW-AWARE
schemes. GROUND-TRUTH assumes the outgoing bandwidth is un-
limited and therefore the preview always has the best quality and
constant camera speed.

To simulate the network using TCP with a maximum outgoing
bandwidth r(t), we set up both server and client on the same ma-
chine. r(t) is tuned by tc, Linux traffic controller. The data rate
r(t) for Lucy starts from 100 KBps and switches between 25 KBps
and 100 KBps every 30 seconds (see Figure 7). We use this range
of values as it roughly matches the variation in bandwidth required
to transmit the Lucy model. Similarly, the data rate r(t) for Thai
Statue starts from 50 KBps and switches between 10 KBps and 50
KBps every 20 seconds.

Before we present the evaluation, we first illustrate these schemes
in greater details. Table 2 shows the duration of the preview and
the amount of received data for different schemes for Lucy. The
duration indicates the amount of time the user would need to watch
through the whole preview (in other words, the time the camera
takes to move along the whole camera path). REDUCE-SPEED leads
to preview that lasts more than twice the duration of the GROUND-
TRUTH, while REDUCE-QUALITY leads to three times fewer ver-
tices being received, reducing the mesh quality. KEYVIEW-AWARE
has duration and quality that fall in between both schemes. Figure 6
illustrates the quality of three selected keyviews when streamed us-
ing the three non-ideal schemes. Note the mesh quality is signifi-
cantly and noticably lower in the middle column.

6.2 Quantitative Results
Figures 7 and Figures 8 (a)-(d) illustrate how different parame-

ters of REDUCE-SPEED, REDUCE-QUALITY, KEYVIEW-AWARE for
Lucy change over time. Since the schemes lead to different cam-
era speed, the x-axes of the graphs are shown in units of the path
length. The vertical lines indicate the positions of the keyviews.
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Measure Asian Dragon Thai Statue Lucy
Number of Vertices 3.6 million 5 million 14 million
Number of Triangles 7.2 million 10 million 28 million
Size of Transmitted Mesh 58.7 MB 81.2 MB 428.1 MB
Size of Base Mesh 7.9 KB 10.3 KB 7.0 KB
Number of Vertices in Base Mesh 38 16 264
Size per Vertex-Split 17 bytes 17 bytes 32 bytes
Precision of Vertex Coordinates 17 bits 17 bits 32 bits
Render Frame rate 15-20 fps 10-18 fps 12-20 fps
Network Overhead 244 bytes 244 bytes 340 bytes

Table 1: Measurements of 3D mesh preview streaming along a camera path (see Figure 5)

Figure 5: Camera paths of Asian Dragon, Thai Statue, and Lucy. The black points are the camera positions of keyviews.

Scheme Duration Received
GROUND-TRUTH 84 seconds 14.6 MB
STOP-AND-WAIT naive 202 seconds 14.6 MB
STOP-AND-WAIT at-keyview 210 seconds 14.6 MB
REDUCE-QUALITY 88 seconds 5.3 MB
REDUCE-SPEED 219 seconds 14.6 MB
KEYVIEW-AWARE 148 seconds 8.8 MB

Table 2: Statistics of preview streaming schemes for Lucy.
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Figure 7: Bandwidth of preview streaming schemes for Lucy,
estimated on the client side. The camera path length is mea-
sured with OpenGL coordinate units. The simulation of band-
width for Lucy starts from 100 KBps and switches between 25
KBps and 100 KBps every 30 seconds.

We first focus on the REDUCE-SPEED scheme (in red). Since
there are much data to transmit initially (Figure 8(d)), the gap is
small (Figure 8(c)), causing the camera to slow down significantly
(Figure 8(a)) compared to other schemes. The quality of REDUCE-
SPEED (Figure 8(b)), however, is the highest.

Next, we illustrate the REDUCE-QUALITY scheme (in blue). The
camera speed is constant (Figure 8(a)), but the quality is the lowest
(Figure 8(b)), and therefore the least amount of data being trans-
mitted (Figure 8(d)).

The graph for the KEYVIEW-AWARE scheme (in green) is the
most interesting. The camera speed (Figure 8(a)) fluctuates be-
tween Smid and Smax, during a period of high sending rate. After
30 seconds, the camera speed is forced to slow down due to low
sending rate. At the same time, the gap (Figure 8(c)) is kept rel-
atively low. The interdependency between the camera speed and
gap causes both values to fluctuate during this period. The num-
ber of rendered polygons (Figure 8(b)) falls between the other two
schemes, but peaks at keyviews. This observation is more obvi-
ous at length 3700. There is an increase in the number of rendered
polygons compared to REDUCE-QUALITY scheme.

6.3 User Study
We now present the results from a user study, which quantita-

tively evaluates the proposed strategies.
Set-up. We streamed and rendered the 3D meshes using differ-

ent preview strategies. To allow the participants in our user study
to experience these different strategies without installing our client,
we captured the rendered frames and encoded them as high quality
video clips, with each video clip corresponding to one mesh and
one preview strategy. We then set up a Web site for the partici-
pants to access, view, and rate these video clips. This Web site
has two pages. On the first page, we present the GROUND-TRUTH
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(a) Client’s Camera Speed
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(b) Number of Rendered Polygons
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(c) Gap between Receiving and Rendering Viewpoints
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(d) Received Data Size

Figure 8: Evolution of preview streaming schemes for Lucy,
recorded on the client side. Both the camera path length and
the gap are measured with OpenGL coordinate units.

Preview Accept. Accept. Average
Speed Quality Ranking

STOP-AND-WAIT naive 10% 100% 2.5
STOP-AND-WAIT at-keyview 10% 90% 2.3
KEYVIEW-AWARE 90% 80% 1.2

Table 3: Statistics from the Experiment 1. Percentage of par-
ticipants finding the speed or the quality is acceptable (accept.)
for a given video, and the average ranking.

Experiment NOEXP NOV AVG KNOW EXP

1 1 3 5 0 1
2 10 2 5 7 1
3 9 5 2 5 0

Table 4: User experience levels in the experiments. NOEXP: no
experience; NOV: novice; AVG: average user; KNOW: knowl-
edgeable; EXP: expert.

along with some instructions and explanations about the overall
context of the study. After reading the instructions and viewing
the GROUND-TRUTH, the participant moves to a second Web page,
where we display three different previews that can be viewed inde-
pendently, and a form to collect participants’ answers to questions.
The three videos are displayed in a random order generated using
a script. The answers are sent to and stored in a remote database.
It took between 10 to 20 minutes for a participant to complete the
study, depending on the level of attention.

Form. For each preview of the second Web page, we ask each
participant whether each of the quality and the speed is acceptable.
We do not provide any clue regarding what "acceptable" means,
and let the participants judge according to GROUND-TRUTH and
their own idea of what those parameters should be. Then the par-
ticipants are required to sort the previews from 1 to 3, 1 being the
best video and 3 being the least appealing to them. The participants
can explain their choices and leave comments in a specific dialog
box. Finally, we ask the participants to state their age, gender, and
experience with 3D modeling.

Experiment 1: STOP-AND-WAIT versus KEYVIEW-AWARE.
We first evaluated two STOP-AND-WAIT schemes against KEYVIEW-
AWARE using the Lucy model. The results of this comparison ap-
pear in Table 3. The results of this study were very consistent, and
we thus tested only 10 participants (all males, see Table 4). Only
one of the 10 participants found the varying speed of the STOP-
AND-WAIT strategy acceptable. All others did not find stopping the
camera during preview acceptable. Whether the camera stopped at
a keyview or not did not make a significant difference. So, clearly,
STOP-AND-WAIT is not a reasonable strategy for 3D previews.

Experiment 2: REDUCE-QUALITY versus REDUCE-SPEED ver-
sus KEYVIEW-AWARE using Lucy. A total of 25 participants, 5
females and 20 males with age ranging from 23 to 45 and averag-

Preview Acceptable Acceptable Average
Speed Quality Ranking

REDUCE-QUALITY 100% 60% 1.92
REDUCE-SPEED 4% 96% 2.68
KEYVIEW-AWARE 80% 96% 1.4

Table 5: Statistics from the Experiment 2. Percentage of users
finding the speed or the quality is acceptable for a given video,
and the average ranking.
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Preview t Stat t Critical P(T<=t)
STOP-AND-WAIT naive 4.333 2.262 0.002
STOP-AND-WAIT at-keyview 2.905 2.262 0.017
REDUCE-QUALITY 2.316 2.064 0.029
REDUCE-SPEED 6.532 2.064 0.000

Table 6: Results of a two-tail t-Test on the Experiment 1 and 2.

ing 27, participated in the user study (see Table 4). Table 5 presents
the average ratings of each video. 19 of the participants left a com-
ment, most of them insisting on the fact that they were looking for
a better quality but that the length of REDUCE-SPEED was making
it really boring to watch. As explained in their comments, partici-
pants almost always ranked REDUCE-SPEED as the worst because
the camera was too slow. The only participant that ranked this video
as 1st was an expert user, who explained his5 choice in his comment
that he considered quality of the model as the most important pa-
rameter. REDUCE-QUALITY was ranked 2nd, usually because par-
ticipants were able to spot mesh refinements and because in some
regions of the statue (the eyes, the feet), the quality was too visibly
degraded. The KEYVIEW-AWARE scheme was therefore ranked 1st,
and was designated by participants as the most convincing compro-
mise between the quality of the model and the length of the video
(determined by the camera speed).

A two-tail Student’s t-Test paired for means was performed to
determine if KEYVIEW-AWARE has a superior user ranking. The
null hypothesis is that the average ranking of any other scheme is
equal to that of KEYVIEW-AWARE. If a test of significance gives
a p-value lower than the significance level α, the null hypothesis
is rejected. In Table 6, since the t-statistic > t-critical and p-value
< α (α = 0.05) , we can reject the null hypothesis. Therefore, the
average ranking of KEYVIEW-AWARE is the best (see Table 3 and
Table 5) and has statistically significant difference.

Overall, the user study rules out both the STOP-AND-WAIT and
the REDUCE-SPEED mostly because of the duration of the pre-
view. Whereas users are ready to compromise on the quality, they
still prefer the hybrid solution, offering a compromise between (a
smooth) speed and quality.

Experiment 3: REDUCE-QUALITY versus REDUCE-SPEED ver-
sus KEYVIEW-AWARE using Thai Statue.

To further validate our findings, we repeated Experiment 2 using
a different model, the Thai Statue. We had 21 participants in this
experiment (5 females and 16 males, with age ranging from 21 to
63 and an average age of 28). The results are summarized in Ta-
ble 7 and Table 8. As in the Experiment 2, most users preferred
the KEYVIEW-AWARE preview for the Thai Statue: 19 users out of
21 ranked KEYVIEW-AWARE as 1st. Further, REDUCE-QUALITY
was more appreciated than REDUCE-SPEED: 12 users commented
that low speed was less acceptable than low quality. Namely, they
complained that the duration of REDUCE-SPEED really impaired
the user experience despite the ideal quality. This result was coher-
ent with Experiment 2. Table 8 shows the statistical significance of
the user preference to KEYVIEW-AWARE.

7. CONCLUSION
3D mesh preview streaming is a new form of continuous media

transmissions that contains characteristics of both fully interactive
3D progressive mesh streaming and video streaming. We introduce
a basic framework for 3D mesh preview streaming and identify sev-
eral basic ways the system can adapt to varying bandwidth. We also

5we use he as a gender-neutral pronoun to refer to a participant

Preview Acceptable Acceptable Average
Speed Quality Ranking

REDUCE-QUALITY 90% 29% 2.29
REDUCE-SPEED 10% 100% 2.52
KEYVIEW-AWARE 90% 86% 1.19

Table 7: Statistics from the Experiment 3. Percentage of users
finding the speed or the quality is acceptable for a given video,
and the average ranking.

Preview t Stat t Critical P (T ≤ t)
REDUCE-QUALITY 4.418 2.086 0.000
REDUCE-SPEED 6.693 2.086 0.000

Table 8: Results of a two-tail t-Test on the Experiment 3.

introduce an approach that controls both the camera speed and the
mesh quality, while being aware of the keyviews of the model. User
study reveals that the keyview-aware approach is indeed preferred
over the basic approaches.

There are many interesting new problems related to 3D mesh
preview streaming. We give two examples here. One issue that
we are looking at is the construction of streaming-friendly camera
path. Ideally, the data rate as the view moves along the camera path
should be as smooth as possible. It is unclear how one can find
such a camera path, while balancing the smoothness of data rate
and the camera path. Further, in complex objects, the chance that
the camera path intersects with the model increases.

Another area of interest is the automatic determination of keyviews.
A set of chosen keyviews is a natural and efficient way to indicate
a continuous camera path. Currently, finding keyviews and finding
camera path are two independent processes. It is, however, possible
to refine both iteratively. A keyview can, for instance, be nudged
if doing so would lead to a better camera path without sacrificing
the importance of the area being viewed. Doing so would require
analysis of the 3D model and some semantic/context information.

We note that, the work is a first approach, and can be extended to
consider other cases (e.g., using artistic or dynamic camera paths).
But a predefined camera path nails down the many degrees of 3D
navigation freedom to one: the speed. Exploiting the camera speed
is a first step and has already led to various proposed schemes.
We’ll take more degrees of freedom into consideration in future.
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Figure 6: Mesh quality of selected views: left: REDUCE-SPEED, middle: REDUCE-QUALITY, right: KEYVIEW-AWARE.
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