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ABSTRACT
Consider a clique of n nodes, where in each synchronous
round each pair of nodes can exchange O(logn) bits. We
provide deterministic constant-time solutions for two prob-
lems in this model. The first is a routing problem where each
node is source and destination of n messages of size O(logn).
The second is a sorting problem where each node i is given
n keys of size O(logn) and needs to receive the ith batch of
n keys according to the global order of the keys. The latter
result also implies deterministic constant-round solutions for
related problems such as selection or determining modes.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—routing and
layout, sorting and searching ; C.2.4 [Computer Commu-
nication Networks]: Distributed Systems

General Terms
Algorithms, Performance, Theory

Keywords
CONGEST model; upper bounds; bulk-synchronous com-
munication

1. INTRODUCTION & RELATED WORK
Arguably, one of the most fundamental questions in dis-

tributed computing is what amount of communication is re-
quired to solve a given task. For systems where communica-
tion is dominating the“cost”—be it the time to communicate
information, the money to purchase or rent the required in-
frastructure, or any other measure derived from a notion of
communication complexity—exploring the imposed limita-
tions may lead to more efficient solutions.

Clearly, in such systems it does not make sense to make
the complete input available to all nodes, as this would be
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too expensive; typically, the same is true for the output. For
this reason, one assumes that each node is given a part of
the input, and each node needs to compute a corresponding
part of the output. For graph theoretic questions, the local
input comprises the neighborhood of the node in the respec-
tive graph, potentially augmented by weights for its incident
edges or similar information that is part of the problem spec-
ification. The local output then e.g. consists of indication of
membership in a set forming the global solution (a dominat-
ing set, independent set, vertex cover, etc.), a value between
0 and 1 (for the fractional versions), a color, etc. For ver-
ification problems, one is satisfied if for a valid solution all
nodes output “yes” and at least one node outputs “no” for
an invalid solution.

Since the advent of distributed computing, a main re-
search focus has been the locality of such computational
problems. Obviously, one cannot compute, or even verify,
a spanning tree in less than D synchronous communication
rounds, where D is the diameter of the graph, as it is impos-
sible to ensure that a subgraph is acyclic without knowing
it completely. Formally, the respective lower bound argues
that there are instances for which no node can reliably dis-
tinguish between a tree and a non-tree since only the local
graph topology (and the parts of the prospective solution)
up to distance R can affect the information available to a
node after R rounds. More subtle such indistinguishability
results apply to problems that can be solved in o(D) time
(see e.g. [6, 8, 11]).

This type of argument breaks down in systems where all
nodes can communicate directly or within a few number of
rounds. However, this does not necessitate the existence of
efficient solutions, as due to limited bandwidth usually one
has to be selective in what information to actually commu-
nicate. This renders otherwise trivial tasks much harder,
giving rise to strong lower bounds. For instance, there are
n-node graphs of constant diameter on which finding or ver-
ifying a spanning tree and many related problems require
Ω̃(
√
n) rounds if messages contain a number of bits that is

polylogarithmic in n [3, 14, 15]; approximating the diameter
up to factor 3/2−ε or determining it exactly cannot be done
in õ(

√
n) and õ(n) rounds, respectively [4]. These and sim-

ilar lower bounds consider specific graphs whose topology
prohibits to communicate efficiently. While the diameters
of these graphs are low, necessitating a certain connectivity,
the edges ensuring this property are few. Hence, it is im-
possible to transmit a linear amount of bits between some
nodes of the graph quickly, which forms the basis of the
above impossibility results.



This poses the question whether non-trivial lower bounds
also hold in the case where the communication graph is well-
connected. After all, there are many networks that do not
feature small cuts, some due to natural expansion properties,
others by design. Also, e.g. in overlay networks, the under-
lying network structure might be hidden entirely and algo-
rithms may effectively operate in a fully connected system,
albeit facing bandwidth limitations. Furthermore, while for
scalability reasons full connectivity may not be applicable
on a system-wide level, it could prove useful to connect mul-
tiple cliques that are not too large by a sparser high-level
topology.

These considerations motivate to study distributed algo-
rithms for a fully connected system of n nodes subject to a
bandwidth limitation of O(logn) bits per round and edge,
which is the topic of the present paper. Note that such a
system is very powerful in terms of communication, as each
node can send and receive Θ(n logn) bits in each round,
summing up to a total of Θ(n2 logn) bits per round. Con-
sequently, it is not too surprising that, to the best of our
knowledge, so far no negative results for this model have
been published. On the positive side, a minimum span-
ning tree can be constructed in O(log log n) rounds [9], and,
given to each node the neighbors of a corresponding node in
some graph as input, it can be decided within O(n1/3/ logn)
rounds whether the input graph contains a triangle [2].
These bounds are deterministic; constant-round randomized
algorithms have been devised for the routing [7] and sort-
ing [12] tasks that we solve deterministically in this work.
The randomized solutions are about 2 times as fast, but
there is no indication that the best deterministic algorithms
are slower than the best randomized algorithms.

Contribution
We show that the following closely related problems can be
deterministically solved, within a constant number of com-
munication rounds in a fully connected system where mes-
sages are of size O(logn).
Routing: Each node is source and destination of (up to)

n messages of size O(logn). Initially only the sources
know destinations and contents of their messages.
Each node needs to learn all messages it is the des-
tination of. (Section 3)

Sorting: Each node is given (up to) n comparable keys of
size O(logn). Node i needs to learn about the keys
with indices (i−1)n+1, . . . , in in a global enumeration
of the keys that respects their order. Alternatively, we
can require that nodes need to learn the indices of their
keys in the total order of the union of all keys (i.e., all
duplicate keys get the same index). Note that this
implies constant-round solutions for related problems
like selection or determining modes. (Section 4)

We note that the randomized algorithms from previous work
are structurally very different from the presented determin-
istic solutions. They rely on near-uniformity of load dis-
tributions obtained by choosing intermediate destinations
uniformly and independently at random, in order to achieve
bandwidth-efficient communication. In contrast, the pre-
sented approach achieves this in a style that has the flavor
of a recursive sorting algorithm (with a single level of recur-
sion).

While our results are no lower bounds for well-connected
systems under the CONGEST model, they shed some light

on why it is hard to prove impossibilities in this setting:
Even without randomization, the overhead required for co-
ordinating the efforts of the nodes is constant. In particular,
any potential lower bound for the considered model must,
up to constant factors, also apply in a system where each
node can in each round send and receive Θ(n logn) bits to
and from arbitrary nodes in the system, with no further
constraints on communication.

We note that due to this observation, our results on sort-
ing can equally well be followed as corollaries of our routing
result and Goodrich’s sorting algorithm for a bulk-synchro-
nous model [5]. However, the derived algorithm is more
involved and requires at least an order of magnitude more
rounds.

Since for such fundamental tasks as routing and sorting
the amount of local computations and memory may be of
concern, we show in Section 5 how our algorithms can be
adapted to requireO(n logn) computational steps and mem-
ory bits per node. Trivially, these bounds are near-optimal
with respect to computations and optimal with respect to
memory (if the size of the messages that are to be exchanged
between the nodes is Θ(logn)).

To complete the picture, in Section 6 we vary the param-
eters of bandwidth, message/key size, and number of mes-
sages/keys per node. Our techniques are sufficient to obtain
asymptotically optimal results for almost the entire range of
parameters. For keys of size o(logn), we show that in fact a
huge number of keys can be sorted quickly; this is the spe-
cial case for which our bounds might not be asymptotically
tight.

2. MODEL
In brief, we assume a fully connected system of n nodes

under the congestion model. The nodes have unique identi-
fiers 1 to n that are known to all other nodes. Computation
proceeds in synchronous rounds, where in each round, each
node performs arbitrary, finite computations,1 sends a mes-
sage to each other node, and receives the messages sent by
other nodes. Messages are of size O(logn), i.e., in each mes-
sage nodes may encode a constant number of integer num-
bers that are polynomially bounded in n.2 To simplify the
presentation, nodes will treat also themselves as receivers,
i.e., node i ∈ {1, . . . , n} will send messages to itself like to
any other node j 6= i.

These model assumptions correspond to the congestion
model on the complete graph Kn = (V,

(
V
2

)
) on the node set

V = {1, . . . , n} (cf. [13]). We stress that in a given round, a
node may send different messages along each of its edges and
thus can convey a total of Θ(n logn) bits of information. As
our results demonstrate, this makes the considered model
much stronger than one where in any given round a node
must broadcast the same Θ(logn) bits to all other nodes.

When measuring the complexity of the computations per-
formed by the nodes, we assume that basic arithmetic op-
erations on O(logn)-sized values are a single computational
step.

1Our algorithms will perform polynomial computations with
small exponent only.
2We will not discuss this constraint when presenting our
algorithms and only reason in a few places why messages
are not too large; mostly, this should be obvious from the
context.



3. ROUTING
In this section, we derive a deterministic solution to the

following task introduced in [7].

Problem 3.1 (Information Distribution Task).
Each node i ∈ V is given a set of n messages of size O(logn)

Si = {m1
i , . . . ,m

n
i }

with destinations d(mj
i ) ∈ V , j ∈ {1, . . . , n}. Messages are

globally lexicographically ordered by their source i, their des-
tination d(mj

i ), and j. For simplicity, each such message
explicitly contains these values, in particular making them
distinguishable. The goal is to deliver all messages to their
destinations, minimizing the total number of rounds. By

Rk :=

{
mj

i ∈
⋃
i∈V

Si

∣∣∣∣∣ d(mj
i ) = k

}
we denote the set of messages a node k ∈ V shall receive.
We require that |Rk| = n for all k ∈ V , i.e., also the number
of messages a single node needs to receive is n.

We remark that it is trivial to relax the requirement that
each node needs to send and receive exactly n messages;
this assumption is made to simplify the presentation. If each
node sends/receives at most n messages, our techniques can
be applied without change, and instances with more than n
sent/received messages per node can be split up into smaller
ones.

3.1 Basic Communication Primitives
Let us first establish some basic communication patterns

our algorithms will employ. We will utilize the following
classical result.

Theorem 3.2 (Koenig’s Line Coloring Thm.).
Every d-regular bipartite multigraph is a disjoint union of d
perfect matchings.

Proof. See e.g. Theorem 1.4.18 in [10].

We remark that such an optimal coloring can be computed
efficiently [1].3

Using this theorem, we can solve Problem 3.1 efficiently
provided that it is known a priori to all nodes what the
sources and destinations of messages are, an observation al-
ready made in [2]. We will however need a more general
statement applying to subsets of nodes that want to com-
municate among themselves. To this end, we first formulate
a simple generalization of the result from [2] that assumes
edges of large capacity.

Lemma 3.3. Given a bulk of messages and f ∈ N, such
that:

1. The source and destination of each message is known
in advance to all nodes, and each source knows the
contents of the messages to send.

2. Each node is the source of m := fn messages.
3. Each node is the destination m messages.
4. Each node can send up to f messages to each other

node in each round.

3Also, a simple greedy coloring of the line graph results in
at most 2d− 1 (imperfect) matchings, which is sufficient for
our purposes. This will be used in Section 5 to reduce the
amount of computations performed by the algorithm.

A routing scheme to deliver all messages in 2 rounds can be
found efficiently.

Proof. Consider the bipartite multigraph G = (S∪̇R,E)
with |S| = |R| = n, where S = {1s, . . . , ns} and R =
{1r, . . . , nr} represent the nodes in their roles as senders
and receivers, respectively, and each input message at some
node i that is destined for some node j induces an edge from
is to jr.

By Theorem 3.2, we can color the edge set ofG withm col-
ors such that no two edges with the same color have a node in
common. Moreover, as all nodes are aware of the source and
destination of each message, they can deterministically and
locally compute the same such coloring, without the need to
communicate. Now, in the first communication round, each
node sends its (unique) message of color c ∈ {1, . . . ,m} to
node cmodn. As each node holds exactly one message of
each color, exactly f messages are sent over each edge, i.e.,
by the assumptions of the lemma this step can indeed be
performed in one round. Observe that this rule ensures that
each node will receive exactly one message of each color in
the first round. Hence, because the coloring also guarantees
that each node is the destination of exactly one message of
each color, it follows for each i, j ∈ {1, . . . , n} that node i re-
ceives exactly f messages that need to be delivered to node
j in the first round. Therefore all messages can be delivered
by directly sending them to their destinations in the second
round.

From this lemma, we can easily draw the conclusion that if
we partition the node set, we can enable that, concurrently,
in each subset the constituen nodes can communicate among
themselves with a large bandwidth (granted that sources and
destinations of messages are known a priori). This is done,
for each subset, by simulating the large bandwidth assumed
in the previous lemma using the help of nodes outside the
subset, in a way that ensures that communication related
different subsets use disjoint sets of links (if we take the
direction of communication into account).

Corollary 3.4. We are given a subset W ⊆ V and a
bulk of messages such that the following holds.

1. The source and destination of each message is in W .
2. The source and destination of each message is known

in advance to all nodes in W , and each source knows
the contents of the messages to send.

3. Each node is the source of f |W | messages, where f :=
bn/|W |c.

4. Each node is the destination of f |W | messages.
Then a routing scheme to deliver all messages in 2 rounds
can be found efficiently. The routing scheme makes use of
edges with at least one endpoint in W only.

Proof. W.l.o.g. we assume that n is an integer multiple
of |W |, i.e., n = f |W | (otherwise we just ignore some of the
nodes in V \W ).

We partition the nodes into disjoint subsets of size |W |.
For each subset, we can define a one-to-one mapping of the
nodes in W to nodes in the subset, and there are exactly
n/|W | different subsets. For each node i ∈ W we thus can
make use of f = n/|W | nodes that will support i in its duty
as “relays”. Note that this strategy will use only edges in-
volving at least one node in W and, because the subsets
are disjoint and the mappings one-to-one, no edge is used
more than once in each direction in each of the two rounds.



Moreover, in the first round each sender may incorporate
the information where to send the message in the second
round, merely increasing message size by O(logn) bits in
doing so. Hence, we can logically identify each of the “re-
lay” nodes with its associated node in W , resulting in a fully
connected system of |W | nodes where each node can trans-
mit f messages over each edge in each round. With this
observation, the claim of the corollary directly follows from
Lemma 3.3.

Again, we stress that we can apply this result concurrently
to multiple disjoint sets W , provided that each of them sat-
isfies the prerequisites of the corollary: since in each routing
step, each edge has at least one endpoint in W , there will
never be an edge which needs to convey more than one mes-
sage in each direction. This is vital for the success of our
algorithms.

An observation that will prove crucial for our further rea-
soning is that for subsets of size at most

√
n, the amount of

information that needs to be exchanged in order to establish
common knowledge on the sources and destinations of mes-
sages becomes sufficiently small to be handled. Since this
information itself consists, for each node, of |W | numbers
that need to be communicated to |W | ≤ n/|W | nodes—with
sources and destination known a priori!—we can solve the
problem for unknown sources and destinations by applying
the previous corollary twice.

Corollary 3.5. We are given a subset W ⊆ V , where
|W | ≤

√
n, and a bulk of messages such that the following

holds.
1. The source and destination of each message is in W .
2. Each source knows the contents of the messages to

send.
3. Each node is the source of f |W | messages, where f :=
bn/|W |c.

4. Each node is the destination of f |W | messages.
Then a routing scheme to deliver all messages in 4 rounds
can be found efficiently. The routing scheme makes use of
edges with at least one endpoint in W only.

Proof. Each node in W announces the number of mes-
sages it holds for each node in W to all nodes in W . This
requires each node in W to send and receive |W |2 ≤ f |W |
messages. As sources and destinations of these helper mes-
sages are known in advance, by Corollary 3.4 we can perform
this preprocessing in 2 rounds. The information received es-
tablishes the preconditions of Corollary 3.4 for the original
set of messages, therefore the nodes now can deliver all mes-
sages in another two rounds.

3.2 Solving the Information Distribution Task
Equipped with the results from the previous section, we

are ready to tackle Problem 3.1. In the pseudocode of our
algorithms, we will use a number of conventions to allow
for a straightforward presentation. When we state that a
message is moved to another node, this means that the re-
ceiving node will store a copy and serve as the source of
the message in subsequent rounds of the algorithm, whereas
the original source may “forget” about the message. A step
where messages are moved is thus an actual routing step of
the algorithm; all other steps serve to prepare the routing
steps. The current source of a message holds it. Moreover,
we will partition the node set into subsets of size

√
n, where

for simplicity we assume that
√
n is integer. We will discuss

the general case in the main theorem. We will frequently re-
fer to these subsets, where W will invariably denote any of
the sets in its role as source, while W ′ will denote any of the
sets in its role as receiver (both with respect to the current
step of the algorithm). Finally, we stress that statements
about moving and sending of messages in the pseudocode
do not imply that the algorithm does so by direct communi-
cation between sending and receiving nodes. Instead, we will
discuss fast solutions to the respective (much simpler) rout-
ing problems in our proofs establishing that the described
strategies can be implemented with small running times.

This being said, let us turn our attention to Problem 3.1.
The high-level strategy of our solution is given in Algo-
rithm 1.

Algorithm 1: High-level strategy for solving Prob-
lem 3.1.

1. Partition the nodes into the disjoint subsets
{(i− 1)

√
n+ 1, . . . , i

√
n} for i ∈ {1, . . . ,

√
n}.

2. Move the messages such that each such subset W holds
exactly |W ||W ′| = n messages for each subset W ′.

3. For each pair of subsets W , W ′, move all messages
destined to nodes in W ′ within W such that each node
in W holds exactly |W ′| =

√
n messages with

destinations in W ′.
4. For each pair of subsets W , W ′, move all messages

destined to nodes in W ′ from W to W ′.
5. For each W , move all messages within W to their

destinations.

Clearly, following this strategy will deliver all messages to
their destinations. In order to prove that it can be determin-
istically executed in a constant number of rounds, we now
show that all individual steps can be performed in a con-
stant number of rounds. Obviously, the first step requires
no communication. We leave aside Step 2 for now and turn
to Step 3.

Corollary 3.6. Step 3 of Algorithm 1 can be implemen-
ted in 4 rounds.

Proof. The proof is analogous to Corollary 3.5. First,
each node in W announces to each other node in W the
number of messages it holds for each set W ′. By Corol-
lary 3.4, this step can be completed in 2 rounds, for all sets
W in parallel.

With this information, the nodes in W can deterministi-
cally compute (intermediate) destinations for each message
in W such that the resulting distribution of messages meets
the condition imposed by Step 3. Applying Corollary 3.4
once more, this redistribution can be performed in another
2 rounds, again for all sets W concurrently.

Trivially, Step 4 can be executed in a single round by
each node in W sending exactly one of the messages with
destination in W ′ it holds to each node in W ′. According
to Corollary 3.5, Step 5 can be performed in 4 rounds.

Regarding Step 2, we follow similar ideas. Algorithm 2
breaks our approach to this step down into smaller pieces.

We now show that following the sequence given in Algo-
rithm 2, Step 2 of Algorithm 1 requires a constant number
of communication rounds only.



Algorithm 2: Step 2 of Algorithm 1 in more detail.

1. Each subset W computes, for each set W ′, the number
of messages its constituents hold in total for nodes in
W ′. The results are announced to all nodes.

2. All nodes locally compute a pattern according to which
the messages are to be moved between the sets. It
satisfies that from each set W to each set W ′, n
messages need to be sent, and that in the resulting
configuration, each subset W holds exactly
|W ||W ′| = n messages for each subset W ′.

3. All nodes in subset W announce to all other nodes in
W the number of messages they need to move to each
set W ′ according to the previous step.

4. All nodes in W compute a pattern for moving messages
within W so that the resulting distribution permits to
realize the exchange computed in Step 2 in a single
round (i.e., each node in W must hold exactly
|W ′| =

√
n messages with (intermediate) destinations in

W ′).
5. The redistribution within the sets according to Step 4 is

executed.
6. The redistribution among the sets computed in Step 2

is executed.

Lemma 3.7. Step 2 of Algorithm 1 can be implemented in
7 rounds.

Proof. We will show for each of the six steps of Al-
gorithm 2 that it can be performed in a constant number
of rounds and that the information available to the nodes
is sufficient to deterministically compute message exchange
patterns the involved nodes agree upon.

Clearly, Step 1 can be executed in two rounds. Each node
in W simply sends the number of messages with destinations
in the ith set W ′ it holds, where i ∈ {1, . . . ,

√
n}, to the ith

node in W . The ith node in W sums up the received values
and announces the result to all nodes.

Regarding Step 2, consider the following bipartite graph
G = (S∪̇R,E). The sets S and R are of size

√
n and rep-

resent the subsets W in their role as senders and receivers,
respectively. For each message held by a node in the ith

set W with destination in the jth set W ′, we add an edge
from i ∈ S to j ∈ R. Note that after Step 1, each node can
locally construct this graph. As each node needs to send
and receive n messages, G is of uniform degree n3/2. By
Corollary 3.2, we can color the edge set of G with n3/2 col-
ors so that no two edges of the same color share a node. We
require that a message of color c ∈ {1, . . . , n3/2} is sent to
the (cmod

√
n)th set. Hence, the requirement that exactly

n messages need to be sent from any set W to any set W ′ is
met. By requiring that each node uses the same determinis-
tic algorithm to color the edge set of G, we make sure that
the exchange patterns computed by the nodes agree.

Note that a subtlety here is that nodes cannot yet deter-
mine the precise color of the messages they hold, as they do
not know the numbers of messages to sets W ′ held by other
nodes inW and therefore also not the index of their messages
according to the global order of the messages. However,
each node has sufficient knowledge to compute the number
of messages it holds with destination in set W ′ (for each
W ′), as this number is determined by the total numbers of
messages that need to be exchanged between each pair W

and W ′ and the node index only. This permits to perform
Step 3 and then complete Step 2 based on the received in-
formation.4

As observed before, Step 3 can be executed quickly: Each
node in W needs to announce

√
n numbers to all other nodes

in W , which by Corollary 3.4 can be done in 2 rounds. Now
the nodes are capable of computing the color of each of their
messages according to the assignment from Step 2.

With the information gathered in Step 3, it is now feasi-
ble to perform Step 4. This can be seen by applying Corol-
lary 3.2 again, for each set W to the bipartite multigraph
G = (W ∪̇R,E), where R represents the

√
n subsets W ′ in

their receiving role with respect to the pattern computed in
Step 2, and each edge corresponds to a message held by a
node in W with destination in some W ′. The nodes can
locally compute this graph due to the information they re-
ceived in Steps 2 and 3. As G has degree n, we obtain an
edge-coloring with n colors. Each node in W will move a
message of color i ∈ {1, . . . , n} to the (imod

√
n)th node in

W , implying that each node will receive for each W ′ exactly√
n messages with destination in W ′.
Since the exchange pattern computed in Step 4 is, for

each W , known to all nodes in W , by Corollary 3.4 we can
perform Step 5 for all sets in parallel in 2 rounds. Finally,
Step 6 requires a single round only, since we achieved that
each node holds for each W ′ exactly

√
n messages with desti-

nation in W ′ (according to the pattern computed in Step 2),
and thus can send exactly one of them to each of the nodes
in W ′ directly.

Summing up the number of rounds required for each of
the steps, we see that 2 + 0 + 2 + 0 + 2 + 1 = 7 rounds are
required in total, completing the proof.

Overall, we have shown that each step of Algorithm 1 can
be executed in a constant number of rounds if

√
n is integer.

It is not hard to generalize this result to arbitrary values of
n without incurring larger running times.

Theorem 3.8. Problem 3.1 can be solved deterministi-
cally within 16 rounds.

Proof. If
√
n is integer, the result immediately follows

from Lemma 3.7, Corollary 3.6, and Corollary 3.5, taking
into account that the fourth step of the high-level strategy
requires one round.

If
√
n is not integer, consider the following three sets of

nodes:

V1 := {1, . . . , b
√
nc2},

V2 := {n− b
√
nc2 + 1, . . . , n}, and

V3 := {1, . . . , n− b
√
nc2} ∪ {b

√
nc2 + 1, . . . , n}.

V1 and V2 satisfy that |V1| = |V2| = b
√
nc2. Hence, we

can apply the result for an integer root to the subsets of
messages for which either both sender and receiver are in V1

or, symmetrically, in V2. Doing so in parallel will increase
the message size by a factor of at most 2. Note that for
messages where sender and receiver are in V1 ∩ V2 we can
simply delete them from the input of one of the two instances
of the algorithm that run concurrently, and adding empty
“dummy” messages, we see that it is irrelevant that nodes
may send or receive less than n messages in the individual
instances.
4Formally, this can be seen as a deferred completition of
Step 2.



Regarding V3, denote for each node i ∈ V3 by Si ⊆ Si the
subset of messages for which i and the respective receiver are
neither both in V1 nor both in V2. In other words, for each
message in Si either i ∈ V1∩V3 and the receiver is in V2∩V3

or vice versa. Each node i ∈ V3 moves the jth message in
Si to node j (one round). No node will receive more than
|V2∩V3| = |V1∩V3| messages with destinations in V1∩V3, as
there are no more than this number of nodes sending such
messages. Likewise, at most |V2 ∩ V3| messages for nodes
in V2 ∩ V3 are received. Hence, in the subsequent round,
all nodes can move the messages they received for nodes in
V1 ∩ V3 to nodes in V1 ∩ V3, and the ones received for nodes
in V2∩V3 to nodes in V2∩V3 (one round). Finally, we apply
Corollary 3.5 to each of the two sets to see that the mes-
sages

⋃
i∈V3

Si can be delivered within 4 rounds. Overall,
this procedure requires 6 rounds, and running it in parallel
with the two instances dealing with other messages will not
increase message size beyond O(logn). The statement of
the theorem follows.

4. SORTING
In this section, we present a deterministic sorting algo-

rithm. The problem formulation is essentially equivalent to
the one in [12].

Problem 4.1 (Sorting). Each node is given n keys of
size O(logn) (i.e., a key fits into a message). We assume
w.l.o.g. that all keys are different.5 Node i needs to learn
the keys with indices i(n− 1) + 1, . . . , in according the total
order of all keys.

4.1 Sorting Fewer Keys with Fewer Nodes
Again, we assume for simplicity that

√
n is integer and

deal with the general case later on. Our algorithm will uti-
lize a subroutine that can sort up to 2n3/2 keys within a
subset W ⊂ V of

√
n nodes, communicating along edges

with at least one endpoint in the respective subset of nodes.
The latter condition ensures that we can run the routine in
parallel for disjoint subsets W . We assume that each of the
nodes in W initially holds 2n keys. The pseudocode of our
approach is given in Algorithm 3.

Let us start out with the correctness of the proposed
scheme.

Lemma 4.2. When executing Algorithm 3, the nodes in
W are indeed capable of computing their input keys’ indices
in the order on the union of the input keys of the nodes in
W .

Proof. Observe that because all nodes use the same in-
put in Step 3, they compute the same set of delimiters. The

set of all keys is the union
⋃√

n
j=1

⋃
i∈W Ki,j , and the sets Ki,j

are disjoint. As the Ki,j are defined by comparison with the
delimiters, we know that all keys in Ki,j are larger than keys
in Ki′,j′ for all i′ ∈W and j′ < j, and smaller than keys in
Ki′,j′ for all i′ ∈W and j′ > j. Since in Step 7 the received
keys are locally sorted and Step 8 maintains the resulting
order, correctness follows.

Before turning to the running time of the algorithm, we
show that the partitioning of the keys by the delimiters is
well-balanced.
5Otherwise we order the keys lexicographically by key, node
whose input contains the key, and a local enumeration of
identical keys at each node.

Algorithm 3: Sorting 2n3/2 keys with |W | =
√
n nodes.

Each node in W has 2n input keys and learns their in-
dices in the total order of all 2n3/2 keys.

1. Each node in W locally sorts its keys and selects every

(2
√
n)th key according to this order (i.e., a key of local

index i is selected if imod 2
√
n = 0).

2. Each node in W announces the selected keys to all
other nodes in W .

3. Each node in W locally sorts the union of the received

keys and selects every
√
n
th

key according to this order.
We call such a key delimiter.

4. Each node i ∈W splits its original input into
√
n

subsets, where the jth subset Ki,j contains all keys that
are larger than the (j − 1)th delimiter (for j = 1 this
condition does not apply) and smaller or equal to the
jth delimiter.

5. Each node i ∈W announces for each j |Ki,j | to all
nodes in W .

6. Each node i ∈W sends Ki,j to the jth node in W .
7. Each node in W locally sorts the received keys. The

sorted sequence now consists of the concatenation of
the sorted sequences in the order of the node identifiers.

8. Keys are redistributed such that each node receives 2n
keys and the order is maintained.

Lemma 4.3. When executing Algorithm 3, for each j ∈
{1, . . . ,

√
n} it holds that∣∣∣∣∣ ⋃

i∈W

Ki,j

∣∣∣∣∣ < 4n.

Proof. Due to the choice of the delimiters,
⋃

i∈W Ki,j

contains exactly
√
n of the keys selected in Step 1 of the

algorithm. Denote by di the number of such selected keys
in Ki,j . As in Step 1 each node selects every (2

√
n)th of its

keys and the set Ki,j is a contiguous subset of the ordered
sequence of input keys at w, we have that |Ki,j | < 2

√
n(di +

1). It follows that∣∣∣∣∣ ⋃
i∈W

Ki,j

∣∣∣∣∣ =
∑
i∈W

|Ki,j |

< 2
√
n
∑
i∈W

(di + 1)

= 2
√
n(
√
n+ |W |) = 4n.

We are now in the position to complete our analysis of the
subroutine.

Lemma 4.4. Given a subset W ⊆ V of size
√
n such that

each w ∈W holds 2n keys, each node in W can learn about
the indices of its keys in the total order of all keys held by
nodes in W within 10 rounds. Furthermore, only edges with
at least one endpoint in W are used for this purpose.

Proof. By Lemma 4.2, Algorithm 3 is correct. Hence, it
remains to show that it can be implemented with 10 rounds
of communication, using no edges with both endpoints out-
side W .

Steps 1, 3, 4, and 7 involve local computations only. Since
|W | =

√
n and each node selects exactly

√
n keys it needs



to announce to all other nodes, according to Corollary 3.4
Step 2 can be performed in 2 rounds. The same holds true
for Step 5, as again each node needs to announce |W | =

√
n

values to each other node in W . In Step 6, each node sends
its 2n input keys and, by Lemma 4.3, receives at most 4n
keys. By bundling a constant number of keys in each mes-
sage, nodes need to send and receive at most n = |W |·n/|W |
messages. Hence, Corollary 3.5 states that this step can be
completed in 4 rounds. Regarding Step 8, observe that due
to Step 5 each node knows how many keys each other node
holds at the beginning of the step. Again bundling a con-
stant number of keys into each message, we thus can apply
Corollary 3.4 to complete Step 8 in 2 rounds. In total, we
thus require 0 + 2 + 0 + 0 + 2 + 4 + 2 = 10 communication
rounds.

As we invoked Corollaries 3.4 and 3.5 in order to define
the communication pattern, it immediately follows from the
corollaries that all communication is on edges with at least
one endpoint in W .

4.2 Sorting All Keys
With this subroutine at hand, we can move on to Prob-

lem 4.1. Our solution follows the same pattern as Algo-
rithm 3, where the subroutine in combination with Theo-
rem 3.8 enables that sets of size

√
n can take over the func-

tion nodes had in Algorithm 3. This increases the processing
power by factor

√
n, which is sufficient to deal with all n2

keys. Algorithm 4 shows the high-level structure of our so-
lution.

Algorithm 4: Solving Problem 4.1.

1. Each node locally sorts its input and selects every
√
n
th

key (i.e., the index in the local order modulo
√
n equals

0).
2. Each node transmits its ith selected key to node i.
3. Using Algorithm 3, nodes 1, . . . ,

√
n sort the in total

n3/2 keys they received (i.e., determine the respective
indices in the induced order).

4. Out of the sorted subsequence, every nth key is selected
as delimiter and announced to all nodes (i.e., there is a
total of

√
n delimiters).

5. Each node i ∈ V splits its original input into
√
n

subsets, where the jth subset Ki,j contains all keys that
are larger than the (j − 1)th delimiter (for j = 1 this
condition does not apply) and smaller or equal to the
jth delimiter.

6. The nodes are partitioned into
√
n disjoint sets W of

size
√
n. Each node i ∈ V sends Ki,j to the jth set W

(i.e., each node in W receives either b|Ki,j |/|W |c or
d|Ki,j |/|W |e keys, and each key is sent to exactly one
node).

7. Using Algorithm 3, the sets W sort the received keys.
8. Keys are redistributed such that each node receives n

keys and the order is maintained.

The techniques and results from the previous sections are
sufficient to derive our second main theorem without further
delay.

Theorem 4.5. Problem 4.1 can be solved in 37 rounds.

Proof. We discuss the special case of
√
n ∈ N first, to

which we can apply Algorithm 4. Correctness of the al-

gorithm follows analogously to Lemma 4.2. Steps 1 and 5
require local computations only. Step 2 involves one round
of communication. Step 3 calls Algorithm 3, which accord-
ing to Lemma 4.4 consumes 10 rounds. However, we can
skip the last step of the algorithm and instead directly exe-
cute Step 4. This takes merely 2 rounds, since there are

√
n

nodes each of which needs to announce at most 2
√
n values

to all nodes and we can bundle two values in one message.
Regarding Step 6, observe that, analogously to Lemma 4.3,
we have for each j ∈ {1, . . . ,

√
n} that∣∣∣∣∣⋃

i∈V

Ki,j

∣∣∣∣∣ =
∑
i∈V

|Ki,j | <
√
n(n+ |V |) = 2n3/2.

Hence, each node needs to send at most n keys and receive
at most 2n keys. Bundling up to two keys in each message,
nodes need to send and receive at most n messages. There-
fore, by Theorem 3.8, Step 6 can be completed within 16
rounds. Step 7 again calls Algorithm 3, this time in parallel
for all sets W . Nonetheless, by Lemma 4.4 this requires 10
rounds only because the edges used for communication are
disjoint. Also here, we can skip the last step of the subrou-
tine and directly move on to Step 8. Again, Corollary 3.4
implies that this step can be completed in 2 rounds. Overall,
the algorithm runs for 0 + 1 + 8 + 2 + 0 + 16 + 8 + 2 = 37
rounds.

With respect to non-integer values of
√
n, observe that

we can increase message size by any constant factor to ac-
commodate more keys in each message. This way we can
work with subsets of size b

√
nc and similarly select keys and

delimiters in Steps 1 and 4 such that the adapted algorithm
can be completed in 37 rounds as well.

We conclude this section with a corollary stating that the
slightly modified task of determining each input key’s posi-
tion in a global enumeration of the different keys that are
present in the system can also be solved efficiently. Note
that this implies constant-round solutions for determining
modes and selection as well.

Corollary 4.6. Consider the variant of Problem 4.1 in
which each node is required to determine the index of its in-
put keys in the total order of the union of all input keys. This
task can be solved deterministically in a constant number of
rounds.

Proof. After applying the sorting algorithm, each node
announces (i) its smallest and largest key, (ii) how many
copies of each of these two keys it holds, and (iii) the num-
ber of distinct keys it holds to all other nodes. This takes one
round, and from this information all nodes can compute the
indices in the non-repetitive sorted sequence for their keys.
Applying Theorem 3.8, we can inform the nodes whose in-
put the keys were of these values in a constant number of
rounds.

5. COMPUTATIONS AND MEMORY
Examining Algorithms 1 and 2 and how we implemented

their various steps, it is not hard to see that all computa-
tions that do not use the technique of constructing some
bipartite multigraph and coloring its edges merely require
O(n) computational steps (and thus, as all values are of
size O(logn), also O(n logn) memory). Leaving the work
and memory requirements of local sorting operations aside,



the same applies to Algorithms 3 and 4. Assuming that an
appropriate sorting algorithm is employed, the remaining
question is how efficiently we can implement the steps that
do involve coloring.

The best known algorithm to color a bipartite multigraph
H = (V,E) of maximum degree ∆ with ∆ colors requires
O(|E| log ∆) computational steps [1]. Ensuring that |E| ∈
O(n) in all cases where we appeal to the procedure will thus
result in a complexity of O(n logn). Unfortunately, this
bound does not hold for the presented algorithms. More
precisely, Step 3 of Algorithm 1 and Steps 2 and 4 of Algo-
rithm 2 violate this condition. Let us demonstrate first how
this issue can be resolved for Step 3 of Algorithm 1.

Lemma 5.1. Steps 3 and 4 of Algorithm 1 can be executed
in 3 rounds such that each node performs O(n) steps of local
computation.

Proof. Each node locally orders the messages it holds ac-
cording to their destination sets W ′; using bucketsort, this
can be done using O(n) computational steps. According
to this order, it moves its messages to the nodes in W fol-
lowing a round-robin pattern. In order to achieve this in
2 rounds, it first sends to each other node in the system
one of the messages; in the second round, these nodes for-
ward these messages to nodes in W . Since an appropriate
communication pattern can be fixed independently of the
specific distribution of messages, no extra computations are
required.

Observe that in the resulting distribution of messages, no
node in W holds more than 2

√
n messages for each set W ′:

For every full
√
n messages some node in W holds for set

W ′, every node in W gets exactly one message destined for
W ′, plus possible one residual message for each node in W
that does not hold an integer multiple of

√
n messages for

W ′. Hence, moving at most two messages across each edge
in a single round, Step 4 can be completed in one round.

Note that we save two rounds for Step 3 in comparison to
Corollary 5.2, but at the expense of doubling the message
size in Step 4.

The same argument applies to Step 4 of Algorithm 2.

Corollary 5.2. Steps 3 to 5 of Algorithm 2 can be exe-
cuted in 2 rounds, where each node performs O(n) steps of
local computation.

Step 2 of Algorithm 2 requires a different approach still
relying on our coloring construction.

Lemma 5.3. A variant of Algorithm 2 can execute Step 2
of Algorithm 1 in 5 rounds using O(n logn) steps of local
computation and memory bits at each node.

Proof. As mentioned before, the critical issue is that
Steps 2 and 4 of Algorithm 2 rely on bipartite graphs with
too many edges. Corollary 5.2 applies to Step 4, so we need
to deal with Step 2 only.

To reduce the number edges in the graph, we group mes-
sages from W to W ′ into sets of size n. Note that not all
respective numbers are integer multiples of n, and we need
to avoid “incomplete” sets of smaller size as otherwise the
number of edges still might be too large. This is easily re-
solved by dealing with such “residual” messages by directly
sending them to their destinations: Each set will hold less

than n such messages for each destination set W ′ and there-
fore can deliver these messages using its n edges to set W ′.6

It follows that the considered bipartite multigraph will
have O(n) edges and maximum degree

√
n. It remains to ar-

gue why all steps can be performed withO(n logn) steps and
memory at each node. This is obvious for Step 1 and Step 6
and follows from Corollary 5.2 for Steps 3 to 5. Regarding
Step 2, observe that the bipartite graph considered can be
constructed in O(n) steps since this requires adding

√
n in-

tegers for each of the
√
n destination sets (and determining

the integer parts of dividing the results by n). Applying the
algorithm from [1] then colors the edges within O(n logn)
steps. Regarding memory, observe that all other steps re-
quire O(n) computational steps and thus trivially satisfy the
memory bound. The algorithm from [1] computes the col-
oring by a recursive divide and conquer strategy; clearly, an
appropriate implementation thus will not require more than
O(n logn) memory either.

We conclude that there is an implementation of our scheme
that is simultaneously efficient with respect to running time,
message size, local computations, and memory consumption.

Theorem 5.4. Problem 3.1 can be solved deterministi-
cally within 12 rounds, where each node performs O(n logn)
steps of computation using O(n logn) memory bits.

This result immediately transfers to Problem 4.1.

Corollary 5.5. Problem 4.1 and its variant discussed in
Corollary 4.6 can be solved in a constant number of rounds,
where each node performs O(n logn) steps of computation
using O(n logn) memory bits.

6. VARYING MESSAGE AND KEY SIZE
In this section, we discuss scenarios where the number

and size of messages and keys for Problems 3.1 and 4.1 vary.
This also motivates to reconsider the bound on the num-
ber bits that nodes can exchange in each round: For mes-
sage/key size of Θ(logn), communicating B ∈ O(logn) bits
over each edge in each round was shown to be sufficient,
and for smaller B the number of rounds clearly must in-
crease accordingly.7 We will see that most ranges for these
parameters can be handled asymptotically optimally by the
presented techniques. For the remaining cases, we will give
solutions in this section. We remark that one can easily
verify that the techniques we propose in the sequel are also
efficient with respect to local computations and memory re-
quirements.

6.1 Large Messages or Keys
If messages or keys contain ω(logn) bits and B is not suf-

ficiently large to communicate a single value in one message,
splitting these values into multiple messages is a viable op-
tion. For instance, with bandwidth B ∈ Θ(logn), a key of
size Θ(log2 n) would be split into Θ(logn) separate messages

6The nodes account for such messages as well when per-
forming the redistribution of messages within W in Steps 3
to 5.
7Formally proving a lower bound is trivial in both cases, as
nodes need to communicate their n messages to deliver all
messages or their n keys to enable determining the correct
indices of all keys, respectively.



permitting the receiver to reconstruct the key from the in-
dividual messages. This simple argument shows that in fact
not the total number of messages (or keys) is decisive for the
more general versions of Problems 3.1 and 4.1, but the num-
ber of bits that need to be sent and received by each node.
If this number is in Ω(n logn), the presented techniques are
asymptotically optimal.

6.2 Small Messages
If we assume that in Problem 4.1 the size of messages

is bounded by M ∈ o(logn), we may hope that we can
solve the problem in a constant number of rounds even if we
merely transmit B ∈ O(M) bits along each edge. With the
additional assumption that nodes can identify the sender of
a message even if the identifier is not included, this can be
achieved if sources and destinations of messages are known in
advance: We apply Lemma 3.3 with m = n and observe that
because the communication pattern is known to all nodes,
knowing the sender of a message is sufficient to perform the
communication and infer the original source of each message
at the destination.

On the other hand, if sources/destinations are unknown,
consider inputs where Ω(n2) messages cannot be sent di-
rectly from their sources to their destinations (i.e., using
the respective source-receiver edge) within a constant num-
ber of rounds. Each of these messages needs to be forwarded
in a way preserving their destination, i.e., at least one of the
forwarding nodes must learn about the destination of the
message (otherwise correct delivery cannot be guaranteed).
Explicitly encoding these values for Ω(n2) messages requires
Ω(n2 logn) bits. Implicit encoding can be done by means of
the round number or relations between the communication
partners’ identifiers. However, encoding bits by introduc-
ing constraints reduces (at least for worst-case inputs) the
number of messages that can be sent by a node accordingly.
These considerations show that in case of Problem 3.1, small
messages do not simplify the task.

6.3 Small Keys
The situation is different for Problem 4.1. Note that we

need to drop the assumption that all keys can be distin-
guished, as this would necessitate key size Ω(logn). In con-
trast, if keys can be encoded with o(logn) bits, there are

merely no(1) different keys. Hence, we can statically assign
disjoint sets of log2 n nodes to each key κ (for simplicity we
assume that logn is integer). In the first round, each node
binary encodes the number of copies it holds of κ and sends
the ith bit to logn of these nodes. The jth of the logn re-
ceiving nodes of bit i counts the number of nodes which sent
it a 1, encodes this number binary, and transmits the jth bit
to all nodes. With this information, all nodes are capable of
computing the total number of copies of κ in the system.

In order to assign an order to the different copies of κ in
the system (if desired), in the second round we can require
that in addition the jth node dealing with bit i sends to node
k ∈ {1, . . . , n} the jth bit of an encoding of the number of
nodes k′ ∈ {1, . . . , k − 1} that sent a 1 in the first round.
This way, node k can also compute the number of copies of
κ held by nodes k′ < k, which is sufficient to order the keys
as intended.

It is noteworthy that this technique can actually be used
to order a much larger total number of keys, since we “used”
very few of the nodes. If we have K ≤ n/ log2 n different

keys, we can assign m := bn/Kc nodes to each key. This
permits to handle any binary encoding of up to b

√
mc many

bits in the above manner, potentially allowing for huge num-
bers of keys. At the same time, messages contain merely 2
bits (or a single bit, if we accept 3 rounds of communication).
More generally, each node can be concurrently responsible
for B bits, improving the power of the approach further for
non-constant values of B.

7. CONCLUSIONS
We showed that in a clique with a bandwidth restriction

of O(logn) bits per link and round, asymptotically optimal
deterministic solutions to routing and sorting can be found.
In particular, this entails that a clique in the CONGEST
model is, up to constant factors, equivalent to an n-node
system with bulk-synchronous communication of bandwidth
O(n logn). We hope that this observation may serve in fu-
ture work addressing lower and upper bounds in this model.

The precise time bounds that can be achieved for the rout-
ing and sorting problem in our model remain open. Straight-
forward indistinguishability arguments show that neither
randomized nor deterministic algorithms can solve either
problem in 2 rounds, since it is impossible to guarantee that
all nodes make consistent communication decisions without
exchanging some information first. However, this simple
line of reasoning cannot yield stronger results, as in principle
each piece of information can be communicated to each node
in the first round, and it is hard to believe that 3-round solu-
tions are possible. Hence, proving non-trivial lower bounds
on these problems may provide new techniques and insights
that could enhance our understanding of the limitations of
the CONGEST model in well-connected topologies.
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