
COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 65

Programmers worldwide

can collaboratively debug

programs synchronously and

asynchronously by tapping

into the Internet Software

Visualization Laboratory.

OW OFTEN DO WE GO TO A COLLEAGUE

or local software guru to solve a seem-

ingly intractable bug? Frequently such

people can locate in minutes a bug

we’ve spent days trying to track down.

There is evidence (see Eisenstadt’s arti-

cle in this issue) that the mere act of

explaining a bug to a colleague speeds

the bug-tracking process. However, the programmers we’d most like to

talk to are often not available. Or maybe there is no local guru or anyone

using the same language or hardware platform as the one with the

bug. Although one might think the Internet would be useful for find-

ing help to eradicate bugs, so far it is underutilized. That is why we

H

Fostering
Debugging

Communities
on theWeb

John Domingue and

Paul Mulholland

http://crossmark.crossref.org/dialog/?doi=10.1145%2F248448.248460&domain=pdf&date_stamp=1997-04-01

describe our approach to fostering debugging com-
munities on the World-Wide Web, enabling pro-
grammers to collaboratively debug programs
synchronously and asynchronously.

Over the past couple of years, a significant number
of communities have benefited by interacting through
the net using newsgroups and Web pages. Net-based
debugging communities would profit from:

• Free help 24 hours a day
• Potential access to world-class experts (e.g., the

people who created the language)
• Help for niche areas where a language or particu-

lar configuration is not widely used

Although newsgroups exist for most of the popular
computer languages, they tend to discuss general
issues and problems rather than specific bugs. Here,
we discuss the reasons for the lack of net-based
debugging communities, our approach illustrated
by a limited scenario, related work, and our future
directions.

Why the Lack of
Debugging Communities?
Given the potential benefits for programmers, it
may be surprising that there are no net-based com-
munities for describing and fixing bugs. The reason
is that, using current technology, the effort needed
to describe a bug and to understand someone else’s
bug is too great.

To describe a bug, a programmer needs to describe
the code, the point in the execution where the symp-
tom occurs, and the context. The context includes
information necessary for replicating or understand-
ing the bug not directly contained within the code
(e.g., Eisenstadt in this issue describes a program that
works only on Wednesdays). Today, programmers are
limited to impoverished descriptions in plain ASCII
text. One way of alleviating some of these problems
is by sharing code, but this is not easy. Running
another programmer’s code can be prevented by dif-
ferences in:

• Platform. There are many types of hardware and
operating systems.

• Language. Many computer languages have differ-
ent dialects or syntactic variants. Some languages
are not fully specified, and implementations may
have differences in, say, they way they handle
graphics or foreign function calls.

• Version. The local version of required software
may be out of date, or the shared code may
require a feature from an older version.

• Libraries. The code may require installation of a
particular library.

• Configuration. The code may require a particular
system configuration.

• CPU speed and memory requirements. A
machine may lack adequate performance to run
the code in a reasonable time or even to run the
code at all.

• Commercial interests. The program may require
commercially sensitive modules that cannot be
released.

O UR AIM IS TO MAKE IT

easy for programmers to
swap bug descriptions
around the world.
Therefore, our system
has to be platform-inde-

pendent, run on relatively modest hardware, and
not require exchange of source code, high band-
width, or synchronous communication. Addressing
these points, we need to consider two main issues:
What exactly will be shared and what mechanisms
are required to support the sharing process. For the
first issue, we need to think about what a bug
description is and what the debugging process
involves. A bug description is essentially a descrip-
tion of what the program did and what the program
should have done. The debugging process involves
two main tasks: The first is to find the mismatches
between the descriptions of what the program did
and what it should have done; the second is to locate
the points in the source code corresponding to the
mismatches. As eloquently argued in Lieberman’s
introduction in this issue, software visualization
(SV) techniques can aid in displaying a program’s
execution. Our approach to what the program
should have done is to allow programmers to anno-
tate their visualizations using simple drawing and
labeling tools.

How best to support the sharing process? If we can
encode our annotated visualizations as HTML files
and Java code, Web and Java technology will enable
us to share these without any of the program-differ-
ence problems. The remaining problem is to pro-
vide a framework facilitating generation of
visualizations encoded as HTML and Java.

66 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

The Laboratory uses a client/server

architecture to deliver visualizations on

any Java-enabled Web browser.

Internet Software Visualization
Laboratory
Our approach to solving the bug-description-sharing
problem is the Internet Software Visualization Labo-
ratory (ISVL), which uses a client/server architecture
to deliver visualizations on any Java-enabled Web
browser (see Figure 1).

Using a Java-enabled Web browser, programmers
can connect to the ISVL server and download the
ISVL client. Using the client, programmers can
upload and run their programs on the server and

receive back a visualization. Programmers can also
use the client to collaboratively debug programs.
(An example of a collaborative debugging session is
described in the following section.)

The ISVL server is composed of a customized Web
server, a generic software visualizer, and a specific
programming language. The customized Web server
is based on LispWeb [10], a specialized HTTP server
written in Common Lisp. In addition to implement-
ing the standard HTTP protocol, the LispWeb server
offers a library of high-level Lisp functions for
dynamically generating HTML pages, a facility for
dynamically creating image maps, and a server-to-
server communication method.

The generic visualizer is an extension of our frame-
work—called Viz—for creating SVs [5]. Within Viz,
we view program execution as a series of history
events happening to (or perpetrated by) players, that
is, Viz abstractions for computational elements that
can change state. To allow SV system builders con-

siderable freedom, a player can be any part of a pro-
gram, such as a function, a data structure, or a line of
code. Each player has a name and is in a state that
may change when history events occur for that
player. A player may also contain other players,
enabling the formation of groups of players. History
events are like Brown’s [3] “interesting events” in
the Brown University Algorithm Simulator and Ani-
mator (BALSA)—an environment for creating and
viewing algorithm animations in which each event
corresponds to code being executed in the program

or data changing its
value. These events
are recorded in the
history module,
allowing them to be
accessed by the user
and “replayed” later.
Events and states are
mapped into a visual
representation acces-
sible to the end user,
that is, the program-
mer needing to use
the SV system, not
the SV system
builder. But the
mapping is not just a
question of storing
pixel patterns to cor-
respond to different
events and states; we

also need to specify different views and ways of nav-
igating around them. The main Viz ingredients are:

• Histories. A record of key events occurring over
time as the program runs, with each event
belonging to a player. Each event is linked to
some part of the code and may cause a player to
change its state. Also included is some prehistory
information before the program begins running,
such as the static program source code hierarchy
and initial player states.

• Views. The style in which a particular set of play-
ers, states, or events is presented. Examples are
text, a tree, or a plotted graph, each using its own
style and emphasizing a particular dimension of
the data it displays.

• Mappings. The encodings used by a player to
show its state changes in diagrammatic or textual
form in a view using a graphical language, typog-
raphy, or sound. Some of a player’s mappings may
be for the exclusive use of its navigators.

• Navigators. The interface tools that enable the

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 67

Figure 1. Architecture of the ISVL

Programming Language

Generic Visualizer

Customized Web Server

user to traverse a view, move among multiple
views, change scale, compress or expand objects,
and move forward or backward in time through
the histories.

The Viz framework is equally at home dealing with
program code and with algorithms, since a player
and its history events may represent anything from a
low-level (program code) abstraction, such as
Invoke a function call, to a high-level
(algorithm) abstraction, such as Insert a
pointer into a hash table. The map-
ping module in Viz is interfaced with LispWeb so
plain ASCII representations are sent to the client,
thus reducing required bandwidth.

A programming language is interfaced to Viz by
inserting Create player and Note inter-
esting event hooks. To date, we have created
more than a dozen visualizations using Viz (see [5]).

On the client side, a transformation module con-
verts the ISVL HTTP stream into textual and graphi-
cal representations that are then transformed and
presented on the screen by the navigator. The user
interacts with the visualization through the naviga-
tor, which controls panning, zooming, local compres-
sion, expansion, and moving forward and backward
in time through the program execution space.

The First System
Our first system—called Web-TPM—is being used
and evaluated in the context of an Internet, and we

are running an Internet version of our master’s-level
Intensive Prolog course [7] using a visualization
based on the Transparent Prolog Machine (TPM) [6].
Here we describe an interaction between two hypo-
thetical programmers, Bill and Ingrid. Because the
purpose of the scenario is to show how ISVL supports
SV-based collaborative debugging, not to show off
the debugger itself, we use a trivial program. Please
note that ISVL contains many features allowing it to
scale up to cope with arbitrarily large programs.

Figure 2 includes labels describing the parts of the
ISVL Prolog client. A user types a query in the Pro-
log Query window (1). The result of the query No
(indicating that the query failed) and a TPM-style
visualization are returned (2). The user can then step
through the execution using the move-right button
in the control panel. A fine-grained view of the node
can be obtained by clicking on the node. Figure 2
shows a fine-grained view of the node “friends” (3).

I n our scenario, Bill is writing a
sorting program called Qsort, sort-
ing a number of unsorted elements,
based on the Quicksort algorithm,
which splits a list around an ele-
ment into a list of lower numbers

and a list of higher numbers that are then recursively
sorted. The program should take an unsorted list and
return a sorted list. Bill’s current version is buggy, and
he cannot find the root cause. He starts recording a
movie by selecting the Record button in the control

68 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

Figure 2. The ISVL Prolog client Figure 3. A snapshot from the movie left by Bill

panel, then carries out the following steps:

• Clicks on the topmost Qsort node, causing the
fine-grained information:

call: qsort([4, 1, 2, 3], _ans)
exit: qsort([4, 1, 2, 3], [3, 1,
2, 4])
to appear in the fine-grained view window.

• Rings the top node with a red circle using the
mouse (the color is set using the choice button on
the control panel) and insert the top annotation
Help! should be exit: qsort([4,
1, 2, 3], [1, 2, 3, 4]).

• Rings the lower Qsort nodes on the right with a
green circle and Qsort nodes on the left with a
blue circle and adds the annotations seems OK
and seems OK too. The state of his screen at
this stage is shown in Figure 3.

• Ends the recording session by selecting the
Record button, and when prompted, names his
movie can-anyone-help-with-a-
buggy-quicksort.

Some time later, Ingrid looks up the Prolog movie
database (see Figure 4), retrieves Bill’s movie, and
plays through it. The interface for playing a movie is
almost exactly the same as that for viewing visualiza-
tions, except the visualization steps are primitive user
actions, such as circling or labeling a node and click-
ing on a node, rather than steps in the program exe-
cution. She plays through the movie, checking the

fine-grained views of the three split nodes in the sub-
tree to the left of the Qsort node circled in blue (con-
taining three generations and five nodes). While
checking these split nodes, she finds the bug. Instead
of leaving a movie for Bill, she calls him by phone,
and they agree to start a synchronous collaborative
session.

Bill puts his client into Receive mode by selecting
the Receive button in the control panel. Ingrid
puts her client into Broadcast mode by selecting the
Broadcast button in the control panel. She loads
Bill’s code and runs it by typing the query into the
query window and selecting Evaluate. Then, to
put her interface into the state shown in Figure 5,
she carries out the following steps:

• Hits the right-arrow button until the tree is as
shown in Figure 5, then stops by using the pause
button.

• Rings and annotates parts of the tree in the order
blue, red, yellow, white. Each time she does so,
she also brings up a fine-grained view (Figure 5,
top window) of an appropriate split node.

Each interface action is replicated on Bill’s client.
After the session, Bill fixes his bug and checks the
new code on the server.

Benefits
Because ISVL uses Java-based clients, it gains all the
benefits Java brings to an application:

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 69

Figure 4. The ISVL movie database Web page Figure 5. Ingrid’s ISVL client after a collaborative
session with Bill

• The ability to run on multiple platforms
• The ability to run on low-cost platforms (with

the potential of one day running on set-top boxes
and handheld devices)

• Radically decreased effort of delivery, mainte-
nance, version control, and update shipment

To facilitate ease of use, we also incorporated other
design features into ISVL:

• Minimal bandwidth requirements. Visualizations
and broadcasts are encoded as plain ASCII.

• Minimal connect time. Once a visualization is
delivered to a client, all interactions are local. The
only time a connection is left open is when a
client is in Broadcast or Receive mode.

• Minimal use of the server. Because movies are
plain HTML files with accompanying Java code,
they do not require the ISVL server.

• Maximum control. Movies are not just watched
and seen. A programmer can control the speed of
the replay and obtain fine-grained views of nodes
not in the original movie.

Today, we are testing ISVL on an Internet version
of our master’s programming course, which involves
students in the U.S. and Canada and a tutor in Eng-
land. Although it is too early to draw conclusions
from this experiment, our expectations are based on
earlier experiments on Internet teaching [12], as
well as on empirical studies of novice programmers
using a variety of SV systems [9]. Any programming
community spread over distance or time can benefit
from our approach. Exactly how the framework is
used depends on the type of community and its var-
ious dimensions, including:

• Openness. Is membership in the community
available to all programmers? Are community
activities available for inspection? Two communi-
ties differing greatly on this dimension are acade-
mia and the military, which requires a secure
intranet.

• Size. The size of a community shapes system use.

• Homogeneity. A community may be made of dis-
tinct subcommunities, each with its own agenda.
The relationships among the subcommunities are
important. For example, software providers have a
special relationship with their customers. Alterna-
tively, a community may have a strong internal
structure (e.g., a strictly hierarchical corporation
influences communication among its employees).

The benefits for individual programmers depend on
their roles within a community. We expect pro-
grammers who are particularly isolated (e.g., a con-
sultant working at a remote client site) or who are at
the bottom of a learning curve (e.g., a new member
of a software team) to benefit most.

Related Work
Recent work within the algorithm-animation com-
munity has led to the creation of a number of sys-
tems allowing pre-written animations to be viewed
remotely. These systems primarily concentrate on
delivering animations synchronously as part of a
classroom-style tutorial.

For example, John Stasko developed a facility at the
Georgia Tech College of Computing (http://www.
cc.gatech.edu/stasko/cgi-bin/xtangoanim) where
Transition-based Animation Generation (TANGO)
[11] animations can be run remotely. Although use-
ful for quickly getting an overview of TANGO’s
look and feel (the facility’s purpose), the system is
restricted to X Window systems and has scaling
problems, as all the work is carried out on a central
server.

The Collaborative Active Textbooks (CAT) of
Brown and Najork [4] at Digital Equipment Corp.’s
Systems Research Center is a Web-based environ-
ment allowing the same animation to be run simul-
taneously on a number of machines. Intended for
classroom-style teaching, the tutor has remote con-
trol of the view and speed of the animation. Such
synchronous demonstration of programs is possible
through ISVL, though animations in ISVL are not
canned, being created on the fly from the program
submitted.

The client/server architecture of ISVL is similar to
that of James Baker’s Mocha system [1] at Brown
University, in which the bulk of the work is done on
the server, and the interface is created by a Java
client. Like CAT, Mocha is primarily designed for
the synchronous delivery of algorithm animations.

Future Directions
You may now ask, what about voice? Programmers
with Ethernet links and a telephone can use voice

70 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

We expect programmers who are

particularly isolated or at the

bottom of a learning curve to

benefit most.

with ISVL in a synchronous fashion; it is also possi-
ble to add links to .au files, the Unix-specific format
for audio files, playable on any Java-aware Web
browser, within movies. However, we feel our cur-
rent setup has limitations, as some programmers use
a dial-up modem (especially when at home) and .au
files are large and cannot be handled well on all plat-
forms. In addition, nonlocal phone calls are expen-
sive. We therefore plan to use the streaming audio
system currently being constructed as part of KMi
Stadium [8], a Java-based application exploring the
use of large-scale telepresence, particularly for broad-
casting real-time audio.

In his debugging environment for Multiple Repre-
sentation Environment (MRE), Mike Brayshaw [2],
who co-developed TPM, described how a subpart of a
visualization could be parameterized and stored away
as a “symptomatic agent” that could then be used to
search in the execution space of future programs. We
plan to enable programmers to use direct manipula-
tion to capture, or isolate and store, parts of their
current visualization and to ask, has anyone else had
a problem like this?, at which point an agent would
search known movie databases for matching visual-
izations. In addition to investigating other lan-
guages, such as Java, we are using the framework
in a wider context to support collaborative case-
based engineering design and collaborative
ontology browsing and editing.

Acknowledgments
The authors would like to thank Enrico Motta
and Simon Buckingham Shum for providing
valuable feedback on various drafts of this article.

References
1. Baker, J.E., Cruz, I.F., Liotta, G., and Tamassia, R. Algorithm an-

imation over the World Wide Web. In Proceedings of the International
Workshop on Advanced Visual Interfaces. ACM Press, New York, 1996.

2. Brayshaw, M. Information Management and Visualization for Debug-
ging Logic Programs. Ph.D. dissertation, Human Cognition Research
Laboratory, the Open Univ., Milton Keynes, U.K., 1994.

3. Brown, M.H. Algorithm Animation. ACM Distinguished Disserta-
tions. MIT Press, Cambridge, Mass., 1988.

4. Brown, M.H., and Najork, M.A. Collaborative active textbooks: A Web-
based algorithm animation system for an electronic classroom. Systems
Research Center Res. Rep. 142, Digital Equipment Corp., 1996.

5. Domingue, J., Price, B., and Eisenstadt, M. Viz: A framework for
describing and implementing software visualization systems. In
User-Centred Requirements for Software Engineering Environments, D.
Gilmore and R. Winder, Eds. Springer-Verlag, Berlin Heidelberg,
1992, pp. 197–212.

6. Eisenstadt, M., and Brayshaw, M. The Transparent Prolog Machine
(TPM): An execution model and graphical debugger for logic pro-
gramming. J. Logic Program. 5, 4 (1988), 277–342.

7. Eisenstadt, M., Dixon, M., and Kriwaczek, F. Intensive Prolog. Aca-
demic Press, Milton Keynes, U.K., 1988.

8. Eisenstadt, M., Buckingham Shum, S., and Freeman, A. KMi Sta-
dium: Web-based Audio/Visual Interaction as Reusable Organisa-
tional Expertise. In Proceedings of The Workshop on Knowledge Media
for Improving Organisational Expertise. (1st International Conference

on Practical Aspects of Knowledge Management, Basel, Switzerland,
Oct. 1996). Unpublished, but available from A. Nicolet, Schwanden-
holzstr. 286 CH-8046, Zurich, Switzerland. (Also available as Knowl-
edge Media Institute Tech. Rep. 31, http://kmi.open.ac.uk/techre-
ports/kmi-tr-list.html. See also http://kmi.open.ac.uk/stadium.)

9. Mulholland, P. A principled approach to the evaluation of SV: A case-
study in Prolog. In Software Visualization: Programming as a Multi-Me-
dia Experience, J. Stasko, J. Domingue, M. Brown, and B. Price, Eds.
MIT Press, Cambridge Mass., in press.

10. Riva, A., and Ramoni, M. LispWeb: A specialised HTTP server for dis-
tributed AI applications. Comput. Networks ISDN Syst. 28 (May 1996),
953–961.

11. Stasko, J.T. The Path-Transition Paradigm: A practical methodology
for adding animations to program interfaces. J. Visual Lang. Comput. 1,
3 (Sept. 1990), 213–236.

12. Watt, S.N.K. Teaching through electronic mail. Tech. Rep. 15, Knowl-
edge Media Institute, Sept. 1995 (see http://kmi.open.ac.uk/techre-
ports/kmi-tr-list.html.)

John Domingue (J.B.Domingue@open.ac.uk.) is a research
fellow in the Knowledge Media Institute at The Open University in
Milton Keynes, U.K.
Paul Mulholland (P.Mulholland@open.ac.uk.) is a research
fellow in the Knowledge Media Institute at The Open University.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/97/0400 $3.50

c

COMMUNICATIONS OF THE ACM April 1997/Vol. 40, No. 4 71

