
130 April 1997/Vol. 40, No. 4 COMMUNICATIONS OF THE ACM

M
any systems, including Java, ActiveX,
JavaScript, and Web plug-ins, allow Web
authors to attach an executable program to a
Web page, so that anyone visiting the page

automatically downloads and runs the program. These
systems (collectively known as Webware) offer unique
security challenges. This is not a new problem: people
have always passed programs around. What is new is the
scale and frequency of downloading, and the fact that it
happens automatically without conscious human interven-
tion. In one (admittedly unscientific) recent experiment, a
person was found to have downloaded and run hundreds
of Webware programs in a week. The same person ran
only four applications from his own computer.

Simply visiting a Web page may cause you to unknow-
ingly download and run a program written by someone you
don’t know or don’t trust. That program must be prevented
from taking malicious actions such as modifying your files
or monitoring your online activities, but it must be allowed
to perform its benign and useful functions. Since it is not
possible (even in theory) to tell the difference between
malicious and benign activity in all cases, we must accept
some risk in order to get the benefits of Webware.

Despite the danger, Webware is popular because it
meets a real need. People want to share documents, and
they want those documents to be dynamic and interactive.
They want to browse, to wander anywhere on the net and
look at whatever they find.

Webware Security Models
There are two approaches to Webware security—the all-or-
nothing model and the containment model. The all-or-
nothing model is typified by Microsoft’s ActiveX and by
Netscape plug-ins. These systems rely on the user to make
an all-or-nothing decision about whether to run each down-
loaded program. A program is either downloaded and run
without any further security protection, or refused outright.

This decision can be made by exploiting digital signa-
tures on downloaded programs. The author of a program,
and anyone else who vouches that the program is well-
behaved, can digitally sign it. When the program is
downloaded, the user is shown a list of signers and can
then decide whether to run the program.

The containment model is typified by Java from Sun
Microsystems. Java allows any program to be downloaded
but tries to run that program within a contained environ-
ment in which it cannot do any damage.

Problems with Both Models
Both approaches have problems. The problem with the all-
or-nothing model is subtle but is impossible to fix: it puts
too much burden on the user. Users are constantly bothered
with questions, and they must choose between two equally
unacceptable alternatives: discard the program sight unseen,
or give the program free rein to damage the user’s system.
The all-or-nothing model causes trouble because it doesn’t
allow users to browse. The main problem with the contain-
ment model is its complexity. In Java, for example, there is a
large security perimeter to defend, and several flaws in both
design and implementation have been found, leading to the
possibility of serious security breaches. Though all of the
known problems have been fixed as of this writing, there is
no guarantee more problems won’t be found. (For a general
discussion of Java security issues, see McGraw, G. and Fel-
ten, E.W. Java Security: Hostile Applets, Holes and Antidotes,
Wiley and Sons, NY, 1997.)

Another problem with the containment model is that
it is often too restrictive. Java, for example, prohibits
downloaded programs from accessing files. Though this
prevents malicious programs from reading or tampering
with the user’s private data, it also makes legitimate docu-
ment-editing programs impossible. This can be addressed
by making the security policy more flexible using digital
signatures. When a person runs a program, their browser
can verify the signatures and the person can decide whether
to grant the program more privileges because of who
signed it. In theory, this allows users to make finely cali-
brated decisions about which programs to trust for which
purposes. In practice, this approach is likely to have some
of the problems of the all-or-nothing model.

Still, the containment model has some advantages.
Granting only a few privileges may expose the user to less
risk than letting down all security barriers. And contain-
ment at least allows the system to log a program’s activities.

The Challenge
Webware security is difficult because of human nature. Peo-
ple want to browse without worrying about security, but
browsing is dangerous. Only they can decide who or what is
trustworthy and how to weigh the benefits of a particular
decision against the risks, but human attention to security is
a precious resource that we must spend carefully.

Edward Felten is a professor at Princeton University.

c

PA
U

L
W

A
TS

O
N

Edward W. Felten

Webware Security

Ins ide

http://crossmark.crossref.org/dialog/?doi=10.1145%2F248448.257470&domain=pdf&date_stamp=1997-04-01

