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ABSTRACT
We study the problem of searching a repository of com-
plex hierarchical workflows whose component modules, both
composite and atomic, have been annotated with keywords.
Since keyword search does not use the graph structure of a
workflow, we develop a model of workflows using context-
free bag grammars. We then give efficient polynomial-time
algorithms that, given a workflow and a keyword query, de-
termine whether some execution of the workflow matches the
query. Based on these algorithms we develop a search and
ranking solution that efficiently retrieves the top-k gram-
mars from a repository. Finally, we propose a novel re-
sult presentation method for grammars matching a keyword
query, based on representative parse-trees. The effectiveness
of our approach is validated through an extensive experi-
mental evaluation.

1. INTRODUCTION
Data-intensive workflows are gaining popularity in the sci-

entific community. Workflow repositories are emerging in
support of sharing and reuse, either as part of a particu-
lar workflow system (e.g., VisTrails [4] or Taverna [28]) or
independently within a particular community (e.g., myEx-
periment.org [29]). As workflows become more widely used,
workflow repositories grow in size, making information dis-
covery an interesting challenge.

Current workflow repositories, e.g., myExperiment.org, sup-
port tagging of workflows with keywords. Notably, because
workflows are modular, users may wish to share and reuse
components of a workflow [31]. It is thus important to sup-
port tagging, and to enable search, not just at the level of a
workflow, but also at the level of modules and subworkflows.

Recent work considered search in workflow repositories [10,
25, 30], and also argued that, because workflows can be large
and complex, it is important to provide usable result pre-
sentation mechanisms. In this paper we propose a novel
search and result presentation approach for complex hierar-
chical workflows. We now illustrate our approach with an
example.

Consider a workflow in Figure 1 that computes succep-
tibility of an individual to genetic disorders, and is based
closely on [33]. This workflow takes a person’s genetic in-
formation in the form of single nucleotide polymorphisms
(SNPs) as input, and produces an assessment of genetic dis-
order risk. The workflow is implemented by module M0,
which is composite, and, when invoked, executes modules
M1 and M2 in sequence. Module M1 expands the set of
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Figure 1: Disease succeptibility workflow.

r1 : M0 ⇒ {M1,M2} r2 : M1 ⇒ {M3,M4}
r3 : M3 ⇒ {M5,M3} r4 : M3 ⇒ {M8,M3} r5 : M3 ⇒ {M9}
r6 : M4 ⇒ {lookup,M6} r7 : M4 ⇒ {lookup,M7}
r8 : M2 ⇒ {evaluate} r9 : M5 ⇒ {23andMe}
r10 : M9 ⇒ {check} r11 : M6 ⇒ {OMIM}
r12 : M7 ⇒ {PubMed} r13 : M8 ⇒ {HapMap}

Figure 2: Disease succeptibility workflow as a bag grammar.

SNPs by considering known associations between SNP pairs
and triplets. This module is composite, and has three al-
ternative executions. In the first, the SNP set is expanded
using a proprietary database of associations, e.g., 23andMe
(module M5), followed by a recursive call to M3. In the sec-
ond alternative, a public association database, e.g., HapMap
(module M8) is used, followed by a recursive call to M3. The
final alternative involves checking the retrieved results and
terminating the recursion (module M9). Having computed
an expanded SNP set, the workflow goes on to look up any
genetic disorders associated with the SNPs. This is imple-
mented by moduleM4, which has two alternative executions:
it may issue a query to OMIM (module M6) or to PubMed
(module M7). Having retrieved results from OMIM or from
PubMed, the workflow terminates.

Suppose that this workflow exists in a repository, and
that some of its modules are tagged. Let us assume the
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following assignment of keywords to workflow modules: M2

(evaluate), M4(lookup), M5 (23andMe), M6 (OMIM), M7

(PubMed), M8 (HapMap), and M9 (check). It is not re-
quired that all modules be tagged, e.g., there is no keyword
assigned to M1 in our example. It is also possible, and even
likely, that multiple keywords are assigned per module, and
that keywords are reused across modules, and across work-
flows [31]. However, we do not use multiple or repeating
keywords here, to simplify our example.

Suppose now that a user wants to know whether the work-
flow in Figure 1 matches a particular keyword query. Assum-
ing “and” query semantics, answering this question amounts
to determining if there exists some execution of the work-
flow in which all query keywords are present. For example,
query {23andMe,HapMap} matches an execution in which
module M3 is run twice, evaluating M5 → M3 (23andMe)
on the first invocation, and M8 → M3 (HapMap) on the
second invocation. Intuitively, this execution exists because
of the combination of alternation and recursion at M3.

On the other hand, there is no execution that matches
{OMIM,PubMed} because, once an alternative for expand-
ing M4 is chosen, then M6 (OMIM) or M7 (PubMed) is ex-
ecuted, and there is no recursion that allows M4 to repeat,
possibly choosing another branch.

It has recently been shown that complex hierarchical work-
flows can be naturally represented as context-free graph gram-
mars involving recursion and alternation [1, 3]. We build on
this work and adapt it to keyword search in workflows with
tagged modules. Because of our proposed query semantics,
observe that, while hierarchical workflow structure, alterna-
tion and recursion are important for determining whether a
workflow matches a query, the graph structure within each
composite module is unimportant for our purposes. This
observation leads us to model scientific workflows as context-
free bag grammars (also called commutative grammars [13]).

Figure 2 represents a bag grammar corresponding to the
workflow in Figure 1. The bag grammar captures the hier-
archical structure of the workflow (expansion of composite
modules), alternation and recursion. Importantly, the gram-
mar makes assignment of keywords to modules explicit, by
including keywords as terminals. Note that keywords may
annotate both atomic and composite modules, appearing in
the corresponding grammar productions. So, M4 is tagged
with lookup, which is captured in productions r6 and r7.

Query {23andMe,HapMap}matches the workflow in Fig-
ure 1, and we would now like to explain to the user how the
match occurs. Let us now return to our example, and focus
on result presentation. Providing a usable result presenta-
tion mechanism is important, because workflow specifica-
tions can be large, and each workflow can match a query
in multiple ways, due in large part to recursion and alter-
nation. We propose here a result presentation mechanism
based on a novel notion of representative parse trees (rpTree
for short). Figure 3 shows a particular rpTree for query
{23andMe,HapMap}, with nodes representing bag gram-
mar productions and terminals (see Figure 2), and edges
corresponding to a firing of a production. Keyword matches
occur at the leaves.

Intuitively, an rpTree represents a class of parse trees of a
bag grammar that derive a particular set of terminals. An
rpTree is an irredundant representative of its class, in the
sense that it does not fire recursive productions that do not
derive additional query-relevant terminals. For example, the
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Figure 3: An rpTree for query {23andMe,HapMap}.

rpTree in Figure 3 represents also a tree in which production
r3 is fired recursively twice, both times followed by r9, and
thus generating the terminal 23andMe twice. We will make
the sense in which an rpTree is an irredundant representative
of its class more precise in Section 5, and will show how
rpTrees can be derived efficiently.

Contributions. The contributions of our paper include:

• A model of search and result presentation over keyword-
annotated context-free bag grammars (Section 2): Al-
though the motivation for our model is derived from
the problem of searching workflow repositories, it is
applicable to any other scenario involving search over
context-free bag grammars, e.g., business processes,
call structure of programs, or other hierarchical graph
applications.

• Search and ranking algorithms (Sections 3 and 4): We
give a bottom-up match algorithm, and develop an op-
timization, which borrows ideas from semi-naive data-
log evaluation to avoid unproductive calculations. Next,
translating probabilistic context-free grammars to our
setting, we develop efficient search and ranking algo-
rithms, and use them to identify top-k grammars.

• Novel result presentation methods (Section 5): Since a
workflow may match a query in many different ways,
we develop a presentation mechanism to help the user
understand how the keyword matches are most likely
to occur. The mechanism is based on a novel notion of
representative parse trees, which are the most probable
parse trees that are structurally irredundant.

• Extensive experimental evaluations (Section 6): We
use synthetic datasets to demonstrate the effectiveness
of our approach. Our synthetic data is generated in a
way that resembles characteristics of workflows in my-
Experiment.org, in terms of keyword assignment and
workflow size. However, since current scientific work-
flow management systems do not yet allow that work-
flows be expressed as grammars, we are unable to use
the myExperiment.org dataset directly in our experi-
ments.

Related Work. Much effort [7, 17, 32] has been made
recently to annotate scientific workflows to enable keyword
search. As observed in [25], since scientific workflows are
usually modeled as a three-dimensional graph structure when
considering the expansions of composite modules (dashed



edges in Figure 1), results on searching relational and XML
data [5, 24, 35] or graph data [9, 18, 20, 34] can not be
easily extended. [10, 25, 30] consider the scenario when al-
ternation or recursion is not present in workflows. [23, 27]
consider the scenario where nodes of XML documents exist
with a probability (analogous to choice), however there is no
recursion.

There are also extensive results in (context-sensitive) com-
mutative grammars [14, 13], which have been cast as vector
addition systems [21] and Petri nets [8]. Decidability is-
sues of Petri nets are surveyed in [14], and are shown to be
NP-complete, directing focus towards more specific prob-
lems. We focus on a novel sub-problem,i.e., on whether there
exists a bag that contains a keyword set and is accepted by
a commutative grammar.

Most related to our work on matching and ranking is [12],
which considers the more general problem of querying the
structure of a specification using graph patterns. The pa-
per gives a query evaluation algorithm of polynomial data
complexity; the authors also consider the probability of the
match in [11]. By considering each permutation of the key-
word query Q as a simple graph pattern, where each node
represents a keyword and nodes form a chain connected by
transitive edges, and taking the union of matching specifi-
cations for each permutation, these results could be used in
our setting. However, our matching algorithm is optimized
for queries that are sets of keywords, and is therefore simpler
and considerably more efficient than [12] for this setting (see
results in Section 6). Importantly, unlike [12], our solution
does not require that the input grammar be transformed for
each query. For this reason, our solution can be tailored to
present results using representative parse trees (Section 5),
while the solution of [12] cannot.

Also closely related to our match algorithm is [2], which
gives a polynomial time algorithm for checking if the in-
tersection of a context-free string grammar (which could
represent the workflow specification) and a finite automa-
ton (which could represent the query) results in an empty
grammar; however, our match algorithm has a much better
average case performance since it can terminate early if a
match is found.

2. MODEL
In this section, we give background and definitions that

will be used throughout the paper. We start with the defini-
tion of a context-free bag grammar, its language, and what
it means for a search query with “and” semantics to match
a grammar. We then introduce parse trees and derivation
sequences. Finally, we define the notion of a repository of
context-free bag grammars.

Definition 2.1. (Context-free Bag Grammar)
A context-free bag grammar is a grammar G = (Σ,∆, S,R)
where Σ is the set of symbols (variables and terminals), ∆ ⊂
Σ is the set of terminals, S is the start variable and R is the
set of production rules. For production r ∈ R, we denote by
head(r) ∈ Σ/∆ the head of the production and body(r) the
bag of symbols in the body of the production. The language
of the grammar, L(G), is a set of bags whose elements are

in ∆: L(G) = {w ∈ ∆∗|S ∗
=⇒ w}

We use context-free bag grammars to represent keyword-
annotated scientific workflows, of the kind described in Fig-

ure 1, and with the corresponding grammar given in Fig-
ure 2. This grammar was derived by replacing each com-
posite module (variable) with production rules that emit
their keywords (as in rules r6 and r7 for module M4), and
adding a production rule for each atomic module (terminal)
that emits its keyword (as in rules r8 through r13).

In the remainder of the paper, we will refer to a context-
free bag grammar simply as a grammar, and will use
productions(M) ⊆ R to denote the set of productions with
M in the head. For clarity, we also label productions.

Definition 2.2. (Match) Given a grammar
G = (Σ,∆, S,R) and a keyword query Q ⊆ ∆, we say that G
matches Q iff there exists some X ∈ L(G) such that Q ⊆ X.

Example 2.1. Consider the grammar
G = ({S,A,B,C, s1, s2, b, c}, {s1, s2, b, c}, S,R), where R is:

r1 : S =⇒ {A,S}
r2 : S =⇒ {s1}
r3 : S =⇒ {s2}
r4 : A =⇒ {B,C}

r5 : B =⇒ {b}
r6 : C =⇒ {B}
r7 : C =⇒ {c}

The language of G is L(G) = {(s1 + s2)(bc + bb)n|n ∈
N≥0}. G matches query Q1 = {s1, b} since Q1 ⊆ {s1, b, b} ∈
L(G). However, G does not match Q2 = {s1, s2}.

Since the language of a grammar can be infinite, we will
need to focus our attention on a small sample of its elements
in which a match can be found. For this, we will use the
notion of parse trees and derivation sequences.

Definition 2.3. (Parse Tree) A parse tree T associated
with a grammar G = (Σ,∆, S,R) is a finite unordered tree
where each interior node represents a production r ∈ R and
whose children represent body(r), i.e. each child is either
a terminal in body(r) (in which case it is a leaf) or is a
production whose head is a variable in body(r). If T consists
of a single node, then it represents a terminal in ∆. We use
root(T), and leaves(T) to denote the root production and
leaves of T , respectively.

For our purposes, a parse tree can be rooted at any ter-
minal or production rather than just those whose head is S.
Given a parse tree T of a grammar, we denote by paths(T )
the bag of all root-to-leaf paths in T , productions(T ) the
bag of productions applied in T , and symbols(T ) the set of
symbols that appear in productions(T ).

We now define what portions of a keyword query a parse
tree T matches in terms of the query-relevant keywords gen-
erated by T , and adapt the notion of derivation sequence to
our setting.

Definition 2.4. (Generates) Given a grammarG = (Σ,∆, S,R)
and a query Q ⊆ ∆, we say a parse tree T generates the set
of matching keywords leaves(T ) ∩ Q. A symbol M ∈ Σ
generates a set X ⊆ Q iff one of its parse trees generates X.

Definition 2.5. (Derivation Sequence) Given a gram-
mar G = (Σ,∆, S,R), we say a variable A ∈ Σ/∆ de-
rives a symbol B ∈ Σ iff there exists a parse tree T where
root(T ) ∈ productions(A), and B ∈ symbols(T ). Each path
from A to B in T is a sequence of productions called a
derivation sequence. sequence seq(A 7→ B), we denote by
Set(seq(A 7→ B)) the bag of all productions applied in it.

If a variable A derives a symbol B, we say A is an ancestor
of B and B is a descendant of A.



Definition 2.6. (Simple Derivation Sequence) A deriva-
tion sequence is simple iff there is no production that ap-
pears in it more than once.

Intuitively, a simple derivation sequence is a derivation se-
quence where a recursion is fired at most once. It disregards
unnecessary recursions and provides an upperbound for the
complexity results in Section 3.1.

Definition 2.7. (Distance) Given a grammar
G = (Σ,∆, S,R), the distance from a variable A ∈ Σ/∆ to
symbol B ∈ Σ is the length of the longest simple derivation
sequence for A deriving B, denoted d(A 7→ B).The distance
of a grammar is defined as the longest distance between any
two symbols, denoted d(G). It is easy to see d(A 7→ B) ≤
d(G) ≤ |R|.

Example 2.2. For the grammar in Example 2.1 there is
only one simple derivation sequence for S to derive C, i.e.
r1r4. However, there are two simple derivation sequences to
derive B, i.e. r1r4 and r1r4r6. Hence d(S 7→ C) = 2 and
d(S 7→ B) = 3. It is also easy to check that d(G) = 4.

We end this section by discussing the notion of a reposi-
tory of bag grammars. A repository of grammars is essen-
tially a set of grammars in which symbols (modules) may be
shared, but must be done so consistently. We assume that
all grammars are proper, i.e. have no underivable symbols
or unproductive variables.

Definition 2.8. (Bag Grammar Repository) A bag gram-
mar repository is a set of bag grammars such that for any two
grammars G1 = (Σ1,∆1, S1, R1) and G2 = (Σ2,∆2, S2, R2),
∀M ∈ (Σ1 ∩ Σ2),

⋃
r∈R1

head(r)=M

r =
⋃

r∈R2
head(r)=M

r

3. MATCHING AND SEARCHING
In this section we give an efficient algorithm that, given

a grammar G and keyword query Q, determines whether
G matches Q. We start by presenting the basic algorithm,
Match, which computes a fixpoint of subsets of matching
keywords using a bottom-up approach over the hierarchy
of nonterminals (Section 3.1). We then give an optimized
match algorithm (Section 3.2), and extend the results to
searching a repository of grammars.

Note that the matching problem is NP-complete with re-
spect to combined (data and query) complexity, as shown
in [12]. However, since query size is typically small (6 or
fewer keywords), we focus on the data complexity and give
a matching algorithm that is polynomial in the size of the
grammar. As observed in the introduction, the algorithm
in [12] could also be used here, since it considers a (more
general) graph pattern query. However, our algorithm is
optimized for keyword queries and is therefore simpler and
considerably more efficient in our setting (see results in Sec-
tion 6).

3.1 Keyword query match
We now give an algorithm, Match (Algorithm 1), which

determines whether or not a grammar G matches a keyword
query Q. To do this, Match builds a parse tree bottom-up
until some symbol generates Q, in which case G matches Q,
or until a fixpoint of query-relevant keywords is reached for
each symbol, in which case G does not match Q. It can be

shown that the fixpoint will be reached at or before height
O(d(G)), and that therefore the algorithm is polynomial in
the size of the grammar (although exponential in the query
size due to the cost of generating sets of query-relevant key-
word sets).

Match generates for each symbol M ∈ Σ the set F (M)
of sets of query-relevant keywords for M . It does so by
considering parse trees of increasing height i, and calculating
for each M ∈ Σ the set Fi(M) of sets of query-relevant
keywords for M that are derived by parse trees of height
≤ i. For terminals M ∈ Σ (which are the leaves in a parse
tree), F0(M) can be calculated directly (line 2, ignore for
now line 3). For variables M ∈ Σ/∆, F0(M) = ∅ (line
4). It then calculates Fi(M) by initializing it to Fi−1(M)
(line 7) or ∅, then considering each production r with M
as head, taking the “product-union” of Fi−1(αj) for each αj
in body(r), and adding the resulting set of query-relevant
keywords to Fi(M) (lines 9-11). This continues until the
query is matched by some M (line 12), or until a fixpoint is
reached (for each symbol M , Fi(M) = Fi−1(M), line 13).

Algorithm 1: Match

Input: a grammar G = (Σ,∆, S,R) and a query Q ⊆ ∆
Output: boolean
/* F (M) : set of sets of query-relevant keywords for M */

/* Fi(M) = {leaves(T ) ∩Q|root(T ) ∈ productions(M),

height(T ) ≤ i} */

begin
1 foreach M ∈ ∆ do
2 if F (M) = ∅ then F0(M)← {{M} ∩Q}

/* for OptMatch (Algorithm 2) */

3 else F0(M)← F (M)

4 foreach M ∈ Σ/∆ do F0(M)← ∅
5 i← 0 // a counter for iteration times

6 L: i← i+ 1
7 foreach M ∈ ∆ do Fi(M)← Fi−1(M)
8 foreach M ∈ Σ/∆ do Fi(M)← ∅
9 foreach production r : M → α1α2 . . . αn ∈ R do

/* Construct parse trees rooted at r */

10 foreach X1 ∈ Fi−1(α1), . . . Xn ∈ Fi−1(αn) do

11 Fi(M).addElement(
n⋃
j=1

Xj)

12 if ∃M ∈ Σ, Q ∈ Fi(M) then return true
13 if ∃M ∈ Σ/∆, Fi(M) 6= Fi−1(M) then goto L
14 return false

Example 3.1. Consider the grammar in Example 2.1 and
query Q = {b, c}. Initially, F0(s1) = F0(s2) = {∅}, F0(b) =
{{b}}, F0(c) = {{c}}, and F0(S) = F0(A) = F0(B) =
F0(C) = ∅ (lines 1-4). In the first iteration of L (i = 1),
we add to F1(S) the set ∅ (after processing rule r1, r2, r3).
After processing all other productions, we have F1(A) =
∅, F1(B) = {{b}}, and F1(C) = {{c}}. We then pro-
ceed to the second iteration (i = 2). During this itera-
tion, when rule r4 is processed, we add to F2(A) (which
was initialized to F2(A) = ∅) the product of F1(B) and
F1(C), at each step taking the union of the two elements (e.g.
{b} ∪ {c} = {b, c}), resulting in F2(A) = {{b, c}}. Since
Q ∈ F2(A), Match terminates. If this early termination
condition were omitted, the fixpoint would have been reached
in the fifth iteration, since F5(S) = F4(S), F5(A) = F4(A),
F5(B) = F4(B), F5(C) = F4(C).

We now show that the data complexity of Match is O(|G|∗



d(G)). We start by showing that it will reach a fixpoint in
d(G) ∗ (|Q|+ 1) + |Q| iterations by proving that if a symbol
M ∈ Σ generates a set X ⊆ Q, then there exists a parse tree
T rooted at r ∈ productions(M) of height at most d(G) ∗
(|Q|+ 1) + |Q| such that leaves(T ) ∩Q = X.

Lemma 3.1. Given a grammar G = (Σ,∆, S,R) and a
query Q ⊆ ∆, ∀M ∈ Σ, ∀X ⊆ Q, height(M,X) ≤ d(G) ∗
(|Q|+ 1) + |Q|.

Proof. Note that if M ∈ Σ generates X ⊆ Q, then the parse
trees that generate X fall in one of two classes: (1) each
child subtree generates a subset of X, in which case we say
the parse tree produces the set X; (2) some child subtree
generates X by itself, in which case we say the parse tree
broadcasts X.

We denote by height(M,X) (M ∈ Σ/∆, X ⊆ Q) the min-
imum height of parse trees of M that generate X;
height(M,X) = −1 if M cannot generate X. Similarly,
we denote by heightp(M,X) (heightb(M,X)) the minimum
height of parse trees of M that produce (broadcast) X. For
heightp(M,X) we have the following:

heightp(M,X) =


0 if M ∈ ∆, X = {M} ∩Q
−1 if M ∈ ∆, X 6= {M} ∩Q
−1 if M ∈ Σ/∆, |X| ≤ 1

(1)

heightp(M,X) ≤ 1 + max
M′∈Σ,X′⊂X

height(M ′, X′) (2)

Turning to heightb(M,X), we have:

heightb(M,X) ≤ d(G) + max
M′∈Σ

heightp(M ′, X) (3)

height(M,X) ≤ max(heightp(M,X), heightp(M,X)) (4)

So we have height(M,X) ≤ d(G) ∗ (|Q|+ 1) + |Q|.

Using Lemma 3.1 we can prove the following.

Theorem 1. The data complexity of Match is
O(|G| ∗ d(G)).

Proof. The size of a grammar G = (Σ,∆, S,R) is defined as
the sum of the sizes of its productions,
|G| =

∑
r∈R

(1 + |body(r)|). By Lemma 3.1 we know that the

number of iterations of Algorithm 1 is bounded by d(G) ∗
(|Q| + 1) + |Q|. Each iteration (loop L) of Algorithm 1
processes all productions, each of which takes O(|body(r)| ∗
2|Q|). Since the query size is considered as a constant, this
yields a total time of O(|G| ∗ d(G)).

3.2 Optimized keyword query match
We now introduce two improvements to Match, one of

which avoids unproductive calculations introduced by vari-
ables that are fixed early, and the other of which reduces the
size of Fi(M).

Optimization 1: Symbol Dependencies Borrowing
ideas from semi-naive Datalog evaluation, we observe that
a grammar yields symbol dependencies through the head
and body structure of rules, e.g. that in Match the start
variable S will not be fixed until A is fixed (a variable M
is fixed in the ith iteration, iff ∀j > i, Fj(M) = Fi(M),
∀j < i, Fj(M) ⊂ Fi(M)). The first optimization is to avoid

unproductive calculations introduced by variables which are
fixed early.

Given a grammar G = (Σ,∆, S,R), we create a prece-
dence graph G = (V, E) of symbols as follows: V= Σ, and a
directed edge (M,M ′) is added to E iff ∃r ∈ R, head(r) =
M, body(r) 3 M ′. G has a directed cycle iff G is recursive.
Two symbols are mutually recursive iff they participate in
the same cycle of G. Mutual recursion is an equivalence
relation on Σ, where each equivalence class corresponds to
a strongly connected component of G. Denote by [M ] the
symbol equivalence class of M , and perform a topological
sort of G to construct a list [M1], [M2] . . . [Mn]. Clearly, if
there is a path from [Mj ] to [Mi] (i < j), then symbols in
[Mi] are fixed earlier than symbols in [Mj ]; symbols in the
same equivalence class are fixed in the same iteration.

Optimization 2: Set Domination We note that an
element in Fi(M) is useless if it is a subset of (dominated
by) another element in Fi(M). For example, {b} is useless in
F3(A) = {{b}, {b, c}} of Example 3.1. Using set domination,

|F (M)| decreases from 2|Q| to
( |Q|
b|Q|/2c

)
.

Algorithm 2: OptMatch

Input: a grammar G = (Σ,∆, S,R) and a query Q ⊂ ∆
Output: boolean
Initialization
Precompute the symbol equivalence classes [M ]
Precompute the topological order of the symbol equivalence
classes, T order
begin

1 foreach M ∈ Σ do F (M) = ∅
2 foreach [M ] ∈ T order do

// Find the relevant productions of [M ]

3 R′ ← {r|r ∈ R, head(r) ∈ [M ]}
4 Σ′ ←

⋃
r∈R′

(head(r) ∪ body(r))

/* all descendants have been fixed and hence are

treated as terminals */

5 ∆′ ← Σ′/ ([M ]/∆)
/* F (·) is a global variable visible for both

OptMatch() and Match() */

6 if Match(Q,Σ′,∆′,M,R′) then return true

7 return false

Algorithm 2 gives the optimized algorithm, OptMatch.
Note that the topological order of symbol equivalence classes
is query-independent and can be precomputed. Line 6 of
OptMatch calls Match for the current equivalence class. F (M)
is global, and is used in lines 2-3 of Match. Set domination
is captured in the addElement method in Match.

Example 3.2. Consider the grammar in Example 2.1 and
query Q = {b, c}. One topological order of the symbol equiv-
alence classes is [b], [c], [B], [C], [s1], [s2], [A], [S] where each
of the classes consists of the symbol itself. For [b], R′ =
∅, Σ′ = {b}, ∆′ = {b} (lines 3-5); after calling Match
(line 6), F (b) = {{b}}. Similarly, F (c) = {{c}}, F (B) =
{{b}}. Now we process [C] where R′ = {r6, r7}, Σ′ =
{C,B, c}, ∆′ = {B, c}. When calling Match for [C], the
initialization results in F0(B) = F (B) = {{b}}, F0(c) =
F (c) = {{c}} (line 3 of Algorithm 1). At the end of Match,
we get F (C) = {{b}, {c}}. We can check that OptMatch
terminates after processing [A] since Q ∈ F (A) = {{b, c}}.



3.3 Searching a bag grammar repository
Given a bag grammar repository and query Q, we must re-

trieve all grammars that match Q. A straightforward way to
do this is to run OptMatch over each grammar. This way
a grammar that is reused by other grammars will be pro-
cessed multiple times. One solution is to union productions
of all grammars to form a universal grammar. However, this
grammar would be too large to fit in memory.

We therefore process grammars one by one while recogniz-
ing grammar reuse; an individual grammar can be assumed
to fit in main memory. We first build inverted indexes to
help identify candidate grammars, i.e. grammars in which
every keyword of the query appears (although they may not
simultaneously occur in some bag in the language of the
grammar). Each index maps a keyword to a list of gram-
mars in which the keyword appears. Given a query, we find
candidate grammars by intersecting the corresponding lists.

We then process candidate grammars (using OptMatch)
so that a grammar is always processed earlier than the gram-
mars that reuse it. Specifically, we create a precedence graph
where nodes of the graph are grammars, and there is an edge
from Gi to Gj iff Gj reuses Gi (i.e. the start module of Gi
appears in Gj as a variable). The graph is a DAG, since
there is a temporal dimension to reuse. A topological order
of the DAG is the order in which grammars are processed.

We cache intermediate results (F (S)) for grammars that
are reused and clean them from memory when there are no
unprocessed grammars that reuse them. In this way, we bal-
ance memory size and overhead of redundant computations.

4. RANKING
For large repositories of grammars, more grammars may

match a query than can be shown to a user, motivating
ranking. In this section we describe a relevance measure
based on probabilistic grammars (Section 4.1) and develop
an algorithm for computing the relevance of a grammar to
a query (Section 4.2). We also describe an efficient top-k
algorithm (Section 4.3).

4.1 Semantics of relevance
Probabilistic context-free grammars (PCFG) have been

used in applications such as natural language processing
(NLP) to analyze the probability that a string is generated
by a particular grammar. It is therefore natural to use them
for ranking. Although our grammars generate bags rather
than strings, the formalism applies literally in our setting.

Definition 4.1. (Probabilistic Context-Free Bag
Grammar) A probabilistic context-free bag grammar G =
(Σ,∆, S,R, ρ) is a context-free bag grammar in which each
production is augmented with a probability ρ : R → (0, 1]
such that ∀M ∈ Σ/∆,

∑
r∈productions(M)

ρ(r) = 1.

In a PCFG, which production r ∈ productions(M) is
chosen at a given composite module M is independent of
the choices that lead to M . Thus, the probability of a
parse tree T , which we will denote ρ(T ), is the product of
the probabilities of productions used in the derivation, i.e.,
ρ(T ) =

∏
r∈productions(T )

ρ(r).

Probabilities of productions in G may be given by an ex-
pert or mined from the corpus. In this paper, we do not
consider how these probabilities are derived, but note that

much work on the topic has been done in the NLP commu-
nity [26], and the techniques are likely applicable here.

Given a grammar G and a query Q, our goal is to compute
a relevance score, denoted score(G,Q) ∈ [0, 1], representing
the likelihood of G to generate a parse tree that matches
Q. We want these scores to be comparable across gram-
mars, which would enable us to say that, if score(G,Q) >
score(G′, Q), then G is more query-relevant than G′. Gener-
ating scores that are comparable across grammars turns out
to be tricky, because, as we show next, parse trees of prob-
abilistic context-free bag grammars may not form a valid
probabilistic space.

Consider the grammar G′ in Figure 4 that consists of two
productions, chosen with equal probability (probabilities are
indicated in parentheses). Since G′ is recursive, it generates
an infinite number of parse trees that match query Q = {a}.
Two of these are shown in Figure 4.

r1 : S =⇒ {S, S, S} (0.5)

r2 : S =⇒ {a} (0.5)

r2

a

T1

r1

r2r2 r2

a a a

T2

Figure 4: Recursive bag grammar

These trees have probabilities: ρ(T1) = 0.5 and ρ(T2) =
0.54 = 0.0625. Unfortunately, it is not possible to com-
pute a normalization factor by summing the probabilities
of the infinitely many parse trees, because this sum is irra-
tional [6]. Generally, given a PCG G = (Σ,∆, S,R, ρ), and
a query Q ⊆ ∆, it is customary to define a relevance score
score(G,Q) using max or sum semantics.

scoresum(G,Q) =
∑

r(T )∈R(S)
Q⊆leaves(T )

ρ(T )/
∑

r(T )∈R(S)

ρ(T ) (5)

scoremax(G,Q) = max
r(T )∈R(S)
Q⊆leaves(T )

ρ(T )/ max
r(T )∈R(S)

ρ(T ) (6)

Sum semantics is intuitive: we normalize the total prob-
ability of all parse trees matching the query by the total
probability of all parse trees. Unfortunately, as we argued
above, this value cannot be computed because probabilities
may be irrational. It was shown in [15] that scoresum may
be approximated by solving a monotone system of polyno-
mial equations. However, this approach is in PSPACE, and
is very expensive in practice.

Motivated by these considerations, we opt for max scoring
semantics, where the score of a grammar for a query is com-
puted by dividing the probability of the most likely parse
tree matching the query by the probability of the over-all
most likely parse tree. This semantics is reasonable, and,
as we will show next, scoremax(G,Q) can be computed ef-
ficiently. We refer to scoremax(G,Q) simply as score(G,Q)
in the remainder of the paper.

4.2 Computing the score of a workflow
We now present Algorithm 3, Score, which computes the

relevance score of grammar G for query Q per Equation 6.
This is a fixpoint algorithm that is similar in spirit to Match.

Note that the algorithm of [11] can also be used to com-
pute the relevance score of grammar G for query Q. This



Algorithm 3: Score

Input: grammar G = (Σ,∆, S,R) and query Q ⊆ ∆
Output: double
begin

1 foreach M ∈ ∆ do
2 if F (M) = ∅ then

F0(M)← {{M} ∩Q}; ρ0(M, {M} ∩Q)← 1.0

3 else
F0(M)← F (M)
∀X ∈ F0(M), ρ0(M,X)← ρ(M,X)

4 foreach M ∈ Σ/∆ do F0(M)← ∅
5 i← 0 // a counter for iteration times

6 L: i← i+ 1
7 foreach M ∈ ∆ do

Fi(M)← Fi−1(M)
∀X ∈ Fi(M), ρi(M,X)← ρi−1(M,X)

8 foreach M ∈ Σ/∆ do Fi(M)← ∅
9 foreach production r : M → α1α2 . . . αn ∈ R do

10 foreach X1 ∈ Fi−1(α1), . . . Xn ∈ Fi−1(αn) do

X ←
n⋃
j=1

Xj prob← ρ(r)×
∏n
j=1 ρi−1(αj , Xj)

if X 6∈ Fi(M) then ρi(M,X)← prob
else ρi(M,X)← max(ρi(M,X), prob)

11 Fi(M).addElement(X)

13 if ∃M ∈ Σ/∆, Fi(M) 6= Fi−1(M) then goto L
if Q 6∈ F (S) then return 0.0 // not matching
if ∃M ∈ Σ,∃X ∈ Fi(M), ρi(M,X) > ρi−1(M,X) then
goto L
F (M) = Fi(M); ρ(M,X) = ρi(M,X)
return ρ(S,Q)/ρmax(S)

algorithm uses a similar framework as [12], and so is very
general, but is less efficient in our particular scenario. We
will give experimental support to this claim in Section 6.3.

Recall from Match that Fi(M) represents the set of sets
of query-relevant keywords that module M matches, and
that are derived by parse trees of height ≤ i. Score uses
Fi(M) and a data structure ρi(M,X), in which it stores,
for each X ∈ Fi(M), the score of the corresponding parse
tree. Like Match, Score manipulates a global data struc-
ture F (M); Score also maintains the corresponding global
ρ(M,X). These data structures will become important when
we consider an optimization, called OptScore.

Algorithm Score starts by storing the set of query-relevant
keywords annotating each terminal module M in F0(M),
and by recording the probability score of 1.0 in ρ0. Next,
for non-terminal modules, F0(M) is initialized to an empty
set. The bulk of the processing happens next, where, at each
iteration i, we consider each production r rooted at M , and
generate all sets of query terminals resulting from parse trees
of height at most i rooted at M . We record the resulting
subset of query keywords X if this subset has not been seen
before, or it if is the highest-scoring parse tree for this subset
at the current round. We compute the probability score of
a parse tree resulting from production r as the product of
the probabilities of its subtrees and the probability of r.

Score terminates when either no new subsets of the query
are generated, or no better (more probable) derivations of
existing subsets are found. Score returns the normalized
probability of the most probable derivation tree matching Q.
Note that normalization factor ρmax(S) is query-independent
and can be computed by invoking Score(G, ∅). We compute
ρmax(S) offline and store it for future use.

r1 : S =⇒{S,A}
r2 : S =⇒{S, S,B}
r3 : S =⇒{s}
r4 : A =⇒{a}
r5 : B =⇒{B,S}
r6 : B =⇒{b}

r1

r3 r4

s a

T1

r1

r1 r4

r3 r4

s a

a

T2

r2

r3r1 r6

r3 r4 s b

as

T3

r2

r3r1 r5

r3 r4 s r3 r6

s bas

T4

Figure 5: An example of a grammar.

Example 4.1. Consider the grammar in Example 2.1 and
assume that productions with the same head are equally likely.
Given the query Q = {b, c}, Score calculates ρmax(S) = 1/3,
ρ(S,Q) = 1

3
∗ 1

3
∗ 1

2
and returns 1

3
∗ 1

3
∗ 1

2
/ρmax(S) = 1

6
when

it terminates at the end of the 5th iteration.

The worst-case running time of Score is polynomial in the
size of the grammar. This can be shown by a similar ar-
gument as for Match (Section 3.1), and is based on the ob-
servation that, for any symbol M , the height of the most
probable parse tree generating any subset of Q is bounded
by ≤ d(G) ∗ (|Q|+ 1) + |Q|.

We also developed an optimized version of Score, which
we call OptScore. We do not detail the OptScore algorithm
here, but note that it is based on the two optimizations
performed in OptMatch. The first optimization, symbol
dependencies, identifies equivalence classes of modules of
G based on their reuse of variables on the right-hand-side
of productions. OptScore computes a topological ordering
among equivalence classes, and runs algorithm Score for each
class in reverse topological order, saving intermediate results
in global data structures F (M) and ρ(M,X). The second
optimization, set domination, includes probabilities in the
notion of domination: a set X1 ∈ Fi(M) dominates X2 ∈
Fi(M) iff X1 ⊃ X2 and ρi(M,X1) ≥ ρi(M,X2).

4.3 Identifying the top-k workflows
We conclude our discussion of ranking by presenting an

efficient way to retrieve, and compute the scores of, the top-
k workflows in a repository. Given a repository, a query Q,
and an integer k, a naive approach is to compute score(G,Q)
using, e.g., OptScore, sort grammars in decreasing order of
score, and return the top-k. Here, OptScore may be exe-
cuted on the entire repository, or only on its promising sub-
set, leveraging an inverted index that maps each keyword
to the set of workflows in which it appears. Even assum-
ing that only the grammars matching Q are considered (i.e.,
grammars for which Match(G,Q) returns true), this naive
approach will still require us to compute score(G,Q) for
many more than k grammars.

We use the Threshold Algorithm (TA) [16] to limit the
number of score computations. Our use of TA is based on
the observation that score(G,Q) ≤ minX⊂Q score(G,X).
In particular, score(G,Q) is at most as high as the score of
G for any single-keyword subset of Q.

We leverage this observation and build inverted lists, one
per keyword a, storing all grammars G that match a, in



decreasing order of score(G, {a}). Then, given a multi-
keyword query Q, we access the query-relevant lists sequen-
tially in parallel, and compute score(G,Q) for the first k
grammars. We refer to the current kth highest score as θ,
and we update θ as the algorithm proceeds.

We consider grammars in inverted list order, and, when
an unseen grammar G is encountered, retrieve its entries
from all inverted lists with random accesses, and compute
the score upper-bound ub(G,Q) = mina∈Q score(G, {a}). If
ub(G,Q) > θ, we compute score(G,Q) using an algorithm
from Section 4.2 and update θ if necessary. TA terminates
when the score upper-bound of unseen grammars, computed
as the minimum of current scores in the relevant inverted
lists, is lower than θ.

5. RESULT PRESENTATION
Since grammars may be large and complex objects, it is

important to develop presentation mechanisms that help the
user understand where keyword matches occur in the result
grammars. Interestingly, a single grammar may match a
query in many ways, more than can be shown to a user.
In Section 4 we proposed to compute probabilities of parse
trees, and to use these probabilities to rank grammars. In
this section, we build on this idea and propose to choose
the most probable parse trees that are structurally irredun-
dant. We refer to such trees as representative parse trees,
and describe them in Section 5.1. We then give an algo-
rithm for finding the top-k representative parse trees for a
given grammar in Section 5.2.

5.1 Representative parse trees
Recursion gives rise to structural redundancy. Consider

the grammar in Figure 5, and its parse trees T1 and T2.
These trees both match query Q = {s, a}. Both trees fire
the same productions in the same order, and, while T1 cuts
through the chase, T2 loops by firing r1 twice in sequence,
and by generating a along the path S → A → a twice.
The concept of a representative parse tree (rpTree for short),
which we define next, models the intuition that, while both
trees match the query in the same way (by firing the same
productions in the same order), T1 is more concise than T2.

For convenience, we will sometimes represent parse trees
as bags of paths, denoted paths(T ). Recall that a path is
a sequence of productions that ends with a terminal, e.g.,
r1r3s is a path in T1 in Figure 5. We can represent T1 as
paths(T1) = {r1r3s, r1r4a}. Note that the paths represen-
tation may be ambiguous i.e. the same bag of paths may
correspond to two different parse trees (See Figure 6).

Definition 5.1. (Path Subsumption) Path p subsumes
path p′, denoted p ≺ p′ if p is a sub-sequence of p′.

For example, r1r3s ≺ r1r1r3s. Note that, since a path
ends with a terminal, if p ≺ p′ then the paths must end in
the same terminal. We use path subsumption to define the
main concept of this section, parse tree subsumption.

Definition 5.2. (Parse Tree Subsumption) Parse tree T
subsumes parse tree T ′, denoted T ≺ T ′, iff head(root(T )) =
head(root(T ′)) and there exists an onto mapping from paths(T ′)
to paths(T ), in which, if p′ ∈ paths(T ′) is mapped to p ∈
paths(T ) then p ≺ p′.

For example, consider the parse trees in Figure 5. Observe
that T1 ≺ T2 according to Definition 5.2. The onto mapping

r1 : S →SS
r2 : S →AB
r3 : A→a1

r4 : A→a2

r5 : B →a1

r6 : B →a3

r1

r2 r2

r3 r5 r4 r6

a1 a1 a2 a3

T1

r1

r2 r2

r3 r6 r4 r5

a1 a3 a2 a1

T2

Figure 6: paths(T1) = paths(T2) while T1 6= T2

from paths(T2) to paths(T1) is: r1r1r3s→ r1r3s, r1r1r4a→
r1r4a and r1r4a→ r1r4a. In contrast, no subsumption holds
between parse trees T2 and T3.

Definition 5.3. (Representative Parse Tree) A repre-
sentative parse tree (rpTree) T of a grammar G is a parse
tree s.t. there does not exist a parse tree T ′ of G that sub-
sumes T .

We now list several important properties of rpTrees. Given
a path p, we denote by len(p) the length of p.

Theorem 2. A grammar G matches a query Q iff there
exists an rpTree T in G that generates Q.

Proof. The forward direction is trivial. For the reverse, re-
call that if a grammar G matches Q, then Q must be con-
tained in the leaves of some parse tree for G. Then it must
also be contained in the leaves of an rpTree, since an rp-
Tree generates the same terminal set as the trees that it
subsumes.

Lemma 5.1. If a parse tree is representative, then all its
subtrees are also representative.

Proof. Proof is by contradiction. Let T be an rpTree. Sup-
pose a subtree of T denoted by Tsub is subsumed by tree
T ′sub. Let T ′ be the tree obtained from T by replacing Tsub
with T ′sub. It is easy to see that T ′ ≺ T , which contradicts
that T is an rpTree tree.

The converse is not true, see T2 in Figure 5 for a counter-
example. One can verify that the two child subtrees of T2

are rpTrees. T2 however is subsumed by T1 and hence is not
representative.

Lemma 5.2. Given parse trees T and T ′, if T ≺ T ′ then
height(T ) ≤ height(T ′).

Proof. Let pmax be one of the longest paths in paths(T ).
Then height(T ) = len(pmax). Since T ≺ T ′, for any path
p ∈ paths(T ), there is a path p′ ∈ paths(T ′) s.t. p ≺ p′. Let
p′ be a path in paths(T ′) that pmax subsumes. Note that
len(p) ≤ len(p′) if p ≺ p′. Then height(T ) = len(pmax) ≤
len(p′) ≤ height(T ′).



Consider trees T3 and T4 in Figure 5. These trees are of
the same height, yet T3 ≺ T4.

Lemma 5.3. If T ≺ T ′ and height(T ) = height(T ′), then
T and T ′ must be rooted at the same production.

Proof. Let pmax be one of the longest paths in T . Since
T ≺ T ′, there exists a path p′ ∈ paths(T ′) s.t. pmax ≺ p′.
Thus height(T ) = len(pmax) ≤ len(p′) ≤ height(T ′). Since
height(T ) = height(T ′), len(pmax) = len(p′). Recall that
pmax ≺ p′. Thus pmax = p′. Since pmax (p′) starts with the
root production of T (T ′), T and T ′ are rooted at the same
production.

Theorem 3. Given trees T and T ′, the time complexity of
checking if T ≺ T ′ is polynomial in tree size.

Proof. We prove the theorem by giving a polynomial algo-
rithm of checking if T ≺ T ′.

The algorithm starts by computing a mapping f : paths(T ′)→
paths(T )∗ such that for any path p′ ∈ paths(T ′), f(p′) 3 p
iff p ≺ p′. Note that if ∃p′ ∈ paths(T ′), f(p′) = ∅ then
T 6≺ T ′.

We then build a flow network s.t. the network has maxi-
mum flow |paths(T )| iff there exists a surjective mapping
g : paths(T ′)→ paths(T ) s.t. if g(p′) = p, p ≺ p′. The flow
network is built as follows. Let N = (V,E) be a network
with s, t being the source and the sink of N , respectively.
For each path p ∈ paths(T ) (p′ ∈ paths(T ′)), there is a
node p (p′) ∈ V . For each p ∈ paths(T ), there is an edge
from p to sink t in E. For each p′ ∈ paths(T ′), there is an
edge from source s to p′ in E and an edge from p′ to p for
any p ∈ f(p′). Every edge has a capacity of 1. It is easy to
see that N has maximum flow |paths(T )| iff such g exists.

It is easy to see that T ≺ T ′ iff ∀p′ ∈ paths(T ′), f(p′) 6= ∅
and g exists.

Note that given two paths p, p′, checking if p ≺ p′ can be
done in time len(p) + len(p′), i.e. O(height(T ′)). It takes
O(|paths(T )|∗|paths(T ′)|∗height(T ′)) to compute f . In the
worst case, the size of f could be |paths(T )| ∗ |paths(T ′)|.
It takes O(|paths(T )| ∗ |paths(T ′)|) to build the flow net-
work. Using the Ford-Fulkerson algorithm [22], it takes
O(|paths(T )|2 ∗ |paths(T ′)|) to compute the maximum flow.
In total, the algorithm has a time complexity O(|paths(T )|∗
|paths(T ′)| ∗ height(T ′) + |paths(T )|2 ∗ |paths(T ′)|).

Lemma 5.4. Given a terminal set of a grammar, the height
of rpTrees that generate it may be exponential in grammar
size.

Proof. Consider the grammar:
S→ AS | s A→ B | C B→ D
C→ D D→ E | F E→ a F→ a

There are an exponential number of different paths (in
the grammar size) for A to derive {a}, precisely 22 = 4.
By firing S → AS once, we get one instance of A and the
height increases by 1. Consider a tree that is derived by
firing S → AS four times where instances of A derive {a}
distinctly. One can verify that the tree is an rpTree, and
that the height of the tree is exponential in the grammar
size.

Lemma 5.5. A tree may be subsumed by two different
rpTrees.

Proof. Consider grammar:
r1 : S → SS r2 : S → AAA
r3 : A→ a1 r4 : A→ a2

There are three trees T1 = {r2r3a1, r2r3a1, r2r4a2},
T2 = {r2r3a1, r2r4a2, r2r4a2}, T3 = {r1T1, r1T2} where T1,
T2 are representative, and T1 ≺ T3, T2 ≺ T3.

The rest of this section is devoted to proving that all parse
trees of a non-recursive grammar are representative (Theo-
rem 4), and that representative parse trees are at least as
probable as any parse trees that they subsume (Theorem 5,
for linear-recursive grammars). This forms the basis of our
result presentation algorithm, Algorithm 4.

5.1.1 Theorem 4
We first extend parse tree subsumption to bags (Defini-

tion 5.4) and forests (Definitions 5.5 and 5.6). To obtain
Theorem 4, we first consider a special case of non-recursive
grammars whose productions have distinct symbols on the
right-hand side (Lemma 5.7 and 5.8) and then generalize to
non-recursive grammars (Lemma 5.9, 5.10 and 5.11).

Definition 5.4. (Bag Subsumption) We say a bag of
paths subsumes another bag of paths denoted by Bag ≺
Bag′ iff there exists an onto function f : Bag′ → Bag s.t.
p ≺ p′ if f(p′) = p.

We say T is a tree of production r if T is rooted at pro-
duction r, and that T is a tree of symbol M if T is rooted at
a production of M .

Lemma 5.6. Given a non-recursive grammar G, and any
two of its trees of the same symbol, say T, T ′, if ∃S ′ ⊆
paths(T ′) s.t. paths(T ) ≺ S ′ then T, T ′ must be rooted at
the same production.

Proof. Note that since the grammar is non-recursive, any
path in its parse trees has at most one production of the
same symbol (otherwise, the grammar is recursive). Let
T, T ′ be rooted at production r, r′, respectively. Since paths(T ) ≺
S ′, ∃p′ ∈ paths(T ′), p ∈ paths(T ) s.t. p ≺ p′. Then r must
appear somewhere in p′. Recall that T, T ′ are two trees of
the same symbol. Thus r = r′.

Lemma 5.7. Consider a non-recursive grammar in which
each production has distinct symbols on the right-hand side.
If T, T ′ are two of its trees of the same symbol, then 6 ∃S ′ ⊂
paths(T ′) s.t. paths(T ) ≺ S ′.

In other words, this lemma is saying that if T, T ′ are of
the same symbol, then ∀S ′ ⊂ paths(T ′), ∀g : S ′ → paths(T )
(not necessarily a function), s.t. if g(p′) = p then p ≺ p′, g
is not onto. Additionally, if T ⊀ T ′, then ∀g : paths(T ′) →
paths(T ) (not necessarily a function) s.t. p ≺ p′ if g(p′) = p,
g is not onto. The proof of this will be given with the proof
of Lemma 5.8.

Lemma 5.8. Given a non-recursive grammar G in which
each production has distinct symbols on the right-hand side,
all its parse trees are rpTrees.

Proof. We prove this lemma and Lemma 5.7 simultaneously.
(For this lemma, we basically prove that if two trees T, T ′

of G are s.t. T ≺ T ′ then paths(T ) = paths(T ′)). Proof is
by induction over the height of T . W.l.o.g., we assume each
production has exactly two symbols on the right-hand side.



Basis: Consider height(T ) = 1, i.e. T is rooted a pro-
duction the right-hand side of which consists of terminals.

Lemma 5.7: We prove Lemma 5.7 by contradiction. Let
T ′ be a tree of the same symbol as T and paths(T ) subsumes
some proper subset of paths(T ′). By Lemma 5.6, T, T ′

must be rooted at the same production. Then paths(T ) =
paths(T ′), which contradicts paths(T ) ≺ S ′.

Lemma 5.8: If T ≺ T ′, then by Lemma 5.6, T ′ is rooted
at the same production as T . Thus paths(T ′) = paths(T ).

Inductive Step: Suppose Lemma 5.7 and Lemma 5.8
hold for height(T ) ≤ k. Consider when height(T ) = k + 1.

Lemma 5.7: We prove Lemma 5.7 holds for height(T ) =
k + 1 by contradiction. Suppose paths(T ) subsumes some
proper subset S ′ of paths(T ′). Then by Lemma 5.6, T, T ′

must be rooted at the same production. Since each pro-
duction in G has distinct symbols on the right-hand side,
let r : M ⇒ AB be the root production of T, T ′. Let
TA, TB (T ′A, T

′
B) be the child subtrees of T (T ′) where TA

(T ′A) is a tree of A, TB is a tree of B, (see Figure 7). Let
f : S ′ → paths(T ) be one onto mapping s.t. p ≺ p′ if
f(p′) = p. Let f−1 be the inverse function of f .

T
r

TA TB

T ′

r

T ′A T ′B

Figure 7: Part of T, T ′

We now list all possible situations below and then show
all these cases will lead to contradictions.

Case X1 : TA ≺ T ′A ∧ TB ≺ T ′B

Case X2 : TA ⊀ T ′A ∧ TB ≺ T ′B

Case X3 : TA ≺ T ′A ∧ TB ⊀ T ′B

Case X4 : TA ⊀ T ′A ∧ TB ⊀ T ′B

Case X1. Since height(TA) ≤ k and height(TB) ≤ k, by hy-
pothesis of Lemma 5.8, paths(TA) = paths(T ′A) and
paths(TB) = paths(T ′B), i.e. paths(T ) = paths(T ′).
Clearly, it contradicts the assumption that paths(T )
subsumes S ′ ⊂ paths(T ′).

Case X2. Since TA ⊀ T ′A, and by hypothesis of Lemma 5.7, f
has to map some path of T ′B to some path in TA, i.e B
(indirectly) derives A. However, since height(TB) ≤ k,
by hypothesis of Lemma 5.8, paths(TB) = paths(T ′B).
Since the grammar is non-recursive, f−1 maps all paths
in TB to paths in T ′B . Thus there is a path in TB that f
does not map paths over, which contradicts f is onto.

CaseX3. Same as X2.

CaseX4. If f does not map any path in T ′B to paths in TA,
since TA ⊀ T ′A, then paths(TA) subsumes some proper
subset of paths(T ′A), which contradicts the hypothesis
of Lemma 5.7. Thus f maps some path in T ′B to a
path in TA, i.e. B (indirectly) derives A. Similarly, for
TB , f maps some path in T ′A to a path in TB , i.e. A
(indirectly) derives B, which contradicts the grammar
is non-recursive.

Lemma 5.8: Consider when height(T ) = k + 1.
Note that if T ≺ T ′ then by Lemma 5.6 root(T ) = root(T ′).

We reuse Figure 7. Since T ≺ T ′, let f : paths(T ′) →
paths(T ) be one onto mapping s.t. p ≺ p′ if f(p′) = p.

Again, consider the four cases X1, X2, X3, X4. We now
argue only X1 could be true.

Case X1. Since height(TA) ≤ k and height(TB) ≤ k, by hy-
pothesis paths(TA) = paths(T ′A) and paths(TB) =
paths(T ′B). Then Lemma 5.8 holds for T .

Case X2. Now since TB ≺ T ′B , height(TB) ≤ k, by hypothesis
paths(TB) = paths(T ′B). Since TA ⊀ T ′A and T ≺ T ′,
either

(a) functions exist from paths(T ′A) to paths(TA) where
p ≺ p′ if p′ is mapped to p, but none is onto, i.e.
∃p1 ∈ paths(TA), p′2 ∈ paths(T ′B) s.t. f(p′2) = p1,
i.e. B (indirectly) derives A; or

(b) functions do not exist from paths(T ′A) to paths(TA)
where p ≺ p′ if p′ is mapped to p, i.e.
∃p′1 ∈ paths(T ′A), p2 ∈ paths(TB) s.t. f(p′1) = p2,
i.e. A (indirectly) derives B.

Note that (a) and (b) cannot both be true since the
grammar is non-recursive. We now prove that both (a)
and (b) will lead to contradictions.

We first consider (a). Since paths(TB) = paths(T ′B),
let p∗2 ∈ paths(TB) be the corresponding path of p′2.
Note that f is onto, then f has to map some path in T ′A
to p∗2, i.e. A (indirectly) derives B, which contradicts
the grammar is non-recursive.

Now consider (b). Since A derives B and the grammar
is non-recursive, f maps all paths in T ′B to paths in TB .
Since f maps some path in T ′A to TB , paths(TA) sub-
sumes a proper subset of paths(T ′A), which contradicts
the hypothesis of Lemma 5.7.

Case X3. Same as X2.

Case X4. Since T ≺ T ′ and TA ⊀ T ′A, by hypothesis of Lemma 5.7,
f has to map a path in T ′B to some path in TA, i.e. B
(indirectly) derives A. Similarly, f has to map a path
in T ′A to some path in TB , i.e. A (indirectly) derives
B. It contradicts the grammar is non-recursive.

Now we withdraw the restriction that each production
has exactly two symbols on the right-hand side. The basis
still holds. Now consider the inductive step. Let r : M ⇒
α1 . . . αn be the root production of T . Denote by Tαi (T ′αi

)
the child subtree of T (T ′) that is rooted at some production
of αi. We need to consider all the following two cases.

Case X ′1 :
n∧
i=1

(Tαi ≺ T ′αi
)

Case X ′2 : (∃i, Tαi ⊀ T ′αi
)

Again, X ′1 indicates paths(T ) = paths(T ′) by hypothesis.
Thus both Lemma 5.7 and Lemma 5.8 hold.

We now argue X ′2 will lead to contradictions for both
Lemma 5.7 and Lemma 5.8. W.l.o.g., suppose Tα1 ⊀ T ′α1

.
We start with proving Lemma 5.7 by contradiction. Sup-

pose paths(T ) subsumes a proper subset S’ of some tree T ′

which is of the same symbol as T . Then T ′ is also rooted



at r. Let f : S ′ → paths(T ) be one onto mapping s.t.
p ≺ p′ if f(p′) = p. By hypothesis, w.l.o.g., f has to map a
path in paths(T ′α2

) to some path in Tα1 , i.e. α2 (indirectly)
derives α1. Similarly, by hypothesis and the grammar is
non-recursive, w.l.o.g., f has to map a path in paths(T ′α3

)
to some path in Tα2 , i.e. α3 (indirectly) derives α2 and so
on. Now consider αn. Note that all α1 . . . αn−1 can (indi-
rect) derive αn. So there is a path in Tαn that f does not
map paths over, which contradicts f is onto.

We now prove Lemma 5.8. Since T ≺ T ′, T ′ is also rooted
at r. Let f : paths(T ′) → paths(T ) be one onto mapping
s.t. p ≺ p′ if f(p′) = p. Since Tα1 ⊀ T ′α1

and by hypothesis
of Lemma 5.7, w.l.o.g., f has to map a path in paths(T ′α2

) to
some path in Tα1 , i.e. α2 (indirectly) derives α1 and so on.
Finally, there is a path in Tαn that f does not map paths
over, which contradicts f is onto.

We now extend Lemma 5.7 and Lemma 5.8 to grammars
in which a production can have multiple occurrences of a
symbol on the right-hand side. To get there we first intro-
duce some notions.

Definition 5.5. (Forest) Given a grammar, a forest F is
a bag of parse trees. We use paths(F ) for the bag union of
paths of trees in F ; height(T ) for the maximum height of
trees in F ; and |F | for the number of trees in F .

Definition 5.6. (Forest Subsumption) Given a gram-
mar and two of its forests F, F ′, we say F subsumes F ′,
denoted by F ≺ F ′ iff paths(F ) ≺ paths(F ′).

We say F is a forest of symbol M iff all trees in F are
rooted at productions of M . We say F is a forest of produc-
tion r iff all trees in F are rooted at r.

Lemma 5.9. Given a non-recursive grammar and any two
of its forests F, F ′, if F, F ′ are of the same symbol and the
same size, then 6 ∃S ′ ⊂ paths(F ′) s.t. paths(F ) ≺ S ′.

Proof. Proof can be found in Lemma 5.11. Note that Lemma 5.7
is a special case, i.e. |F | = 1.

Lemma 5.10. Given a non-recursive grammar and any two
of its forests F, F ′, if F, F ′ are of the same symbol and ∃S ′ ⊆
paths(T ′) s.t. paths(F ) ≺ S ′, then |F | ≤ |F ′|.

Proof. We defer the proof to Lemma 5.11.

Lemma 5.11. Given a non-recursive grammar and any two
forests F, F ′, if F, F ′ are of the same symbol and the same
size and F ≺ F ′, then paths(F ) = paths(F ′).

Proof. We prove Lemma 5.9, Lemma 5.10 and this lemma
by induction over height(F ). W.l.o.g., we assume each pro-
duction has exactly two symbols on the right-hand side.

Basis: Consider when height(F ) = 1, i.e. all trees in F
are rooted at productions the right-hand side of which are
all terminals. Let F ′ be a forest of the same symbol as F .

Lemma 5.9 If F ′ is of the same size as F and some proper
subset S ′ of paths(F ′) can be subsumed by paths(F ), since
the grammar is non-recursive, paths(F ) = paths(S ′). Since
S ′ ⊂ paths(F ′), |F | < |F ′|. It contradicts |F | = |F ′|.

Similarly, Lemma 5.10 and Lemma 5.11 hold.
Inductive Step: Suppose Lemma 5.9, 5.10 and 5.11

hold for height(F ) ≤ k. We now prove they also hold for

height(T ) = k+ 1. Let Fi (i = 1 . . . n) be the forest consist-
ing of trees in F which are of the same production.

Lemma 5.9. We prove by contradiction. Let F ′ be a forest
of the same symbol and the same size as F and some proper
subset S ′ of paths(F ′) can be subsumed by paths(F ). Since
paths(F ) ≺ S ′ and the grammar is non-recursive, we can
find F ′i ⊆ F ′ (i = 1 . . . n) s.t. F ′i is of the same production
as Fi. Specifically, let F ′i consist of trees some path of which
appears in S ′ and rooted at the same production as Fi. Note
that no path in Fi can subsume paths in F ′j if i 6= j, since
the grammar is non-recursive. Then ∀i, ∃S ′i ⊆ paths(F ′i ) s.t.
paths(Fi) ≺ S ′i. And ∃i, ∃S ′i ⊂ paths(F ′i ) s.t. paths(Fi) ≺
S ′i. We first prove ∀i, |Fi| = |F ′i |.

Consider Fi (for any i). Let r : M ⇒ AB be the root
production of Fi. Let FA (FB) consist of child subtrees of
trees in Fi that are rooted at productions of A (B). Let
F ′A (F ′B) consist of child subtrees of trees in F ′i that are
rooted at productions of A (B). Note that height(FA) ≤ k,
height(FB) ≤ k. Consider the following cases:

Case X0 : A = B

Case X1 : A 6= B ∧ FA ≺ F ′A ∧ FB ≺ F ′B

Case X2 : A 6= B ∧ FA ⊀ F ′A ∧ FB ≺ F ′B

Case X3 : A 6= B ∧ FA ≺ F ′A ∧ FB ⊀ F ′B

Case X4 : A 6= B ∧ FA ⊀ F ′A ∧ FB ⊀ F ′B

Consider case X0. By assumption, ∃S ′′ ⊆ paths(F ′A∪F ′B)
s.t. paths(FA ∪ FB) ≺ S ′′. By hypothesis of Lemma 5.10,
|FA ∪FB | ≤ |F ′A ∪F ′B |. Thus |Fi| ≤ |F ′i |. Consider case X1.
Since FB ≺ F ′B , by hypothesis of Lemma 5.10, |FB | ≤ |F ′B |.
Thus |Fi| ≤ |F ′i |. Case X3 is similar to X2. Consider case
X4. Since paths(Fi) ≺ S ′i, B derives A and A derives B,
which contradicts the grammar is non-recursive.

Thus, ∀i, |Fi| ≤ |F ′i |. Note that by assumption,
∑
i

|Fi| =

|F | = |F ′| ≥
∑
i

|F ′i |. Thus ∀i, |Fi| = |F ′i |.

Recall that ∃i, ∃S ′i ⊂ paths(F ′i ) s.t. paths(Fi) ≺ S ′i.
Again, we consider the five cases X0, X1, X2, X3, X4 and
show all these cases lead to contradictions. For X0, by as-
sumption, ∃S ′′ ⊂ paths(F ′A ∪ F ′B) s.t. paths(FA ∪ FB) ≺
S ′′. Note that |FA ∪ FB | = |F ′A ∪ F ′B | since |Fi| = |F ′i |.
It contradicts the hypothesis of Lemma 5.9. For X1, by
hypothesis of Lemma 5.11, paths(FA) = paths(F ′A) and
paths(FB) = paths(F ′B). It contradicts the assumption. For
X2, X3, X4, they all contradict the grammar is non-recursive
as Lemma 5.8.

Lemma 5.10. Again, let F ′i be the forest of trees some path
of which appears in S ′ and rooted at the same production
as Fi. Consider Fi (for any i). Let r : M ⇒ AB be the
root production of Fi. FA, FB , F

′
A, F

′
B are defined as above.

Consider the five cases listed above. For X1, by assumption,
∃S ′′ ⊆ paths(F ′A ∪ F ′B) s.t. paths(FA ∪ FB) ≺ S ′′. By
hypothesis of Lemma 5.10, |FA ∪ FB | ≤ |F ′A ∪ F ′B |. Thus
|Fi| ≤ |F ′i |. For X1, by hypothesis of Lemma 5.10, |FA| ≤
|F ′A|. Thus |Fi| ≤ |F ′i |. X2, X3, X4 lead to contradictions as
Lemma 5.8. Thus |F | =

∑
i

|Fi| ≤
∑
i

|F ′i | ≤ |F ′|.

Lemma 5.11. Again, let F ′i be the forest of trees in F ′

that are rooted at the same production as Fi. Let F be
rooted at r : M ⇒ AB. FA, FB , F

′
A, F

′
B are defined as above.

By assumption, Fi ≺ F ′i . By hypothesis of Lemma 5.10,



|Fi| ≤ |F ′i |. Note that
∑
i

|Fi| =
∑
i

|F ′i | by assumption.

Thus ∀i, |Fi| = |F ′i |. Consider the five cases again. For
X0, by assumption FA ∪ FB ≺ F ′A ∪ F ′B . By hypothesis
of Lemma 5.11, paths(FA ∪ FB) = paths(F ′A ∪ F ′B). Thus
paths(F ) = paths(F ′). Similar for X1. X2, X3, X4 will lead
to contradictions as Lemma 5.8.

We now withdraw the restriction to allow productions
have arbitrary number of symbols on the right-hand side.
The argument is similar to Lemma 5.8.

Theorem 4. All parse trees of non-recursive grammars are
rpTrees.

Proof. Given two trees T, T ′, if T ≺ T ′ then forest F = {T}
subsumes forest F ′ = {T ′}. By Lemma 5.11, paths(F ) =
paths(F ′).

5.1.2 Theorem 5
We now wish to prove that a representative parse tree is

as at least as probable as any parse tree that it subsumes.
Although for general grammars this is not always the case
(see the example below), for an important subclass of gram-
mars called linear recursive it is true. Since most real world
workflows are linear-recursive [1], we will base our top-k rp-
Trees algorithm (presented in the next subsection) on finding
representative parse trees.

Example 5.1. Consider the following grammar:
r1 : S ⇒ {S, S, S} (0.01) r2 : S ⇒ {A,B} (0.09)
r3 : S ⇒ {s1} (0.9)
r4 : A⇒ {A,A} (0.5) r5 : A⇒ {a} (0.5)
r6 : B ⇒ {B,B} (0.5) r7 : B ⇒ {b} (0.5)

T, T ′ are two of its parse trees, shown below. Note that
T ≺ T ′ while ρ(T ) < ρ(T ′).

r1

r2

r5

a

r7

b

r2

r5

a

r7

b

r3

s1

T

r1

r2

r4

r5

a

r5

a

r6

r7

b

r7

b

r3

s1

r3

s1

T ′

Figure 8: ρ(T ) = 0.000005 < ρ(T ′) = 0.000011

Definition 5.7. (Linear-Recursive Grammars) A gram-
mar G = (Σ,∆, S,R) is linear-recursive iff for each produc-
tion r : M ⇒ α1 . . . αn ∈ R, at most one symbol on the
right-hand side of r can derive M .

The grammar in Example 5.1 is not linear-recursive, be-
cause production r1 contains 3 symbols on the right-hand
side which can derive S. Productions r4 and r6 are also
problematic. Note that linear-recursive grammars are s.t.
for each symbol M , every (partial) execution (not deriva-
tion) derived by M contains at most one M .

Theorem 5. Given a linear-recursive grammar, and any
two of its parse trees, T, T ′, if T ≺ T ′ then ρ(T ) ≥ ρ(T ′).

Proof. Let V (T, r) be the set of nodes in T which represent
production r. Note that the probability of a tree T is ρ(T ) =∏
r

ρ(r)|V (T,r)|. We now prove that ∀r, |V (T, r)| ≤ |V (T ′, r)|.

Given a set of nodes S of a tree T , let top(S, i) ⊆ S
(i = 0 . . . height(T )) be the set of nodes in which every
node has exactly i ancestors in S. Note that top(S, 0) is
the set of nodes in S none of the ancestors of which is in
S. Let F (top(V (T, r), i)) be the forest consisting of subtrees
rooted at nodes in top(V (T, r), i). Since T ≺ T ′, ∀r, i, ∃S′ ⊆
paths(F (top(V (T ′, r), i)) s.t. paths(F (top(V (T, r), i))) ≺
S′. By Corollary 6, |top(V (T, r), i)| ≤ |top(V (T ′, r), i)|.
Note that since the nodes are from a tree, ∀i 6= j, top(V (T, r), i)∩
top(V (T, r), j) = ∅ and top(V (T ′, r), i)∩top(V (T ′, r), j) = ∅.
Thus ∀r, |V (T, r)| ≤ |V (T ′, r)|.

Lemma 5.12. Given a linear-recursive grammar, and any
two of its forests F, F ′, if F, F ′ are of the same production
and F ≺ F ′ then |F | < |F ′|.

Proof. Proof is by induction over height(F ). To illustrate,
we assume F consists of two trees T1, T2, F ′ consists of one
tree T ′.

Basis: Consider height(F ) = 1, i.e. T1, T2 are rooted at
the same production the right-hand side of which consists
of terminals. Suppose such T ′ exists. Then by assumption,
T ′ is rooted at the same production, path(T1) = paths(T ′),
which contradicts paths(T1) ∪ paths(T2) ≺ paths(T ′).

Inductive Step: Suppose the lemma holds for height(F ) ≤
k. Now consider when height(F ) = k+1. We prove by con-
tradiction. W.l.o.g, we assume each production has exactly
two symbols on the right-hand side. Let T1, T2, T

′ be rooted
at production r : M ⇒ AB and F ≺ F ′. Let TA1 (TA2, T ′A),
TB1 (TB2, T ′B) be the child subtrees of T1 (T2, T ′), which
are rooted at productions of A, B, respectively (see below).

r

TA1 TB1

T1

r

TA2 TB2

T2

r

T ′A T ′B

T ′

Since the grammar is linear-recursive, consider the follow-
ing cases:

X1: A can derive M , B cannot derive A or M

X2: A,B cannot derive M

Consider termination productions of A. We say a produc-
tion rA is a termination production of A, if (1) head(rA) = A
and 6 ∃A′ ∈ body(rA) s.t. A′ can derive A; or (2) head(rA)
and A are mutually derivable, and 6 ∃A′ ∈ body(rA) s.t. A′

can derive A. e.g. for grammar r1 : S ⇒ {C, s} r2 : S ⇒
{s} r3 : C ⇒ {S, a} r4 : C ⇒ {a}, r2, r4 are termination
productions of both S and C. Intuitively, in linear-recursive
grammars, a recursion is fired many times and then ends
with a termination production to get out of that recursion.
Note that if two symbols are mutually derivable, their ter-
mination productions are the same. Since the grammar is
proper, termination productions exist for each symbol.

Let rA1 be the termination production in TA1. Note that
since (the grammar is linear-recursive) every (partial) execu-
tion (not derivation) of A contains at most one A, TA1 must
have exactly one termination production of A. Similarly, let



rA2, r′A, rB1, rB2, r′B be the termination production of TA2,
T ′A, TB1, TB2 and T ′B , respectively.

Case X1. Since F ≺ F ′, and B can not derive A, rA1, rA2

must appear in T ′A. As has argued, r′A is the only termina-
tion production of T ′A, so rA1 = rA2 = r′A. Moreover, if let
T tA1 be the subtree of TA1 that is rooted at the termination

production of A, then F1 = {T tA1, T
t
A2} ≺ F2 = {T t

′
A } which

contradicts the hypothesis.
Case X2. By assumption, rA1, rA2, rB1, rB2 must appear

in T ′. Similar to Case X1, rA1, rA2 can not both appear
in T ′A. W.l.o.g. let rA1, rA2 appear in T ′A, T ′B , respectively.
Similarly, rB1, rB2 appears in T ′A, T ′B , respectively. Thus
A, B are mutually derivable. Thus A, B have the same
termination productions. Since T ′A contains one termination
production of A, rA1 = rB1 = r′A. Similarly rA2 = rB2 =

r′B . If r′A 6= r′B , then F1 = {T tA1, T
t
B1} ≺ F2 = {T t

′
A },

which contradicts the hypothesis. If r′A = r′B , then F1 =

{T tA1, T
t
A2, T

t
B1, T

t
B2} ≺ F2 = {T t

′
A , T

t′
B }, which contradicts

the hypothesis.

Corollary 6. Given a linear-recursive grammar, and any
forests F, F ′, if F, F ′ are of the same production and ∃S′ ⊆
paths(F ′) s.t. paths(F ) ≺ S′, then |F | < |F ′|.

Proof. Note that the proof of Lemma 5.12 uses only “all
paths in F must subsume paths in F ′”.

5.2 Identifying top-k representative parse trees
We now describe an algorithm for identifying top-k rp-

Trees of grammar G that generate Q. This is a bottom-up
algorithm that progressively builds rpTrees of height at most
i by combining rpTrees of lower height. Correctness of such
a procedure is based on Lemma 5.1.

Consider first a naive bottom-up algorithm, which first
builds all possible parse trees of height i that generateQ, and
then removes subsumed trees using pair-wise subsumption
checks. The algorithm stops when no new rpTrees are found.
This algorithm, while correct by Lemmas 5.1 and 5.2, will be
very expensive, as there may be exponentially many rpTrees
for a given grammar, which would all have to be retained
until fixpoint, and against which all newly generated trees
would need to be checked for subsumption. Yet, since our
goal is to find only the top-k highest-scoring rpTrees, most
of these would be discarded at the end of the run.

Thus, to control the running time and the space overhead,
we designed an algorithm that keeps a bounded number of
rpTrees in memory. As another naive approach, consider
an algorithm that keeps up to a fixed number of highest-
scoring rpTrees found so far in a buffer. When a new tree
T is constructed, the algorithm checks whether any rpTree
in the buffer subsumes it and, if not, assumes that the new
tree is an rpTree. This algorithm is straight-forward, but
it may return trees that are not representative. This will
happen if there exists a tree T ′ ≺ T , yet T ′ was not retained
in the buffer from the previous round. Fortunately, we can
use Theorem 5, stating that a tree can only be subsumed
by a tree with a higher probability score, to devise an algo-
rithm that is both correct and uses bounded buffers. This
is Algorithm 4, which we now describe.

The algorithm uses the following data structures. Denote
by T = 〈r, T1 . . . Tn〉 a parse tree rooted at production r with
T1 . . . Tn as subtrees. Also denote by Ti(M,X) the rpTrees
of height ≤ i rooted at M and generating X ⊆ Q. Ti(M,X)

Algorithm 4: topKRep

Input: a grammar G = (Σ,∆, S,R), a query Q ⊆ ∆
k, buffer size c
Output: a set of top-k rpTrees
begin

1 foreach M ∈ ∆, X ⊆ Q do
2 if X = {M} ∩Q then T0(M,X)← {〈M〉}
3 else T0(M,X)← ∅
4 foreach M ∈ Σ/∆, X ⊆ Q do T0(M,X)← ∅
5 i← 0
6 L: i← i+ 1
7 foreach M ∈ Σ, X ⊆ Q do
8 Ti(M,X)← Ti−1(M,X)

9 foreach M ∈ Σ/∆ do
10 findNewTrees(M, i, c)

11 if ∃M ∈ Σ, X ⊆ Q, Ti(M,X) 6= Ti−1(M,X) then
12 goto L // fixpoint

13 if |Ti(S,Q)| ≥ k then return Ti(S,Q).subList(0, k)
14 else if !isTrunci(S,Q) then return Ti(S,Q)
15 else topKRep(G,Q, k, 2 ∗ c)

is an ordered list of rpTrees sorted by decreasing score. The
size of Ti(M,X) is bounded by some constant c, and we refer
to this data structure as the bounded buffer.

We associate with Ti(M,X) a boolean function
isTrunci(M,X), indicating whether the list Ti(M,X) was
truncated to accommodate bounded size. Importantly, we
also associate with Ti(M,X) a score lower-bound, denoted
LBi(M,X), set as follows:

LBi(M,X) =

{
0 ¬isTrunci(M,X)

MINT∈Ti(M,X)ρ(T ) isTrunci(M,X)

LBi(M,X) represents the lowest score of any parse tree
rooted at M and generating X for which we can confi-
dently state whether it is subsumed by any rpTree cur-
rently in Ti(M,X). Intuitively, if no truncation took place,
then we can check all trees for subsumption (LBi(M,X) =
0). If some rpTrees were not retained, then we can only
check for subsumption of trees that have a higher score
than the lowest-scoring rpTree in the buffer (LBi(M,X) =
MINT∈Ti(M,X)ρ(T )).

Algorithm 4 (topKRep) finds the top-k rpTrees for G
matching Q. The most interesting part of the algorithm is
in line 10, in the call to procedure findNewTrees(M, i, C).
We omit algorithmic details of this procedure due to lack of
space, and describe it in text.

Procedure findNewTrees(M, i, C) identifies new rpTrees
of height up to i rooted at M generating X ⊆ Q. For
a given X, we first construct candidate trees by consider-
ing all productions r ∈ productions(M). A production can
generate X in multiple ways, by combining different sets
X1 ∪ . . . ∪Xn = X. Each combination yields several parse
trees, and we can find the top-scoring trees among them.

Consider for example production r : M → {A,B}, and
suppose that A can generate {a}, while B can generate {b}
or {a, b}. Then this production can generate {a, b} in two
ways: as {a} ∪ {b} or {a} ∪ {a, b}.

Suppose now that, to generate {a, b} = {a}∪{b} we com-
bine TA1 ∈ Ti−1(A, {a}) with TB1 ∈ Ti−1(B, {b}), deriving a
tree TAB1 = 〈r, TA1 , TB1 〉 with probability ρ1. Alternatively,
we may use the combination {a, b} = {a} ∪ {a, b}, combin-
ing TA1 ∈ Ti−1(A, {a}) with TB2 ∈ Ti−1(B, {a, b}), deriving



0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

[0
,2
)	
  

[2
,4
)	
  

[4
,6
)	
  

[6
,8
)	
  

[8
,1
0)
	
  

[1
0,
12
)	
  

[1
2,
14
)	
  

[1
4,
16
)	
  

[1
6,
18
)	
  

[1
8,
20
)	
  

[2
0,
22
)	
  

[2
2,
24
)	
  

[2
4,
26
)	
  

[2
6,
28
)	
  

[2
8,
30
)	
  

[3
0,
32
)	
  

[3
2,
34
)	
  

[3
4,
36
)	
  

[3
6,
38
)	
  

[3
8,
40
)	
  

[4
0,
42
)	
  

[4
2,
44
)	
  

[4
4,
46
)	
  

[4
6,
48
)	
  

[4
8,
50
)	
  

#	
  
of
	
  g
ra
m
m
ar
s	
  

grammar	
  size	
  (in	
  hundreds)	
  

Figure 9: Distribution of grammar sizes in the repository.

a tree TAB2 〈r, TA1 , TB2 〉 with probability ρ2.
It is not guaranteed that TAB1 and TAB2 are the top-2 trees

for M generating {a, b}. This is because Ti−1(A, {a}) may
have been truncated. For example, we may have removed
TA2 ∈ Ti−1(A, {a}), which, if used to construct TAB3 =
〈r, TA2 , TB1 〉, would have probability ρ3 > ρ2. We could be
sure that no such tree TAB3 exists if either Ti−1(A, {a}),
Ti−1(B, {b}), Ti−1(B, {a, b}) were not truncated, or if the
new tree had a higher score than ρ(r)∗MAX(LBi−1(A, {a})∗
LBi−1(B, {b}), (LBi−1(A, {a}) ∗ LBi−1(B, {a, b})).

Similar reasoning is used when multiple productions are
combined to generate Ti(M,X).

We note that that we implemented a more efficient ver-
sion of topKRep for non-recursive grammars. Recall from
Theorem 4 that all parse trees of a non-recursive grammar
are representative. We can directly construct the highest-
scoring parse trees by combining highest-scoring subtrees.
No subsumption checks are required in the process. This
algorithm is straight-forward, and its details are omitted.

An interesting point to note is that the top-k rpTrees in
non-recursive grammars are made up of subtrees that are
themselves top-k rpTrees. This is not necessarily the case for
recursive grammars, which makes the topKRep algorithm
less efficient in the recursive case.

6. EXPERIMENTAL EVALUATION

6.1 Experimental setup
All experiments were implemented in Java 6 and per-

formed on a local PC with Intel Core i7 3.4GHz CPU and
4G memory running Linux. Experiments were executed
against memory-resident data structures. All reported run-
ning times are averages of 5 executions per setting.

Dataset. We implemented a workflow generator that
creates a repository containing a mix of recursive and non-
recursive grammars, of which some are stand-alone, while
others reuse existing workflows as modules. Repository size,
workflow characteristics, and the amount of reuse are speci-
fied as generator parameters. All experiments in this section
were executed with the following parameter settings. A sim-
ple workflow has at most 5 modules; a given module has a
probability of 0.6 to be composite, and a probability of 0.4
to occur multiple times within the workflow. Each compos-
ite module has at most 3 productions, each simple workflow
has a probability of 0.5 to be recursive, and each grammar
reuses at most 5 other grammars.

Using these parameter settings, we generated a repository
consisting of about 1,200 grammars. The distribution of
grammar sizes in the repository is shown in Figure 9. The
size of a grammar ranges from 10 to 5, 000, and most gram-

mars have size smaller than 1, 000. (Note that grammar size
is defined as the total number of symbols in its productions.)

Our choice of parameters is based on our analysis of myEx-
periment.org, the largest public repository of scientific work-
flows, and on [31], where it was observed that most current
workflows are small.

Next, we generated keyword annotations for the workflows
in the repository using results of keyword co-occurrence anal-
ysis of [32]. This analysis was based on myExperiment.org,
where users tag workflows in support of keyword search.
In [32] we used topic mining to extract 20 topics from the
repository, with each topic defining a probability distribu-
tion over the tags. Here, we take 20 most frequent keywords
per topic, and use their probabilities to achieve a realistic
keyword assignment to workflow modules. Given a work-
flow, the repository generator first randomly chooses a topic,
and then assigns at most 3 keywords to each module in ac-
cordance with the topic’s probability distribution.

Queries. We experimented with many different queries,
generated by first randomly choosing a topic, and then draw-
ing between 2 and 8 keywords according to the topic’s prob-
ability distribution. Due to space constraints, we show only
representative results. Unless otherwise noted, all experi-
ments use three queries described below.
Q1 = {text mining, e-lico, workflow component} con-

sists of 3 most frequent keywords from its topic, and re-
trieves workflows with text mining components, contributed
by members of e-lico (an e-laboratory for collaborative re-
search). Q2 = {TerMine, text encoding, input} looks for
possible inputs to TerMine (a web demonstration service).
Q3 = {input, xml invalid, read file} is a more technical
query. In experiments that focus on scalability, we work
with 7 additional queries that contain up to 8 keywords,
and where larger queries are supersets of smaller queries.

6.2 Keyword query match
We now evaluate the performance of algorithms described

in Section 3. We show that Match (Algorithm 1) runs in
time polynomial in the size of the grammar, and that the
OptMatch optimization (Algorithm 2) is effective for the
vast majority of queries. We then discuss the effectiveness
of the sharing optimization (Section 3.3).

We first evaluate the performance of Match compared
with the general method that intersects a given grammar G
with a query Q represented by a finite state automaton [2]
or a graph chain pattern [12]. An adaption of the method to
our scenario (called Baseline in Figure 10) works as follows.
First, we transform grammar G to grammar G′, where each
production has at most two symbols on the right-hand side.
Having the grammar in this form guarantees quadratic data
complexity of the algorithm, and is done off-line. Next, we
intersect G′ with Q to construct a new grammar G′′, where
1) for each production M → α1α2 in G′, add a produc-
tion (M,X) → (α1, X1)(α2, X2) to G′′, for each X ⊆ Q,
X1 ∪X2 = X, making (M,X), (α1, X1), (α2, X2) symbols
in G′′; and 2) for each terminal M in G′, mark the symbol
(M, {M} ∩Q) in G′′ as a terminal. Having constructed G′′,
the algorithm checks whether its language is empty in time
linear in grammar size [19]. G matches Q iff the language of
G′′ is not empty.

Figures 10a and 10b demonstrate the average and longest
running time of Match and Baseline for query Q2 for gram-
mars of different sizes. Some 154 grammars in our repository
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Figure 11: Performance of the ranking solution: Score, OptScore and threshold algorithm (TA).

contain all keywords of Q2, and we run the algorithms on
these grammars. According to Figure 10a and 10b, Match
runs in time polynomial in grammar size, as expected. The
running time of the algorithm is reasonable, and is below
10ms for all grammars. We observed similar trends for other
queries. Although Baseline and Match both run in time
polynomial in grammar size, Match significantly outper-
forms Baseline in all cases, because it terminates early if
a variable other than the start symbol matches the query.

Figure 10c shows that OptMatch, which is an optimiza-
tion of Match, is effective at reducing the running time for
most queries. For example, OptMatch outperforms Match
by at least 20% for 80% of 2-keyword queries. OptMatch
slightly increases running times for some queries. We also
measured the total running time of Match and OptMatch
for a variety of queries, and for all workflows in the reposi-
tory. We found that OptMatch brings an over-all gain of at
least a factor of 2 for queries of size between 2 and 8. For
example, the total running time of Match for queries of size
2 is 77.67ms, compared to 43ms for OptMatch.

Finally, we measured the effectiveness of leveraging gram-
mar reuse, when executing Match and OptMatch on all
workflows in the repository (see Section 3.3). We found that
this optimization, to which we refer as sharing, is extremely
effective, bringing the total running time of Match to be-
tween 130ms and 150ms for queries of size 2 to 8. Match
and OptMatch have comparable performance with this opti-
mization. Details are omitted due to lack of space.

In summary, Match and OptMatch are efficient algo-
rithms. OptMatch outperforms Match for most grammars,
and should be used when individual grammars are tested.
Either Match or OptMatch with the sharing optimization
may be used when all workflows in the repository are tested.

6.3 Ranking of grammars

We now demonstrate that the techniques of Section 4 can
be implemented efficiently. We first show that the running
time of Score (Algorithm 3) is polynomial in grammar size,
and that OptScore outperforms Score in most cases. We
then show that top-k workflows can be identified efficiently
when TA is used to find the promising grammars.

We observed similar trends for average and longest run-
ning time of Score(optScore) to that of Match(optMatch).
Figure 11a reports the longest running times of Score and
optScore for grammars in our repository and demonstrates
that the running time of this algorithm is reasonable, and is
below 40ms for all grammars. Comparing Figure 11a with
Figure 10b, we note that Score is almost three times slower
than Match. We also observe that our Score algorithm out-
performs Baseline [12] (which is used for matching). Since
a scoring algorithm is necessarily slower than a matching
algorithm, we conclude that a scoring algorithm that uses
a similar framework as Baseline will be less efficient than
Score, and do not run a direct experimental comparison.

We also measured the improvement of optScore over Score
and got a trend very similar to those observed for OptMatch
(Figure 10c). OptScore results in an improvement for the
vast majority of grammars, for queries of varying lengths.

Figure 11b reports the running time of Threshold Algo-
rithm (TA), followed by an execution of OptScore for the
promising grammars, for queries Q1, Q2, Q3. We can see
from Figure 11b that it takes under 100ms to find the top-5
grammars for Q1, and around 400ms for Q2 and Q3. These
queries all match between 150 and 180 grammars in our
repository, and, as is usually the case for TA, the differ-
ence in performance is due to the distribution of scores.
Figure 11c gives the running time of TA in terms of the
number of random accesses (RA), demonstrating that the
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Figure 12: Performance of finding top-k rpTrees for the top-10 grammars (ellipses indicate non-recursive grammars).

stopping condition for TA is reached after only a fraction of
all matching grammars have been considered.

In summary, Score and OptScore are efficient algo-
rithms, and OptScore outperforms Score for most gram-
mars. Using TA to identify promising grammars, and then
invoking OptScore for these grammars, allows us to achieve
interactive response times when retrieving the top-k gram-
mars from the repository.

6.4 Result presentation
Finally, we evaluate the running time and quality of topKRep

(Algorithm 4), and show that it can be used to find the
highest-scoring representative parse trees in interactive time.

Recall from Section 5 that topKRep is invoked on a par-
ticular grammar, typically one that is among the highest-
scoring grammars for a given query, and computes a fixed
number of rpTrees for that grammar that match the query.

Figure 12 reports the total running time of topKRep over
top-10 grammars for queries Q1 and Q3, as a function of
grammar size. The number of rpTrees, denoted k, varies
from 1 to 10. Observe from Figure 12a that the top-10 gram-
mars for Q1 are small (< 200), and that the total running
time of topKRep is reasonable, under 161.33ms for k = 10.

We use ellipses to indicate running times for non-recursive
grammars. We noted in Section 5 that, because all parse
trees of non-recursive grammars are representative, we can
design an efficient version of topKRep for this case. The dif-
ference in running time is not significant for Q1 (Figure 12a),
but becomes more pronounced for Q3 (Figure 12b).

Figure 12b shows that topKRep is significantly slower for
Q3 than for Q1, for three reasons. First, the top-10 gram-
mars for Q3 are much larger, and have larger parse trees.
Figure 12c shows that sizes of top-1 trees for large gram-
mars are usually larger than those for small grammars. Sec-
ond, there are more parse trees to be constructed for large
grammars. Third, it is more common for large grammars
to require a larger buffer size when computing the top-k rp-
Trees. Recall that buffer size is an argument in Algorithm 4,
and that the algorithm is re-executed with a larger buffer if
the original setting does not yield enough rpTrees. For the
4th grammar in Figure 12b, the required buffer size for k = 3
was 48 (meaning that topKRep was executed 5 times). This
was higher than for k = 5 and k = 10, where buffer size
of 40 (for 4 and 3 executions of topKRep, respectively) was
sufficient.

We now present an example that illustrates the effective-
ness of rpTrees. For query Q1, the top-1 matching grammar
in our repository is one where the start module is annotated
with all the keywords in Q1. Thus all parse trees of this

grammar match Q1. To simplify presentation, we eliminate
the keywords of modules and show only the grammar below:

r1 : S ⇒ {S,B} ( 1
3
) r2 : S ⇒ {A,A, S, s1} ( 1

3
)

r3 : S ⇒ {s2} ( 1
3
) r4 : A⇒ {B, a1} ( 1

2
)

r5 : A⇒ {a2} ( 1
2
) r6 : B ⇒ {S, b1} ( 1

3
)

r7 : B ⇒ {S, b2} ( 1
3
) r8 : B ⇒ {b3} ( 1

3
)

Note that the top-6 trees of this grammar are all rpTrees.
The 7th most probable tree T7 (with a probability 0.004) is
shown in Figure 13b. Observe that T7 is subsumed by the
top 2nd tree T2 (Figure 13a), and so is not an rpTree. On
the other hand, T8 (with probability 0.003) is an rpTree, and
is more interesting to show to the user than T7, although its
probability score is lower.

r1

r8

b3

r3

s2

T2 (0.037)

(a) top-2 tree

r1

r1

r8

b3

r3

s2

r8
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(b) top-7 tree
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r5r5 r3

a2a2

r8

b3
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T8 (0.003)

(c) top-8 tree

Figure 13: Trees for the top-1 grammar that matches Q1

In summary, topKRep can be used to efficiently com-
pute the highest-scoring representative parse trees for many
grammars. For certain large grammars, topKRep does not
terminate in interactive time, due to parse tree size, and to
conservative buffer size requirements. Performance can be
improved using alternative strategies for setting buffer size.

7. CONCLUSIONS
In this paper we addressed the problem of searching a

repository of workflow specifications in which modules, both
atomic and composite, are annotated with keywords. Since
search does not interact with the graph structure of work-
flows, we reduced the problem to one of searching a reposi-
tory of bag grammars. We gave an efficient polynomial-time
matching algorithm with respect to data complexity, and ex-
tended this to search over a repository of bag grammars. We
developed efficient algorithms for calculating the relevance
score of a grammar to a given query, and for finding the
top-k grammars for a given query. Finally, we proposed a
novel result presentation method.

This work introduces a novel use of bag grammars, and
shows the importance of probabilistic bag grammars. Our
approach has been based on efficiency considerations; in the
future we would like to gain a deeper understanding of how
to use probabilistic bag grammars and continue to explore



ways of presenting concise search results. Moving beyond
keyword search, we would like to add structural features
into queries. We also plan on testing the usability of these
ideas on real datasets.
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