Fast Computation of Approximate Biased Histograms
on Sliding Windows over Data Streams.

Hamid Mousavi
Computer Science Department, UCLA
Los Angeles, USA
hmousavi@cs.ucla.edu

ABSTRACT

Histograms provide effective synopses of large data sets, and are
thus used in a wide variety of applications, including query opti-
mization, approximate query answering, distribution fitting, paral-
lel database partitioning, and data mining. Moreover, very fast ap-
proximate algorithms are needed to compute accurate histograms
on fast-arriving data streams, whereby online queries can be sup-
ported within the given memory and computing resources. Many
real-life applications require that the data distribution in certain
regions must be modeled with greater accuracy, and Biased His-
tograms are designed to address this need. In this paper, we define
biased histograms over data streams and sliding windows on data
streams, and propose the Bar Splitting Biased Histogram (BSBH)
algorithm to construct them efficiently and accurately. We prove
that BSBH generates expected e-approximate biased histograms
for data streams with stationary distributions, and our experiments
show that BSBH also achieves good approximation in the presence
of concept shifts, even major ones. Additionally, BSBH employs
a new biased sampling technique which outperforms uniform sam-
pling in terms of accuracy, while using about the same amount of
time and memory. Therefore, BSBH outperforms previously pro-
posed algorithms for computing biased histograms over the whole
data stream, and it is the first algorithm that supports windows.

Keywords

Data Streams, Biased Histograms, Quantiles, and Sliding Windows.

1. INTRODUCTION

Histograms provide statistically accurate and memory-efficient syn-
opses for large data sets, and thus find many important uses in
database and data stream applications. Query optimization, approx-
imate query answering, distribution fitting, parallel database parti-
tioning, and data mining are only a few examples of such applica-
tions. In these applications, the queries may focus on some particu-
lar regions of the data distribution—typically regions located at the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

SSDBM ’13, July 29 - 31 2013, Baltimore, MD, USA

Copyright 2013 ACM 978-1-4503-1921-8/13/07$15.00.

Carlo Zaniolo
Computer Science Department, UCLA
Los Angeles, USA

zaniolo@cs.ucla.edu

1.0E+0 3
E

1.0E-1] Equi-Depth

— Biased

1.0E-2

,_1
o
m
i

1.0E-4

LOES 57— _\"‘M\-"ﬁ_‘_ﬂ_ﬂ_ﬂ
1.0E-6 i‘“"‘-;_‘_
1.0E-7 A

1.0E-8 t t t t t t t t t t t t t {
c 1 2 3 4 5 6 7 & 9 10 11 12 13 14

Pro bability

Precipitation Amount (Inch)

Figure 1: Equi-depth and biased histograms for annual precip-
itation in the US, with close-up magnification for the head of
the distribution. (Each histogram has 100 bars.)

extremes of data distributions. For instance, consider the daily pre-
cipitation across the US in Figure 1'. This data set has a very long
tail where more than 99% of the values are less than 0.1 inch/day.
As shown in the figure, an equi-depth histogram (dashed line) does
not provide much information on the tail of the distribution since
almost all the data items at this area (tail) are assigned to one bar.
The same type of problem exists for equi-width histograms.

The biased-histogram synopsis proposed in this paper provides a
much better alternative for such distributions. For instance, in Fig-
ure 1, we see that the biased histogram supports much more accu-
rate estimations for the tail of the distribution while preserving a
good estimation for the head of the distribution (shown in the box
in the middle of Figure 1). This is achieved by letting the size of the
histogram bars decrease exponentially toward the biased region. In
particular, in Figure 1, the size of each bar is 90% of the size of the
bar to its immediate left—thus, we will say that our histogram has
a bias factor of 0.9 or 90%.

As another example, consider the distribution of the number of in-
coming (outgoing) URLs (links) in each page of the World Wide
Web, which is known to be Zipfian. For this distribution, one may
need reliable estimates of the average in-degree for the nodes that,
say, rank in the interval 99.90% — 99.99% and for those in the
interval 99.0% — 99.9%. Indeed this represents a crucial piece of
information when we need to optimize the splitting/distributing of
large data sets over different servers with roughly balanced load.
Round Trip Times (RTTs) of the TCP packets provides another

Data set is taken from http://www.ncdc.noaa.gov.

good example. Since RTT delays can stretch over long periods in
various situations, the distribution of RTTs is very skewed at its tail.
Therefore, performance monitoring systems need to watch the RTT
distribution with a biased interest over the tail of the distribution to
detect suspicious behaviors.

The histogram problem is akin to that of quantiles [8], and there
has also been some recent work on defining biased quantiles in data
streams [2] [3] [21] [19]. Quantiles are used to extract the item that
occupies a given position in a sorted list of items in a data set or in
a window in a data stream. Generally, a head-biased (tail-biased)
quantile consists of the sequence of ¢, ¢2, #° , ... (1 — ¢, (1 — ¢)?,
(1-— ¢)3, ...) quantiles; for a given data set (or data stream) S with
size N, the a-quantile (0 < « < 1) is defined as the value of the
item at the position [a/N'| in the sorted list of the items in S. Com-
puting exact quantiles is a challenging problem even for small data
sets [14], and thus incompatible with most data stream applications
which require online response with limited memory and computa-
tional resources. As our experiments show, these problems carry
over to biased quantiles. Moreover, although windows are crucial
in most data stream applications, previous works on biased quan-
tiles have always assumed that the quantiles represent the whole
history of the data streams [2] [3] [21] [19].

Therefore in this paper, we first define approximate biased his-
tograms on data streams with sliding windows, and then propose
a new efficient algorithm called Bar-Splitting Biased Histograms
(BSBH) to computes approximate biased histograms over sliding
windows of fast data streams. To the authors’ knowledge, this is
the first work on designing biased histograms over sliding windows
of data streams. BSBH employs a similar structure as in our previ-
ous work on designing equi-depth histograms in [13]. BSBH also
utilizes a biased sampling technique to improve the performance
in terms of both CPU and memory usage. More specifically, our
paper makes the following contributions:

e We define the concept of Biased Histograms over sliding
windows of data streams, and present a new algorithm called
Bar-Splitting Biased Histograms (BSBH) to compute approx-
imate biased histograms over fast data streams with sliding
windows. (Section 3)

e To be able to tune the memory and CPU usage of BSBH, we
propose a new biased sampling technique. Our experimental
results indicate that biased sampling doubles the accuracy of
the results with respect to uniform sampling while spending
almost the same amount of memory and CPU. (Section 3.3)

e We prove that BSBH can guarantee expected e-approximate
biased histograms for data sets with no concept shift. We
also provide theoretical bounds on both execution time and
memory usage of our algorithm for this case in Section 4.

We use extensive experiments to evaluate the performance of BSBH
and also compare it with CKMS which is one of the best existing
algorithms for generating biased quantiles over the entire history of
data streams [3]. Our results (Section 5) show that BSBH outper-
forms CKMS with respect to execution time, memory usage, and
accuracy. We have also evaluate BSBH for data streams with dif-
ferent rates of concept shifts on their distribution, and the results
show that BSBH provides acceptably accurate results very quickly
(mostly in couple of slides) after observing the concept shifts.

2. BACKGROUND AND PRELIMINARIES
Since BSBH is based on the Exponential Histograms (EH) sketch
[4], we first provide a brief description of this technique.

Current Window (size 35)

|
2 58} Next 1 comes in at time 58
1{[1|1 No change is needed
:| :| } Est: 1+1+1+2+2+4+4+8+16/2=31
e e . — — e — — — —
LA | Next 1 comes in at time 60
1|[1|} Last box expires.
L More than k/2+2 boxes of size 1

0
] } Merging two oldest boxes of size 1.
1 | More than k/2+1 boxes of size 2

= I8 |

|
£ } Merging two oldest boxes of size 2.
1|! More than k/2+1 boxes of size 4

Merging two oldest boxes of size 4.
Est: 1+1+2+4+8+8/2 = 20

Figure 2: Incrementing an EH sketch twice at time 58 and 60.
That is we have seen 1, 0, and 1 respectively at time 58, 59, and
60. (k=2 and W=35)

2.1 Exponential Histogram Sketch

In [4], Datar et al. proposed the Exponential Histograms (EH)
sketch algorithm for approximating the number of 1’s in sliding
windows of a 0-1 stream and showed that for a d-approximation
of the number of 1’s in the current window, the algorithm needs
O(3logW) space, where W is the window size. The EH sketch
consists of an ordered list of buckets. In this paper, we refer to
these buckets as boxes to avoid confusion since we will use the
term bucket at another level in our approach. Every box in an EH
sketch basically carries on two types of information; a time inter-
val and the number of observed 1’s in that interval. We refer to the
latter as the size of the box. The intervals for different boxes do
not overlap and every 1 in the current window should be counted
in exactly one of the boxes. Boxes are sorted based on the start
time of their intervals. Here are the brief descriptions for the main
operations on this sketch:

Inserting a new 1: When at time ¢; a new 1 arrives, EH creates a
new box with size one, sets its interval to [¢;, ¢;], and adds the box
to the head of the list. Then the algorithm checks if the number of
boxes with size one exceeds k/2 + 2 (where k = %), and, if so,
merges the oldest two such boxes. The merge operation adds up
the size of the boxes and merges their intervals. Likewise for every
i > 0: whenever the number of boxes with size 2° exceeds k /241,
the oldest two such boxes are merged. Figure 2 illustrates how this
operation works.

Expiration: The algorithm expires the last box when its interval no
longer overlaps with the current window. This means that at any
time, we only have one box that may contain information about
some of the already expired tuples. The third row in Figure 2 shows
an expiration scenario.

Count Estimation: To estimate the number of 1’s, EH sums up the
size of all the boxes except the oldest one, and adds half the size of
the oldest box to the sum. We refer to this estimation as the count
or size of the EH sketch.

It is easy to show that using only O(3logW) space, the afore-
mentioned estimation always gives us a J-approximate number of
1’s. This approach is quite fast too, since the amortized number of
merges for each new 1 is only O(1). It is also worth noting that
instead of the counting the number of 1’s in a 0-1 stream, one can

simply count the number of values falling within a given interval
for a general stream. For instance, to construct an equi-width his-
togram, a copy of this sketch can be used to estimate the number of
items in each interval, when the boundaries are fixed.

2.2 BAr Splitting Histogram (BASH)

In [13], an expected e-approximate algorithm is proposed that gen-

erate equi-depth histograms for sliding windows over fast data streams.

Equi-Depth Histograms [7][15] (also known as equi-height or equi-
probable histograms) seek to specify boundaries between buckets
such that the number of tuples in each bucket (buckets’ size) is the
same. Histograms of this type are more effective than equi-width
histograms, particularly for data sets with skewed distributions [9].

The equi-depth histogram problem is obviously akin to that of quan-
tiles [8], which seeks to identify the item that occupies a given po-
sition in a sorted list of IV items: Thus givena ¢, 0 < ¢ < 1, which
describes the scaled rank of an item in the list, the quantile algo-
rithm must return the [¢N]’s item in the list (e.g., a 0.5-quantile is
simply the median.). Therefore, to compute the B — 1 boundaries
of any equi-depth histograms, we could employ a quantile struc-
ture and report ¢-quantiles for ¢ = %, 2, ..., =1 However, this
solution is not practical because quantile computation algorithms
over sliding windows are too slow, since they must derive more
information than what is needed to built a histogram [17].

In a nutshell, BASH is based on dividing the acceptable input range
(U) into several chunks or bars in such a way that each bar contains
roughly equal number of items. The size of each of these bars is es-
timated using an EH sketch. To assure that the bars contain almost
the same number of items as the stream passes by, a merge/split
technique is employed to split big bars, and merge adjacent small
bars. BASH provides a very fast and memory-efficient equi-depth
histogram particularly for high-speed data streams. Note that BASH
does not need any prior knowledge of U, N (the number of items),
or minimum and maximum values of the data items since it dy-
namically adopts the boundaries of bars with the newly arrived data
items. The next section discusses BSBH which exploits the main
structure of BASH while introducing the concept of biased sam-
pling to improve the CPU and memory usage of the algorithm.

3. BIASED HISTOGRAM COMPUTATION

This section first reviews the definitions of quantiles and histograms
and then introduces the definition of biased histograms. The Bar-
Splitting Biased Histogram (BSBH) algorithm is then thoroughly
explained.

3.1 Definitions

Cormode et. al. defined Biased quantiles [2] as follows:

DEFINITION 1. A Low-Biased Quantile with bias factor ¢ < 1
for a given sequence of data items is the set of items with ranks
M)iNW fori =12, .., B=log 4(N) in the ordered list of items,
where N is the size of the data set.

One can similarly define the High-Biased Quantile as well. The
above definition is specifying B=log, ;,(IN') boundaries, which also
can be seen as a B-bucket histogram. As stated in [14], one pass al-
gorithms for computing the exact quantiles need to store the entire
data set which is too expensive in most data streaming computa-
tions. Approximate biased quantile were thus defined in [3] and
[19] as follows:

DEFINITION 2. An approximate Low-Biased Quantile with bias
factor ¢ < 1 of a given sequence of data items, say S, is the set of
items {v;} € S fori=1,2, .., 1log14(N), where:

[rank(vi) — ¢'N| < maz{e.¢' N, €min N}

where rank(z) is the position of data item x in the ordered list of
items, and € and €,,;,, are two approximation factors. The reason
for needing two approximation factors is that the term e.¢’ N be-
comes very small for quantiles that are near the biased point (for
larger i’s). Thus if the term e’ N is used, unreasonably high ac-
curacy would be required for quantiles near the biased point . To
alleviate this problem, the alternate approximation factor (€min) is
used instead. This essentially means that for the biased regions a
flat error curve is used.

Although the above definition is useful in many applications, it is
not suitable for designing biased histograms due to the following
issues: First, the error is based on the rank of the reported quantiles,
while in biased histograms we seek to minimize the error on the size
of each bucket. Second, the definition imposes the restriction of
having exactly log; ;4 (V') buckets or boundaries. However, many
application may need to set the number of buckets based on their
internal settings® which is usually set independent of the stream
size. Third, since flat error rate (€,) is used for the areas near
biased points, it might not provide an accurate result at those areas.
This also makes the tuning of €,,:, a challenging issue. To address
these issues, we next define an approximate Low-Biased Histogram
in which the goal is to keep the size of each bucket in the histogram
close enough to the ideal size:

DEFINITION 3. An e-approximate B-bucket Low-Biased His-
togram (with bias factor ¢ < 1) of a given sequence of ordered
data items, say S, is the set of B buckets {B; : i = 0,1, ..., B—1}
partitioning S with the following invariant:

|size(B;) — agd'W| < eagd'W

where: W is the window size, ay = (1—¢)/(1—$) is a constant
factor to make the buckets’ sizes add up to W, and size(B;) is the
number of items in bucket B;. In other words, the ideal goal of the
above definition is to partition the ordered data set into B buckets of
sizes ag W, agdW, agp®W, ..., and ap® W, Note that with
this definition B is independent from the size of the stream and does
not need to be exactly logs /(W)—a desirable property since W
is often unknown a priori. Approximate High-Biased Histogram or
Targeted Quantiles [3] can be similarly defined®.

3.2 Bar-Splitting Biased Histogram (BSBH)

The BSBH algorithm computes approximate B-bucket biased his-
tograms over sliding windows of data streams. We assume the cur-
rent size of the window at time ¢ is WW; without needing to make
any assumption about the type of the window (physical or logical.)
As will be discussed later, BSBH maintains an estimation of W;
called We,:. Unlike other approaches [2] [3], BSBH does not need
the prior knowledge of U’s size®. This subsection focuses on BSBH
algorithm for generating low-biased histograms without using any
sampling. Later in Subsection 3.3, we show how the idea of biased

%e.g. Tt could be set according to the number of available process-
ing units.

3The notion of end-biased histogram used in [9] should not be con-
fused with the above definition of biased histograms, since their
idea is to put high-frequency items in singleton buckets.

“Universe U is the range of acceptable data values.

sampling can be added to BSBH in order to improve its time and
memory performance.

BSBH Core Algorithm: The main goal in BSBH is to partition
the interval between current minimum and maximum in the sliding
window into S,, = B X p intervals baro, bari, ..., bars,, —1, where
p is an extension factor for improving the accuracy and is deter-
mined analytically. The size of each bar is estimated using the EH
structure discussed in Subsection 2.1. These bars will be later used
to approximate the final (B — 1) buckets’ boundaries.

The ideal goal of the BSBH structure is to keep the size of bar;
(i.e., |bar;|) to p times the size of bar;41 fori = 0,1, ..., Sm — 2,
where p = $'/?. In other words, the ideal case is when:

|bar| = plbaris1| = cpp' Wi

fori =0,1,..., S, — 2, where o, is a factor that makes the bars’
sizesadd up to W; (i.e. a, = (1—p)/(1—p°™)). As for W;, BSBH
uses the aggregate size of all the current bars which we will refer to
as West. Due to properties of the E'H structure, the expected value
of Wes: would be W if no sampling is used, however at each point
in time these two may have different values. With such a setting,
if the bars’ sizes are ideal and no sampling is used, the aggregate
size of bars bar; for ip < j < (i + 1)p will be agdp™ W for
i =0,1,..., B—1. These B buckets are actually what the definition
of biased histograms (Definition 3) was seeking.

Algorithm 1 shows how the BSBH structure, mentioned above, is
initialized and then maintained. We will next discuss how the struc-
ture is maintained once it is built, and discuss how it is initialized
later in the paper.

Maintenance: For each incoming data item from the data stream
(say next), BSBH finds the appropriate bar, say bar;, for next
based on the current boundaries of the bars (Line 20). This is done
using a simple binary search. Then, the EH structure of bar; is
incremented by one (Line 23). While doing this, BSBH updates
the current minimum and maximum values of the entire history of
the data stream. At this point, if the bar;’s size is greater than
a dynamically computed threshold (maxzSize;), BSBH splits the
bar into two smaller bars (Lines 24 to 26).

While splitting bars, BSBH may need to merge two adjacent bars
in order to keep the total number of bars below Sy,. It is important
to stress on that BSBH only merges two bars when a bar should
be split and there is no room for a new bar. As opposed to BASH
in which maxzSize is the same for all the bars at any given point
in time, in BSBH, maxSize is determined based on the bar’s in-
dex and its closeness to the biased point. Note that, the idea is
still similar to BASH; the size of bar; should not be greater than
maxCoef > 1 of its ideal size. In other words:

mazSize; = maxCoef.ap.p' . West

Although larger maxCloef results in less splits, in practice we use
maxCoef = 1.7 to reach higher accuracy as well as to acceler-
ate the processes of stabilizing the boundaries for the initialization
phase and to better cope with concept shift. Notice that having dif-
ferent thresholds for bars essentially allows smaller bars near the
point of interest.

After assuring that the bars’ sizes are in the acceptable range, if any
of the boxes of the existing EHs is expired, BSBH will remove it

from the structure (Line 27). Finally, after updating the structure for
an incoming data item, we can compute the current boundaries for
the final buckets. This is normally done at every slide (Lines 28 and
29). Next, we explain the main modules of the BSBH algorithm in
more detail.

Initialization: The initialization phase plays a very important role
in the BSBH algorithm. This is mostly because at the beginning,
the minimum and maximum values of the data set are unknown.
Thus, instead of starting with .S;,, bars BSBH starts with one empty
bar, and keeps adding new data items into that bar until its size
reaches a threshold (maxSizeg). At this point, the bar is full and it
will be split into two bars. BSBH repeats this until .S, bars are cre-
ated. After this stage for each split operation, two consecutive bars
should be merged. Note that maxSize; at all time is proportional
to the current window size W; ~ W.4; this essentially means that
we allow more splits during the initiation phase of the algorithm,
since W, is small at this phase. This makes the initiation phase
much faster. For instance due to our threshold-based mechanism,
the first split happens usually at the second or third insert.

Algorithm 1 BSBH()
1: BSBH (¢, u, B, p)

2:4
3: ' =1;/* for gradually decreasing sample rate*/
4: effectSmp []; /* initialized with 1°s */
5: p=¢l7
6: if(u<p)
n=p;
7. initialize();
8: ent=0;
9: while (true)
10: |
11: next = next item in the data stream;
12: cnt ++;

13: //Updating the Sampling Rate
14: if (ent < X)

15: if (u' > p)

16: w=1—(1-p) x(ent—-X))/X;

17: if (ent < 2X)

18: Compute effective sampling rate for each bar and
Update ef fectSmp array;

19: //Biased Sampling Phase

20: find appropriate bar bar; for next;

21: if (!Biased-Sample(next, i, i1'))

22: continue; /* Skipping the item */

23: insert next into bar;.E H;

24: mazSize; = ap,.maxCoef.p . West:

25: if (|bar;| > maxSize;)

26: split Bar(bar;, p);

27: remove expired boxes from all EHs;

28: if (window slides)

29: output compute Boundaries(B);

30: }

31:}

Merge-Bar Operation: Let two adjacent bars, say X, and Xg,
are selected to be merged into one bar called X. Later in this sec-
tion, we discuss the details on how the bars are chosen for merging.
As depicted in Figure 3, BSBH first integrates the intervals that X7,
and X g are covering. Next, for the EH sketches of bars X and
Xg called EHx, and EHx, respectively, BSBH set the smaller
one to blocked, and the bigger one to active. In other words, the

X 0} ¥x pue Tx sieq buibispy

-~ ————— — —

b) Active -

Figure 3: Merging two bars (X, and Xr) into one bar (X). a)
right before merge-bar operation and b) right after merge-bar
operation.

new bar X now has two associated EH sketches but only one of
them is active. This means that the incoming tuple for the X’s in-
terval will be inserted into the active EH (EHx,; or EHx in our
example in Figure 3). As for the blocked EHs, BSBH stops incre-
menting them, but continues removing expired boxes from them.
Thus, blocked EHs are prevented from growing, and as a result
they will soon be disappeared from the structure and will no longer
require memory. Also, observe that every bar may contain more
than one blocked EH. For instance, consider the case where we
have to merge two adjacent bars which already have an associated
blocked EH (e.g. merging bar X in part b of Figure 3 with one
of its neighbors). To merge these two, we follow the same general
approach: the longest EH is set to the active one and all other EHs
are considered as the blocked EHs of the new bar.

At all times, BSBH makes sure that the size of the active EH for
each bar is bigger than those of the blocked EHs of the bar, and
whenever this is no longer the case, BSBH switches the active EH
with the blocked EH of larger size. Although this case is rare, it
can occur when the boxes of the active EH expire more quickly
than those of the blocked EHs. In Section 4, we will prove that the
expected number of such blocked EHs is constant for large enough
N’s. Notice that since the internal structure of EHs is untouched in
this merging technique, the technique does not affect the accuracy
of the final results.

Split-Bar Operation: When the size of a bar, say X, exceeds its
maximum threshold (maxSize;, where i is the position of X in
the list of current bars), we split it into two smaller bars using Al-
gorithm 2. Before the split operation takes place, we make sure that
the number of bars in the histogram is less than S,,. If this is not
the case, as previously explained, we should first merge two other
adjacent bars.

Let bar X need to be split to two bars called X7, and X r. We divide
the interval being covered by X into a pair of intervals (Lines 5 to
8). The goal is that | X gr| = p x | X | after the split operation takes
place. To this end, the algorithm first distributes the blocked EHs
of X, denoted as BE Hx, into the blocked EHs of X and Xgr
(Lines 9 to 16). The splitting algorithm tries to do this in a way
that preserves the size constraint (| Xr|/|X 1| = p); however this
is not always possible. That is after splitting blocked EHs of X to
X1, and X the ratio p’ = | Xg|/|X 1| may be different than the
ideal ratio (p). Thus, BSBH splits the active EH of X (EHx) to
compensate for this difference (p — p’) (Lines 17 to 29). It is easy
to show that we can always achieve this goal by using appropriate
split on E H x, given that the size of the active EH is guaranteed to

be greater than the size of all the blocked EHs.

To split the original EH sketch, F/H x, into a pair of sketches called
EHxp and EHx, , BSBH first computes the split ratio denoted as
A (Line 17 in Algorithm 2). A simply indicates that to compensate
for the aforementioned difference (p — p'), the size of EHx, af-
ter splitting should be A times the size of EHx (ei. |EHxp| =
A EHx|). In order to have such a split ratio, BSBH puts half of
the . Hx boxes with size one into FHx, , and the other half into
EHx, (Line 19 and 20). Then, it replaces each of the remaining
boxes in E'H x with two boxes that are half the size of the original
box. Finally, based on the current ratio of the sizes, BSBH decides
whether to put each copy to FHx , or EHx, (Lines 23 to 27). In
other words, if the current ratio of |EHx,|/|EHx, + EHx, | is
smaller than X the copy will go to EHx , otherwise it will go to
EHx, . For instance if A is 0.5, one half goes to EHx , and the
other half goes to EHx, .

Algorithm 2 splitBars(X, p)

1:if (curBarNo == S,, && !mergeBars())
return;

: Initialize new bars X, and Xg;

:1=0;

: |[BEH s| = Aggregate Size of the blocked EHs;

: EHx, start = E H x .start;

: EHx, .end = (E Hx .start + EEHx .end)/(1+p);

: EHxp start = EHx, .end;

: EFHx,.end = EHx .end;

: for each (blocked EH bar in BEHx) {

10: if (I + |bar| < | BEH s|/(1+p)){

11: [+=|bar|;

12: Add bar to BEHx, ;

13: }

14: else

15: Add bar to BEHx p,;

16: }

17: A= (| X|/(1 + p))-D/(X| - |BEHS

18: foreach (box box in EHx){

19: if (Jbox| == 1)

20: Alternatively add a copy of box to EHx, or EHx ,;

O 01NN bW

);

21: else {

22: |box| = |box|/2;

23: for (2 times)

24: if ((EHxy| /(|EHxz|+|EHx,|) <)
25: Add a copy of box to EHx ;3

26: else

27: Add a copy of box to EHx, ;

28: }

29: }

30: Remove X from the bars list;
31: Merge boxes of bars X, and X if necessary.
32: Add bars X, and X r to the bars list;

Selecting Bars to Merge: We always merge adjacent bars that have
the minimum aggregate size with respect to their positions and ideal
size. Thus, we select a pair of adjacent bars that yields the least
relative deviation from their ideal sizes. In other words, we pick
bars bar; and bar;11 such that |bam|/pi + \bari+1|/pi+1. If this
aggregate size of these two bars (e.i. |bar;| + |bar;y1|) is less than
mazSize; (which is usually the case), we select them for merging.
Otherwise, we do not perform any merge operations until some
boxes expire, since we do not want to create bars with size greater
than maxSize; by merging.

Est:
1+1+2+4+4/2= 10
o
Est:
1 1+1+14242+4+4/2=13
13 25 “52 50 5355 56 58
4 4 4 4 ({21212 (|1[|1][1[[1]/1] Combining oldest 1's
13 25 39 48 29 32 52 53 55 56 58
Sorting 2's and
4 4 4 4 21212 2 (1 Combining oldest 2's
1 25 39 48 32 52 53 55 56 58
Sorting 4's and
4 4 4 4 42 2 Combining oldest 4's
25 39 48 52 53 55 56 58
EHx | s 8 4 (2 || 2]|[1||1]{1] Est
L LU 1+1+1+2+2+4+8+8/2=23

Figure 4: Merging two EH sketches EHx; and EHx into
EHx. (k=2)

An Alternative Merging Approach: The merging approach in-
troduced earlier uses blocked EHs which may increase the memory
requirement and thus have a negative impact on memory perfor-
mance. As an alternative approach, one can combine the boxes of
the two to-be-merged bars into a single new EH sketch. This tech-
nique which is explored in the next paragraph needs slightly less
memory, but makes the theoretical analysis a lot harder. The for-
mer technique is called BSBH-BL, since it uses BLocked EHs, and
this alternative approach is referred to as BSBH-AL thorough the
rest of the paper.

To merge two EH sketches in BSBH-AL, we start by selecting
boxes with size one from both EH sketches, and put them into a list
sorted by the start time of their intervals (Figure 4). If the number
of such boxes is more than k/2 + 2 (k = 1/6), we keep combining
the oldest boxes in this list until the number of boxes with size one
is smaller than k/2 + 2. The same steps would be followed for
boxes with size two. We compile all boxes of size two, sort them
based on their start times, and if the number of these boxes is more
than k£/2 + 1, we combine the oldest ones until the number of such
boxes is smaller than or equal to /2 + 1. Note that while merging
boxes with size two, we may be using some boxes from the first
EH, some from the second £'H, and some boxes generated from
combining boxes in the previous iterations. This operation is then
repeated for boxes with larger size (4, 8, etc.). Figure 4 illustrates
an example of merging two EH sketches where k = 2 using this
alternative method.

Note that by merging boxes from two different EH sketches, we
may lose some information about timestamps of the items which af-
fects the accuracy of the estimations as discussed in Section 5. Al-
though, we do not have any blocked EHs for BASH-AL, the same
split approach we mentioned earlier can be used for this alternative
merging technique. This time, the splitting operation in Algorithm
2 splits the only existing EH into two EHs with appropriate size.

Reporting the Final Buckets: At each slide, the algorithm needs
to generate a new set of boundaries/buckets. Algorithm 3 shows the
pseudocode for this operation, in which the ideal goal is to find B
buckets with sizes a¢¢)th for i=0, 1, ..., B — 1. Similar to [13],
Algorithm 3 passes over the list of bars once and estimates B;s
boundaries assuming that the distribution of items inside each bar
is uniform. Observe that the extension factor p plays an important

role in this assumption. Indeed, larger values of p generate smaller
intervals, and consequently make the distribution of the items in
each bar closer to a uniform distribution. Since the value of W;
might not be known, we will instead use its estimate Wes;.

Algorithm 3 computeBoundaries(B)

b = —1; //An index over bars list
count = 0;
cur BuckSize = agp® T Wess;
for(int: = 0; ¢ < B;i++) {
while (count < curBuckSize) {
b ++;
count += |bars[b]|/ef fectSmplb];
}
surplus = count — cur BuckSize;
boundaries[i] = bars[b].start + bars[b].lengthx
(1—surplus/(|bars[b]|/ef fectSmp[b]))
count = surplus;
cur BuckSize = cur BuckSize l ¢ ;
1

return boundaries;

3.3 Biased Sampling

Sampling provides a simple technique for scaling many algorithms
to larger data sets. The most common way to sample is to uniformly
drop items from the input data set and reduce its volume. Although
this is very easy to implement, it may not be the best practice for
biased histograms, since uniformly removing items from smaller
bars has a more negative effect in estimating the boundaries than
in larger bars. Thus, a good sampling technique needs to sample
out fewer items around the biased point(s) than from the rest of the
data distribution.

Random non-uniform sampling was also used by Zhang and Wang [19]

who first collect and sort the whole input and then sample from
the ordered input at non-uniform rate. BSBH instead introduces a
faster non-blind sampling technique, called biased sampling, which
does not need to see the entire data set in advance. This, makes
BSBH a much more practical approach for data streams. The goal
in biased sampling is to sample (keep) at most ¢ items from each
window. Thus for a low-biased histogram, knowing the new items
value (next) and its associated bar index (¢), we sample next with
probability 1%, such that the following equation holds:

S —1

Z uSm_l_i|bari| =ox W,

i=0
As you can see, the sampling occurs such that we keep all the items
in the smallest bar (bars,, —1), sample items from bars,, —2 with
rate ;4 < 1, and exponentially decrease the sampling rate to a more
selective one for larger bars. In the rest of the paper, we will refer
to p as the biased sampling rate. Note that it is not plausible to
sample in a way that after sampling the size of bar;; becomes
smaller than the size of bar;, which means p should be less than
or equal to p (u < p). If smaller sample rates are desired, uniform
sampling should be used. For the case of u = p, it is easy to see
that after observing at most 2WW items all bars will have equal sizes
(which is o, p =1 W,) and the biased histogram computation is
reduced to an equi-depth histogram computation. This basically
means that BSBH with biased sampling rate p will be eventually
reduced to BASH after the sampling phase is completed.

One challenge most of the sampling-based techniques need to ad-
dress is the initiation phase. Since the system is initially empty, to
quickly, and more accurately report the first set of results, the algo-
rithms need to keep more data items and drop less. Later when the
structures are initiated, the techniques can sample more data items
to reduce the load. Moreover in our case, the sampling is not blind
and needs to know the boundaries of the histogram’s bars. Thus, we
need to first generate the boundaries so we can start the sampling
phase. In order to alleviate the effect of switching to the sampling
stage, we gradually decrease biased sampling rate from 1 (no sam-
pling) to p for the first X data items (lines 14 to 16 in Algorithm
1). For the physical windows X could be set to the window size
W. For the logical windows, X can be set to estimated size of the
window at the time in which the first item expires.

Since we can not start full sampling form the beginning, the ef-
fective biased sampling rate for bar; is not going to be ' for the
first 2X data items. Thus, in lines 17 and 18 of Algorithm 1, we
update the effective sampling rate for each bar in an array called
ef fectSmp based on the history of changes on sampling rates.
ef fectSmp will be used later to estimate the actual size of bars.

4. FORMAL ANALYSIS

In this section, we show that BSBH can provide an expected e-
approximate biased histogram for sliding windows on data streams
with no concept shift for any given e > 0. We also compute the
per-data item delay and space complexity of BSBH for this case.
Notice that data streams with no concept shift can be modeled as
the case that every incoming item from the data stream is taken
form a fixed data distribution. This consequently means that items
are arriving in random order. To ease our discussion, we consider
that the window size is fixed at W. First, we compute the expected
number of splits in each sliding window.

Let Es»{N} be the expected number of splits after processing N
data items from the data streams. Observe that the expected number
of splits for bar; is Esp{N}/Sm since the probability of insert to
(and expire from) bars for randomly ordered inputs are the same
for each bars. Let py, +,,4,; be the probability that the current bar at
+’th index/position (bar;) in time ¢; is moved to position j at time
to without being split or merged (That is, the change of position is
only due to splitting and merging of other bars). Also, let g;,; be
the probability of having bar; split at time ¢. Thus, the probability
of having two consecutive splits on a bar at times ¢; and ¢ and
at the starting position ¢ and the finishing position j is Py, ¢5.4,5
= Qt1,iPt1+1,t2,i,jGt,j. Knowing this, we can now calculate the
expected number of inserts into bar; (called F;,{i}) between two
consecutive splits using the following formula:

N N Sp-—1

Em{l} = %?N} Z Z Z Pt—l,t’,i,j(mt,t’,i +m; — n;)

t t'=t j=0

N N Sp-—1

Sm
- mzz > Pevig(mg — n;)

t t'=t j=0
N N Sp—1

+ %?N} Z Z Z Ptflyt’,i,j(l’t,t/,i)

t t/'=t j=0

=L+ X;

where m; is the abbreviated form of maxSize; and x4/ ; is the
expected number of expired items from bar; in between the time
interval [t, t']. Basically, for two consecutive splits on bar; at times

mg

t — 1 and t’, we need to insert mj; — ~5* items to reach to the split
threshold at position j if nothing expires from the bar. Otherwise,
we need to insert and additional x; 4 ; of items to compensate for
the expired items from the bar. The above equation simply adds up
all of such values for all possible ¢, ¢, and j. Then, the expected
number of inserts among all bars between two consecutive splits
can be computed with the following formula:

S —1 Sm—1 Sm—1
Em= Y En{i}= Y L+ Y Xi=I+X ()
=0 =0 =0
Let us start with 7:

Sm—1 N N Sp-1

Sim e
=% mZZ D> Piywg(my— 5)

=0 t t'=t j=0

N N Sm—1Sy-1

S -
WZZ Do D Pveaglmg —50)

t t'=t i=0 ;=0
N N Spu—1Sn—1

S .
= B2 2 2 Peva(m = 5)

t t'=t i=0 j=0

N N Sm—1Sm—1 s
+ Py ii(mi — 2
g N N Sm—1S8m—1 N
m 1
TaE, (N 22y & 2 e (T
t t/=t i=0 j=0

In the last line of the above equations, we have used the fact that
probabilities g;,; and g, ; are equal for any given ¢ for randomly or-
dered inputs with no concept shift. This also indicates that Py, 54,5
and P;, 4,5, are equal. To understand this fact, let P, 45,45 >
Py, 5,56 (O Py 4505 > Pty t5,5,4)- This means that the bars be-
tween ¢ and j indices are constantly moving toward the index j (or
) due to splitting and merging which is in contradiction with the
fact that the data stream contains no concept shift.

N N Sp—-1S8,-1

o i +m;
1=WZZ DD P ()

t t'=t i=0 j=0
N N Sm—18Sn—1

Sm
= mzz Z Z Py mi

t t'=t =0 j=0

S Sm—1 N N Sp-—1
- m ; m’Zt:t/Z:t]z::o P15

Note that Ziv Zi\,’:t S Om=t P, 4.4, computes the expected

number of splits for bar; for the first /N data items of the stream. As
already discussed this value is equal to Es,{ N }/S,. Therefore,

Sm—1

_ Sm ‘ E.,{N}
152t maxCoefW
=3 ; mp = ——— 2

The above formula simply indicates that the expected number of
inserts per split, or Ejn, is greater than maxCoe fW/2. This leads
us to the following lemma which is very important to prove the
bound on memory requirements of BSBH.

LEMMA 1. For N > W, the expected number of blocked EHs
in BSBH is O(1).
Proof: Equation 2 indicates that for N > W, the expected num-
ber of inserts before seeing the next split in BSBH is greater than

mazCoefW/2 (equation Zf:"gfl m; = maxCoefW only holds
for N > W.) That is, in each window the number of splits is O(1)
on the average. On the other hand, the number of blocked EHs is
proportional to the number of splits as proved in Lemma 2 of [13].
This completes the proof. O

Note that after first W items have arrived, older items start to expire
with the same rate as new-arriving items. This essentially means
that the expected number of items expiring in a given time interval
is the same as the expected number of arriving items (X = I). That
is after the first window:

FEin =1+ X =21 = maxCoef x W

This essentially means that for maxzCoef > 1, E;, would be more
than W. In other words, the expected number of split in each win-
dow is less than 1.

THEOREM 1. For data stream S with no concept shift and for
any given 0 < e and 0 < ¢ < 1, the BSBH algorithm can provide
a size-based expected e-approximate biased histogram with bias
factor ¢ for sliding windows on S.

Proof: As stated above in each window there can be at most one
split, and no matter how poorly this split operation is performed,
before the next split all the wrongly split items will have been ex-
pired. Thus at any moment, only two adjacent bars may contain
incorrect items due to the split operation. We refer to these two
bars as the split bars. Let us first compute a bound on the expected
error imposed by these two bars. The final boundaries that Algo-
rithm 3 generates may cut at most B — 1 bars. We refer to the
boundaries as bni, bna, ..., bnp_1 and to the bars they cut as the
cut bars (b1, ba, ..., bp_1). If both split bars are among un-cut bars
they do not impose any error since they compensate for each other
in the final bucket. Otherwise, one of them should be among b;’s.
We will return to the error caused by the b;s after we consider the
error caused by the second split bar. Let the second split bar be
in interval [bn;, bn;4+1). The maximum error it generates (called
errsp) can be computed as:

[barip+1] < mazCoef.a,. p? '\ W
|B~L| - Oéqa.(bi.W h

maxCoef (1 — p)p
(1-9)

The other part of the error is because of the the position of bound-
aries in the cut bars. Considering the estimated number of items at
the left and right sides of boundary bn; in bar b; are respectively
called I; and r; (I; + 7r; = |bl y i i
wrongly selecting the boundaries for B; is then (r; + liy1)/|Bil.
Thus on aggregate for the cut bars error (errc.t), we have:

7"1 + l1+1 Tl +l ‘b |
Z Bl S22 B 2Bl

B-1 ip
< Z maxCoef.ap.p? W
. PP W

_ Eif mazCoef(1 — p)

N
(n ymazCoef(1l — p)
B ()

Knowing that each bar uses an EH sketch with approximation er-
ror §, we can compute the following bound for the final expected

approximation error for the buckets in our BSBH algorithm:

ErrRate =6 + (errsp + errcut)/B

mazCoef(l —p)p maxCoef(1l — p)
(1-¢)B (1-¢)
+1)(1=p) <+ 2¢(1—p) 3)

<5+

S(S—Fc(%

where c=maxCoef /(1 — ¢) is a constant. This proves that the
expected approximate error is bounded. Calling this bound e and
noting that p = ¢'/?, one can say that by setting § = e/2 (k =
[2/€])and p = [—2c.log(¢)/€], we obtain a size-based expected
e-approximate low-biased histogram. To see this observe that:

_ |_*2Cl0g(¢).‘ > 7log(¢) > lOg(d))
€ ~ €/2¢ T log(l—¢€/2c)
The last part of the above inequality is derived from the fact e* >
1+x (where z can be set to 1 —€/2c). Now by replacing this lower
bound for p in Formula 3, the proofs will be completed. O

Empirical results show that even much smaller values for k and p
can provide the same accuracy level. However, it is necessary to
mention that the larger the expansion factor p is, the quicker the
convergence of the algorithm will be especially for those data sets
with concept shifts. Lemma 1 shows that the total number of bars
(active EHs plus blocked EHs) in BSBH is O(S,,). Additionally,
the size of all of these bars is smaller than the window size, which
indicates that each bar needs at most %log(éW) of space. These
two facts lead us to the following bound on the expected memory
usage of BSBH:

THEOREM 2. The expected memory usage of the BSBH algo-
rithm is bounded by O(2mlog(0W)) = O(glog(eW)) , where
W is the sliding window stze and € is the approximation factor of
BSBH algorithm.

‘We can provide a bound on the per item CPU usage in the following
theorem. Since the proof of this theorem is identical to the one in
[13], we skip it in this paper.

THEOREM 3. BSBH on average spends O(log(Sm) + ST’") =
O(log(2)+ £) time for each input data item, where S is the slide
size.

Note that in practice and as shown in the experimental results, this
time complexity is very close to a constant time, since .S is usually
much larger than S, and log(Sr,) is usually very small.

S. EXPERIMENTAL RESULTS

We implemented both versions of the BSBH algorithm in C++.
The version of BSBH which blocks the bars in the merge operation
is referred to as BSBH-BL, and the alternative approach is called
BSBH-AL. We also compared BSBH with the CKMS algorithm
proposed by Cormode et al. [3] for the case of no sliding windows,
since CKMS does not support it. All the errors were computed
using average size error of the histograms’ bars as defined in Def-
inition 3. For all the experiments shown in this section, we fixed
the slide size at 1000 tuples and number of bars at 20. No prior
knowledge of the minimum and maximum values of the incoming
data was considered. We also set ¢ to 0.1, p to 7, and maxCoef
to 1.7 which are experimentally proved to be optimum in [13]. All
the experiments were run on a 64bit, 2.27 GHz machine running
CentOS with 4GB of main memory (RAM) and 8MB of cache.

5.1 Data sets

We have considered 10 data sets wherein one is a real-world data
set (DS10), and the rest are synthesized data sets with different dis-
tributions as shown in Table 1. As you can see, the first six data sets

Table 1: Data sets used for the experimental results

Name Dist. Size | Shifts No. Parameters
DS1 Uniform 1m 0 min0, max10k
DS2 Normal 1m 0 ubk, 0500
DS3 Zipfian 1m 0 al.b
DS4 Zipfian 1m 0 al.8
DS5 Exponential 1m 0 A1073
DS6 Exponential 1m 0 210~
DS7 Zipfian Im 100 starting 1.5
DS8 Zipfian im 10 alt. a3 & al.l
DS9 Exponential 1m 100 starting A10~3
DS10 | Precipitation | 21m - -

(DS1 to DS6) contain no concept shifts which means their distribu-
tion does not change through time. In DS7 and DS9, we shift the
concept by randomly increasing or decreasing the distribution’s pa-
rameters (respectively o and \) by 10% for every 10K data items.
We have also generated a data set with 10 unrealistically large con-
cept shifts, called DSS8. In this data set, the distribution alternates
between Zipfian with a = 3.0 and @ = 1.1. Our real data set con-
tains the amount of daily precipitation recorded in different stations
across the United States for about 400 years®. Although, there are
many missing records for early years, this data set contains more
than 21 million records. An estimation for the distribution of data
in this data set (Figure 1) indicates that the distribution has a very
long tail.

5.2 BSBH versus CKMS

Figures 5 and 6 provides the execution time, memory usage, and
size error of the BSBH algorithms as well as CKMS algorithm for
data sets DS3 and DS7 respectively. Both of these two data sets
have Zipfian distribution (with a=1.5), but DS7 contains 100 ran-
dom concept shifts. For CKMS, we set € and €,,:n respectively
to 0.01 and 0.001 as suggested in [3]. As can be seen in the fig-
ure, both BSBH-BL and BSBH-AL are constantly faster, lighter (in
the sense of memory usage), and more accurate than CKMS, even
when the results for BSBH algorithms are taken over the whole his-
tory of data streams. For the current setting, BSBH is at least twice
as fast as CKMS while using more than six times less memory and
providing results with twice or more better accuracy. We should
mention that CKMS provides a worst-case error guarantee while
BSBH provides an expected error guarantee. This mainly explains
the gap between memory and CPU usage of the two approaches.
Note that the error increases for smaller ¢’s in both algorithms.
This is mainly because for smaller ¢’s, bars closer to the biased
regions get even smaller. As a result, even one misplaced item in
those small bar may result in a very high error rate. This is actually
why CKMS uses the flat error rate €, at the biased points.

5.3 Scalability

As discussed in previous sections, BSBH uses a constant number
of Exponential Histograms and as a result, we claimed BSBH will
inherit the scalability of the Exponential Histograms. To verify our
claim, we tested the execution time, memory usage, and size er-
ror of our two BSBH algorithms over data sets DS3 and DS7 for
different window sizes in Figure 7. Parts (a) and (b) of this figure
depict that both CPU and memory usage of BSBH algorithms have
logarithmic relation with respect to the size of the windows which
proves the scalability of our structure for larger window sizes. In
part (c) of the figure, we included the error which is steady at 2%
for larger than 16K window sizes.

5Taken from http://www.ncdc.noaa.gov.

It is also worthy to compare the results for DS3 and DS7, in which
the only difference is the presence of concept shift in DS7. For
smaller window sizes, the errors (part (c) in Figure 7) are higher for
both data sets, since there is not enough data in each bar to make a
good estimation. DS7’s error is even slightly higher due to several
concept shifts. For larger window sizes, which are more probable
in fast data streams, the accuracy for both data sets is almost the
same. However, DS7 needs slightly more memory and time due
to the larger number of split/merge operations. We discuss more
results on data sets with concept shifts in Subsection 5.5.

5.4 Biased Sampling versus Uniform Sampling
To evaluate the effect of our proposed biased sampling technique,
we compared the execution time, memory usage, and size error of
BSBH algorithms for two types of sampling techniques; uniform
sampling and biased sampling. In uniform sampling, we simply
dropped items with a fixed probability. The results for data sets
DS7 and DS10 are shown in Figures 8 and 9. The biased sampling
rate (1) and its equivalent uniform sampling rates (o) are shown in
the horizontal axis in the figures. As part (c)’s of the figures depict,
the accuracy of the biased sampling is superior to that of uniform
sampling, especially when the sampling rate increases. However,
biased sampling needs slightly more memory than uniform sam-
pling (part (b) of the figures) because fewer items from small bars
are sampled out. This increases the number of boxes in small bars.
Notice that small changes in the number of items in larger bars usu-
ally does not significantly change the number of boxes in them. As
for the CPU usage s(part (a) of the figures), both techniques per-
forms similarly. However, the interesting result is that by biasing
the sampling rate (u) to less than .98 none of these techniques sig-
nificantly improve the CPU performance.

5.5 The Effect of Concept Shifts

As already shown in Figure 7, moderate concept shifts in the data
stream have a very small effect on the performance of the BSBH
algorithms. To take a closer look at the effect of concept shifts on
the performance of BSBH, we compared the evolution of the size
error through time for DS7, DS8, and DS9. The results (Figure
10) indicate that concept shifts have insignificant effect on the size
error for data sets DS7 and DS9 in which we have reasonable con-
cept shifts. This mainly shows that concept shifts of such as in DS7
and DS9 can be quickly (only in couple of slides a our experiments
shows) resolved by the BSBH. However for DS8, the concept shifts
effects are visible due to the unrealistic changes in the data distri-
bution at each concept shifts. As it can be seen in the figure, the
error increases right before the distribution changes from Zipf with
a = 3.0 to Zipf with a = 1.1. The reason that the error is lower
for a = 3.0 is that BSBH receives less data items at the tail of
the distribution of the current window under this case. This basi-
cally means that the boxes at the tail gradually shrink down in their
size, and consequently they will not split but may merge. Since the
merge operation does not impose any extra error, the overall error
remains low for this case.

5.6 Discussion

Figure 11 depicts the performance of BSBH-BL without sampling
as well as with biased sampling rates (x) of 0.98 and 0.96 for all
the data sets introduced in Table 1. There are some important points
which can be understood from the figure. Perhaps the most promi-
nent element is that the execution time for BSBH is almost inde-
pendent of the distribution of the data sets. As you can see in part
(a) of Figure 11, the execution time of all the data sets is propor-
tional to the size of the data sets. This verifies our Theorem 3 in

30 250 L 35% T
7 & \,
8 o g £
g2 * b dteias, sttt 4 + -~ b ettt 3 1 g 30% 5 J—Y
Fi g 200 & .
]
3 —m—8SBH-BL |
. —e--ckMS ||| B 25% 5, BsBn-aL
& a \
=] —@— BSBH-BL E, 150 b CKMS | 20% \ ——BSBHAL [
\
15 —a—BSBH-AL [—#8— BSBH-BL s
15% ¥
100 —— BSBH-AL [K
10 = - \
— & = 10% Y
5 50 \ B
—g—a——S * M_.
& = = = s
0 T T T T T T T T T] P i i i . 0% T T T T T T : T :]
05 055 06 065 07 075 08 085 08 095 05 055 06 065 07 075 08 085 08 095 05 055 06 065 07 075 08 085 09 085
Phi Phi Phi

Figure 5: a) The execution time, b) memory usage, and c) size error of BSBH and CKMS algorithms on DS3. (k = 10, p = 7,
€ = 0.01, and €in = 0.001.)

il 250 L40%
)
im Rttt ettt it ettt i, Aot ittt et dtetet £ Gy |4 _—
g & g N -~ -- CKMS
] 5200 a .
] 1 — - CKMS. 2 30% N —=—gsBHBL |
a N] Y -
G 15 —@— BSBH-BL Elso Ce—-CkMS | 25% 5 —#— BSBH-AL
\
13 —#— BSBH-AL |- m— BSBH-BL 20% .
%
" 100 ——BSBH-AL [15% M .
gy I \
9 p——lt w0 10% ‘\- o
Sw
7 —n 5% B
— " == e
5 —————————— a ——— 0% ————— —i——a_
05 055 06 065 07 075 08 085 09 085 05 055 06 065 07 075 08 085 09 095 05 055 06 065 07 075 0F 085 08 085
Phi Phi Phi

Figure 6: a) The execution time, b) memory usage, and c) size error of BSBH and CKMS algorithms on DS7. (k = 10, p = 7,
€ = 0.01, and €in = 0.001.)

o s 10%
u o b
2 = o i caobes BLDS3
& &1 & 8% =
g 95 g oo+ AL-DS3
3 2 7% I
3 [—i— BL-D57
B s fx ' 5 —
¢ J‘»” voes BLDST 5% ALDST |
BS - o BLDSI |- 10 ol ALDSS | A
<+ AL-DS3 / —a— BEDST 3%
8 —+—BLDS7 |- 5 r/— ——ALDs? [71
——ALDST 1%
75 T T T T T T T T T T 1 0 T T T T T T T T T T 1 0% T T T T T T T T T T 1
S F L P S PSSP LR RPN I IR PP PSS LS
& & & F & & & 8 § F & & & &
e e W Gl L & &g o & (,u“Q WM R R el b o e e R
Window Size ¥ Window Size ” Window Size

Figure 7: a) The execution time, b) memory usage, and c) size error of BSBH algorithms on DS3 and DS7 for different window sizes.
(¢=.8,k=10,p="7,e=0.01,and min = 0.001.)

rh o L 0%
H g y"/. H
2 +odbes UNi-SMP-AL =g L] e UniSMP-AL A 5 45%
&8 — g i g 8 so% oo UniSMP-AL|
i «+ @+ Uni-SMP-BL 3 <+l UniSMP-BL & :
3 12 +—| _ ;i 355 ol UniSMP-BL|
5371 —#— Bia-SMP-AL E e Biz-SMP-AL . :
& g 30% —+— Bia-SMP-AL | —
= ——Bia-SMP-5L 10— —s—Bia-SMP-BL

2 i g 5% —— Bia-SMP-BL | —

3

\

T 1 2 T T T T T |
95(6%) 96(12%) 97(3.4%) 98(9.8%] 99(30.6%) 1(100%) 95(6%) 96(12%) 97(34%) 98(2.8%) 99(30.6%) 1(100%) 95(6%) 96(12%) 97(34%) 9B(3.8%) 09(306%) 1({100%)
Biased Sampling Rate (Uniform Sampling Rate(%]) Biased Sampling Rate (Uniform Sampling Rate(%)) Biased Sampling Rate (Uniform Sampling Rate(%])

Figure 8: a) The execution time, b) memory usage, and c) size error of BSBH algorithms on DS7 for different sampling rates. (¢ = .7,
W =100K,k =10,and p = 7.)

10

180 f & . 50%
T
3 % 16 +— . g
L 970 | +oes UniSMP-AL E <o s UniSMP-AL £ 45% ——
N . [} 1 sees UniSMP-AL |
% o fll-+ Uni-SMP-BL f g 14 +«fll++ Uni-SMP-BL 3 40% B
2 150 +— , 355 <ol UniSMP-BL |
2 = Bia-SMP-AL 3 £12 — Bia-SMP-AL 2
& 130 — : g 30% A Bia-SMP-AL |
& ——Bia-SMP-BL 10 || ——BiasMP-5L
- z 5% . - —+— Bia-SMP-BL |—
110 [\ ..
= s 0% .
30 / 5% SN g
6 ot > 7
/ l' e \-.\ 'n.'_
T g . N
T ke P 5% i
50 . T . T T ! 50 (el ‘ ‘ ‘ ‘ ‘ = ‘ ‘ ‘ ‘ ‘ .
95(6%) 96112%) .97(3.4%) 9B(9.8%] 99(30.6%) 1(100%) 95(6%) 96(1.2%) 97(34%) 98(9.8%) 99(30.6%) 1(100%) 95(6%) 96(12%) 97(3.4%) 98(9.8%) 99(30.6%) 1(100%)
Biased Sampling Rate (Uniform Sampling Rate{5%]) Biased Sampling Rate (Uniform Sampling Rate(%)) Biased Sampling Rate (Uniform Sampling Rate(%))

Figure 9: a) The execution time, b) memory usage, and c) size error of BSBH algorithms on DS10 for different sampling rates.

(¢=.7, W =100K,k =10,and p = 7.)

.
=
=
=

W No-SMP-BL

WNo-SMP-BL
O Bia-SMP-98-BL
{4Bia-SMP-96-BL

wa
wn
B

DBia-SMP-98-BL

4iBia-SMP-96-BL

HNo-SMP-BL

Size Error
wa
=
ES

OBia-SMP-98-BL

-
o
=1

CPU Usage (Sec)

Memory Usage (KB)

{3Bia-SMP-96-BL

20%

10 4

: Wk 0

15%

10%

i

: . i
D5 DS6 D57 DS DS Ds10 DSl Ds2 Ds4

Ds1

D5z DS3 Ds4 Ds3

o
Ds5 Ds6

Ds7?

: M
0S8 DS9 DS10 DSl DS2 Ds3 Ds4 DSs Dse DS7 DS DS8 Ds10

Figure 11: a) The execution time, b) memory usage, and c) size error of BSBH algorithms with different sampling rate for all data

sets. (p = .7, W = 100K,k =10,p = 7)

Q
=]
o

D57

=
o
=

Ds8

Size Error

0.06 —

— D58

0.05 +—

0.04

M\

|/

0.01 T T
100000 200000 300000

0.02 A

T T
400000 500000

MNumber of arrived items (M)

Figure 10: The size error of running BSBH-BL on data sets
DS7 to DS9 through time. (¢ = .7, W = 100K,k =10,p = T7)

previous section. As for the memory usage, part (b) of the figure
suggests that the data distribution has a slight effect on the memory
usage of BSBH. This is also in accordance with Theorem 2.

The other important point is that although the execution time and
the memory usage of BSBH drops after sampling, this improve-
ment is not very impressive especially for smaller sample rates.
For instance with biased sampling rate of 0.96, which is equivalent
to uniform sampling rate of 1.2%, we improve the memory usage
and execution time at most by factors of 3 and 2 respectively, while
degrading the accuracy by at least a factor of 7. This is actually

11

not an unexpected result considering the compactness of our data
structure. According to our experiments, partially shown in Figures
8,9, and 11, not much is gained when we biased the sampling rate
1 to be less than 0.98. Moreover, sampling on the data sets with
concepts shifts has a worse effect on the accuracy of the results, as
shown in part (c) of Figure 11.

6. RELATED WORK

The problem of designing quantiles and equi-depth histograms in
databases has been studied for a long time [16], [5], [6]. In 1984,
Shapiro and Connel introduced a method to estimate the selectivity
of conditions in the form of attribute 6 constant in a database
system where 6 can be one of =, <, >, <, and > [16]. In 2002,
Gilbert et al. used Random Subset Sums (RSSs) as a sketch to store
summarized information about the whole database and estimate the
quantile with a one-pass algorithm [6]. Gibbons et al. have also
presented a sampling-based technique for maintaining approximate
equi-depth histograms on relational databases [5].

Existing works on designing equi-depth histograms over data streams
have mainly focused on the related problem of quantiles. Since
computing exact quantiles with a single-pass algorithm requires to
store all the data [14], most of these works try to approximately an-
swer quantile queries with low space complexity. Manku et al. in-
troduced an e-approximate algorithm to answer any quantile query
over the entire history of the data stream [11]. Later, they used
non-uniform random sampling to improve their quantile computa-
tion for the case where the data set size is not known in advance
[12]. Greenwald and Khanna, in [8], improved the memory usage

of the previously mentioned approach. Their work , which is some-
times referred to as the GK algorithm, was used in [10] and [1] to
answer quantile queries over data streams with sliding windows.
Both of these two approaches run several copies of the GK, and as
a result they suffer from high time complexity.

Cormode et al. introduced the idea of biased quantiles in [2]. Based
on the GK algorithm, they proposed a deterministic e-approximate
algorithm to construct biased quantiles over the whole history of
a data stream. Their approach needs O(X B x log(1/¢)log(eN))
space, where N is the data stream size and B is the number of
boundaries. Note that as shown in [21], the worst case behavior
of this type of algorithms is linear in the universe size (The size of
the items’ range). Later, in [3], the same authors proposed a faster
and more space-efficient deterministic algorithm for this problem,
based on a binary tree structure idea borrowed from [18]. Need-
ing O(LlogUlog(eN)) space and an almost constant amortized
cost of actions per new entry, the algorithm is best suited for high
speed data streams. However, it can not be easily employed in the
sliding window model for data streams. Moreover, their algorithm
requires prior knowledge of U and the bound on space require-
ment depends on the U which is undesirable. Zhang and Wang
have used a decomposable structure to construct e-approximate bi-
ased quantiles using O(M) space and O(log(M)) time.
However, they used a naive non-uniform sampling technique which
needs to sort thse entire data set in advance.

Unfortunately, the aforementioned biased quantile computation al-
gorithms can not be easily used for the sliding window case, since
their underlying structures do not support the idea of expirations.
The usual solution for this issue is to run several copies of the same
algorithms for different-sized chunks of the most recent part of the
current window, and combine the results for the biggest possible
parts which are not yet expired. A similar method is used in [1] for
regular quantiles that is proven to be very slow [20] [13].

7. CONCLUSION

In this paper, we proposed an expected e-approximate biased his-
togram algorithm, called Bar Splitting Biased Histogram (BSBH).
We formally proved that BSBH time and memory requirements are
bounded and independent from the data streams’ size when no con-
cept shift is present. The experimental results confirmed said theo-
retical bounds and showed that the approach is scalable with respect
to the sliding window size. The paper also introduced a new biased
sampling technique which outperforms the uniform sampling tech-
nique in terms of accuracy, while using approximately the same
amount of CPU and memory. The experimental results also show
that BSBH handles quite effectively concept shift, although formal
characterization for this case was left for the future. Future work
will also address the problem of automatically detecting the biased
points in data distributions, according to the distribution of the data,
the distribution of the users’ queries, or both.

8. ACKNOWLEDGMENTS

We would like to sincerely thank Graham Cormode and Flip Korn
for providing us with the source code of their biased quantile algo-
rithm proposed in [3].

9. REFERENCES

[1] A. Arasu and G. Manku. Approximate counts and quantiles
over sliding windows. In PODS, pages 286-296, 2004.

12

[2] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Effective computation of biased quantiles over data streams.
In ICDE, pages 20-31, 2005.

G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Space- and time-efficient deterministic algorithms for biased
quantiles over data streams. In PODS, pages 263-272, 2006.
M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
stream statistics over sliding windows. SIAM J. Comput.,
31(6):1794-1813, 2002.

P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. In VLDB, pages
466475, 1997.

A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
How to summarize the universe: Dynamic maintenance of
quantiles. In VLDB, pages 454-465, 2002.

M. Greenwald. Practical algorithms for self scaling
histograms or better than average data collection. Perform.
Eval., 27/28(4):19-40, 1996.

M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In SIGMOD
Conference, pages 58—66, 2001.

Y. E. Ioannidis. The history of histograms (abridged). In
VLDB, pages 19-30, 2003.

X. Lin, H. Lu, J. Xu, and J. X. Yu. Continuously maintaining
quantile summaries of the most recent n elements over a data
stream. In /CDE, pages 362-374, 2004.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass and
with limited memory. In SIGMOD Conference, pages
426435, 1998.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random
sampling techniques for space efficient online computation
of order statistics of large datasets. In SIGMOD Conference,
pages 251-262, 1999.

H. Mousavi and C. Zaniolo. Fast and accurate computation
of equi-depth histograms over data streams. In EDBT, pages
69-80, 2011.

J. I. Munro and M. Paterson. Selection and sorting with
limited storage. Theor. Comput. Sci., 12:315-323, 1980.

M. Muralikrishna and D. J. DeWitt. Equi-depth histograms
for estimating selectivity factors for multi-dimensional
queries. In SIGMOD Conference, pages 28-36, 1988.

G. Piatetsky-Shapiro and C. Connell. Accurate estimation of
the number of tuples satisfying a condition. In SIGMOD
Conference, pages 256-276, 1984.

V. Poosala, Y. E. loannidis, P. J. Haas, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. In SIGMOD Conference, pages 294-305, 1996.
[18] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: New aggregation techniques for sensor
networks. CoRR, ¢s.DC/0408039, 2004.

Q. Zhang and W. Wang. An efficient algorithm for
approximate biased quantile computation in data streams. In
CIKM, pages 1023-1026, 2007.

Q. Zhang and W. Wang. A fast algorithm for approximate
quantiles in high speed data streams. In SSDBM, page 29,
2007.

Y. Zhang, X. Lin, J. Xu, F. Korn, and W. Wang.
Space-efficient relative error order sketch over data streams.
In ICDE, page 51, 2006.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(19]

[20]

[21]

