

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806587

Hannes Voigt, Thomas Kissinger, Wolfgang Lehner

SMIX – Self-Managing Indexes for Dynamic Workloads

Erstveröffentlichung in / First published in:

SSDBM '13: Conference on Scientific and Statistical Database Management, Baltimore
29.07. – 31.07.2013. ACM Digital Library, Art. Nr. 24. ISBN 978-1-4503-1921-8

DOI: https://doi.org/10.1145/2484838.2484862

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806587
https://doi.org/10.1145/2484838.2484862

SMIX – Self-Managing Indexes for Dynamic Workloads

Hannes Voigt, Thomas Kissinger, Wolfgang Lehner
Database Technology Group

TU Dresden
Dresden, Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
As databases accumulate growing amounts of data at an
increasing rate, adaptive indexing becomes more and more
important. At the same time, applications and their use
get more agile and flexible, resulting in less steady and
less predictable workload characteristics. Being inert and
coarse-grained, state-of-the-art index tuning techniques be-
come less useful in such environments. Especially the full-
column indexing paradigm results in many indexed but
never queried records and prohibitively high storage and
maintenance costs. In this paper, we present Self-Managing
Indexes, a novel, adaptive, fine-grained, autonomous index-
ing infrastructure. In its core, our approach builds on a novel
access path that automatically collects useful index informa-
tion, discards useless index information, and competes with
its kind for resources to host its index information. Com-
pared to existing technologies for adaptive indexing, we are
able to dynamically grow and shrink our indexes, instead of
incrementally enhancing the index granularity.

Categories and Subject Descriptors
H.2.2 [Physical Design]: Access methods; H.2.4
[Systems]: Relational databases

General Terms
Indexing, Access Paths

1. INTRODUCTION
Indexes are the most fundamental technique to speed up
queries in database systems. Since indexes support only
fractions of a database’s workload while requiring resources
to be stored and maintained, indexing poses an optimiza-
tion problem. With changing data and shifting workloads,
the optimum is a moving target. As a secondary data struc-
ture, indexes always constitute a trade-off between increased
query performance on the one hand and storage resources
and maintenance cost on the other hand. Index informa-
tion that is beneficial today may be unprofitable tomorrow,

©2013 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in SSDBM ’13, July 29 - 31 2013, Baltimore, MD, USA
https://doi.org/10.1145/2484838.2484862

while another index may have become very useful at the
same time. Index optimization is no point-in-time decision,
but remains a continuous effort. Self-managing indexing,
where index optimization is an integral part of the database
system, takes the burden of this effort permanently away
from the user.

In relational databases, columns form the primary granular-
ity of indexing; each index covers all values of one or more
columns. As databases accumulate growing amounts of data
at an increasing rate, the core problems of full column index-
ing become more evident. If the data in a column doubles
over time, a full column index takes nearly twice the time
to be created and consumes about twice the storage. At the
same time the data of interest is unlikely to double in size
as an increasing share of data is primarily kept for reasons
of revision, lineage, and versioning.

For instance, consider the order processing workload of the
TPC-C benchmark [16]. Typically, an order is only queried
during its processing. After the order is processed, the
product delivered and the bill paid, the order and its data
remains in the system without being individually queried
anymore. Another example are wikipedia article revisions.
Many articles have hundreds of revisions [20], but only the
small fraction of the most recent revisions is queried.

In short, the trend of growing data sizes has two conse-
quences: (1) The traditional full-column index will soon
encompass and maintain mainly unused index information.
(2) The traditional index tuning based on creating and drop-
ping indexes will soon become prohibitively expensive. Par-
tial indexing breaks the trend by focus indexes on the hot
data. An index not crowded with cold and uninteresting
data remains lean and efficiently manageable.

Existing self-managed partial indexing approaches rely on
data clustering. Either they cluster the data with the index
order or into hot and cold data. Both concepts are limited
for secondary indexes. With multiple indexes on one table,
not every index necessarily has the same clustering. Con-
sider OLAP star queries as an exemplary scenario. On some
dimensions star queries select tuples, for instance a certain
year, region or product group, which requires an index on
the name of other descriptive columns of the dimension ta-
ble. Other dimensions are later joined against the fact table
for a comprehensive report, which requires an index on the
primary key, usually a surrogate. Tuples that are hot in

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

1

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

the one case may be of no interest in the other; clustering
becomes difficult.

In this paper, we propose a novel, adaptable, fine-grained,
autonomous indexing infrastructure for secondary indexes in
row stores. It is based on the Self-Managing Index (SMIX),
a new access path that partially indexes the column it is
working on. Like a table scan, a SMIX is available on every
column by default. Like an index, it maintains access in-
formation in a secondary data structure for faster predicate
evaluation. To remain lean, a SMIX constantly adapts the
set of indexed tuples to the workload.

The partial index information helps to speed up queries in
two ways. Case 1: If all tuples that fulfill the queried pred-
icate are indexed, the tuples answering the query can be
directly discovered with the index. This is the desired case,
because a table scan can be avoided. The more queries fall
into this category, the better the partial index is adapted to
the workload. Case 2: If all tuples in a page are indexed,
all tuples matching the queried predicate can be discovered
by a table scan. This table scan is able to skip the fully
indexed page, if it combines its result set with the scan of
the partial index. Hence, skipping a lot of pages during a
table scan helps to lower query execution costs in situations
where the partial index is not well adapted to the workload
and many table scans are necessary to answer queries.

To cover both cases, our SMIX access path completely in-
dexes (1) the most queried values, to answer most of the
common queries efficiently, and (2) a proportion of pages,
to speed up table scans. This way, a SMIX is able to adapt
to a workload while quickly leveraging collected index infor-
mation.

As the SMIX is a default access path, it automatically col-
lects index information on potentially every column. Two
principles keep the SMIX population of a database from ex-
ceeding a configurable global resource limit. (1) Every SMIX
has an individual resource quota and it is able to displace
less queried index entries to lower its resource usage. (2) All
SMIXs compete for the globally granted resources, so that
invaluable index information automatically drops out of the
system.

The SMIX indexing infrastructure comes with only a very
few configuration knobs, mainly the amount of resources
that can be used for indexing. SMIXs distribute the heavy
lifting of index creation over time and focus index creation
on the data of interest. Furthermore, the approach does not
involve expensive what-if calls to the query optimizer. This
way, SMIXs reduce the required user interaction dramat-
ically without sacrificing performance by missing indexing
opportunities or imposing to much overhead on the DBS.

The paper is structured as follows. In Section 2, we start
with an introductory example to illustrate our approach. We
present the approach in detail in the three sections following.
Section 3 lays out the general SMIX architecture. Section 4
details the SMIX access path; how it collects, maintains, and
displaces index information. Section 5 discusses the global
management of all SMIX present in a system. We conducted
experiments to evaluate our approach and present the results

T
im

e

2 1 2 1 2 2

Table

PPT

0 0 2 0 1 2PPT

0 0 2 0 0 1PPT

Query 3:

R.c = PHX

XXX Indexed in CVT

Query 2:

R.c = LA

Query 1:

R.c = NY

Indexed in IVTTuple with value X, not indexed Free space

NY
LA
CHI

LA HOU
PHL

NY
PHX

SA
NY
LA

PHX
CHI

Table
NY
LA
CHI

LA HOU
PHL

NY
PHX

SA
NY
LA

PHX
CHI

Table
NY
LA
CHI

LA HOU
PHL

NY
PHX

SA
NY
LA

PHX
CHI

Pages 1 2 3 4 5 6

Figure 1: SMIX Indexing Example

in Section 6. Finally, we discuss related work in (Section 7)
and conclude the paper (Section 8).

2. INTRODUCTORY EXAMPLE
Before outlining the details of the SMIX approach, we il-
lustrate the general idea of the SMIX access path with an
example. A SMIX consist of three data structures: two tree
indexes – the covered values tree (CVT) and the interme-
diate values tree (IVT) – and a list of counters – the page
population table (PPT). We will detail on all three later.

For the example shown in Figure 1, we use a table for smart-
phone sales of the seven biggest cities in the US. Let this ta-
ble consist of 13 tuples stored in six pages. At the beginning,
the table was not queried before and is now hit by three con-
secutive queries on the same column for which the optimizer
decides to use a SMIX scan. All three queries select a new
value, not queried before. Before the first query, the SMIX
is uninitialized and the data structures do not exist at all
and will be created with the first query. The figure shows
the state of the SMIX’s data structures after every query.

For the first query on NY, the SMIX scans the complete
table. While scanning the table, the SMIX inserts the three
qualifying tuples into the CVT. During the first table scan,
the SMIX neither skips any pages nor indexes pages into the
IVT, instead it initializes all PPT counters with the number
of not indexed tuples, remaining in each page.

For the second query on LA, three tuples qualify and are in-
dexed into the CVT. Since none of the pages is fully indexed
yet, no page can be skipped during the table scan. However,
with the PPT counters now set, the SMIX can decide before
the table scan for which pages it wants conduct to complete
indexation; let it decide for page 1, 2 and 4. In consequence,
the SMIX additionally indexes the two not qualifying tuples
in these pages in the IVT. After the second SMIX scan, six
tuples are indexed in the CVT, two tuples are indexed in the
IVT, and the three pages 1, 2, and 4 are completely indexed.
All PPT counter have been update accordingly.

For the third query on PHX, the SMIX again scans the table.
This time, the table scan can skip the completely indexed
pages 1, 2, and 4. In the remaining pages, the scan finds

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

2

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

SMIX

Manager

Query

Execution

Engine

Storage Layer

ぐ
SMIX SMIX

System

Catalog

Profiles

Query

Graph

Figure 2: SMIX in Database Architecture

two qualifying tuples and indexes them in the CVT. Addi-
tionally, the SMIX decides to complete indexation for page
5, which has only one unindexed tuple left. The SMIX also
scans the IVT, to check for qualifying tuples that may be
missed during the table scan by skipping pages. Both re-
sulting tuple streams – of the table scan and the IVT scan
– are merged together to form the result of the SMIX scan.
Since all tuples found by the IVT scan are qualifying tuples
for the queried value, the SMIX removes them from the IVT
and adds them to the CVT. In the example, this is the case
for the second tuple in page 4. After the third SMIX scan,
eight tuples are indexed in the CVT, two tuples are indexed
in the IVT, and the four pages 1, 2, 4, and 5 are completely
indexed.

As it can be seen in the example, skipping of pages does
not result in false negatives. Only fully indexed pages are
skipped. For fully indexed pages, all tuples are indexed ei-
ther in the CVT or in the IVT. The CVT is always scanned
in the first phase, the IVT is scanned in the second phase.
In both cases, the tuples will be discovered.

3. ARCHITECTURE
The core idea of SMIX is a new default access path that
adapts itself to the workload. This requires two novel com-
ponents in the database architecture shown in Figure 2. The
first component is the SMIX itself, the new self-managing
access path. The second component is the SMIX manager,
which supervises the SMIX population in the system.

A SMIX combines the abilities of traditional table scan and
index scan in a single access path. Like a traditional table
scan, a SMIX acts as a default built-in access path, which
is available on every column and does not have to be cre-
ated explicitly. Like a traditional index, a SMIX incorpo-
rates index information, which allows reducing page accesses
for queries significantly. Implementation-wise, a SMIX even
reuses the logic of these traditional access paths. A SMIX
autonomously collects index information based on the tuples
that are accessed by the workload. It directly leverages this
collected information for the next accesses, even if these ac-
cesses relate to other tuples. Additionally, a SMIX not only
collects new index information, a SMIX also discards index
information that turns out to be less useful. Therefore, a
SMIX adapts to the data workload and is also able to con-
trol its use of storage and memory resources.

SMIXs co-exist to traditional access paths in the system.
The query optimizer still decides which access path to take

for a specific query. It applies two general rules for the
access path selection: (1) It always chooses a SMIX scan
over a table scan, if the optimizer would take an covering
index on this column, because a SMIX can quickly adapt
to better performance. (2) It always chooses a traditional
index scan over the SMIX scan if a single column index is
present, because a SMIX rarely exceeds the performance of
a traditional index scan and redundant index information
should be avoided. If multicolumn indexes are present on the
queried column, the optimizer relies on traditional statistics-
based decision rules. In order to accomplish that, every
SMIX maintains statistics about itself in the system catalog,
similar to traditional index and table statistics.

SMIXs are query-driven; they are not created explicitly. A
SMIX that was never accessed does not consume any space.
Each indexable column has a catalog entry indicating if it
has an initialized SMIX present. As the SMIX scan is a
default access-path a query can utilize a SMIX scan on a
column even if the column’s SMIX has not been initialized.
The first SMIX scan on a column will initialize the SMIX
on that column.

The SMIX manager is the supervisor component for all
SMIXs in the system. Since SMIXs are automatically cre-
ated and allocate new storage and memory resource on their
own, they need to be controlled, in order to not exceed the
globally available resources. The SMIX manager collects ac-
cess statistics for every SMIX. Based on these statistics, it
defines resource quotas for SMIXs and enforces them.

The globally available resources for indexing are index
spaces, where the index information is stored. For SMIXs,
we distinguish two types of index spaces: (1) the establish-
ment space, (2) the evolution space. The establishment space
represents disk resources; it offers persistency and supports
crash recovery. A SMIX stores its established indexing infor-
mation here, which has proven value for the workload. In op-
position, the evolution space represents faster main memory
resources; it is transient and does not support crash recov-
ery. A SMIX stores supporting structures that contain less
valuable indexing information in the evolution space. Espe-
cially when a SMIX is merely adapted to the workload, it
makes heavily use of these supporting structures. Hence, the
main-memory-based evolution space allows a faster adaption
at lower costs compared to disk. The SMIX manager assigns
quotas for establishment space and evolution space to each
SMIX, while the absolute size of establishment space and
evolution space is configured by the DBA.

In the following Section 4 we dive into detail on the SMIX
design, especially which data structures it uses and how it
operates. Afterwards, Section 5 gives details on the SMIX
manager, how quotas are determined and enforced.

4. SMIX
In this section we describe the functioning of the adaptive
indexation logic of a single SMIX, which works on a single
column of a relation. At first, we introduce the data struc-
tures that are utilized for the indexation process. Followed
by the state model, which specifies the different modes of
operation a SMIX can be in. Then we show how the data
structures and the state model work together. Further, we

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

3

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

SMIX

CVT

IVT

SMIX

Establishment

Space

Evolution

Space
PPT

Disk

Memory

ぐ

ぐ

Figure 3: Data Structures of a SMIX

discuss how to reverse the indexation process, displace index
information and free resources, which then can be claimed
by other SMIXs. At last, we outline how SMIX are main-
tained during DML operations.

4.1 Data Structures
A SMIX consists of three data structures: the covered val-
ues tree (CVT), the intermediate values tree (IVT), and the
page population table (PPT). Depending on their usage, each
of these structure is either stored inside the establishment
space or the evolution space, as illustrated in Figure 3. The
following describes the three data structures and their usage
in more detail.

Covered Values Tree (CVT): The CVT is a conven-
tional B*-Tree, which resides in the establishment space.
The CVT completely indexes the most queried values. For
values with qualifying tuples, the CVT holds references on
all these qualifying tuples. For values without any qualify-
ing tuples, the CVT holds a single null reference. Either
way, the SMIX can serve queries on values present in CVT
by a single CVT scan. The SMIX inserts values into the
CVT when they are queried. To control its size, the SMIX
also removes infrequently queried values from the CVT. By
indexing only the most frequently queried values, the CVT
reflects the current workload of the database – similar to a
cache or a buffer. Thus, once adapted to the workload, the
SMIX serves the majority of its queries by a single efficient
CVT scan.

Intermediate Values Tree (IVT): The IVT is also a con-
ventional B*-Tree and is stored inside the transient evolution
space. The IVT completely indexes the remaining values of a
page that are not already indexed by the CVT. This way, the
IVT complements the CVT; all tuples of pages referenced in
the IVT are indexed either in the CVT or in the IVT. (To
avoid redundant indexing information, the tuple reference
set of the CVT and the IVT are disjoint.) With help of
the IVT, the SMIX can increase the number of completely
indexed pages significantly. The SMIX can safely skip these
completely indexed pages during a table scan without risking
false negatives. All potential result tuples missed in the ta-
ble scan can be discovered by a CVT or an IVT scan. While
still adapting to the workload, the SMIX uses the IVT to
speed up the table scans still required for a large share of
queries. Thus, the IVT serves as a temporary supporting
structure in times of workload changes. The IVT can be
seen also as a specialized buffer pool, which buffers data in
a processing-oriented form.

Page Population Table (PPT): The PPT is a list of

Table 1: State Characteristics of a SMIX

Unstable Stable

CVT hit rate low high
% index scans low high
% table scans high low
Need to adapt high low
IVT present yes no
PPT present yes no
CVT build up yes yes
Automatic displacement on CVT no yes

counters located inside the evolution space. The list con-
tains a counter for each page of the table the SMIX serves.
Each PPT counter indicates how many tuples in its page
are neither indexed by the CVT nor by the IVT. The PPT
serves two proposes: (1) It helps to quickly identify pages
that are most worthwhile to be indexed in the IVT (pages
with a low counter greater than zero). (2) It allows to eas-
ily identify pages that can be skipped by a table scan (pages
with a counter equal to zero). The SMIX initializes the PPT
with the first table scan it has to perform. Subsequently, the
SMIX maintains the PPT incrementally. The memory the
PPT consumes depends on the accuracy a page is monitored
and the number of pages.

Please note that conventional B*-Trees are not a necessity
for the SMIX concept. A CVT or an IVT built as a hash
index, a spatial index, the use of cache optimized index such
as the CSB+-Trees [12] fits in equally well.

4.2 State Model
The operational mode of a SMIX depends on its need to
adapt itself to the workload. A SMIX is well adapted to
the workload if it can serve the majority with an efficient
CVT scan, i.e., if its behavior resembles a standard index
scan. Accordingly, we define the percentage of the recent
queries that could be answered with a CVT scan as the
CVT hit rate. If the CVT hit rate of a SMIX is low, the
SMIX will operate in unstable mode and try to adapt to the
workload. If the CVT hit rate is above a given threshold Th,
the SMIX operates in stable mode. Depending on its CVT
hit rate, a SMIX switches between both states. A SMIX
measures its CVT hit rate h using a ring bitmap B with a
configurable time frame t so that h = |{x|x ∈ B ∧ x = 1}| ·
t−1. Table 1 subsumes the most important characteristics
of the two operational states.

Unstable State: In the unstable state, the SMIX has a low
CVT hit rate, which results directly from the low number
of SMIX accesses that are processed by a CVT scan. This
means that the index needs to adapt to the current work-
load. The SMIX builds up and maintains the CVT and the
additional IVT to temporarily speed-up the high number of
table scans. In effect, the SMIX occupies resources in the
establishment space as well as in the evolution space. In or-
der to force the SMIX in a conceivable amount of time into
the stable state, the SMIX desists displacing entries from
the CVT automatically. (Nevertheless, the SMIX displaces
CVT entries if it is forced to by the SMIX manager.)

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

4

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Algorithm 1 SMIX Scan

1: procedure SmixScan(v) ⊲ v: queried value
2: Q← CVT.Scan(v) ⊲ CVT scan
3: if Q = ∅ then
4: S ← SelectPagesForIVT(PPT)
5: for t ∈ IVT do ⊲ IVT scan
6: if t.c = v then
7: Q← Q ∪ {t}
8: IVT.Remove(t)
9: CVT.Add(t)

10: for p ∈ R with PPT[p] > 0 do ⊲ Table scan
11: for t ∈ p do
12: if t.c = v then
13: Q← Q ∪ {t}
14: CVT.Add(t)
15: PPT[p]← PPT[p]− 1
16: else if p ∈ S ∧ t /∈ CVT then
17: IVT.Add(t)
18: PPT[p]← PPT[p]− 1

19: return Q

Stable State: The stable state is characterized by a high
CVT hit rate, which means that the SMIX serves most
queries with an efficient CVT scan. This implies a low prob-
ability of the need for expensive table scans. Therefore, the
SMIX discards the IVT and the PPT and solely relies on
the CVT. In effect, the SMIX occupies resources in the es-
tablishment space only. The SMIX further builds up the
CVT, in case of unindexed values are queried. Additionally,
it automatically displaces the most infrequent accessed CVT
entries. Since these entries obviously do not fit the current
workload anymore, they are not worth keeping. The goal of
a SMIX is to get into the stable state, in order to serve the
current workload most efficiently.

4.3 SMIX Scan
Traditionally, the database system accesses the requested
data either via a full table scan or by scanning a fully cov-
ering index. Our approach combines both access paths in
a single SMIX scan. During this SMIX scan, the CVT and
the IVT gather indexing information, which is used to speed
up subsequent SMIX scans.

A SMIX scan consists of two phases. In the first phase, the
SMIX scans the CVT for the queried value. If the value is
found in the CVT, the result of the CVT scan answers the
query. In the second phase, the SMIX scans the IVT and
the table for the queried value in case the CVT scan was
negative. The table scan, though, performs three additional
actions besides searching for tuples with the queried value.
(1) The table scan skips all pages with a PPT counter equal
to zero. (2) The table scan indexes all unindexed tuples
of pages with the lowest PPT counter in the IVT. (3) The
table scan indexes all qualifying tuples in the CVT. Note, the
introductory example in Section 2 shows the second phase
of a SMIX scan.

Algorithm 1 shows the SMIX scan in detail. Given a query
R.c = v, the SMIX on column c of table R is scanned for
value v. As the first step, the SMIX scans its CVT (line 2).
If the CVT contains v, the SMIX scan is done and returns

the result of the CVT scan. If the CVT result is empty
instead, the SMIX performs a second step. Preparative, the
SMIX determines the pages that should be fully indexed
during this scan (line 4). Thereafter, the SMIX scans its
IVT (line 5) and the table (line 10). IVT and table can be
scanned in parallel. However, this may cause touching tuples
twice, because the table scan adds tuples to the IVT. The
IVT scan adds all qualifying tuples to the result and moves
them to the CVT. The table scan also adds all qualifying
tuples to the result and to the CVT. Additionally, if the
scanned page was selected to be fully indexed, the table scan
adds all not qualifying tuples that are not already indexed
in the CVT to the IVT. For all tuples added to either of the
indexes, the table scan decrements the PPT counter of the
corresponding pages. Finally, the SMIX returns the result.

A SMIX scan operates in the unstable state as described. In
the stable state, as detailed in Section 4.2, the SMIX per-
forms only a table scan in case the CVT scan was negative
nor does it scan or maintain an IVT. For range predicates
the SMIX scan always has to perform a table scan, because
the CVT may not cover the complete range. Hence, range
predicates do not count as a CVT hit even if the CVT scan
is positive.

The number of pages the SMIX indexes in the IVT in each
table scan derives from the CVT hit rate. The lower the
CVT hit rate is, the more table scans require speed up, the
more pages we want to be completely indexed after the next
table scan. Accordingly, the SMIX determines the number
of pages as h

θ
b, where h is the SMIX’s current CVT hit rate,

θ is the configured threshold for the stable state and b is the
total number of pages in the table. Note that this approach
quickly increases the number of pages that can be skipped
in the table scan; it has no influence on the improvement of
the CVT hit rate nor does it facilitate reaching the stable
state.

4.4 Displacement
While SMIXs grow incrementally, SMIXs are also able to
shrink. Shrinking is crucial for the constant adaption to
a shifting workload. By displacing index entries that are
not worth keeping for the current workload, the SMIX frees
storage and maintenance resources, which can be spent on
index entries that are more valuable for the current work-
load. Displacement is triggered in two different ways: forced
displacement and automatic displacement. The SMIX man-
ager orders forced displacement to keep a SMIX within its
resource quotas. Every time a SMIX index new data and
requires more space, the SMIX manager checks the quotas
and triggers a forced displacement is required. The SMIX it-
self performs automatic displacement to remove merely used
index information. With every query a SMIX process in the
stable state, the SMIX checks if some index information can
be displaced. A SMIX implements different displacement
strategies for its CVT and its IVT. Both strategies are de-
tailed in the following.

CVT Displacement: The CVT contains the index entries
most valuable to the current workload. It reflects the cur-
rent workload and serves the majority of queries, once the
SMIX is in the stable state. However, when the workload
shifts, CVT entries created in an early workload episode

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

5

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Table 2: SMIX Maintenance

told ∈ CVT told /∈ CVT
tnew ∈ CV T tnew /∈ CVT tnew ∈ CV T tnew /∈ CVT

pold pnew CVT.Update(told, tnew) CVT.Remove(told) CVT.Add(tnew) -

∈ IVT
∈ IVT - IVT.Add(tnew) IVT.Remove(told) IVT.Update(told, tnew)
/∈ IVT - PPT[pnew]++ IVT.Remove(told) IVT.Remove(told), PPT[pnew]++

/∈ IVT
∈ IVT - IVT.Add(tnew) PPT[pold]-- IVT.Add(tnew), PPT[pold]--
/∈ IVT - PPT[pnew]++ PPT[pold]-- PPT[pold]--, PPT[pnew]++

may not be valuable to the current workload episode. To
displace these entries from the CVT in efficient way, the
SMIX can remove the least frequently accessed leaf nodes
from the CVT. Displacing a leaf node removes the range of
values from the CVT, which have their entries in that node.
This may include also valuable entries, but the overhead of
tracking the value of single entries would be prohibitively
high and valuable entries will return soon.

More specifically, the CVT displaces a leaf node in five steps.
(1) It selects the leaf node that should be displaced. (2) It
removes the referencing entry from leaf nodes parent node.
(3) It frees the page the leaf node was stored in. (4) It re-
moves overlapping entries from the neighboring leaf nodes.
(5) It increments PPT counters accordingly for every page
that is referenced in the leaf node and the overlapping en-
tries.

The crucial step is the selection of the leaf node to displace.
To displace the leaf node that is least worth to the current
workload, the SMIX selects the node least recently used by
a query. For that propose the SMIX maintains the historic
mean access interval (∆) and the current mean access in-

terval (∆̂) for all leaf nodes of its CVT. The higher both
measures, the less a node was recently used. Both measures
are explained in detail in Section 5.1. For forced displace-
ment, the SMIX removes the leaf nodes with the highest
∆̂ values. For automatic displacement, the SMIX removes
leaf nodes whose ∆̂ exceed its ∆ by a factor D: ∆̂/∆ > D.
The factor D controls the aggressiveness of automatic dis-
placement on CVTs; the lower D, the more aggressively the
SMIX displaces leaf nodes.

IVT Displacement: The IVT is a supporting structure
held in memory, which helps a SMIX during time of adap-
tion. More specifically, its index entries are gap fillers to
complement the entries of the CVT so that the pages are
fully indexed and can be skipped in a table scan. Displacing
a whole node of IVT entries would cause many pages not
to be completely indexed anymore, which would thwart the
purpose of the IVT without freeing many resources. Thus a
reasonable fine grained displacement is not possible for the
IVT. In consequence, the SMIX simply discards the whole
IVT. Displacing the IVT does not hurt the stability of a
SMIX, it merely slows the SMIX on the next table scans,
because it can skip less pages. A SMIX displaces its IVT
if it is ordered to do so by the SMIX manager (forced dis-
placement) or if it enters the stable state (automatic dis-
placement), since a SMIX does not maintain an IVT in the
stable state (see Section 4.2 for details).

Case 2Case 1

< Past ͙ NŽǁ ͙ FƵƚƵƌĞ >

ɷ4 ɷ3 ɷ2 ɷ1 ɷnow

ȴ

[, , ,]=H
Next expected

access

All SMIX accesses

History of a specific SMIX:

Figure 4: Access Interval Measures

4.5 Maintenance
The SMIX maintains the CVT, IVT, and PPT during in-
serts, updates, and deletes. Which operation the SMIX has
to perform depends (1) if the old tuple told was in the CVT,
(2) if the updated tuple tnew will be in the CVT, (3) if the
old page pold that contained the tuple is covered by the IVT,
and (4) if the new page pnew that will contain the new tuple
is covered by the IVT. Table 2 lists the different maintenance
scenarios with necessary operations.

5. SMIX MANAGER
With every individual SMIX, the SMIX manager takes the
task of supervising the whole population of SMIXs present
in a system. The main goal of the SMIX manager is to
ensure that the globally granted resources for SMIXs are not
exceeded. The SMIX manager determines resource quotas
for every SMIX and enforces these quotas.

5.1 Resource Quotas
Resource quotas define how much storage and memory every
SMIX can occupy in the establishment space and the evo-
lution space, respectively. Depending on its state, a SMIX
gets a share of both, storage and memory (unstable) or only
for storage (stable). For each SMIX, the SMIX manager
continuously calculates the shares. The shares of a SMIX
reflect (1) how often the SMIX is used and (2) the size of
the column the SMIX indexes.

We determine the usage of a SMIX with the same measures
used for the displacement in a CVT: the historic mean access
interval ∆ and the current mean access interval ∆̂. For
both, consider Figure 4. Looking at a history of all accesses
to all SMIXs in a system, we can determine how frequently
a particular SMIX is used by averaging the length of the
intervals between accesses to this SMIX. For that, the SMIX
manager maintains a history H = [δ1, . . . , δn] of the recent
access interval lengths δi for each SMIX, so that δ1 presents
the most recent access interval and n is the maximal history
length maintained. Additionally, every SMIX has a counter
δnow, which the SMIX manager increases with every access

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

6

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

to any of the other SMIXs. If a SMIX is accessed, its δnow

becomes the new first entry of the history, so that H =
[δnow, δ1, . . . , δn−1]. The historic mean access interval ∆ of
a SMIX is the mean of its history, ∆ = (δ1 + . . .+ δn) · n

−1.
The smaller ∆, the more frequent a SMIX is accessed. In
the example shown in the figure, the considered SMIX has
a history of [7, 3, 8, 6], δnow = 4 and ∆ = 6.

The historic mean access interval ∆ already gives a good
measure how frequently a SMIX is used. However, ∆ only
reflects the past, i.e., accesses that happened. If a SMIX is
not accessed anymore because of a workload change, it will
keep a small ∆. To consider also a SMIX’s current interval
between the last access and the next access to come, we
distinguish two cases: Either the expected point for the next
access (1) is still ahead (δnow ≤ ∆) or (2) has already past
(δnow > ∆). In the first case, we stick with the expected
interval and assume the current interval to equal ∆. In
the second case, we know the expectation is wrong and the
current interval is at least as long as δnow. The current
mean access interval ∆̂ of a SMIX is the mean of its history
including the current interval:

∆̂ =

{

∆ δnow ≤ ∆
δnow+δ1+...+δn

n+1
δnow > ∆

The size s of the SMIX indexed column calculates from the
number of tuples k in the corresponding table and the col-
umn width l: s = kl. A SMIX is worth higher shares than
other SMIXs if it is accessed more frequently and if it has
to cover a larger amount of data compared to other SMIXs.
Hence, in a SMIX population P , the share of a SMIX is

ω =
∆̂−1s

∑

P
∆̂−1s

.

The population P encompasses all SMIXs for the establish-
ment space and all unstable SMIXs for the evolution space,
resulting in two shares ωest and ωevo, respectively. Based
on these two shares, the SMIX manager grants each SMIX
a number of pages in the establishment space and in the
evolution space as resource quotas.

5.2 Quota Enforcement
With the help of the quotas, the SMIX manager determines
which SMIX can grow and which SMIX has to shrink. Be-
cause of the different displacement characteristics, the en-
forcement of the individual quotas for establishment space
and evolution space differs, too. In the following, we de-
scribe the enforcement for both spaces in detail.

Quota Enforcement in Establishment Space: The es-
tablishment space hosts CVTs only. CVTs grow and shrink
moderately, which allows an optimistic enforcement of the
quotas. Requests for new CVT pages are always granted
to a SMIX regardless of its quota. If the available estab-
lishment space is exhausted, the SMIX manager will order
forced single-page displacements until the required number
of pages is free. For every displacement, the SMIX man-
ager selects a SMIX by two rules: (1) If SMIXs exceed
their quota, the SMIX manager will pick the SMIX with the
largest relative excess. (2) If multiple SMIX have same rel-
ative excess, the SMIX manager will pick the least recently

used SMIX among them (highest ∆̂). The selected SMIX
decides which specific page it will displace (see Section 4.4).

Quota Enforcement in Evolution Space: The evolution
space hosts unstable SMIXs, specifically PPTs and IVTs.
Both account for the quota of a SMIX. PPTs change their
size only in case of inserts to the table and are only displaced,
if the SMIX reaches the stable state. In case the quota of a
SMIX is too low to fit its PPT, the SMIX manager removes
the IVT and PPT completely. However, the manager keeps
determining the SMIX’s quota, so that the SMIX may be
allowed to initialize again later. In contrast to PPTs, IVTs
change their size rapidly. On the one hand, an IVT grows
rapidly, if the SMIX is below its quota in the evolution space
and completes indexing for many pages in each table scan.
On the other hand, an IVT shrinks suddenly to zero size, if
the SMIX manager forces its displacement. In consequence,
the SMIX manager enforces the evolution space quotas pes-
simistically to avoid excessive displacement. Requests for
new IVT pages are granted to a SMIX as long as the SMIX
does not exceed its quota. This strategy prevents a SMIX
from actively exceeding its quota. However, a SMIX can
passively exceed its quota in case the quota changes. After
each recalculation of the evolution space quotas, the SMIX
manager determines which SMIXs exceed their quota and
orders a forced displacement on one of them. To select the
SMIX that will have to displace its IVT, the SMIX manager
applies the same two rules as in the establishment space
(largest relative excess and least recently used).

6. EVALUATION
To evaluate our SMIXs approach, we conducted a series of
experiments. We start giving an overview of our prototype
and describe the setup that we use for our experiments. Af-
terwards, we present a basic experiment to illustrate the
behavior and the inner mechanics of a SMIX, especially its
ability to adapt to a changing workload. Based on that ex-
periment, we investigate the influence of the different SMIX
parameters. We continue by evaluating a set of common
workload patterns for a single SMIX. Finally, we extend this
to a more complex scenario, which involves multiple SMIXs.

6.1 Experimental Setup
We implemented our prototype of SMIX in PostgreSQL
9.0.2. In the prototype, SMIXs are the new default access
path available by default on every column. Implementation-
wise, our prototype reuses the existing heap scan code and
B+-tree code of PostgreSQL as much as possible. We ran all
experiments on an Intel Core i7-2600 processor at 3.4 GHz
with 8 GB of DDR3 main memory and a 1TB Samsung hard
drive at 7200 rpm. We used Microsoft Windows 7 64bit edi-
tion as the operating system.

For all experiments, we used a common data setup, which
consists of a single table with three INTEGER columns
(a,b,c) for indexing and one VARCHAR(512) column as
payload. Think of the table as a dimension table in an
OLAP scenario as described in the introduction. The in-
teger columns are the column queried, either to slice the
dimension or to join it with the already sliced fact table.
The payload data represent descriptive properties of the di-
mension that are not part of selection predicates. All three
integer columns are populated with random values uniformly

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

7

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Table 3: SMIX Base Configuration

Parameter Value

Size of establishment space 64MB
Size of evolution space 128MB
Threshold θ 95%
Time frame t 200
Displacement factor D ∞
History length n 3

distributed from 1 to 50 000. The size of the payload values is
also uniformly distributed from 1 to 512. We filled the table
with 5 000 000 tuples, resulting in an effective table size of
1.5 GB on disk. In the base configuration, the database sys-
tem is configured to use 256 MB of shared buffers. Further-
more, the base configuration encompass an initial setting for
all the parameters listed in Table 3. The base configuration
applies for all experiments, unless stated otherwise.

6.2 General Performance
Our initial experiment illustrates the general behavior and
performance of a single SMIX and how it adapts to a chang-
ing workload. In the experiment we run a workload consist-
ing of two subsequent episodes. Each workload episode is a
set of 5 000 queries in the form of SELECT COUNT(*)
FROM R WHERE c=x. For every query, we pick x ran-
domly from a equally distributed continuous range of the
domain of column c. In the first episode x ∈ [1 000, 2 000]
and in the second episode x ∈ [25 000, 26 000]. We used the
base configuration, except the size of the evolution space was
reduced to 64 MB. For all 10 000 queries, we measured the
execution time, the CVT hit rate, the CVT size, and the IVT
size. We compare our measurements with two baselines: the
traditional table scan and the traditional full-column index.

Figure 5(a) shows the execution time and the CVT hit rate
over the course of the workload. The traditional table scan
and the traditional full-column index exhibit a constant ex-
ecution time over the complete workload of about 1 200 ms
and 1 ms, respectively. The execution time remains con-
stant, since the two traditional access paths treat every
equally and do not adapt to the workload. In contrast, the
execution time the SMIX varies over the course of the work-
load. The figure shows the exact execution time of each
query (thin blue line without markers) and the sliding aver-
age of 100 queries (green line with circle markers). With the
first query, the SMIX initializes its PPT and indexes the first
value in the CVT. With the second query, the SMIX indexes
about half of the table into the main memory-based IVT be-
cause it has a low CVT rate and plenty of evolution space
available in the beginning. In consequence, the SMIX exe-
cution times of the first two queries (1 250 ms and 4 880 ms,
respectively) exceed the traditional table scan. From the
third query on, the execution time of the SMIX is signifi-
cantly lower than the table scan. When the SMIX has to
perform a table scan, it takes about 650 ms to answer the
query because the SMIX, still in its unstable state, can lever-
age the IVT and skip pages during the table scan. Other-
wise, if the query hits the CVT, the execution time is below
1 ms and therefore comparable to an traditional index. Over
the course of the workload, the SMIX collects an increasing

share of the queried values in the CVT. Consequently, the
CVT hit rate increases and the average execution time drops
quickly below 100 ms.

With query 3 196, the CVT hit rate exceeds the threshold
θ and the SMIX changes into the stable state. Within the
process, the SMIX discards its IVT and PPT. Without its
two helping structures now, the SMIX cannot skip pages to
speed up the table scan. Consequently, the SMIX execution
time in case of table scan jumps to 1 200 ms. Already well
adapted to the current workload, though, the SMIX can an-
swer the majority of queries with a CVT scan. The average
execution time stays at the low level and drops even further
below 50 ms as the SMIX keeps indexing new values into the
CVT. As well visible in the figure, the number of spikes in-
dicating that the SMIX has to perform a table scan decrease
further towards query 5 000.

With query 5 000, the workload switches to the next episode.
None of the values indexed in the SMIX’s CVT is queried
anymore. The CVT hit rate drops instantly below the
threshold and the SMIX changes into the unstable state
again. Within a few queries, the SMIX rebuilds its IVT.
The adaption process repeats.

Figure 5(b) shows the cumulative execution time for the
SMIX and the two traditional access paths in comparison.
As can be seen, the SMIX quickly becomes profitable. With
the 10th query, its cumulative execution time falls below
the table scan. The bump at query 5 000 reflects the costs
of re-adaption. As expected, the traditional full-column in-
dex requires less execution time – its creation not included.
In our experimental setting a full-column index on column
a requires approximately 107 MB disk space. In compari-
son, the CVT consumes about 3 MB after the first workload
episode and 6 MB after the second episode, as illustrated in
Figure 5(c). In total, the CVT consumes about 10% of the
configured 64 MB available establishment space. Figure 5(c)
shows the amount of memory consumed by the IVT over the
course of the workload. Following its nature as an intermedi-
ate supporting structure, the IVT consumes all the available
evolution space of 64 MB while the SMIX in the unstable
state. In this experiment, the SMIX shows a good adap-
tion behavior and proves its ability quickly detect workload
changes.

6.3 Parameter Impact
In the next step we want to investigate the impact of three
important SMIX parameters: the size of the evolution space,
the stability threshold θ and the CVT displacement aggres-
siveness factor D All three parameters have influence on the
overall adaption performance. We used the base SMIX con-
figuration (Table 3) and the same workload episodes as in
the previous experiment. In the following we describe the
effects of different settings for each single parameter.

Size of Evolution Space: Figure 6(a) shows the execu-
tion times (smoothed over a period of 100 queries) for three
different sizes of the evolution space. We configured the evo-
lution space with 16 MB, 64 MB, and 128 MB. Consider that
the IVT would take up to 140 MB, if it would index all re-
maining tuples of the relation. Because the evolution space
is only utilized if a SMIX is in an unstable state, we see big

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

8

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1

0

150

300

450

600

750

900

1050

1200

1350

1500

1 001 2001 3001 4001 5001 6001 7001 8001 9001

C
V

T
H

it
R

a
te

[%
]

E
xe

cu
ti

o
n

T
im

e
[m

s]

Query Number

Table Scan SMIX Avg. SMIX Index Scan CVT Hit Rate

(a) Execution Time and CVT Hit Rate

0

2000

4000

6000

8000

10000

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

C
u

m
u

la
ti

v
e

E
xe

cu
ti

o
n

T
im

e
[s

]

Query Number

Table Scan SMIX Index Scan

0

5

10

15

1 6 11 16 21

(b) Cumulative Execution Time

0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

7

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

IV
T

S
iz

e
[M

B
]

C
V

T
S

iz
e

[M
B

]

Query Number

CVT Size IVT Size

(c) Size of CVT and IVT

Figure 5: General Performance

differences in the early adaption stage. The 128 MB con-
figuration shows the best performance for the first queries
of an episode because the IVT is able to index many of the
remaining tuple quickly, which allows all subsequent table
scans to skip almost every page. At this point, the SMIX
operates close to the speed of an index scan. The opposite is
visible at the 16 MB setting. Here, the IVT is able to index
merely 1% of the remaining tuples. This results in a much
longer execution time in the early adaption stage. The often
necessary table scans are not able to skip a large part of the
pages. The larger the evolution space, the better the adap-
tion behavior. Nevertheless, memory is a costly ressource
and the evolution space size should be set carefully.

Stability Threshold θ: In Figure 6(b) we visualized the
smoothed execution times for various settings of the stabil-
ity threshold θ. We ran the experiments for a threshold of
50%, 75% and 95%. For this experiment, we see the differ-
ences as soon as the SMIX enters the stable state. The main
observation is that a low threshold of 50% leads to higher
execution times in the early stable stage. This poor per-
formance happens because only 50% of the queried values
hit the CVT. Thus, the SMIX needs to invoke a table scan
for the other 50% of the queries, which is not able to skip
any pages since the IVT supporting structure was dropped,
in the moment, the SMIX entered the stable state. In our
experiments, a threshold value of 95% turned out to be the
best solution.

CVT Displacement Aggressiveness D: In this experi-
ment series we investigate the influence of the automatic dis-
placement, which was disabled in all previous experiments
for reasons of simplicity. Because automatic displacement
is only allowed in the stable state, we are going to see the
differences only in the stable passages of the experiments.

Figure 6(c) shows the CVT sizes of the SMIX for the set-
tings of 5, 10, and 15. A low D means a high aggressiveness.
With D set to 15, we observe a slow displacement of unused
CVT entries at the end of the second episode. For settings
of 10 and 5, the experiment shows a much faster displace-
ment in the second episode. However, the more aggressive
displacement also leads to displacements in the first episode,
where it effects CVT entries that are used by the workload.
Thus, as a rule of thumb we recommend a D of 15 because it
is not critical to perform an automatic displacement of stale
index information as soon as possible.

6.4 Workload Patterns
In this subsection, we analyze the adaption process for a
set of different common workload types. We start with a
workload that extends the range of queried values at a single
blow. The next workload moves its value range slowly to
another position. And finally we investigate a workload that
queries a set of scattered values.

Widening Workload: In the first episode, this workload
queries a continuous range of x ∈ [1 000, 2 000]. The fol-
lowing episode doubles this range to x ∈ [1 000, 3 000] and
still includes the range of the first episode. Both episodes
execute 5 000 queries. Figure 7(a) shows the measured ex-
ecution times and the corresponding CVT hit rate. After
the first episode, the SMIX is well adapted to the workload.
As soon as the workload extension happens, the CVT hit
rate drops below the threshold and ends near 50% because
the CVT already indexed half of the value range during the
first episode. This falling CVT hit rate puts the SMIX into
the unstable state, where it uses an IVT to boost the nec-
essary table scans. After query number 9 282, the CVT hit
rate passed the Threshold and the SMIX reenters the stable
state and the adaption to the workload extension finished.

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

9

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

0

200

400

600

800

1000

1200

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

A
v
e

ra
g

e
E

xe
cu

ti
o

n
T

im
e

[m
s]

Query Number

Table Scan SMIX 128MB SMIX 64MB SMIX 16MB Index Scan

(a) Execution Times for different Evolution Space Sizes

0

200

400

600

800

1000

1200

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

A
v
e

ra
g

e
E

xe
cu

ti
o

n
T

im
e

[m
s]

Query Number

Table Scan 95% 75% 50% Index Scan

(b) Execution Times for different CVT Hit Rates

0

1

2

3

4

5

6

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

C
V

T
S

iz
e

[M
B

]

Query Number

15 10 5

(c) CVT Sizes for different Settings of D

Figure 6: Parameter Impact

Shifting Workload: This workload consists of three
episodes. (1) 3 000 queries on a continuous range of x ∈
[1 000, 2 000]. (2) 6 000 queries on a continuous range that
slides linearly from x ∈ [1 000, 2 000] to x ∈ [1 500, 2 500].
(3) 1 000 queries on the final range of the previous episode.
Figure 7(b) visualizes execution times and CVT hit rates for
this workload. At the end of the first episode, the SMIX is
well adapted. With the beginning of the next episode, the
queried range starts to move slowly. It takes about 1 000
queries for the SMIX to detect this slow workload change.
After this detection period, the SMIX rebuilds an IVT and
actively supports the adaption process. Once the workload
shifting is done at the end of the second episode, the SMIX
is back in the stable state.

Scattered Workload: In a lot of cases, queries are ex-
ecuted on scattered values rather than continuous ranges.
Again, the workload consists of two episodes. Each episode
consists of 5 000 queries on randomly preselected values.
Figure 7(c) shows the experimental results. Compared to
previous experiments on continuous ranges, we observe a
faster rising CVT hit rate, but no other visible difference to

0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1 0

0

150

300

450

600

750

900

1050

1200

1350

1500

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

C
V

T
H

it
R

a
te

[%
]

E
xe

cu
ti

o
n

T
im

e
[m

s]

Query Number

Table Scan SMIX Avg. SMIX Index Scan CVT Hit Rate

(a) Widening Workload

0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1 0

0

150

300

450

600

750

900

1050

1200

1350

1500

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

C
V

T
H

it
R

a
te

[%
]

E
xe

cu
ti

o
n

T
im

e
[m

s]

Query Number

Table Scan SMIX Avg. SMIX Index Scan CVT Hit Rate

(b) Shifting Workload

0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

1 0

0

150

300

450

600

750

900

1050

1200

1350

1500

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

C
V

T
H

it
R

a
te

[%
]

E
xe

cu
ti

o
n

T
im

e
[m

s]

Query Number

Table Scan SMIX Avg. SMIX Index Scan CVT Hit Rate

(c) Scattered Workload

Figure 7: Execution Time and CVT Hit Rate on
Different Workload Patterns

a workload on a continuous value range.

6.5 Complex Scenario
Finally, we conclude our evaluation by using a more complex
workload that involves SMIXs on the columns a, b, and c of
the table R. The workload executes a total of 15 000 queries
and each query has a given probability to hit one of the three
columns that changes after 7 500 queries. These probabilities
are shown in Figure 8(a). Furthermore, a query on a specific
column addresses a value of a uniformly distributed range
of 500 continuous values. We use two disjunct value ranges,
where each SMIX starts with the first value range and af-
ter a specific number of queries, the SMIX switches over to
the second value range. This mapping is visualized in Fig-
ure 8(b). E.g., query number 8 000 has a probability of 60%
to hit SMIXC and when that occurs, x is a random value
in the first value range. For the experiment, we changed the
size of the evolution space to 256 MB. The execution times
(smoothed over a period of 100 queries) are visible in Fig-
ure 8(c) and Figure 8(d) shows the corresponding sizes of the
IVT for each SMIX. At the beginning, all SMIXs start in the

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

10

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

0%

10%

20%

30%

40%

50%

60%

1 -7500 7501-15000

Q
u

e
ry

P
ro

b
a

b
il

it
y

Query Bundle

Column A Column B Column C

A B C A B C

(a) Query Distribution

6000 7000 8000 9000 10000 11000 12000

A

B

C

Query Number

S
M

IX

Value Range 1 Value Range 2

Range 1

Range 1

Range 1

Range 2

Range 2

Range 2

(b) Episode Switches

0

200

400

600

800

1.000

1.200

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001 14001

E
xe

cu
ti

o
n

T
im

e
[m

s]

Query Number

Table Scan Avg. SMIX Index Scan

(c) Execution Time

0

50

100

150

200

250

IV
T

S
iz

e
[M

B
]

Query Slice

Free SMIX C SMIX B SMIX A

(d) Evolution Space Occupancy

Figure 8: Complex Scenario

unstable state. For that reason, every SMIX builds up an
IVT to speed up table scans. Because of the limited evolu-
tion space, all three SMIXs have to compete for the available
memory. Therefore, the SMIX manager assigns an evolution
space share to each SMIX. This share mainly depends on the
access frequency of a SMIX. Consequently, SMIXA receives
twice as much evolution space than SMIXB and SMIXC .
After query number 2 725 SMIXA is mostly in a stable state
and misses its need for an IVT and is not involved in the
evolution space distribution anymore. Thus, SMIXB and
SMIXC are able to grow and speed up their table scans
until all SMIXs are finally stable after query number 6 899.
With query 7 501, the column access distribution changes
and the value range of column c changes. Therefore, this
SMIX builds up its IVT again, but has not to compete with
other SMIXs since all of them are currently in a stable state.
1 000 queries later, SMIXB also changes its value range and
starts the competition with SMIXC . And finally, SMIXA

joins this competition too, but, because SMIXC started
earlier and was queried more often, it already entered the
stable state. Thus, only SMIXA and SMIXB are left to
require evolution space until they also reach the stable state.

7. RELATED WORK
Nowadays commercial database management systems offer
index tuning tools, [1, 22, 4], which recommend an index
configuration for a given workload and a storage bound the
configuration has to fit into. However, all these state-of-
the-art tools consider the database workload as static and
predictable. Other approaches extend the idea of the index
tuning tool to dynamic workloads. Here, the tool analyses
the workload as a series of events over time and recommends
a series of index configurations [2, 19]. Since all index tun-
ing tools work offline, they do not add any extra load to the
processing of the regular workload. Adversely, the user has
to be able to predict the regular workload. If the workload
changes unpredictable, the user has to notice this change
and rerun the tool. With frequent shifts in the database
workload, this get very inconvenient. Hence, research con-
centrated on autonomous index tuning in the recent past.
A couple of solutions have been proposed [3, 14, 13]. All
of them stick with the core concepts of the index tuning
tools: full-column indexing and what-if evaluation. Conse-
quently, they suffer from the same two drawbacks: (1) The
index tuning remains very coarse-grained and the resulting
indexes are likely to include a lot of data that is not of in-
terest. (2) The index tuning requires expensive creation and
dropping of complete indexes. Although SMIXs are also an
autonomous index tuning approach, they are fundamentally
different. SMIXs inherently index only data of interest and
build on less expensive incremental index creation and adap-
tion.

Other approaches aim in the same direction. Partial in-
dexing [17, 15, 21] breaks with the paradigm of full-column
indexing, too. In essence, the idea is to partition tables into
interesting tuples and uninteresting tuples and index only
the partition of interesting tuples. The idea is appealing,
since it avoids effectively the unnecessary indexing of data
in a very simple way. However, creating such a partitioning
is not necessarily possible for two reasons: (1) A tuple may
not be equally interesting for each index that indexes the
tuple. For instance, cheap products may be often queried
by price, whereas specifically advertised products may be
often queried by their name. (2) The interestingness of a
tuple regarding a specific index may not be a function of the
attribute that the index is defined on. In the same exam-
ple, the name of a product does not define the interest in the
product, it is the advertisement. SMIXs do not exhibit these
problems because they do not rely on partitioning. The in-
terestingness of tuples can be randomly distributed over the
value range of a column. Furthermore, every column of a
table can show a different distribution of interestingness. In
any case, SMIXs perform equally well.

Approaches based on incremental partitioning of unsorted
data [10, 8, 7] (also known as database cracking), incremen-
tal merging of pre-sorted data chunks [6, 5] and combina-
tions of both [9] specifically remedy the creation costs of
indexes. Both concepts piggyback on queries to create in-
dex information on the tuples that are requested; this low-
ers the creation costs and distributes the effort over time.
Although approaches are appealing, they do not represent
solutions to the index optimization problem. Without any
dropping of index information, every incremental index cre-
ation converges to a regular full index so that also unin-

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

11

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

teresting tuples will be indexed at some point. Our SMIX
approach is more comprehensive. SMIXs do not only in-
volve incremental collection of index information, but also
incremental displacement. Instead of converging to full in-
dexation, SMIXs converge to the workload.

Complementary to this paper, we already presented a SMIX
demo in [11] and a more general version of the IVT concept
in [18].

8. CONCLUSION
In this paper, we presented Self-Managing Indexes, a novel,
adaptable, fine-grained, autonomous indexing infrastruc-
ture. It is built on a novel default access path, called SMIX,
which combines the traditional table scan and with index
structures. A SMIX exhibits two key features: First, it au-
tomatically indexes the most queried tuples completely and
additionally completes indexing of pages during periods of
workload adaption to lower the cost of necessary table scans.
Second, it is able to discard entries again if they become
less useful. With these two features, a SMIX can adapt
to the database workload and control its resource usage at
the same time. All SMIXs within a SMIX population com-
pete for resources; the most frequently used SMIX gets the
most resources. The SMIX manager component supervises
this competition by continuously determining resource quo-
tas for every SMIX depending on its usage. In a series of
experiments, we evaluated how SMIXs operate and perform.
SMIXs showed significantly better performance than tradi-
tional scans. In periods of constant workload, SMIXs reach
the same performance plateau as traditional indexes, while
requiring less storage resource if the workload is focused.
During periods of shifting workload, SMIXs consume addi-
tional memory resources to boost query performance.

We strongly believe the SMIX approach points into a new
direction of how we can build the autonomous indexing in-
frastructures of the future, to lower the total cost of indexing
as workloads become more dynamic and the amount of data
to manage increases rapidly. In our ongoing work on the
topic, we will investigate how we can lower the granularity
of collecting and discarding index information even more.
Additionally, we plan to leverage the optimizer cost model
to improve the SMIX competition and add support for range
queries and joins. We want to improve the support for range
predicate, so that a SMIX can avoid a table scan in case
the CVT hits the complete range. Finally, we will further
investigate in which way our approach interacts with other
approaches of autonomous indexing approach and how ideas
can be combined to make autonomous indexing reality.

9. ACKNOWLEDGMENTS
This work is supported by the German Research Foundation
(DFG) in the Collaborative Research Center 912 “Highly
Adaptive Energy-Efficient Computing”.

10. REFERENCES
[1] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe,

V. R. Narasayya, and M. Syamala. Database Tuning
Advisor for Microsoft SQL Server 2005. In VLDB’04,
2004.

[2] S. Agrawal, E. Chu, and V. R. Narasayya. Automatic
Physical Database Tuning: Workload as a Sequence.
In SIGMOD’06, 2006.

[3] N. Bruno and S. Chaudhuri. An Online Approach to
Physical Design Tuning. In ICDE’07, 2007.

[4] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zäıt,
and M. Ziauddin. Automatic SQL Tuning in Oracle
10g. In VLDB’04, 2004.

[5] G. Graefe and H. A. Kuno. Adaptive indexing for
relational keys. In ICDEW’10, 2010.

[6] G. Graefe and H. A. Kuno. Self-selecting, self-tuning,
incrementally optimized indexes. In EDBT’10, volume
426, 2010.

[7] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap.
Stochastic Database Cracking: Towards Robust
Adaptive Indexing in Main-Memory Column-Stores.
The Proceedings of the VLDB Endowment, 5(6), 2012.

[8] S. Idreos, M. L. Kersten, and S. Manegold. Database
Cracking. In CIDR’07, 2007.

[9] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe.
Merging What’s Cracked, Cracking What’s Merged:
Adaptive Indexing in Main-Memory Column-Stores.
The Proceedings of the VLDB Endowment, 4(9), 2011.

[10] M. L. Kersten and S. Manegold. Cracking the
Database Store. In CIDR’05, 2005.

[11] T. Kissinger, H. Voigt, and W. Lehner. SMIX Live –
A Self-Managing Index Infrastructure for Dynamic
Workloads. In ICDE’12, 2012.

[12] J. Rao and K. A. Ross. Making B+-Trees Cache
Conscious in Main Memory. In SIGMOD’00, 2000.

[13] K.-U. Sattler, M. Luehring, K. Schmidt, and
E. Schallehn. Autonomous Management of Soft
Indexes. In SMDB’07, 2007.

[14] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis.
On-Line Index Selection for Shifting Workloads. In
SMDB’07, 2007.

[15] P. Seshadri and A. N. Swami. Generalized Partial
Indexes. In ICDE’95, 1995.

[16] K. Shanley. TPC Releases New Benchmark: TPC-C.
SIGMETRICS Performance Evaluation Review, 20(2),
1992.

[17] M. Stonebraker. The Case for Partial Indexes.
SIGMOD Record, 18(4), 1989.

[18] H. Voigt, T. Jäkel, T. Kissinger, and W. Lehner.
Adaptive Index Buffer. In SMDB’12, 2012.

[19] H. Voigt, W. Lehner, and K. Salem. Constrained
Dynamic Physical Database Design. In SMDB’08,
2008.

[20] Wikipedia. Wikipedia:Pruning article revisions, July
2012. http://en.wikipedia.org/wiki/Wikipedia:
Pruning_article_revisions.

[21] E. Wu and S. Madden. Partitioning Techniques for
Fine-grained Indexing. In ICDE’11, 2011.

[22] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman,
A. Storm, C. Garcia-Arellano, and S. Fadden. DB2
Design Advisor: Integrated Automatic Physical
Database Design. In VLDB’04, 2004.

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 24, ISBN 978-1-4503-1921-8
https://doi.org/10.1145/2484838.2484862

12

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

	ADPD3A1.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Hannes Voigt, Thomas Kissinger, Wolfgang Lehner
	SMIX – Self-Managing Indexes for Dynamic Workloads

