
The Open Connectome Project Data Cluster: Scalable Analysis
and Vision for High-Throughput Neuroscience

Randal Burns*, William Gray Roncal†, Dean Kleissas†, Kunal Lillaney*, Priya Manavalan*,
Eric Perlman§, Daniel R. Bergerǁ, Davi D. Bock§, Kwanghun Chung‡‡, Logan Grosenick‡‡,
Narayanan Kasthuri¶, Nicholas C. Weiler§§, Karl Deisseroth‡‡, Michael Kazhdan‡, Jeff
Lichtman¶, R. Clay Reid**, Stephen J. Smith§§, Alexander S. Szalay††, Joshua T.
Vogelstein‡, and R. Jacob Vogelstein†

*Department of Computer Science and the Institute for Data Intensive Engineering and Science,
Johns Hopkins University
†Johns Hopkins University Applied Physics Laboratory
‡Department of Statistical Science and Mathematics and the Institute for Brain Science, Duke
University
§Janelia Farm Research Campus, Howard Hughes Medical Institute
¶Department of Molecular and Cellular Biology, Harvard University
ǁDepartment of Computational Neuroscience, Massachusetts Institute of Technology
**Allen Institute for Brain Science
††Department of Physics and Astronomy and the Institute for Data Intensive Engineering and
Science, Johns Hopkins University
‡‡Department of Bioengineering, Stanford University
§§Department of Molecular and Cellular Physiology, Stanford University

Abstract
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput
brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and
multi-channel data as well. The system was designed primarily for workloads that build
connectomes— neural connectivity maps of the brain—using the parallel execution of computer
vision algorithms on high-performance compute clusters. These services and open-science data
sets are publicly available at openconnecto.me.

The system design inherits much from NoSQL scale-out and data-intensive computing
architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to
different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O
interference and maximize throughput. All programming interfaces are RESTful Web services,

Copyright 2013 ACM

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions.fromPermissions@acm.org.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Distributed Databases; H.2.8 [Database
Management]: Database Applications—Scientific Databases; J.3 [Computer Applications]: Life and Medical Sciences—Biology and
Genetics

NIH Public Access
Author Manuscript
Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

which are simple and stateless, improving scalability and usability. We include a performance
evaluation of the production system, highlighting the effec-tiveness of spatial data organization.

General Terms
Data-intensive computing; Connectomics

1. Introduction
The neuroscience community faces a scalability crisis as new high-throughput imaging
technologies come online. Most notably, electron microscopes that image serial sections
now produce data at more than one terabyte per day. Data at this scale can no longer be
stored, managed, and analyzed on workstations in the labs of the scientists that collect them.

In response to this crisis, we have developed a community database cluster based on the
principles of data-intensive computing [10] and Open Science [26]. Labs contribute imaging
data to the Open Connectome Project (OCP). In exchange, OCP provides storage and
analysis Web-services that relieve the data management burden for neuroscientists and
create an incentive to make data publicly available. (Data analysis products may be kept
private.) This open science model replicates that pioneered by the Sloan Digital Sky Survey
[36] for observational astronomy, democratizing world-class data sets by making them
freely available over the Internet. To date, the model has been well received by leading
neuroscientists; OCP manages the largest image stack [3] and the most detailed neural
reconstruction [16] collected to date and have partnered with both teams to receive data
streams from the next generation of instruments.

Data-intensive computing will create the capability to re-construct neural circuits at a scale
that is relevant to characterizing brain systems and will help to solve grand challenge
problems, such as building biologically-inspired computer architectures for machine
learning and discovering “connecto-pathies”—signatures for brain disease based on neural
connectivity that are diagnostic and prognostic. Previous studies have been limited by
analysis capabilities to image volumes representing tens of neurons [3]. At present,
automated reconstruction tools are neither sufficiently accurate nor scalable [32, 13]. The
largest dense neural re-construction describes only 100s of GB of data [31]. As a
consequence, current analyses depends on humans using manual annotation tools to describe
neural connectivity [4] or to correct the output of computer vision algorithms [12]. The gap
between the size of the system and the state of current technology scopes the problem. A
graph representing the human brain has a fundamental size of 1011 vertices (neurons) and
1015 edges (synapses). Mouse brains have 109 nodes and 1013 vertices. We conclude that
manual annotation cannot reach these scales. More accurate computer vision and scalable
data systems must be developed in order to realize the ultimate goal of a full reconstruction
of the brain—the human connectome or human brain map.

The Open Connectome Project was specifically designed to be a scalable data infrastructure
for parallel computer vision algorithms that discover neural connectivity through image
processing. Researchers have many different approaches to the task. For example, the
segmentation process, which divides the image into bounded regions, may be performed
with feed-forward neural networks [14] or by geometric tracing [17]. However, neural
reconstruction has some fundamental properties that we capture in system design.
Algorithms realize parallelism through a geometric decomposition of the data. OCP
provides a cutout service to extract spatially contiguous regions of the data, including
projections to lower dimensions. We use indexes derived from space-filling curves to

Burns et al. Page 2

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

partition data which makes cutout queries efficient and (mostly) uniform across lower
dimensional projections. Partitions are striped across disk arrays to realize parallel I/O and
to multiple nodes for scale-out. Vision algorithms output descriptions of neural connectivity.
We capture these in a relational database of neural object metadata [19] linked to a spatial
annotation database that stores the structures. Algorithms run in multiple phases, assembling
structure from the output of previous stages, e.g. fusing previous segmentations into
neurons. We support queries across images and annotations. Annotation databases are
spatially registered to images. Finally, we support spatial queries for individual objects and
regions that are used in analysis to extract volumes, find nearest neighbors, and compute
distances.

The Open Connectome Project stores more than 50 unique data sets totaling more than
75TB of data. Connectomes range from the macro (magnetic resonance imaging of human
subjects at 1 mm3) to the micro (electron microscopy of mouse visual cortex at 4nm × 4nm
× 40nm). We have demonstrated scalable computer vision in the system by extracting more
than 19 million synapse detections from a 4 trillion pixel image volume: one quarter scale of
the largest published EM connectome data [3]. This involved a cluster of three physical
nodes with 186 cores running for three days, communicating with the OCP cutout and
annotation service over the Internet.

2. Data and Applications
We present two examples data sets and the corresponding analysis as use cases for Open
Connectome Project services. The data themselves are quite similar: high-resolution electron
microscopy of a mouse brain. However, the analyses of these data highlight different
services.

The bock11 data [3] demonstrates state-of-the-art scalability and the use of parallel
processing to perform computer vision. The image data are the largest published collection
of high-resolution images, covering a volume of roughly 450×350×50 microns with 20
trillion voxels at a resolution of 4×4×40nm. Volumes at this scale just start to contain the
connections between neurons. Neurons have large spatial extent and connections can be
analyzed when both cells and all of the connection wiring (dendrite/synapse/axon) lie within
the volume. We are using this data to explore the spatial distribution of synapses, identifying
clusters and out-liers to generate a statistical model of where neurons connect. Our synapse-
finding vision algorithm extracts more than 19 millions locations in the volume (Figure 1).
We have not yet characterized the precision and recall of this technique. Thus, this exercise
is notable for its scale only; we ran 20 parallel instances and processed the entire volume in
less than 3 days. For comparison, Bock et al. [3] collected this data so that they could
manually trace 10 neurons, 245 synapses, and 185 postsynaptic targets over the course of
270 human days. We build a framework for running this task within the LONI [33] parallel
execution environment.

The kasthuri11 data [16] shows how spatial analysis can be performed using object metadata
and annotations (Figure 2). This data has the most detailed and accurate manual annotations.
Two regions of 1000×1000×100 and 1024×1024×256 voxels have been densely
reconstructed, labeling every structure in the volume. Three dendrites that span the entire
12000×12000×1850 voxel volume have had all synapses that attach to dendritic spines
annotated. OCP has ingested all of these manual annotations, including object metadata for
all structures and a spatial database of annotated regions. This database has been used to
answer questions about the spatial distribution of synapses (connections) with respect to the
target dendrite (major neuron branch). This analysis proceeds based on: (1) using meta-data
to get the identifiers of all synapses that connect to the specified dendrite and then (2)

Burns et al. Page 3

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

querying the spatial extent of the synapses and dendrite to compute distances. The latter
stage can be done by extracting each object individually or specifying a list of objects and a
region and having the database filter out all other annotations. We also use the densely
annotated regions as a “ground truth” for evaluating machine vision reconstruction
algorithms.

3. Data Model
The basic storage structure in OCP is a dense multi-dimensional spatial array partitioned
into cuboids (rectangular subregions) in all dimensions. Cuboids in OCP are similar in
design and goal to chunks in ArrayStore [39]. Each cuboid gets assigned an index using a
Morton-order space-filling curve (Figure 4). Space-filling curves organize data recursively
so that any power-of-two aligned subregion is wholly contiguous in the index [30]. Space-
filling curves minimize the number of discontiguous regions needed to retrieve a convex
shape in a spatial database [23]. While the Hilbert curve has the best properties in this
regard, we choose the Morton-order curve for two reasons. It is simple to evaluate using bit
interleaving of offsets in each dimension, unlike other curves that are defined recursively.
Also, cube addresses are strictly non-decreasing in each dimension so that the index works
on subspaces. Non-decreasing offsets also aid in interpolation, filtering, and other image
processing operations [15, 7].

Image data contain up to 5 dimensions and often exhibit anisotropy. For example, serial
section electron microscopy data come from imaging sections created by slicing or ablating
a sample. The resolution of image plane (XY) is determined by the instrument and the
sections (Z) by the sectioning technique. The difference in resolution is often a factor of 10.
The fourth and fifth dimension arise in other imaging modalities. Some techniques produce
time-series, such as functional magnetic-resonance and light-microscopy of calcium
channels. Others image multiple channels that correspond to different proteins or receptors
(Figure 3). These data are studied by correlating multiple channels, e.g. spatial co-occurence
or exclusion, to reveal biology.

3.1 Physical Design
We store a multi-resolution hierarchy for each image data set, so that analyses and
visualization can choose the appropriate scale. For EM data, each lower resolution reduces
the data size by a factor of four, halving the scale in X and Y. Typically, we do not scale Z,
because it is poorly resolved. We also do not scale time or channels. The bock11 data has
nine levels and kasthuri11 six. As an example of choosing scale, our bock11 synapse
detector runs on high resolution data, because synapses have limited spatial extent (tens of
voxels in any dimension). We detect synapses at resolution one: four times smaller and four
times faster than the raw image data. We found that the algorithms was no less accurate at
this scale. We analyze large structures that cannot contain synapses, such as blood vessels
and cell bodies, to mask out false positives. We developed this software for this analysis, but
many of the techniques follow those describe in ilastik [38]. We conduct the analysis at
resolution 5 in which each voxel represents a (32,32,1) voxel region in the raw data. The
structures are large and detectable at low resolution and the computation requires all data to
be in memory to run efficiently.

Resolution scaling and workload dictate the the dimension and shape of cuboids. For EM
data, computer vision algorithms operate on data regions that are roughly cubic in the
original sample so that they can detect brain anatomy in all orientations. Because the X and
Y dimensions are scaled, but not Z, this results in different sized voxel requests at different
resolutions. For this reason, use different shaped cuboids at different levels in the hierarchy
(Figure 5) For example, at the highest three resolutions in bock11, cuboids are flat

Burns et al. Page 4

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(128×128×16) because each voxel represents 10 times as much length in Z as X and Y.
Beyond level 4, we shift to a cube of (64×64×64). We include time series in the spatial
index, using a 4-d space filling curve. Time is often as large as other dimensions, 1000s of
time points in MR data. This supports queries that analyze the time history of a smaller
region. We do not include channel data in the index—there are different cuboids for
different channels— because the number of channels tend to be few (up to 17) and most
analyses look at combinations of a few channels.

Cuboids contain only 218 = 256K of data, which is a compromise among the different uses
of the data. This size may be too small to optimize I/O throughput. Space filling curves
mitigate this by ensuring that larger aligned regions are stored sequentially and can be read
in a single streaming I/O. An important use of our service extracts lower-dimensional
projections, for visualization of EM data and subspace clustering of 4-d and 5-d data.
Keeping the cuboid size small reduces the total amount of data to be read (and discarded) for
these queries.

3.2 Annotations
An annotation project contains a description of the spatial extent and metadata for objects
detected in an image database. Each project has a spatial database registered to an image
data set. Projects may be shared among teams of human annotators that want a coherent
view of what structures have been labeled. Projects are also plentiful; each parameterization
of a computer vision algorithm may have a project so that outputs can be compared.
Annotations also have a resolution hierarchy so that large structures, such as cell bodies,
may be found and marked at low resolution and detail, synapses and dendritic spines, at high
resolution.

An“annotation” consists of an object identifier that is linked to object metadata in the
RAMON (Reusable Annotation Markup for Open coNectomes) neuroscience ontology [19]
and a set of voxels labeled with that identifier in the spatial database. RAMON is a
hierarchical systems engineering framework for computer-vision and brain anatomy that
include concepts such as synapses, seeds, neurons, organelles, etc. We developed RAMON
for use within the Open Connectome Project community of collaborators; it is not a
standard. Although annotations are often sparse, we store them in dense cuboids. We found
that this design is flexible and efficient. When annotations are dense, such as the output of
the automatic image segmentation [31], storing them in cuboids outperforms sparse lists by
orders of magnitude. To improve performance when annotations are sparse, we allocate
cuboids lazily; regions with no annotations use no storage and can be ignored during reads.
We also gzip compress cube data. Cube labels compress well because they have low entropy
with both many zero values and long repeated runs of non-zero values (labeled regions).
Recent implementations of run length encoding [1, 44] may be preferable, but we have not
evaluated them.

We support multiple annotations per voxel through exceptions. An exceptions list per cuboid
tracks multiply-labeled voxels. Exceptions are activated on a per project basis, which incurs
a minor runtime cost to check for exceptions on every read, even if no exceptions are
defined. Each annotation write specifies how to deal with conflicting labels, by overwriting
or preserving the previous label or by creating an exception.

For performance reasons, we initially store annotations at single level in the resolution
hierarchy and propagate them to all levels as a background, batch I/O job. The consequence
is that annotations are only immediately visible at the resolution at which they are written.
The alternative would be to update all levels of the hierarchy for each write. While there are
data structures and image formats for this task, such as wavelets [27], the incremental

Burns et al. Page 5

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

maintenance of a resolution hierarchy always makes updates more complex and expensive.
The decision to not make annotations consistent instantaneously reflects how we perform
vision and analysis. Multiple algorithms are run to detect different structures at different
levels and fuse them together. Then, we build the hierarchy of annotations prior to
performing spatial analysis. Because write I/O performance limits system throughput, we
sacrifice data consistency to optimize this workflow. We may need to revisit this design
decision for other applications.

3.3 Tiles
At present, we store a redundant version of the image data in a 2-d tile stack as storage
optimization for visualization in the Web Viewer CATMAID [34]. Tiles are 256×256 to
1024×1024 image sections used in a pan and zoom interactive viewer. CATMAID
dynamically loads and prefetches tiles so that the user can experience continuous visual flow
through the image region.

The cutout service provides the capability to extract image planes as an alternative to storing
tiles. To do so, it reads 3-d cubes, extracts the requested plane, and discards the vast
majority of the data. To dynamically build tiles for CATMAID, we use an http rewrite rule
to convert a request for a file url into an invocation of the cutout Web service.

Our current practice stores tiles for the image plane–the dimension of highest isotropic
resolution–and dynamically builds tiles from the cutout service for the orthogonal
dimensions including time. Most visualization is done in the image plane, because
anisotropy, exposure differences and imperfect registration between slices makes images
more difficult to interpret (Figure 6). We modify CATMAID's storage organization to create
locality within each file system directory. By default, CATMAID keeps a directory for each
slice so that a tile at resolution r at coordinates (x, y, z) is named z/y_x_r.png. This places
files from multiple resolutions in the same directory, which decreases lookup speed and
sequential I/O. Again using http rewrite rules, we restructure the hierarchy into r/z/y_x.png.
This halves the number of files per directory and, more importantly, each directory
corresponds to a single CATMAID viewing plane.

We believe that we can provide performance similar to tiles in the cutout service through a
combination of prefetching and caching. Doing so would eliminate the redundant storage of
tiles. Instead of doing a planar cutout for each tile, we could round the request up to the next
cuboid and materialize and cache all the nearby tiles either on the server or in a distributed
memory cache. This is future work.

3.4 Data Cleaning
While not a database technology, we mention that we color correct image data to eliminate
exposure differences between image planes. The process solves a global Poisson equation to
minimize steep gradients in the low frequencies, out-putting smoothed data. High-
frequencies from the original image are added back in to preserve the edges and structures
used in computer vision. The process was derived from work by Kazhdan [18]. The
resulting color corrected data are easier to interpret in orthogonal views (Figure 6). We also
believe that they will improve the accuracy of computer vision: a hypothesis that we are
exploring.

4. System Design
We describe the OCP Data Cluster based on the configuration we used for running the
synapse detector (Figure 7), because this demonstrates a parallel computer vision

Burns et al. Page 6

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

application. The figure includes parallel vision pipelines using Web services and a
visualization function run from a Web browser both connecting over the public Internet.

4.1 Architecture
The OCP Data Cluster consists of heterogeneous nodes each designed for a different
function or workload. These include application servers, database nodes, file system nodes,
and SSD I/O nodes. The database nodes store all of the image and annotation data for cutout
(except for high-I/O annotation projects on SSD I/O nodes). We currently have two Dell
R710s with dual Intel Xeon E5630 quad-core processors, 64GB of memory, and Dell H700
RAID controllers. The twelve hot-plug drive bays hold a RAID-6 array of 11 2TB (resp.
3TB) SATA drives and a hot-spare for an 18TB (resp. 27TB) file system. Two drives have
failed and rebuilt from the hot spare automatically in the last 18 months. We use MySQL for
all database storage.

Application servers perform all network and data manipulation, except for database query
processing. This includes partitioning spatial data requests into multiple database queries
and assembling, rewriting, and filtering the results. We currently deploy two Web-servers in
a load-balancing proxy. They run on the same physical hardware as our database nodes,
because processor capabilities of these nodes exceed the compute demand of the databases.
These functions are entirely separable.

File server nodes store CATMAID image tiles for visualization, image data streamed from
the instruments over the Internet, and other “project” data from our partners that needs to be
ingested into OCP formats. The nodes are designed for capacity and sequential read I/O. We
have a Dell R710 with less memory (16GB) and compute (one E5620 processor) than the
database nodes. The machine has the same I/O subsystem with a 27TB file system. We use
two Data-Scope nodes (described below) as file servers that each have a 12TB software
RAID 10 array built on 24 1TB SATA disks.

SSD I/O nodes are designed for the random write workloads generated by parallel computer
visions algorithms. The two nodes are Dell R310s with an Intel Xeon 3430 processor with 4
2.4GHz cores. Each machine has a striped (RAID 0) volume on two OCZ Vertex4 solid
states drives. The system realizes 20K IOPS of the theoretical hardware limit of 120K; an
improved I/O controller is needed. We deployed the SSD I/O nodes in response to our
experience writing 19M synapses in 3 days when running the parallel synapse finding
algorithm. For synapse finding, we had to throttle the write rate to 50 concurrent outstanding
requests to avoid overloading the database nodes.

Our growth plans involve moving more services into the Data-Scope [41]: a 90 node data-
intensive cluster with a 10PB ZFS file system. We are currently using two machines as file
system nodes and have an unused allocation of 250 TB on the shared file system. Data-
Scope nodes have 2 Intel Xeon 5690 hex core processors, 64 GB of RAM, 3 Vertex3 SSDs
and 24 local SATA disks and, thus, serve all of our cluster functions well.

Data Distribution—We place concurrent workloads on distinct nodes in order to avoid I/
O interference. This arises in two applications. Computer vision algorithms, e.g. our synapse
detector, reads large regions from the cutout service and performs many small writes. We
map cutouts to a database node and small writes to an SSD node. Visualization reads image
data from either the tile stack or cutout database and overlays annotations. Again, annotation
databases are placed on different nodes than image databases. Notably, the cutouts and tile
stack are not used together and could be placed on the same node. Because SSD storage is a
limited resource, OCP migrates databases from SSD nodes to database nodes when they are
no longer actively being written. This is an administrative action implemented with

Burns et al. Page 7

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

MySQL's dump and restore utilities and most often performed when we build the annotation
resolution hierarchy (Section 3.2).

We shard large image data across multiple database nodes by partitioning the Morton-order
space filling curve (Figure 4). Currently, we do this only for our largest data set (bock11) for
capacity reasons. We have not yet found a performance benefit from sharding data. For
sharded databases, the vast majority of cutout requests go to a single node. We do note that
multiple concurrent users of the same data set would benefit from parallel access to the
nodes of a sharded database. Our sharding occurs at the application level. The application is
aware of the data distribution and redirects requests to the node that stores the data. We are
in the process of evaluating multiple NoSQL systems in which sharding and scaleout are
implemented in the storage system, rather than the application. We are also evaluating
SciDB [40, 43] for use as an array store for spatial data.

4.2 Web Services
Web-services provide rich object representations that both capture the output of computer
vision algorithms and support the spatial analysis of brain anatomy. We have used the
service to perform analysis tasks, such as spatial density estimation, clustering, and building
distance distributions. Analysis queries typically involve selecting a sets of objects based on
metadata properties, examining the spatial extent of these objects, and computing statistics
on spatial properties such as distances or volumes. For example, one analysis looked at the
distribution of the lengths of dendritic spines, skinny connections from dendrites to synapses
in order to understand the region of influence of neural wiring. The OCP queries used
metadata to find all synapses of a certain type that connect to the selected dendrite and
extracted voxels for synapses and the object.

All programming interfaces to the OCP Data Cluster use RESTful (REpresentational State
Transfer) [8] interfaces that are stateless, uniform, and cacheable. Web-service invocations
perform HTTP GET/PUT/DELETE requests to human readable URLs. REST's simplicity
makes it easy to integrate services into many environments; we have built applications in
Java, C/C++, Python, Perl, php, and Matlab.

We have selected HDF5 as our data interchange format. HDF5 is a scientific data model and
format. We prefer it to more common Web data formats, such as JSon or XML, because of
its support for multidimensional arrays and large data sets.

Cutout—Providing efficient access to arbitrary sub-volumes of image data guides the
design to the OCP Data System. The query, which we call a cutout, specifies a set of
dimensions and ranges within each dimension in a URL, GETs the URL from the Web
service, which returns an HDF5 file that contains a multidimensional array (Table 1). Every
database in OCP supports cutouts. EM image databases return arrays of 8-bit grayscale
values, annotation databases return 32-bit annotation identifiers, and we also support 16bit
(TIFF) and 32-bit (RBGA) image formats.

Projects and Datasets—A dataset configuration describes the dimensions of spatial
databases. This includes the number of dimensions (time series and channels), the size of
each dimensions, and the number of resolutions in the hierarchy. A project defines a specific
database for a dataset, including the project type (annotations or images), the storage
configuration (nodes and sharding), and properties, such as does the database support
exceptions? and, is the database readonly? We often have tens of projects for a single
dataset, in cluding original data, cleaned data, and multiple annotation databases that
describe different structures or use different annotations algorithms.

Burns et al. Page 8

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Object Representations—Annotation databases combine all annotations of the same
value (identifier) into an object associated with metadata and support spatial queries against
individual objects. The service provides several data options that allow the query to specify
whether to retrieve data and in what format (Table 1). The default retrieves metadata only
from the databases tables that implement the RAMON ontology. A query may request a
bounding-box around the annotation, which queries a spatial index but does not access voxel
data. All the data may be retrieved as a list of voxels or as a dense array by specifying
cutout. The dense data set has the dimensions of the bounding box. Dense data may also be
restricted to a specific region by specifying ranges. Data queries retrieve voxel data from
cuboids and then filter out all voxel labels that do not match the requested annotation.

We provide both sparse (voxels lists) and dense (cutout) data interfaces to provide different
performance options when retrieving spatial data for an object. The best choice depends
upon both the data and the network environment. At the server, it is always faster to
compute the dense cutout. The server reads cuboids from disk and filter the data in place in
the read buffer. To compute voxel lists, the matching voxels locations are written to another
array. However, many neural structures have large spatial extent and are extremely sparse.
For these, the voxel representations are much smaller. On WAN and Internet connections,
the reduced network transfer time dominates additional compute time. For example, the
dendrite 13 in kasthuri11 set comprises 8 million voxels in a bounding box of more than 1.9
trillion voxels, i.e. less that 0.4% of voxels are in the annotation. Other neural structures,
such as synapses, are compact and dense interfaces always perform better.

To write an annotation, clients make an HTTP PUT request to a project that includes an
HDF5 file. All writes use the same base URL, because the HDF5 file specifies the
annotation identifier or gives no identifier, causing the server to choose a unique identifier
for a new object. The data options specify the write discipline for voxels in the current
annotation that are already labeled in the database: overwrite replaces prior labels, preserve
keeps prior labels, and exception keeps the prior label and marks the new label as an
exception. Other data options include update when modifying an existing annotation and
dataonly to write voxel labels without changing metadata.

Batch Interfaces—OCP provides interfaces to read or write multiple annotations at once
in order to amortize the fixed costs of making a Web service request over multiple writes
and reads. Batching requests is particularly important when creating neural structures with
little or no voxel data in which the Web service invocation dominates I/O costs to the
database. This was the cases with our synapse finder (Section 2) in which we doubled
throughput by batching 40 writes at a time. HDF5 supports a directory structure that we use
to encode multiple RAMON objects, placing each object in its own directory by annotation
identifier.

Querying Metadata—OCP provides a key/value query interface to object metadata. The
queries extract a list of objects that match a predicate against metadata. We currently allow
equality queries against integers, enumerations, strings, and user-defined key/value pairs and
range queries against floating points values. Although a limited interface, these queries are
simple and expressive for certain tasks. The objects Web service (Table 1) requests one or
more metadata fields and values (or metadata field, inequality operator, and value for
floating point fields) and the service returns a list of matching annotation identifiers. As an
example, we use the url openconnecto.me/ objects/type/synapse/confidence/geq/0.99/ to
visualize the highest confidence objects found by the synapse detection pipeline.

Although we do not currently provide full relational access to databases, we will provide
SQL access for more complex queries and move power users to SQL. To date, Web services

Burns et al. Page 9

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

have been sufficient for computer vision pipelines. But, we see no reason to re-implement an
SQL-equivalent parser and language through Web Services.

Spatial Queries and Indexing Objects—Critical to spatial analysis of annotation
databases are two queries: (1) what objects are in a region? and (2) what voxels comprise an
object? On these primitives, OCP applications build more complex queries, such as nearest
neighbors, clustering, and spatial distributions. OCP's database design is well suited to
identifying the annotations in a region. The service performs a cutout of the region and
extracts all unique elements in that region. In fact, the Numpy library in Python provides a
built in function to identify unique elements that is implemented in C. Locating the spatial
extent of an object requires an additional index.

OCP uses a simple, sparse indexing technique that supports batch I/O to locate the spatial
extent of an object, its voxels, and bounding box. The index comprises a database table that
enumerates the list of cuboids that contain voxels for each annotation identifier (Figure 9).
The list itself is a BLOB that contains a Python array. Although this index is not particularly
compact, it has several desirable properties.

Adding to the index is efficient. It is a batch operation and uses append only I/O. When
writing an annotation in a cuboid, we determine that the annotation is new to the cuboid,
based on the current contents, and add the cuboid's Morton-order location to a temporary
list. After all cuboids have been updated, a single write transaction appends all new cuboids
to the list as a batch. The annotation process, be it manual of machine vision, tends to create
new objects and only rarely deletes or prunes existing objects. The workload suits an
append-mostly physical design.

Retrieving an object allows for batch I/O and retrieves all data in a single sequential pass.
The query retrieves the list of cuboids and sorts then by Morton-order locations. Then all
cuboids are requested as a single query. Cuboids are laid out in increasing Morton order on
disk and, thus, are retrieved a single sequential pass over the data.

We chose this design over existing spatial indexing techniques because it is particularly well
suited to neuroscience objects which are sparse and have large spatial extent. For OCP data,
indexes that rely on bounding boxes either grow very large (R-Trees [11]) or have
inefficient search (R+-Trees [37]). Informally, neural objects are long and skinny and there
are many in each region so that bounding boxes intersect and overlap pathologically. An
alternative is to use directed local search techniques that identify objects by a centroid and
locate the object by searching nearby data [29, 42]. For OCP data, these techniques produce
much more compact indexes that are faster to maintain. However, querying the index
requires many I/Os to conduct an interactive search and we prefer lookup performance to
maintenance costs. We plan to quantify and evaluate these informal comparisons in the
future.

Software—Application servers run a Django/Python stack integrated with Apache2 using
WSGI that processes Web service requests. This includes performing database queries,
assembling and filtering spatial data, and formatting data and metadata into and out of HDF5
files. We uses parallel Cython to accelerate the most compute intensive tasks. Cython
compiles Python code into the C language so that it executes without the overhead of
interpretation. Parallel Cython activates OpenMP multicore parallelism within Cython
routines. The compute intensive routines that we accelerate with Cython operate against
every voxel in a cutout. Examples include (1) false coloring annotations for image overlays
in which every 32-bit annotation is mapped to an RGBA color in an output image buffer and
(2) filtering out annotations that do not match a specified criteria, e.g. to find all synapses in

Burns et al. Page 10

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

a region one queries the metadata to get a list of synapse ids and then filters all non-
matching identifiers out of the cutout.

5. Preliminary Performance
We conducted experiments against the live Web-services to provide an initial view of
performance. The major conclusion is that memory and I/O performance both limit
throughput. The process of array slicing and assembly for cutout requests keeps all
processors fully utilized reorganizing data in memory. We had not witnessed the memory
bottleneck prior to this study because OCP serves data over a 1 Gbps Ethernet switch and a
1 Gbps Internet uplink, which we saturate long before other cluster resources. As we migrate
to the Data-Scope cluster (Section 4.1), we will upgrade to a 40 Gbps Internet2 uplink and
more compute capable nodes, which will make memory an even more critical resource.

Experiments were conducted on an OCP Database node: a Dell R710 with two Intel Xeon
E5630 quad-core processors, 64GB of memory, and a Dell H700 RAID controller managing
a RAID-6 array of 11 3TB SATA drives for a 27TB file system. All Web service requests
are initiated on the same node and the use the localhost interface, allowing us to test the
server beyond the 1 Gbps network limit. Experiments show the cutout size, not the size of
the data transferred or read from disk. Each cuboid is compressed on disk, read, and
uncompressed. The data are then packaged into a cutout, which is compressed prior to data
transfer. The cutout size is the amount of data that the server must handle in memory. The
EM mouse brain data in question has high entropy and tends to compress by less than 10%.
The annotation data are highly compressible.

Cutout throughput is the principal performance measure for our system, dictating how much
data the service provides to parallel computer vision workflows. Figure 10(a) shows the
maximum throughput achieved over all configurations when issuing 16 parallel cutout
requests. When data are in memory and cutout requests are aligned to cuboid boundaries
(aligned memory), the system performs no I/O and minimally rearranges data. Processing in
the application stack bounds performance. In this case, a single node realizes a peak
throughput of more than 173 MB/s for the largest transfers. Cutouts to random offsets
aligned to cuboid boundaries add I/O costs to each request and bring performance down to a
peak of 121 MB/s. Unaligned cutouts require data to be reorganized in memory, moving
byte ranges that are unaligned with the cache hierarchy. This incurs further performance
penalties and peak throughput drops to only 61 MB/s. The I/O cost of these requests is only
marginally more than aligned cutouts, rounding each dimension up to the next cuboid.
Unaligned cutouts reveals the dominance of memory performance.

Scalability results reveal fixed costs in both Web-service invocation and I/O that become
amortized for larger cutouts. Figures 10(b) and 10(c) show the throughput as a function of
cutout size in normal and log/log scale. The experiments uses 16 parallel requests each.
Performance scales nearly linearly until 256K for reads (I/O cost) and almost 1 MB for in-
cache (Web-service costs). Beyond this point, performance continues to increase, albeit
more slowly. For aligned and unaligned reads, we attribute the continued increase to the
Morton-order space-filling curve. Larger cutouts intersect larger aligned regions of the
Morton-order curve producing larger contiguous I/Os [23]. We do not report performance
above a 256M cutout size. Beyond this point, the buffers needed by the application and Web
server exceed memory capacity.

To realize peak throughput, we had to initiate multiple requests in parallel. The application
stack runs each Web-service request on a single process thread and memory limits the
perthread performance. Figure 11 shows throughput as a function of the number of parallel
requests. Through-put scales with the number of parallel requests beyond the eight physical

Burns et al. Page 11

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

cores of the machine to 16 when reading data from disk and to 32 when reading from
memory. Performance scales beyond the 8 cores owing to some combination of overlapping
I/O with computation and hyperthreading. Too much parallelism eventually leads to a
reduction in throughput, because all hardware resources are fully utilized and more
parallelism introduces more resource contention.

Parallelism is key to performance in the OCP Data Cluster and the easiest way to realize it is
through initiating concurrent Web-service requests. Parallelizing individual cutouts would
benefit the performance of individual request, but not overall system throughput, because
multiple requests already consume the memory resources of all processors. We note that the
Numpy Python library we use for array manipulation implements parallel operators using
BLAS, but does not parallelize array slicing.

Figure 12 shows the write throughput as a function of the volume size when uploading
annotated volumes. Annotations differ from cutouts in that the data are 32-bits per voxel and
are highly compressible. For this experiment, we uploaded a region dense manual
annotations of the kasthuri11 data set in which more than 90% of voxels are labeled. Data
compress to 6% the original size. However, performance scales with the uncompressed size
of the region, because that dictates how many cuboids must be manipulated in memory. This
experiment uses 16 parallel requests. Write performance scales well up to 2MB cutouts and
is faster than read at the same cutout size, because the data compress much better. However,
beyond 2MB transfers, write throughput collapses. The best performance over all
configurations of 19 MB/s does not compare well with the 121 MB/s when reading image
cutouts. Updating a volume of annotations is much more complex than a cutout.

It (1) reads the previous annotations, (2) applies the new annotations to the volume database,
resolving conflicts on a per voxel basis, (3) writes back the volume database, (4) reads index
entries for all new annotations, (5) updates each list by unioning new and old cuboid
locations, and (5) writes back the index. I/O is doubled and index maintenance costs are
added on top. The critical performance issues is updating the spatial index. Parallel writes to
the spatial index result in transaction retries and timeouts in MySQL due to contention.
Often, a single annotation volume will result in the update of hundreds of index entries, one
for each unique annotation identifier in the volume. We can scale to larger writes at the
expense of using fewer parallel writers. Improving annotation throughput is a high priority
for the OCP Data Cluster.

We also include an comparison of small write performance between an SSD node and a
Database node. The SSD node is a Dell R310 with an Intel Xeon 3430 with 4 2.4GHz cores,
16 GB of memory, and two OCZ Vertex 4 drives configured in a RAID 0 array. The
experiment uploads all of the synapse annotations in the kasthuri11 data in random order,
committing after each write. Figure 13 shows that the SSD node achieves more than 150%
the throughput of the Database array on small random writes. The number of synapse writes
per second is surprisingly low. We write only about 6 RAMON objects per second.
However, a single Ramon object write generates updates to three different metadata tables,
the index, and the volume database. The takeaway from this experiment is that an
inexpensive SSD node (<$3000) offloads the write workload of an entire Database node (>
$18,000). All I/O in this experiment is random. In practice, we achieve much higher write
throughput because of locality and batching of requests. Our synapse finder workload
uploaded more than 73 synapses a second per node, but that number reflects caching and
effects when updating many synapses in a small region.

Burns et al. Page 12

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

6. Related Work
The performance issues faced by the spatial databases in the OCP Data Cluster parallel those
of SciDB [40, 43], including array slicing, selection queries, joins, and clustering/scale-out.
SciDB might benefit OCP by making data distribution transparent and by offloading
application functions implemented in Python to SciDB.

Many of the physical design principles of OCP follow the ArrayStore of Soroush [39]. They
give a model for multi-level partitioning (chunking and tiling) that is more general than OCP
cuboids. They can handle both regular and irregular data. ArrayStore extends decades of
work on regular [6, 24] and irregular [5] tiling. The RasDaMan multidimensional array
database [2] also builds spatial data services for image processing on top of a relational
database. They too have explored the issues of tiling, data organization, and data distribution
[9]. In contrast to general-purpose array databases, OCP has a focus on the specific
application of parallel computer vision for neuroscience and, as such, tunes its design to
application concepts and properties. Examples include using the partitioning of space-filling
curves in the data distribution function and indexing of neural objects.

OCP's design incorporates many techniques developed in the spatial data management
community. Samet [35] wrote the authoritative text on the subject, which we have used as a
reference for region quad-trees, space-filling curves, tessellations, and much more.

OCP represents the a current state of evolution of the scale-out database architectures
developed by the Institute for Data-Intensive Engineering and Science at Johns Hopkins.
Gray and Szalay developed the progenitor system in the Sloan Digital Sky Survey [36]. This
has lead to more than 30 different data products over the past decade, including the JHU
Turbulence Database Cluster [20] and the Life Under Your Feet soil ecology portal [25].

7. Final Thoughts
In less than two years, The Open Connectome Project has evolved from a problem statement
to a data management and analysis platform for a community of neuroscientists with the
singular goal of mapping the brain. High-throughput imaging instruments have driven data
management off the workstation and out of the lab into data-intensive clusters and Web-
services. Also, the scope of the problem has forced experimental biologists to engage
statisticians, systems engineers, machine learners, and big-data scientists. The Open
Connectome Project aims to be the forum in which they all meet.

The OCP Data Cluster has built a rich set of features to meet the analysis needs of its users.
Application-specific capabilities have been the development focus to date. The platform
manages data sets from many imaging modalities. (Five to fifteen depending on how one
counts them.)

Presently, our focus must change to throughput and scalability. The near future holds two 1
00 teravoxel data sets— each larger than the sum of all our data. We will move to a new
home in the Data-Scope cluster, which will increase our outward-facing Internet bandwidth
by a factor of forty. We also expect the Connectomics community to expand rapidly. The
US President's Office recently announced a decade-long initiative to build a comprehensive
map of the human brain [21]. This study reveals many limitations of the OCP data cluster
and provides guidance to focus our efforts, specifically toward servicing many small writes
to record brain structures and efficient and parallel manipulation of data to alleviate memory
bottlenecks.

Burns et al. Page 13

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Acknowledgments
The authors would like to thank additional members of the Open Connectome Project that contributed to this work,
including Disa Mhembere and Ayushi Sinha. We would also like to thank our collaborators Forrest Collman,
Alberto Cardona, Cameron Craddock, Michael Milham, Partha Mi-tra, and Sebastian Seung.

This work was supported by the National Institutes of Health (NIBIB 1RO1EB016411-01) and the National
Science Foundation (OCI-1244820 and CCF-0937810).

References
1. Abadi DJ, Madden SR, Ferreira M. Integrating compression and execution in column-oriented

database systems. SIGMOD. 2006

2. Baumann P, Dehmel A, Furtado P, Ritsch R, Widmann B. The multidimensional database system
RasDaMan. SIGMOD. 1998

3. Bock DD, Lee WCA, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER,
Kim HS, Reid RC. Network anatomy and in vivo physiology of visual cortical neurons. Nature.
2011; 471(7337)

4. Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P,
Hartenstein V, Douglas RJ. TrakEM2 software for neural circuit reconstruction. PLoS ONE. 2012;
7(6)

5. Chang C, Acharya A, Sussman A, Saltz J. T2: a customizable parallel database for multidimensional
data. SIGMOD Record. 1998; 27(1)

6. Chang C, Moon B, Acharya A, Shock C, Sussman A, Saltz J. Titan: A high-performance remote
sensing database. ICDE. 1997

7. Crow F. Summed-area tables for texture mapping. SIGGRAPH. 1984

8. Fielding RT, Taylor R, Richard N. Principled design of the modern Web architecture. ACM
Transactions on Internet Technology. 2002; 2(2)

9. Furtado P, Baumann P. Storage of multidimensional arrays based on arbitrary tiling. ICDE. 1999

10. Gray J, Szalay A. Science in an exponential world. Nature. Mar 23.2006 440(23)

11. Guttman, A. R-trees: a dynamic index structure for spatial searching. ACM SIGMOD Conference;
1984.

12. Seung, HS., et al. Eyewire. 2012. Available at eyewire.org

13. Jain V, Seung HS, Turaga SC. Machines that learn to segment images: a crucial technology for
connectomics. Current opinion in neurobiology. 2010; 20(5)

14. Jain V, Turaga S, Briggman K, Denk W, Seung S. Learning to agglomerate superpixel hierarchies.
Neural Information Processing Systems. 2011

15. Kanov K, Burns R, Eyink G, Meneveau C, Szalay A. Data-intensive spatial filtering in large
numerical simulation datasets. Supercomputing. 2012

16. Kasthuri N, Lichtman J. 2013 Untitled. In preparation.

17. Kaynig V, Fuchs T, Buhmann JM. Geometrical consistent 3d tracing of neuronal processes in
ssTEM data. MICCAI. 2010

18. Kazhdan M, Hoppe H. Streaming multigrid for gradient-domain operations on large images. ACM
Transactions on Graphics. 2008; 27

19. Kleissas DM, Gray WR, Burck JM, Vogelstein JT, Perlman E, Burlina PM, Burns R, Vogelstein
RJ. CAJAL3D: toward a fully automatic pipeline for connectome estimation from high-resolution
em data. Neuroinformatics. 2012

20. Li Y, Perlman E, Wang M, Yang Y, Meneveau C, Burns R, Chen S, Szalay A, Eyink G. A public
turbulence database cluster and applications to study Lagrangian evolution of velocity increments
in turbulence. Journal of Turbulence. 2008; 9(31):1–29.

21. Markoff, J. Obama seeking to boost study of human brain. New York Times; Feb 17. 2013

22. Micheva KD, Busse B, Weiler NC, O'Rourke N, Smith SJ. Single-synapse analysis of a diverse
synapse population: Proteomic imaging methods and markers. Neuron. 2010; 68(1)

Burns et al. Page 14

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://eyewire.org

23. Moon B, Jagadish HV, Faloutsos C, Saltz JH. Analysis of the clustering properties of the Hilbert
space-filling curve. IEEE Transactions on Knowledge and Data Engineering. 2001; 13(1)

24. Moon B, Saltz J. Scalability analysis of declustering methods for multidimensional range queries.
Trans of Knowledge and Data Engineering. 1998; 2(10)

25. Musaloiu-E RA, Terzis A, Szlavecz K, Szalay A, Cogan J, Gray J. Life under your feet: Wireless
sensors in soil ecology. Embedded Networked Sensors. 2006

26. Nielsen, M. Reinventing Discovery. Princeton University Press; 2011.

27. Norton A, Clyne J. The VAPOR visualization application. High Performance Visualization. 2012

28. O'Rourke N, Weiler NC, Micheva KD, Smith SJ. Deep molecular diversity of mammalian
synapses: why it matters and how to measure it. Nature Reviews Neuroscience. 2012; 13(1)

29. Papadomanolakis S, Ailamaki A, Lopez JC, Tu T, O'Hallaron DR, Heber G. Efficient query
processing on unstructured tetrahedral meshes. ACM SIGMOD. 2006

30. Perlman E, Burns R, Li Y, Meneveau C. Data exploration of turbulence simulations using a
database cluster. Supercomputing. 2007

31. Reina AV, Gelbart M, Huang D, Lichtman J, Miller EL, Pfister H. Segmentation fusion for
connectomics. International Conference on Computer Vision. 2011

32. Reina AV, Jeong WK, Lichtman J, Pfister H. The connectome project: discovering the wiring of
the brain. ACM Crossroads. 2011; 18(1):8–13.

33. Rex DE, Ma JQ, Tioga AW. The LONI pipeline processing environment. Neuroimage. 2003; 19(3)

34. Saalfeld S, Cardona A, Hartenstein V, Tomanĉák P. CATMAID: collaborative annotation toolkit
for massive amounts of image data. Bioinformatics. 2009; 25(15)

35. Samet, H. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann
Publishers Inc; San Francisco: 2006.

36. The Sloan Digital Sky Survey. 2013. Available at http://www.sdss.org/

37. Sellis T, Roussopoulos N, Faloutsos C. The R+-tree: A dynamic index for multidimensional
objects. VLDB. 1987

38. Sommer C, Straehle C, Koethe U, Hamprecht FA. ”ilastik: Interactive learning and segmentation
toolkit”. Biomedical Imaging. 2011

39. Soroush E, Balazinska M, Wang D. Arraystore: A storage manager for complex parallel array
processing. SIGMOD. 2011

40. Stonebraker, M.; Becla, J.; DeWitt, D.; Lim, KT.; Maier, D.; Ratzesberger, O.; Zdonik, S.
Requirements for science data bases and SciDB. Conference on Innovative Data Systems
Research; 2009.

41. Szalay, AS.; Church, K.; Meneveau, C.; Terzis, A.; Zeger, S. MRI: The Development of Data-
Scope—a multi-petabyte generic data analysis environment for science. 2012. Available at https://
wiki.pha.jhu.edu/escience_wiki/images/7/7f/DataScope.pdf

42. Tauheed F, Biveinis L, Heinis T, Schurmann F, Markram H, Ailamaki A. Accelerating range
queries for brain simulations. ICDE. 2012

43. The SciDB Development Team. Overview of SciDB, large scale array storage, processing and
analysis. SIGMOD. 2010

44. Wu K. FastBit: Interactively searching massive data. Journal of Physics: Conference Series. 2009;
180(1)

Burns et al. Page 15

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.sdss.org/
https://wiki.pha.jhu.edu/escience_wiki/images/7/7f/DataScope.pdf
https://wiki.pha.jhu.edu/escience_wiki/images/7/7f/DataScope.pdf

Figure 1.
Visualization of the spatial distribution of synapses detected in the mouse visual cortex of
Bock et al. [3].

Burns et al. Page 16

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Electron microscopy imaging of a mouse somatosensory cortex [16] overlaid by manual
annotations describing neural objects, including axons, dendrites, and synapses. These
images were cutout from two spatially registered databases and displayed in the CATMAID
Web viewer [34].

Burns et al. Page 17

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Visualization of six channels array tomography data courtesy of Nick Weiler and Stephen
Smith [28, 22]. Data were drawn from a 17-channel database and rendered by the OCP
cutout service.

Burns et al. Page 18

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
Partitioning the Morton (z-order) space-filling curve. For clarity, the figure shows 16
cuboids in 2-dimensions mapping to four nodes. The z-order curve is recursively defined
and scales in dimensions and data size.

Burns et al. Page 19

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
The resolution hierarchy scales the X,Y dimensions of cuboids, but not Z. So that cuboids
contain roughly equal lengths in all dimensions.

Burns et al. Page 20

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
Original (left) and color corrected (right) images across multiple serial sections [16].

Burns et al. Page 21

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 7.
OCP Data Cluster and clients as configured to run and visualize the parallel computer vision
workflow for synapse detection (Section 2).

Burns et al. Page 22

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 8.
A cutout of an annotation database (left) and the dense read of a single annotation (right).

Burns et al. Page 23

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 9.
The sparse index for an object (green) is a list of the Morton-order location of the cuboids
that contain voxels for that annotation. The index describes the disk blocks that contain
voxels for that object, which can be read in a single pass.

Burns et al. Page 24

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 10.
The performance of the cutout Web-service that extracts three-dimensional subvolumes
from the kasthuri11 image database.

Burns et al. Page 25

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 11.
Throughput of 256MB cutout requests to kasthuri11 as a function of the number of
concurrent requests.

Burns et al. Page 26

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 12.
Throughput of writing annotations as a function of the size of the annotated region.

Burns et al. Page 27

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 13.
Performance comparison of Database nodes and SSD nodes when writing synapses (small
random writes).

Burns et al. Page 28

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Burns et al. Page 29

Table 1

RESTful interfaces to the OCP Cutout and Annotation Web services. Italics indicate arguments and
parameters. annoproj is an example annotation project.

3-d image cutout
… 5123 at offset (1024, 1024, 1024) resolution 4

http://openconnecto.me/token/hdf5/resolution/x-range/y-range/z-range/
http://openconnecto.me/bock11/hdf5/4/512,1024/512,1024/512,1024/

Read an annotation
… and voxel list for identifier 75
… and bounding box
… and cutout restricted to a region

http:///openconnecto.me/token/identifier/dataoptions/
http://openconnecto.me/annoproj/75/voxels/
http://openconnecto.me/annoproj/75/boundingbox/
http://openconnecto.me/annoproj/75/cutout/2/1000,2000/1000,2000/10,20/

Write an annotation http://openconnecto.me/token/dataoptions/

Batch read http://openconnecto.me/annproj/1000,1001,1002/

Predicate query (find all synapses) http://openconnecto.me/annoproj/objects/type/synapse/

Sci Stat Database Manag. Author manuscript; available in PMC 2014 January 06.

http://openconnecto.me/token/hdf5/resolution/x-range/y-range/z-range/
http://openconnecto.me/bock11/hdf5/4/512,1024/
http:///openconnecto.me/token/identifier/dataoptions/
http://openconnecto.me/annoproj/75/voxels/
http://openconnecto.me/annoproj/75/boundingbox/
http://openconnecto.me/annoproj/75/cutout/2/1000,2000/1000,2000/10,20/
http://openconnecto.me/token/dataoptions/
http://openconnecto.me/annproj/1000,1001,1002/
http://openconnecto.me/annoproj/objects/type/synapse/

