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ABSTRACT

Frequent-itemset mining is an essential part of the associa-
tion rule mining process, which has many application areas.
It is a computation and memory intensive task with many
opportunities for optimization. Many efficient sequential
and parallel algorithms were proposed in the recent years.
Most of the parallel algorithms, however, cannot cope with
the huge number of threads that are provided by large mul-
tiprocessor or many-core systems. In this paper, we provide
a highly parallel version of the well-known ECLAT algorithm.
It runs on both, multiprocessor systems and many-core co-
processors, and scales well up to a very large number of

threads—244 in our experiments. To evaluate MCECLAT’s
performance, we conducted many experiments on realistic

datasets. MCECLAT achieves high speedups of up to 11.5x
and 100x on a 12-core multiprocessor system and a 61-
core Xeon Phi many-core coprocessor, respectively. Further-
more, MCECLAT is competitive with highly optimized exist-
ing frequent-itemset mining implementations taken from the
FIMI repository.

1. INTRODUCTION

Frequent-itemset mining is an essential part of the associ-
ation rule mining process, which has many application areas
like market-basket analysis, gene expression analysis, recom-
mendation, and web-mining. In many of these applications,
large datasets need to be mined so there is a need for efficient
mining algorithms.

Frequent-itemset mining can be described as follows: Let
Z={ai,...,am } be aset of items and D = (Th,...,Tn)
be a database of transactions, where each transaction T; C 7
consists of a set of items. The relative support of an itemset
I C 7 denotes the percentage of transactions that contain
the itemset I. The goal of itemset mining is to find all item-
sets that satisfy a certain minimum relative support . The
chosen £ value thereby influences the effort for mining; it be-
comes more expensive as & decreases because more frequent
itemsets are found.
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There exists a large variety of algorithms tackling the chal-
lenge of finding frequent itemsets. Basically—as discussed
by various authors [4, 7]—mnone of them is superior over
all other algorithms; the dataset being mined and the cho-
sen £ value determine which algorithm performs best. The
most popular frequent-itemset mining algorithms are FP-
GROWTH [6] and EcLAT [13] for which many optimizations
and variants were proposed. Since the sequential perfor-
mance of processors has stopped increasing in recent years,
parallel versions [14, 9] of these algorithms were proposed as
well. These algorithms, however, are intended for a rather
small number of threads. They thus cannot efficiently run on
large multiprocessor systems and many-core coprocessors.

In this paper, we propose MCECLAT, which is a highly
scalable version of ECLAT, for systems that provide a large
number of threads. MCECLAT is founded on efficient internal
data structures and fast set intersections, incorporates an ef-
ficient memory management, and provides scalable schedul-
ing techniques for exploring the search space for potential
frequent itemsets in parallel. The basic idea of these schedul-
ing techniques is to explore the space in groups of threads
instead of using only single threads. This allows to dis-
tribute the load more evenly among the available threads
and results in a much better scalability.

The contributions of this paper are:

e Wereview the ECLAT algorithm and its state-of-the-art
parallel version and discuss why it does not scale to a
large number of threads. We further give an overview
about the Intel Xeon Phi, which is a relatively new
many-core COprocessor.

e We propose MCECLAT, which is a highly scalable ver-
sion of ECLAT. It runs well on many-core coprocessors
and multiprocessor systems that provide a large num-
ber of threads.

e We conduct a large number of experiments on realistic
datasets. We show that MCECLAT is highly scalable
and performs better than existing highly-efficient min-
ing algorithms.

2. PREREQUISITES

In this section, we explain the sequential ECLAT algorithm
and its state-of-the-art parallel version and provide details
about the used many-core coprocessor.

2.1 Eclat

EcLAT employs candidate generation and testing to ob-
tain the frequent itemsets of a dataset, i.e., it repeatedly

Provided by Sachsische Landesbibliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SIGMOD/PODS'13: International Conference on Management of Data. New York 2013", Art. Nr. 3, ISBN 978-1-4503-2196-9

https://doi.org/10.1145/2485278.2485281

generates candidates based on previously obtained frequent
items or itemsets and checks the support of the candidates.
To perform the support counting of candidates efficiently,
EcLAT transforms the dataset in the wvertical data layout.
In this layout, each frequent item has a tid-set assigned
that contains the ids of the transactions (tids) in which
the item occurs. ECLAT represents tid-sets using lists (tid-
lists), which are sorted in ascending order. Intersecting the
tid-lists of two items reveals the transactions that contain
both items. In general, the support of a k-itemset can be
easily determined by intersecting the tid-lists of two arbi-
trary subsets of length (K — 1) and counting the elements
in the result tid-list. For example, if the itemsets a1 = ab
and oz = ac occur in the transactions 7 (a1) = {1,3,4,6}
and T(a2) = {1,2,4,6,7}, respectively, then the itemset
B = abc has a support of 3 since it occurs in the transac-
tions 7(8) = {1,4,6}, which is the intersection result of
T(Oq) N T(OQ).

Figure 1: Itemsets in the equivalence classes [a], [b],
(), and [d

To keep the size of the intermediate results during mining
as small as possible, ECLAT employs equivalence class clus-
tering to break the search space of possible frequent itemsets
into smaller sub-problems. All candidate k-itemsets that
share a prefix of length (k — 1) and thus differ only in their
last item form an equivalence class. For example, the item-
sets {ab,ac,ad} and {bc,bd} would be in the equivalence
classes [a] and [b], respectively. All itemsets produced by an
equivalence class are independent from itemsets produced
by other classes, i.e., for building larger itemsets based on
the itemsets of a class, no itemset of any other class is re-
quired. This effectively reduces the number of intermediate
tid-lists, which have to be maintained, and also allows an
effective parallelization. Figure 1 illustrates the mapping of
itemsets to the four equivalence classes [a], [b], [c], and [d].

The candidates are generated and tested bottom-up
within each class. There is, however, no distinct candidate
generation; it is performed simultaneously while mining the
sets. The complete algorithm works as follows:

Preparation The database is scanned twice. The first scan
reveals the frequent items F; while the second scan is
used to transform the database into the vertical lay-
out. For each frequent item v € Fy, a tid-list 7 () is
created, which contains all transactions that contain
the item ~.

Bottom up mining bottom-up(-) is called once with
F1 as parameter and then recursively as the search
space is traversed.

2

Bottom-up mining A set Fj of frequent k-itemsets is used
as input. The equivalence class [o;] for each itemset
a; of F}, is recursively mined.

Bottom-up(Fy): For each itemset a; € F) with ¢ =
1,2,...,|F%| do:

1. Set Fri1 = 0.
2. For each aj € Fj, with j =i+ 1,...,|F)]| do:

(a) Intersect the tid-list 7 (c;) with the tid-lists
T (o) to obtain the tid-list 7(3) for the item-
set 8 where 8 = o; U .

(b) If B fulfills £ with |T(5)| > &, then add S to
Fiot1.

3. If Fyy1 is not empty, then call bottom-up() re-
cursively with Fj1 as parameter.

Mining is finished, when the initial call of bottom-up()
returns. Zaki et al. [13] provide more details about the al-
gorithm.

2.2 Parallel Eclat

Although there are many sequential variants of ECLAT,
there exist only few parallel versions of it. PARECLAT [14]
can be run on multiprocessor as well as on distributed sys-
tems. Its works in three phases: The initialization phase
is used for obtaining the frequent 2-itemsets (including the
frequent items), creating the equivalence classes, and con-
verting the dataset. FEach class has an assigned weight—
based on its cardinality—which is used for a greedy-based
load distribution. The parallel conversion of the transaction
database into the vertical layout is performed by dividing
the dataset into equal-sized partitions; each thread converts
a different range of tids, i.e., the tids for the transactions
that are in its assigned partition. Knowledge about these
tids, the threads’ local count values, and global count values
are exploited to obtain the global tid-lists in which the tids
are lexicographically ordered. Each thread basically writes
its tids starting from certain offsets in the final tid-lists. In
the asynchronous phase—denoted as asynchronous because
there is no synchronization between the threads (or pro-
cessors) required—each thread generates frequent itemsets
using its assigned equivalence classes; this is done via tid-
list intersection as in the sequential algorithm. In the last
phase, the reduction phase, all threads are synchronized and
the results are combined.

PAREcCLAT works well as long as the number of threads is
rather low. For a large number of threads, PARECLAT’s load
distribution is too coarse grained to feed all threads with an
equal amount of work.

2.3 Intel Xeon Phi

As mentioned before, our algorithm MCECLAT is intended
for multiprocessor systems as well as for many-core coproces-
sors. The Intel Xeon Phi coprocessor [8] is such a many-core
coprocessor, which provides a large number of threads.

The Xeon Phi is intended for high parallel applications
and contains a large number of homogeneous x86 cores. The
coprocessor we used, for example, has 61 cores running at a
core frequency of 1.1GHz. Each core can further run multi-
ple threads to hide latencies while accessing the device mem-
ory, i.e., four threads run per core, so up to 244 threads can
run in parallel. Each core has a local L1- and L2-cache and
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can access the device memory (for our system 8GB GDDR5
memory) via a fast bidirectional ring. Thereby, the caches
are coherent across the entire coprocessor.

Besides the large number of cores, the Xeon Phi pro-
vides a powerful vector instruction set with instructions—
including scatter and gather—that operate on 512-bit reg-
isters. Hence, up to sixteen 32-bit integer or float values
can be processed with one instruction. It is thus crucial
to vectorize applications to obtain high performance on the
coprocessor. Unfortunately, MCECLAT cannot fully exploit
this SIMD instruction set so that its performance relies on
the many parallel threads.

Finally, the coprocessor runs an own operating system
(linux), which allows two usage models for the coprocessor:
(1) An application can be directly compiled for and run on
it and (2) an application can be run on the host processor
and some load can be offloaded on the coprocessor during
processing. Thereby, offloading involves copying data from
the host’s memory into the coprocessor’s memory. In both
usage models, the offloaded task/application runs indepen-
dently from the host processor. Communication is only re-
quired for exchanging results or data. Note that there are
no restrictions on the code being run. Since regular x86
cores are used, different tasks could be run in parallel and
recursive programs are possible.

3. MCECLAT

MCECLAT has basically the same core algorithm as ECLAT
or PARECLAT. It scans a dataset being mined once to obtain
the frequent items, converts the dataset into an internal rep-
resentation, and thereafter starts recursive mining. Mainly
the internal representation of the sets, the memory man-
agement, and parallel equivalence class mining differ from
PARECLAT. In the following, we discuss these differences in
more detail.

3.1 Internal dataset representation

Similar to various other ECLAT implementations [2, 12],
MCECLAT uses tid-bitmaps to represent the tid-sets of the
converted dataset. Instead of using lists to store all tids in
which a frequent item occurs, the tids of an itemset (or item)
are mapped to bits in a bitmap at certain positions. If the
itemset «, for example, occurs only in the transactions 3,
5, 6, and 7, then the 3-th, 5-th, 6-th, and 7-th bit in «a’s
tid-bitmap are set to one. All other bits in the bitmap are
set to zero. The length of each tid-bitmap for a converted
dataset is fixed and is determined by the largest tid; i.e., if a
dataset has n transactions that contain at least one frequent
item, then each tid-bitmap requires [n/8] bytes.

Tid-bitmaps have two major advantages compared to tid-
lists: They often require less space than tid-lists for dense
datasets with long transactions and they can be intersected
with only bitwise AND instructions. Obtaining the support
of an itemset then becomes counting the one bits in its re-
spective tid-bitmap. This bit population count can be either
performed using (1) lookup tables [2], (2) calculation using
various bit operations [12], or (3) population count instruc-
tions. Both, our employed CPUs and the Xeon Phi copro-
cessor, provide a 64-bit popcnt instruction. We employ it
within MCECLAT to obtain the support of an itemset.

Converting a dataset into tid-bitmaps typically amounts
to only a small fraction of MCECLATS overall runtime. Each
of the dataset’s transactions needs to be parsed and for each
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of its frequent items a bit in the item’s respective tid-bitmap
must be set. Thereby, we store all bitmaps 512-bit aligned
to avoid false sharing and enable aligned load instructions
during the intersections when MCECLAT is run on the copro-
cessor. Parallel conversion can be performed as for PARE-
CLAT. When mining is offloaded to the coprocessor, it is
sufficient to perform this task solely on the host processor.
In our current implementation, we even perform this con-
version only using a single thread. After all tid-bitmaps are
created, they are transfered to the coprocessor. As suggested
by our experiments, the transfer time is—for reasonable £
values—negligible compared to the time required for mining.

3.2 Memory management

An important part of MCECLAT is the threads’” memory
management. Each thread allocates and deallocates memory
for storing newly created tid-bitmaps during mining. When-
ever a thread traverses down in the search space, it creates
tid-bitmaps for itemsets that share all but the last item. For
the class [ab], for example, the tid-bitmaps for the itemsets
abc and abd must be materialized (cf. Figure 1). They are
removed as soon as all larger itemsets that are based on them
are mined. Hence, a stack per thread is sufficient for such
an allocation pattern. To provide stacks for each thread and
avoid expensive malloc calls during processing, we allocate
a large chunk of virtual memory using mmap, i.e., we allocate
for each thread 1GB so that up to 244GB are allocated when
all 244 threads are used. We pass the flag MAP_NORESERVE to
mmap to enable such large chunks of virtual memory despite
the small swap space. Since virtual memory is not mapped
to physical memory until it is touched, MCECLAT’S memory
footprint is typically much smaller, e.g., below the coproces-
sor’s available 8 GB. Hence, memory management is com-
pletely performed by the operating system. We further use
huge pages (i.e., 2MB pages) to reduce the costs for the page
mapping. On the coprocessor, the page size is controlled
using the environment variable PHI_USE_2MB_BUFFERS. We
observe an average performance improvement of about 10%
with this optimization enabled.

3.3 Parallel equivalence-class mining

As mentioned before, the mining step dominates MCE-
CLAT’s overall runtime as £ gets sufficiently small. Hence, it
is very beneficial to run it in parallel. In the following, we
discuss three parallel equivalence class mining approaches,
which are employed in combination to make MCECLAT’s min-
ing step scalable.

PARECLAT distributes each class to a single thread, which
mines an assigned class independently from all other threads.
In Figure 2(a), for example, the three threads ¢1, t2, and
t3 mine the classes [a], [b], and [¢] independently from one
another. This approach exhibits low synchronization costs
because each thread only synchronizes with other threads
when it fetches the next class for mining. However, mining
the classes independently often cause high load imbalances
when a large number of threads is used. Threads that mine
heavy classes—t1 with class [a] in Figure 2(a)—often finish
later than other threads mining lighter classes. Such imbal-
ances can only be avoided when there are much more classes
than threads. This, however, is rarely the case for a large
number of threads. Besides the load imbalance, the mem-
ory consumption of independent class mining is much higher
than for sequential processing because all threads hold all of
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(a) Independent class

(b) Shared class

(c) Shared itemset

Figure 2: Parallel equivalence class mining using three threads ¢, t2, and t3

their tid-bitmaps at the same time in memory.

The shared class mining (Figure 2(b)) partially avoids
the problems of the independent class mining approach by
mining a single class using multiple threads. This reduces
the memory required for parallel mining but comes at the
price of higher synchronization costs. The threads must be
synchronized when they materialize a new tid-bitmap for
a found frequent itemset, i.e., atomic increments are used
to increase local variables that count the number of sets in
a class. Load imbalance still occurs when the number of
threads is larger than the number of tid-lists that need to
be intersected within a class.

The threads build even the tid-sets of single itemsets to-
gether when shared itemset mining is employed (cf. Fig-
ure 2(c)). Since the tid-bitmaps are stored in cacheline
granularity (512-bit), the threads can each process parts of
the tid-bitmap being built without false sharing. Clearly,
this approach allows the most fine-grained work distribution
at the cost of a high synchronization between the threads.
They must be synchronized always after two tid-sets are in-
tersected to obtain the support of the new itemset. There-
fore, we do not employ shared itemset mining in MCECLAT.

Instead, we employ a hybrid between independent and
shared class mining in MCECLAT: Grouped class mining par-
titions the threads in groups. Each group has a different
class assigned and all threads in a group process together
a class. Group class mining is only performed in the first
few recursion levels to allow an even load distribution with
reasonable synchronization costs. In the deeper recursion
levels, the thread groups are split up and the classes are
processed independently by the threads. We thereby pro-
cess b classes per thread simultaneously. This blocked class
processing increases instruction-level parallelism by avoiding
data dependent latencies and improves cacheline utilization.

4. EXPERIMENTAL EVALUATION

In this section, we provide the results for our experimen-
tal evaluation. We first give details about the setup. There-
after, we provide the results for the scalability of our algo-
rithm and how it performs compared to existing frequent
itemset mining algorithms.

4.1 Setup

We conducted all our experiments on a multiprocessor sys-
tem. It contains two Intel X5680 processors, which run at
a core frequency of 3.3GHz, each has 6 cores and a 12MB
L3-cache. The processors support Hyperthreading, so up to
24 threads can run in parallel. Each processor has 16GB
of main memory attached so that 32GB are available for
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the complete system. The multiprocessor system further
contains a Intel Xeon Phi coprocessor!, which has 61 cores
running at 1.1GHz and 8GB GDDR5 RAM. As mentioned
earlier, each of these cores runs 4 threads in parallel. Hence,
up to 244 threads can be run on the coprocessor.

Both the multiprocessor system and the coprocessor run
linux. We implemented MCECLAT in C4++ and compiled it
using icc from Intel Composer XE 2013 (13.1.0). We used
OpenMP to enable thread-level parallelism. We passed the
flags -mmic and -no-offload to obtain an executable with
and an executable without offloading, respectively. We fur-
ther employed intrinsics to integrate the used vector instruc-
tions. In all experiments, we measure the wall-clock time
within the algorithms using gettimeofday (). The time for
data transfers between the host system and the coprocessor
and the amount of transfered data is measured by setting
the environment variable OFFLOAD_REPORT=2.

# items avg. card. # transactions
netflix 480,189 5654.1 17,771
BMS-Pos” 515,597 2030.7 1,657
webdocs 5,267,656 177.2 1,692,082

Table 1: Characteristics of the used datasets

For the experiments, we use three realistic datasets that
are eligible for EcLAT. They all consist of long transactions
and contain many distinct items. The webdocs dataset [10]
is created from a collection of web documents and is taken
from the FIMI repository [3], which contains efficient imple-
mentations and datasets for frequent-itemset mining. The
BMS-P0ST dataset is the transposed version of a market-
basket analysis dataset [3]. The netflix dataset is built
from a freely available dataset that was originally not in-
tended for frequent itemset mining. The original dataset
contains movie ratings and was used in the Netflix Prize
competition.? We do not use other freely available datasets
because (1) they are often too small so that offloading would
be useless and (2) many of them are not eligible for ECLAT
so that other algorithms like FP-GROWTH or APRIORI per-
form better on them. Table 1 summarizes the characteris-
tics of the three used datasets. The generated netflix and
BMS-POST dataset as well as the complete source code of our
implementations are available online.?

"We use an engineering sample (B0 hardware) with Gold
software.

2See http://www.netflixprize.com/ for more information.
3http://wwwdb.inf .tu-dresden.de/schlegel.
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Figure 3: Experimental results on netflix

4.2 Scalability experiments

In the first set of experiments, we evaluate MCECLAT’s
scalability by running it on both platforms for a varying
number of threads. We compare the performance of IN-
DEPENDENT and GROUPED class mining. For the latter, we
further employ our blocked class processing (BLOCKED) with
b = 2. Figure 3(a) illustrates MCECLAT’s performance when
it is solely run on the host processor. In what follows, we
use INDEPENDENT’s single-threaded runtime as base for ob-
taining the speedups. As can be seen, both equivalence class
mining approaches perform similarly. GROUPED is slightly
slower than INDEPENDENT because of the higher synchro-
nization between the threads in a group; the better load
distribution does not pay off for such a small number of
threads. Interestingly, BLOCKED (not shown) is not benefi-
cial for the host-only version. We obtain similar results for
the BMS-P0S” dataset. On the webdocs dataset, however,
MCECLAT does not scale beyond four threads. This dataset
has many transactions—leading to long tid-bitmaps. While
intersecting these large bitmaps, the threads saturate the
available memory bandwidth so that more threads do not
reduce the runtime. More elaborate blocking techniques—
at cacheline level—need to be developed for such datasets.

GROUPED and BLOCKED scale much better than INDEPEN-
DENT when mining is offloaded to the Xeon Phi coproces-
sor. As illustrated in Figure 3(b) for the netflix dataset,
BLOCKED achieves speedups up to 100x whereas INDEPEN-
DENT achieves at best 40x. We obtain similar results for
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the other datasets with, however, smaller speedups (cf. the
appendix).

Figure 3(c) illustrates the runtime of the host-only and
coprocessor version when mining netflix. The latter ver-
sion is single-threaded multiple times slower than the single-
threaded host-only version. Multi-threaded, however, the
coprocessor version exploits the large number of threads of
the Xeon Phi coprocessor. Thus, the runtimes of both ver-
sions approach each other when the maximum number of
threads is used on both systems.

CPU Xeon Phi
# threads 1 24 1 244
notflix &= 90% 147 14 1998 3.1
E=76% 2027 181 2643.5 288
BMS-POST ¢ =1.0% 76.8 7.6 11279 21.2
vebdocs &= 10.6% 77 2.7 1129 5.7
E=771% 111.2 381 1502.7 39.9

Table 2: Runtime of mining (in seconds)

Table 2 shows the runtimes (mining only) for both versions
with SHARED enabled on our three datasets. The coproces-
sor version (with blocking enabled) is single-threaded up to
14.6x slower than the host version because the host proces-
sor cores have a high core frequency and support out-of-
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order processing. Furthermore, MCECLAT does not fully ex-
ploit the Xeon Phi’s powerful vector processing capabilities.
When the maximum number of threads is employed on both
systems, however, the performance difference is smaller. On
webdocs, for example, both versions have almost the same
runtime. When considering that (1) a single Xeon Phi card
is much cheaper than a multiprocessor system and (2) multi-
ple cards can be employed in a single server, then offloading
load to the coprocessor is beneficial.

4.3 Comparison with existing algorithms

In the next set of experiments, we compare the host ver-
sion of MCECLAT with available, highly efficient frequent
itemset mining implementations taken from the FIMI repos-
itory [3]. The purpose of these experiments is to show that
MCECLAT is competitive with existing algorithms. Other-
wise, it would be meaningless to parallelize it. We mea-
sure the execution times of APRIORI [2], EcLaT [2], FP-
GROWTH [5], and LCM [11]. These algorithms cover a broad
spectrum of available sequential mining algorithms and typ-
ically perform best among all algorithms used in the FIMI
competition [4]. Details about these four existing algorithms
can be found in Section 5.

Figure 3(d) illustrates the execution time on netflix for
various ¢ values. As can be seen, APRIORI performs worst.
It is much slower than the other algorithms because it is
optimized for processing datasets containing mostly small
transactions (cf. the discussion in Section 5). FP-GROWTH
and ECLAT show almost the same performance and LCM
performs best of the four competitors. MCECLAT is always
the fastest of all five algorithms within the tested & range.
The results are similar on webdocs and BMS-P0S” dataset.
MCECLAT is always among the fastest of the five tested al-
gorithms on these ECLAT-suitable datasets. Summing up,
MCECLAT is competitive with existing mining algorithms.

S. FURTHER RELATED WORK

In this section, we review related work that is not already
covered within the paper, i.e., we discuss sequential mining
algorithms that are not based on ECLAT.

APRIORI [1] is considered the first algorithm eligible for
mining large datasets. It represents the transaction database
in the horizontal layout in which the filtered transactions are
stored one after another in memory. The frequent itemsets
are obtained by counting candidate itemsets in the trans-
actions. APRIORI typically performs best on datasets that
have many small transactions.

FP-GROWTH [6] represents the transaction database us-
ing frequent-pattern trees. Such trees resemble prefix trees
and are often smaller than the transaction database. During
mining, the frequent-pattern trees are repeatedly traversed
to build smaller ones of them and thereby obtaining the fre-
quent itemsets. FP-GROWTH usually outperforms ECLAT on
datasets with small and medium-sized transactions or when
mainly small frequent itemsets are found. In the remaining
cases, ECLAT performs better because building the prefix
trees then does not payoff.

The LCM algorithm [11] resembles the ECLAT algorithm
but maintains besides the transactions stored in the vertical
layout also their representation in the horizontal layout. The
latter is used to obtain the former without intersections.
LCM often performs well on the same datasets on which
EcLAT performs well.
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6. CONCLUSION

Frequent-itemset mining is an essential part of the asso-
ciation rule mining process and has many application areas.
Existing parallel mining algorithms often cannot exploit the
large number of threads that is provided by increasingly pop-
ular many-core systems like Intel Xeon Phi or large multipro-
cessor systems. In this paper, we propose MCECLAT, which
is a highly scalable parallel version of the well-known mining
algorithm ECLAT. MCECLAT converts a dataset being mined
into a set of tid-bitmaps, which are repeatedly intersected
to obtain the frequent itemsets. For a highly scalable min-
ing, we discuss and evaluate three parallel equivalence class
mining approaches. The hybrid between independent and
shared class mining shows the best performance. In our ex-
periments, we observe that MCECLAT outperforms efficient
existing algorithms and achieves high speedups of up to 100x
when run on a many-core coprocessor that has 61 cores.
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APPENDIX

In this section, we provide further performance graphs. Fig-
ure 4(a) illustrates the scalability of the host-only version of
MCECLAT on webdocs. As can be seen, both class mining
approaches reach their peak speedup already for 4 threads.
Figure 4(b) illustrates the scalability of the host-only ver-
sion on BMS-P0ST. On this dataset, MCECLAT scales up to
12 threads almost linear.
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Figure 4: Scalability of mcEclat’s host-only version
on the 12-core multiprocessor system

Figure 5(a) and Figure 5(b) illustrate the scalability of
MCECLAT’s coprocessor version on webdocs and BMS-P0ST,
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respectively. Group class mining—with blocking enabled—
scales on both datasets better than independent class min-
ing. The former is up to 4x faster than the latter for more
than 60 threads.

Figure 6(a) illustrates the runtime of MCECLAT on web-
docs for both platforms. The host-only version is single-
threaded multiple times faster than the single-threaded co-
processor version. The latter, however, scales better so that
both multi-threaded versions show a similar performance.
On BMS-P0S”, the host-only version is single-threaded—as
well as when the maximum number of threads are employed
on both platforms—multiple times faster than the coproces-
sor version.

Finally, Figure 7(a) and Figure 7(b) illustrate the re-
sults for the comparison of single-threaded MCECLAT (host-
only) with the existing frequent-itemset mining algorithms
on webdocs and BMS-P0ST | respectively. MCECLAT performs
best on the former dataset for & > 7%. For lower £ values,
EcLAT is the fastest among the five tested algorithms. On
BMS-P0OS”, LCM is the fastest of all five tested algorithms
for £ > 1.1%. For lower & values, MCECLAT is faster than all
other algorithms under test.
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Figure 7: Comparison with existing algorithms (single-threaded and host only)
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