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Relationship Descriptors for Interactive Motion Adaptation
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Figure 1: (a) An original swinging motion (b) adapted to a deformed terrain and enlarged body. (c) A motion to ride on a car (d) adapted
to a larger character and a smaller entrance. (e) Failure case when using a sparse set of positional constraints and repulsion in the direction
of normal vectors.

Abstract

This paper presents an interactive motion adaptation scheme for
close interactions between skeletal characters and mesh structures,
such as moving through restricted environments, and manipulating
objects. This is achieved through a new spatial relationship-based
representation, which describes the kinematics of the body parts by
the weighted sum of translation vectors relative to points selectively
sampled over the surfaces of the mesh structures. In contrast to pre-
vious discrete representations that either only handle static spatial
relationships, or require offline, costly optimization processes, our
continuous framework smoothly adapts the motion of a character
to large updates of the mesh structures and character morpholo-
gies on-the-fly, while preserving the original context of the scene.
The experimental results show that our method can be used for a
wide range of applications, including motion retargeting, interac-
tive character control and deformation transfer for scenes that in-
volve close interactions. Our framework is useful for artists who
need to design animated scenes interactively, and modern computer
games that allow users to design their own characters, objects and
environments.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: motion adaptation, motion retargeting, motion editing

1 Introduction

There is a strong demand in the gaming industry for an online mo-
tion adaptation scheme that can handle close interactions between
multiple characters, a character and an object or a character and its
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environment. Modern computer games may include a wide range
of environments and character designs in the package. They even
allow players to design their own characters, and the environments
may be procedurally generated. The characters may need to move
through restricted environments, manipulate tools, and interact with
other characters never encountered before. Preparing the motion
data for all combinations of character morphologies and surface ge-
ometries can significantly increase the amount of data in the game
package. Thus, recycling motion of close interactions for different
characters and objects is convenient for the game developers.

Existing techniques of motion retargeting and adaptation either can
only handle a limited variation of close interactions or require high
computational cost. Some methods adapt motions by imposing a
sparse set of positional [Gleicher 1998; Lee and Shin 1999; Choi
and Ko 2000] and distance constraints [Liu et al. 2006]. As we
present later in this paper, they can suffer from collisions and dis-
continuities when applied to scenes of close interactions. In order
to handle close interactions, denser representations based on mini-
mal spanning trees [Zhou et al. 2010] and volumetric meshes [Ho
et al. 2010] are proposed. These methods require costly iteration
processes. Also due to their discrete representations, they require
using spacetime optimization when applied to scenes where the spa-
tial relationships dynamically change overtime.

In this paper, we overcome the problems of existing techniques by
proposing a new descriptor for representing the spatial relationship
between a character and the mesh structures that it interacts with
during the animation. With this representation, the pose of each
body part is described by the weighted sum of relative translation
vectors with respect to points sampled on the surface of the object
in close proximity. The descriptors are sampled such that the move-
ment with the same context can be reproduced by the summation of
a small number of relative vectors, with little artefacts.

Our interactive framework keeps the movements of the characters
to be continuous between frames even when there are significant
deformations of the environment or large updates in the character
morphology. In order to achieve this, first, we use the same set of
descriptors in all the frames. Instead of using a temporal window
as done in [Ho et al. 2010], we apply a spatial window that defines
the volume that the descriptors are used to recompute the target
joint position. Next, during runtime, the posture of the character
is computed using a fast motion warping scheme, which pulls the
body joints toward their target locations defined by the relationship-
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based descriptors while satisfying constraints. This framework can
quickly reproduce postures that follow the original context.

We show examples in which characters adapt their movements to
the geometric changes of objects and the environment, such as a
character walking over a deformed terrain and a character adapting
its posture to a re-shaped object that it is interacting with. We also
show examples of retargeting movements of close interactions to
characters of different morphologies and a cloth reconfigured to a
shape that it is covering. The method is especially useful for inter-
active applications such as computer games as the motion recon-
struction can be done quickly and robustly. The method is simple
and easy to implement, and also produces plausible human motion,
making it highly practical for synthesizing and editing close inter-
actions.

Contributions

• A relationship-based representation for character poses using
descriptors sampled in the environment.

• An online framework to adapt the movements of characters to
large updates in the environment and character morphologies
while preserving the context of the original scene and conti-
nuity of movements.

• A scheme to adaptively sample the relationship descriptors
according to the original animation such that the motion can
be reconstructed from a limited number of samples.

2 Related Work

For synthesizing movements where a character interacts with other
objects or characters, most existing methods use a sparse set of po-
sitional and distance constraints to enforce a spatial relationship be-
tween characters and the environment. A few more recent works on
character animation and shape modeling consider implicit spatial
relationships.

Constraint-based motion synthesis Combination of optimiza-
tion and, a sparse set of positional and distance constraints is
a scheme that has been adopted for physically-based anima-
tion [Popović and Witkin 1999; Liu and Popović’ 2002; Fang and
Pollard 2003; Bai et al. 2012; Liu 2009], motion editing [Callennec
and Boulic 2004], motion retargeting [Gleicher 1998; Lee and Shin
1999; Choi and Ko 2000], and adaptation to the environment [Choi
et al. 2011]. For online character animation, the optimization must
be done per-frame [Choi and Ko 2000] or using a short temporal
window [Liu 2009]. In order to cope with the discontinuities caused
by discretely turning on and off the constraints (such as the support
foot constrained on to the ground), Shin et al. [2001] propose to
adjust the weights of the constraints according to the Euclidean dis-
tance to the target location.

However, methods based on a sparse set of positional and distance
constraints can result in collisions and penetrations of the body
parts with the environment, objects, and even with the body itself.
Especially when the interaction involves concavity, such collisions
cannot be resolved by simply adjusting the trajectories in the direc-
tion of normal vectors (as done in [Lyard and Magnenat-Thalmann
2008]), as they may split the trajectories in the temporal domain.
The trajectories need to be replanned using global path planners
(as done in [Shapiro et al. 2007]), which is not suitable for online
character animation.

In fact, during close interactions, the body is implicitly constrained
by many factors including the context of the movements and obsta-

Figure 2: The overview of the method: The position of the joints
are represented by the weighted sum of relative vectors from de-
scriptors computed in the original motion (left). The target location
of the joints are computed from the updated geometry of the envi-
ronment (middle). The motion adapts to the new geometry of the
environment and morphology of the character (right).

cles that the body does not contact in the original motion. In order
to adapt and retarget movements that involve close interactions of
the body and mesh structures, it is important to encode such implicit
spatial relationships in the representation.

Character animation by spatial relationships There have been
a few recent works which take into account the implicit spatial re-
lationships of interacting characters and objects when synthesiz-
ing new animation. Kwon et al. [2008] handle the spatial relation-
ships between characters in group motions by encoding the neigh-
borhood formations and individual trajectories as Laplacian coor-
dinates. When editing the trajectories, the relative spatial arrange-
ments of characters are preserved by applying Laplacian mesh edit-
ing techniques [Alexa 2003; Sorkine et al. 2004]. Ho et al. [2010]
apply the same idea to each body parts of articulated characters
and preserve the context of the interactions during the animation.
Zhou et al. [2010] represent the spatial relationships between mul-
tiple objects by a minimum spanning tree of Euclidean distance. As
these are discrete descriptors whose topology change per configu-
ration, they require offline spacetime optimization to adapt move-
ments whose spatial relationship change over time, which make
them unsuitable for real-time applications such as computer games
and interactive motion editing.

Mordatch et al. [2012] introduces an auxiliary function to bridge
the gap between contact and non-contact states for synthesizing
novel movements. Their approach can produce a novel context
from scratch using an objective function by an offline optimization
process. How their descriptors can be applied for adapting move-
ments to different geometry has not yet been explored, which is the
main topic our research.

Relationship-aware shape modeling Some work of shape
modeling takes into account the relationships between different ob-
jects for the modeling purpose. Harmon et al. [2011] defines an
energy of overlapping and amend the shapes such that this energy
is minimized. Similar to positional constraints, the spatial relation-
ships are not encoded unless a contact occurs. Brouet et al. [2012]
propose a scheme for adapting clothes to characters of different
sizes. They also use relative vectors with respect to the bones of the
body to define the location of the cloth particles. Their approach
is for obtaining a static garment that fits the size of a new char-
acter rather than transferring an animation that involves dynamic
movements of deformable meshes to characters of different geome-
try and morphology. Our representation is similar to Wrapdeform-
ers [2013], which is a function in Maya that let users associate the
deformer object with an influence object manually. In contrast, we
automatically associate the character motion to the mesh structure
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Figure 3: The local coordinates defined at the body joints and at
the sample points on the object.

through the analysis of the original animation and selective sam-
pling of the descriptors.

3 Overview

The overview of the scheme is shown in Fig. 2. Our method is
composed of the preprocessing and run-time stages.

In the preprocessing stage, the original motion and geometry data
of the characters and objects are loaded. The system scans through
the animation to convert the scene into our representation, in which
the poses of the body parts are described by the weighted sum of
relative translations from points called descriptor points sampled
on the mesh structures that compose the environment or the objects
that the character interacts with (see Fig. 2 left, Section 4). The
candidate of the descriptor points are computed by projecting the
joint and end effector positions onto the surface of the objects in all
the frames (see Section 5), but are only adopted according to our
novel scheme specialized for close interactions (see Section 6).

During run-time, the geometries of the objects or environment and
the morphology of the environment are updated (see Fig. 2 middle)
and then the posture of the character is recomputed per frame using
a motion warping scheme which moves the body joints toward the
target locations defined by the descriptors while taking into account
the bone-length and additional constraints (see Fig. 2 right, Section
7).

4 Relationship Descriptors

In this section, we introduce a novel approach to represent the
movements of the character relative to the geometry of the object
that it is interacting with. This representation is especially useful
for reproducing animation with the same context even when the ge-
ometry of the object is changed. In our representation, the joint po-
sitions are computed by the relative translations from a static set of
points called descriptor points. The descriptor points are sampled
on the surface of the mesh structure by analyzing the interaction
in all the frames (see Section 5 and Section 6 for the sampling
scheme).

Now, we explain how to compute the joint positions from the de-
scriptor points. Let us define the position of joint j by pj, and
the descriptor points by (d1, ...,dN ) (see Fig. 3). We also ob-
tain the normal, tangent and binormal vectors from the geometry
of the surface, which are defined by (n1, ...,nN ), (t1, ..., tN ), and
(b1, ...,bN ), respectively. The tangent vectors are computed by
simply picking one of the edges connected to the vertex and project-
ing it to the tangent plane, and the binormal vectors are computed
by the cross product of the normal and tangent vectors. Given a mo-
tion, we represent the joint positions pj relative to di using these

three vectors:

pj = di + αi,jni + βi,jti + γi,jbi. (1)

As we wantpj to be influenced by not only one but all the descriptor
points in proximity, we represent it as the weighted sum of Eq. (1)
of all the descriptor points instead:

pj =
PN

i
wi,j(di + αi,jni + βi,jti + γi,jbi) (2)

where wi,j is the normalized weight between joint j and descriptor
point di whose value is dependent on the distance between the two
points and howmuch the normal vector ni is facing towards pj. For
computing the weights, we first calculate the following term for all
the descriptor points:

w
′
i,j =

ni · (pj − di)

‖pj − di‖
. (3)

The weight fades out as the distance between pj and di increases:

w
′′
i,j = w

′
i,jf(‖pj − di‖), (4)
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× bodyheight. Finally, we normalize the weights:
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i,j
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w′′

i,j

. (6)

Using Eq. (2), the position of each body joint can be reconstructed
from the geometry of the object surface. When the geometry of the
object is changed, the updated poses of the body joints can be com-
puted by feeding the mapped descriptor points and the axes of their
local coordinates into these equations. More about the reconstruc-
tion process is explained in Section 7.

5 Sampling Proximity Points on Surfaces

In this section, we explain how we sample proximity points on the
object surface, which are going to be candidates of the descriptor
points (d1, ...,dN).

Proximity points are sampled on the object surface where the char-
acter closely interacts with. This is done by examining if a body
joint is within the coverage of each triangle composing the object
mesh, and then projecting the position of the body joint onto the
surface of the triangle and computing its barycentric coordinates.

The definition of the triangle coverage and the way to check if a
body joint lies within the coverage is as follows. First, we take each
triangle of the object mesh and define a volume which is composed
of the triangle and the planes connected by the outgoing normal
vectors at the triangle vertices. We define the coverage of the trian-
gle as the space which is contained within this volume (see Fig. 4).
We test if the joint lies within the coverage of a triangle by a ray-
casting test (casting a ray in arbitrary directions and checking the
number of intersections with the boundary), which is often used in
graphics for evaluating if a point is within a shadow volume. Note
that a joint can be contained in multiple coverage, especially when
a joint is in proximity of a concave object or multiple objects. This

47



triangle on 
object mesh

normals

Coverage
Volume

projected
body joint

Ray casting test

Body Joint

Figure 4: The coverage of a triangle is defined by its normal vec-
tors at the vertices. Coverage of the body joints are examined by
a ray-casting test. Those inside are projected on the triangle and
their barycentric coordinates are computed.

frame i
frame i+1

convex area concave area

surface

Figure 5: The disadvantage of using a different set of descriptor
points per frame: the number of descriptor points changes when
the joint moves into a concave area.

is important as we want the body joint to be associated to multi-
ple surface segments of the object, such that the body posture is
affected by all the descriptor points in proximity.

Once we know a joint is within the coverage of a triangle, we
project it on the triangle by finding a point within the triangle whose
normal vector defined by the barycentric coordinates penetrates the
joint position in 3D space (the green point in Fig. 4). This is a dif-
ficult problem to solve as it brings rise to a system of non-linear
equations with the barycentric coordinates of the projected point
as the unknowns. We solve this using Newton’s method with an
initial guess at one of the triangle points. The candidate point on
the surface triangle is projected back on a plane that is parallel to
the surface triangle and passes the body joint (the red triangle in
Fig. 4). The barycentric coordinates that make the back-projected
point overlap with the joint is computed by iteratively decreasing
the distance between them.

6 Computing Descriptor Points

In this section, we explain about the method to sample the de-
scriptor points among the proximity points computed in Section 5.
There can be two methods for describing the movements by the re-
lationship descriptors; (1) using the proximity points computed per
frame or (2) using a static set of descriptor points for the entire ani-
mation. We first describe the problem of the first approach and then
describe our adaptive sampling scheme based on the second.

Problems of Per-Frame Set of Descriptor Points A naive ap-
proach is to change the set of descriptor points per frame by adopt-
ing the proximity points computed in each frame by the method
explained in Section 4. In such a case, we can assume a body joint
is reconstructed from proximity points sliding over the surface. A
motion computed by this method, however, suffers from jerkiness
when the geometry of the object is changed. This is due to the sud-
den increment or decrement of the proximity points when the joint

moves into or comes out from a concave area of the surface. This is
illustrated in Fig. 5: a joint that is in a convex area in frame i with
only one proximity point enters a concave area in frame i+1 where
the number of proximity points increases to two. When the geom-
etry of the surface changes, the reconstructed position of the joint
will be very different in the two frames as an additional descriptor
point is involved in frame i + 1. In fact, this is a problem common
with applying discrete representations such as minimal spanning
trees [Zhou et al. 2010] or Delaunay tetrahedralization [Ho et al.
2010]; the topological change of the trees / graphs between frames
results in discontinuity and jerkiness of the motion. Mordatch et
al. [2012] also evaluates the interaction between the fingers and the
object by such a one-to-one projection. This limits their method to
be applicable only to convex objects.

Another problem is that there is a lot of redundancy in the data
because different sets of proximity points need to be saved for all
the frames although many points are cluttered in close proximity.
This often happens in actions such as sitting on a chair, in which
the character does not move its body much. A lot of samples will
be duplicated on the chair between frames.

Adaptively Sampling a Fixed Set of Descriptor Points To
solve these problems, we use a fixed set of descriptor points
throughout the animation, which are sparsely sampled on the sur-
face of the mesh. We apply an incremental sampling scheme, pass-
ing as an argument a geodesic distance radius parameter, whose
value dynamically changes according to the distance between the
joint and the sample point on the surface:

r =

(

0.5 × d (if d > d0 )

0.5 × d0 (otherwise)
(7)

where d0 is the threshold for a minimum radius, which is set to
0.05× bodyheight. This value is tunable according to the task and
context. When a new proximity point is sampled on the surface of
the mesh, the previous samples in the geodesic radius are examined
(see Fig. 6). If there are no previous samples in the radius, this
sample is adopted as the new descriptor. For fine interactions such
as the hand manipulating objects, the number of sample points will
be larger, and for those such as avoiding obstacles when walking, it
will be smaller.

The efficiency of this sampling scheme comes from its biased and
incremental nature. First, it produces more samples where the char-
acter closely interacts, which is needed for achieving precise con-
trol. It also helps to avoid collisions while preserving close dis-
tances where the body is in close contact with the environment.
Second, as samples are produced incrementally, we can easily add
new movements into the data while making use of the previously

body
joints

descriptor points

object surface

r
d

Figure 6: The adaptive radius scheme to sample descriptor points:
The radius scales with the distance. When there is no previous
descriptor points sampled in the radius, a new descriptor point is
placed. Only a single descriptor point will be sampled in the right
case.
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produced samples. This is useful for a commonly used environment
such as a room. For offline schemes such as K-means clustering, it
is difficult to handle a long animation sequence due to its poor scal-
ability. The clusters also need to be recomputed when a new set of
data are added to the original set.

The idea behind using geodesic distance for the radius is that we
prefer to cluster the points based on the distance that the character
needs to travel along the surface between the sample points. We
do not want the motion to be affected by, for example, edits on the
other side of the wall that the character is in close proximity, which
can happen if we use a radius based on Euclidean distance.

7 Adapting Postures to New Geometries

Now we explain about our motion warping scheme that re-
computes the posture of the character when the geometry of the
mesh structures is updated. We first explain about recomputing the
joint positions by the relationship descriptors according to the ge-
ometric deformation of the objects or environment, and then about
the motion warping scheme that finalizes the character posture.

7.1 Motion Retargeting by the Relationship Descrip-

tors

Once the position of the descriptor points and their normal, tangent
and binormal vectors are re-mapped, the positions of the joints can
be computed using Eq. (2). These are going to be the desired loca-
tions of the joints.

For object shape deformation, in addition to affine transformations
such as translation, rotation and scaling, we also allow the users to
insert skeletons and edit the mesh by linear blending. The descrip-
tor points are mapped to the deformed geometry.

We also show examples of switching the geometry of the objects.
The corresponding descriptor points and their local coordinates be-
tween different geometries can be obtained by computing the dense
correspondence between the original and new object. Computing
the dense correspondence is itself a research topic and a universal
solution does not exist; it is even more difficult for objects such as
chairs whose topologies can be different. In our experiments, we
use a rather simple approach based on finding the shortest distance
point on two objects after a gross manual alignment. This method
works fine as the descriptors are only sparsely distributed over the
object.

7.2 Spatial Relationship-aware Motion Warping

Here we propose a scheme to warp the movements of the characters
such that they reach the desired joint positions computed by the
relationship descriptors as much as possible, while satisfying other
constraints such as the bone length and positional constraints.

The key to our relationship-aware motion warping scheme is the
introduction of the affinity concept: this is a measure of the trans-
lational flexibility of a joint. We prefer the joints that are in close
proximity of the surface to move less, while those which are farther
away from it to move more freely. This is due to the fact that joints
near the surface tend to make contacts with the surface, or need to
be carefully controlled to avoid collisions. The affinity values are
computed by summing the weights of the associated descriptors on
the surface computed in Eq. (6) and normalizing them:

sj =

PN

i
wi,j

PNj

j

PN

i
wi,j

(8)

where j is index of the joints and Nj is the number of joints.

In the rest of this section, we explain the procedure of our
relationship-aware motion warping scheme. In order to satisfy the
constraints, we use a non-linear inverse kinematics solver [Jakobsen
2001] that can robustly compute a solution with only a small num-
ber of iterations, despite large deformations of the mesh structures
or updates in the character morphology. The force accumulation
and integration steps are run first, and then the constraints step is
iteratedNc times (set to 3 in our experiments). The entire process is
repeated Ns times (set to 3 in our experiments) for each time step,
which means force accumulation and integration steps are run Ns

times, and the constraint step is run Ns × Nc times in every frame.

Force Accumulation Step: Instead of explicitly manipulating
the joints, we control them by applying virtual forces to the par-
ticles that correspond to the joints. The forces are computed by
multiplying an elastic constant to the difference between their cur-
rent and target positions:

fj = k(ptar
j − p

cur
j ) + f

ext
. (9)

where k is an elasticity constant that is set to 1, ptar
j is the target

position of the joint computed using the relationship descriptors by
Eq. (2), pcur

j is the current joint position, and fext is the external
force that is added if an extra effect such as the wind blowing the
body needs to be applied.

Integration Step: We apply the the virtual forces computed by
Eq. (9) to the joints using Verlet integration:

p
new
j = p

cur
j + d(pcur

j − p
prev

j ) +
1

2
fj

1

N2
s

(10)

where p
prev

j is the position of the joint in the previous iteration and

d is a coefficient that is added to reduce the wobbling effect whose
value is set linear to the joint’s affinity value (d = 0.8 when sj = 0
and d = 0.2 when sj = 1).

Constraints Step: Using the updated particle positions pnew
j ,

we compute the final positions of the joints that satisfy the bone-
length, positional and collision constraints by iteratively updating
the particle positions until the errors of all the constraints are be-
low a certain threshold. To satisfy the bone-length constraints, the
positions of each particle is updated by the following equation:

∆pj =
sk

sk + sj

pj − pk

‖pj − pk‖
(l0 − ‖pj − pk‖) (11)

where pk is a particle that is connected to joint j by a bone, and l0

is the length of the bone. This will result in joints with large affin-
ity to move less and small affinity to move more. For positional
constraints, we simply move the particle to the target location. For
collision constraints, the particles are moved towards the normal di-
rection of the closest polygon for bone-mesh collisions. We did not
address bone-bone collisions here in the interest of performance,
though we have a good-performing hack solution that is explained
in the experiment section.

The bone-length error converges quickly over iterations and most
are satisfied in our experimental results within the constant number
of iterations that we adopt. There can be cases that the constraints
cannot be fully satisfied due to extreme re-scaling of the character
sizes. Such error can be monitored and the system can inform the
user.

This framework produces continuous movements between frames
even under large deformation of the environment and updates in the
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morphology due to the continuity of target joint positions. When
adapting the movements, we first run the above process statically
in the first frame. Then, during the animation, we use the joint
locations in the previous frame as the initial posture in Eq. (9) and
(10).

8 Implementation

We first describe which data are computed on/off-line for minimiz-
ing the memory consumption while achieving interactive perfor-
mance. Next we explain about the character structure that we use
in our experiments.

Online Computation of Parameters In our implementation, the
only data that is saved in the offline process is the triangle IDs and
the barycentric (UV) coordinates of the descriptor points in the tri-
angles (see Section 6). These values are fixed throughout the an-
imation and therefore the memory-overhead per frame is not very
high. The rest of the data required for reconstructing the character
postures, such as the coefficients of the normal, binormal and tan-
gent vectors in Eq. (2), the weights of the relative vectors computed
by Eq. (6) as well as the distance between the joints and the de-
scriptor points in Eq. (5), are all computed on-the-fly by referring
to the original motion data. We take this approach as the amount of
memory for saving such data is large. The entire computation still
fits into a interactive frame-rate for character animation.

Character Structure The character structure depends on the mo-
tion data that we use, but are mostly composed of 38 body seg-
ments, and each joint has 3DOF rotation. Additional bones are
inserted to preserve the rigidity of segments, such as between the
left and right hips, as done in [Jakobsen 2001]. Joint angle limits
of hinge joints are imposed in a similar way when they reach the
minimal and maximal angles.

9 Experimental Results

We present examples of our approach applied to different scenarios,
including deforming the geometry of the environment, retargeting
movements in which two characters are closely interacting, and fi-
nally deformation transfer in which a character surface dynamically
changes its spatial relationship with a garment. The computational
cost is discussed at the end of this section. For details of the anima-
tions, the readers are referred to the supplementary video.

Updating the Geometry of Environments We present three ex-
periments in which we deform environment geometry whilst pre-
serving the context of a scene. In all the examples, we also present
results in which character morphologies are changed.

The first example is based on a walking motion from the CMU mo-
tion database [Gross and Shi 2001]. In this scene, the input is a
motion of a character walking across a bridge which has obstacles
above it. The bridge is then deformed dynamically, and duplicated
characters walking in different phases adapt their movements to the
deformation. (see Fig. 8,(a)).

We next show an example in which a character interacts with a car.
The character first enters on the car, grasps various locations inside
the car including the the steering wheel, the gear lever, and a mobile
phone laying near the feet area. The relationship descriptors are
computed in the environment for the entire series of movements by
processing them in the sequence described above. Despite the large
deformation of the car (scaling the size of the entrance, changing
the location of the seat and steering wheel and replacing the seat

Pj

r1

l1j

d1j

dnj

lnj

rn

Figure 7: The bone configuration represented by the weighted sum
of relative vectors defined at other bones.

with a different geometry) and updates of the morphology, plausible
movements are computed (see Fig. 1 (c)(d), Fig. 8 (b)).

We also show an example in which the motion of riding on the car is
retargeted to a larger character using a standard retargeting scheme
based on positional constraints and temporal smoothing [Lee and
Shin 1999] (see Fig. 1(e)). As the body simply tries to keep the
joint angles similar to the original motion for parts that does not
involve positional constraints, the body is sometimes repulsed to the
opposite side of the obstacle, resulting in discontinuities between
frames. Indeed, it can be observed that the trajectories of the body
parts need to be replanned such that the body parts do not collide
with the obstacles and also stays on the same side of the objects
throughout the motion.

Finally, we show another example from the CMU motion database
in which the character jumps onto swinging bars, swings a few
times and lands on the ground. The motion is retargeted whilst the
ground geometry is deformed and while the user interactively drags
the bars (see Fig. 1(a),(b)). This example shows that our approach
is even applicable to fast ballistic movements. Although the method
does not preserve momentum, the results appear visually plausible
thanks to the quasi-physics nature of the motion warping scheme.

Motion Retargeting of Interactions Between Multiple Charac-

ters Multi-character interactions can be achieved in mostly the
same way as interactions between characters and mesh structures
with slight modifications. Same as Eq. (2), the configuration of a
bone j is represented by the weighted sum of relative vectors orig-
inating from descriptor points di defined in the rest of the bones
i = 1, ..., n (see Fig. 7). The descriptor points di are updated per
frame by projecting each joint position to the closest point on all
the other bone segments. We do not suffer from the discontinuity
problem explained in Section 6 because there are no concavity in
the bone segments, and we will always have a descriptor per seg-
ment which slides continuously along the surface over time. The
recomputation of the descriptor points per frame eases the collision
avoidance between bones represented by capsules. The norm of the
relative vector pj−di can be decomposed into the distance between
pj and the capsule surface of bone i, and its radius:

q

α2

i,j + β2

i,j + γ2

i,j = ri + lij , (12)

where (αi,j , βi,j , γi,j) is the relative position of joint j with respect
to bone i under the same context in Eq. (2), ri is the capsule radius
of bone i, and lij is the distance between pj and the capsule sur-
face of bone i. When the character sizes are updated and the radii
of the bones are changed, (αi,j , βi,j , γi,j) is rescaled such that its
norm satisfies Eq. (12). The joints will try to keep a distance of lij
between their positions and the capsules of the other bones. They
will avoid penetrating each other without much extra computation
in this way.
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(b)

(c)

(d)

Figure 8: (a) Adapting a motion to cross a bridge to ones crossing
a dynamically deforming bridge. (b) Adapting movements inside a
car to different designs. (c) Retargeting a judo motion to characters
of different sizes. (d) An original animation of putting on a glove
(left) adapted to a hand with a different geometry (right).

During the motion warping phase, the postures of both characters
are simultaneously updated such that both characters’ postures con-
verge to a point in which they each become compliant to the other
character’s posture. In each iteration, we gradually reduce the size
of the spatial window such that all the joint relationships are consid-
ered in the beginning and only local spatial relationships are con-
sidered in the latter iterations. As we have only three iterations in
our implementation, we start from a radius that considers all pair
of relationships in the first iteration, with a constant weight of 1 in
Eq. (2), and then we half the radius in the second iteration, and fi-
nally use only the fade-off window in Eq. (5) in the final iteration.
We find this approach works better for close character interactions
as both the global and local relations are preserved.

Snapshots of retargeting a judo motion to characters of different
sizes are shown in Fig. 8(c). We do not only change the length of
the bones but also the radius of the capsules to retarget the motion
to fat characters. The body sizes can even be dynamically edited
during runtime.

Dynamic Garment Transfer Our method can also be applied for
adapting the configurations of deformable objects such as clothes.
By applying the same method to the vertices of the cloth as ex-
plained for the body joints, the geometry of the cloth can be adapted

to the deformation of the underlying object. Thus, we can trans-
fer deformable objects between scenes, in which they dynami-
cally change their spatial relationships with other objects. The de-
formable object adopts new proportions relative to the new surface
to which it’s adapting, as we do not preserve the original propor-
tions.

The garment motion of a glove being worn on a human hand is
transferred to another hand with completely different size and ge-
ometry (see Fig. 8,(d)). Transfer of such deformation by simply
re-running a physical simulation under the new condition is diffi-
cult due to the passive nature of garments.

Computational Costs The computational time during the offline
and online process for each of the above examples are presented in
Table 1. We do not impose bone length constraints in the cloth ex-
ample. The judo examples does not use any polygon models and do
not require any offline processing as the samples are all at the bones;
they are computed on-the-fly per frame. The online cost is short
enough to be applied for interactive applications. The experiments
are run on one core of a Core i7 2.67GHz CPU with 2GB of mem-
ory. Since most of the costly computation such as sampling points,
computing the local coordinates at such points and the weights as-
sociated to them are highly parallelizable, speed enhancement can
be expected with GPU implementations.

10 Conclusions and Discussions

In this paper, we have presented a practical method for online edit-
ing and adaptation of motions that involves close interactions be-
tween characters and objects. One major advantage of our approach
is that we localize the adaptation scheme to each frame level, such
that the postures of the characters can be computed on-the-fly sub-
ject to the updated geometries of the meshes and the morphologies
of the characters. This is the main difference from previous ap-
proaches that use spacetime optimization [Gleicher 1998; Ho et al.
2010], or multiresolution methods [Lee and Shin 1999]. This is
achieved by setting up the relationship-based descriptors such that
they result in continuous joint target positions between frames.

Although our approach can produce plausible results for computer
games and animations, the edited movements do not fully satisfy
the laws of physics. For example, in the swinging demo, if the mo-
tion of the bars are abruptly edited while the character jumps onto
the bars, the body will move in the air and the motion will not pre-
serve angular and linear momenta. Despite the fact our framework
can only produce quasi-physical effects, the idea of our relation
descriptors is general enough to be applied for physically-based an-
imation and robotics. For example, an interesting possibility is to
produce a PD servo such as [Yin et al. 2007; Liu et al. 2010] based
on our relation descriptors. In such a case, the character will ex-
ert torque such that the body parts reach the target positions rep-

Table 1: The time required for the computation: #p : number
of polygons, #s number of descriptors, fpsoff / fpson : offline/online
frames per second, error : average error rate of the bone length
constraint. ∗ The descriptor for character interactions are recom-
puted per frame.

Scene #p #s fpsoff fpson error

bridge 468 399 25 34 0.14%
car 6005 389 13 33 0.36%
swing 1364 400 19 32 0.57%
judo n/a 2070 n/a∗ 29 0.12 %
cloth 11241 1300 3 4 n/a
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Figure 9: (left) The original driving, (middle) retargeted to a
smaller character, and (right) fixed motion by reducing the affin-
ity values due to the seat-back.

resented by the relation descriptors. This is the same for methods
based on spacetime constraints, such as [Liu and Popović’ 2002];
the postures represented by the relation descriptors can be used as
constraints and a motion that spatiotemporalily satisfies such con-
straints can be computed by optimization. A simple but possibly ef-
fective approach to produce movements that satisfy laws of physics
is to start from the movements computed by our scheme and further
apply physical filters such as [Yamane et al. 2010; Shin et al. 2003]
to convert them into physically plausible ones.

Limitations: Our method fails in cases where the character is
scaled down too much when it is surrounded by many surface de-
scriptors in close proximity, such as during a car driving motion.
This will cause certain parts of the body to float in the air due to the
almost equally large affinity values of all the joints. In the car driv-
ing demo, when the character is scaled down, the limbs out-stretch
as we attempt to preserve the spatial relations whilst constraining
bone-length, and the character’s bottom begins to float unnaturally
losing contact with the seat. The user has a number of options to
solve this. One option is to apply positional constraints to enforce
certain contacts. Another solution is to manually adjust the influ-
ence of certain descriptors. In the driving example, the floating
effect can be removed by reducing the influence of the seat-back
(see Fig. 9). Finally, the user may manually adjust joint affinity val-
ues. In the car-driving case the user may apply a maximum affinity
value to the bottom of the character such that all IK occurs around
the hip whilst the hip spatial relations are most strongly enforced.

Our analysis of the scene is simple and may not be suitable in some
situations; for example, passing near by an obstacle does not mean
one always wants to pass close by the obstacle. In such a case,
the walking motion can be undesirably edited when the obstacle is
moved away from the body. Adaptively changing the weights of the
descriptors according to the edits can be a solution to this problem.

We currently do not make use of the target orientation; the orien-
tation of the joints are computed by simply applying SLERP at the
joints such that they reach their target locations. Therefore, we can-
not produce effects such as twisting the hand. Such effects can be
produced by introducing a rotation parameter around the bone axis
and adding virtual torques to the bones by PD control as done in
Eq. (9).

Future Works We are interested in using these descriptors for
synthesizing novel animation such as achieved in [Mordatch et al.
2012]. We are also interested in learning movements in our repre-
sentation. This can be an interesting direction because interactions
learned by observation can be applied in a broader range due to the
adaptability of the scheme.
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RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proceedings of Symposium on Geometry Processing,
179–188.

WRAPDEFORMERS. 2013. Autodesk Maya 2013 User Guide.

YAMANE, K., ARIKI, Y., AND HODGINS, J. K. 2010. Ani-
mating non-humanoid characters with human motion data. In
Proceedings of ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 169–178.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbi-
con: Simple biped locomotion control. ACM Transactions on
Graphics 26, 3.

ZHOU, K., XU, W., TONG, Y., AND DESBRUN, M. 2010. Defor-
mation transfer to multi-component objects. Computer Graphics
Forum 29, 2.

53



54


