
Geodesic Voxel Binding for Production Character Meshes

Olivier Dionne and Martin de Lasa∗

Autodesk Inc.

Figure 1: Starting from a character skeleton and mesh (A), which may contain degenerate geometry (in red) (B), we voxelize the mesh using
graphics hardware (C), and compute bind weights using geodesic distances from each bone (D). Resulting weights are applied to existing
closed-form skinning methods to deform character geometry (E).

Abstract

We propose a fully automatic method for specifying influence
weights for closed-form skinning methods, such as linear blend
skinning. Our method is designed to work with production meshes
that may contain non-manifold geometry, be non-watertight, have
intersecting triangles, or be comprise of multiple connected compo-
nents. Starting from a character rest pose mesh and skeleton hierar-
chy, we first voxelize the input geometry. The resulting voxelization
is then used to calculate binding weights, based on the geodesic
distance between each voxel lying on a skeleton “bone” and all
non-exterior voxels. This yields smooth weights at interactive rates,
without time-constants, iteration parameters, or costly optimization
at bind or pose time. By decoupling weight assignment from dis-
tance computation we make it possible to modify weights interac-
tively, at pose time, without additional pre-processing or computa-
tion. This allows artists to assess impact of weight selection in the
context in which they are used.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Skinning, Voxelization, Animation, Deformations

∗e-mail:olivier.dionne|martin.delasa@autodesk.com

1 Introduction

Creating high quality virtual characters for feature film and games
is a time-consuming process. In a typical character authoring
pipeline, a modeler first creates a mesh and image textures to repre-
sent the character’s “skin”. Next, a rig comprised of a transfor-
mation hierarchy (i.e., the skeleton) and constraints is specified.
Skinning weights are then painted by hand onto the mesh to de-
termine how the skin should deform during animations. Additional
deformers may also be layered to create more realism, such as mus-
cle bulges. Since interactions between different elements may pro-
duce unexpected results, it is often necessary to repeat each step
multiple times until the desired outcome is obtained.

One particularly challenging step in the character creation pipeline
is painting skin weights. Painting weights is unintuitive since artists
must compensate for deficiencies in skinning algorithms found in
most commercial animation packages and run-times. For exam-
ple, linear blend skinning (LBS), the de-facto standard closed-form
method for joint-based deformations, suffers from many well know
artifacts, such as the “candy-wrapper” effect that is visible when
joints are twisted; see Lewis et al. [2000] for an in-depth discus-
sion. Additionally since the skeleton is required to be in a rest pose
(e.g., a T-stance) when weights are specified, the impact of different
choices is not immediately clear; users must paint weights in one
pose and evaluate results in another.

Despite these drawbacks and the myriad skinning methods that have
been proposed to date (Section 2), closed-form methods, such as
LBS and dual quaternion skinning (DQS), continue to be widely
used. This is due to the large number of efficient implementations
found in authoring and runtime environments. Recent auto-rigging
systems [Baran and Popović 2007; Chen et al. 2011; Jacobson et al.
2011; Miller et al. 2011; Wareham and Lasenby 2008] have also
made it possible to define skeletons and find good skinning weights
with little manual intervention. Unfortunately, these methods are ei-
ther unable to handle production meshes, which often contain mul-
tiple connected components and non-manifold geometry, or require

numerous, costly to create, hand-authored input examples.

In this paper, we propose a fully automatic method for specify-
ing influence weights for closed-form skinning methods, designed
to work with production meshes. Our method leverages a novel
voxelization algorithm (Section 4) that is well suited for paral-
lelization on commodity hardware. We propose a simple weight-
ing scheme that leverages the resulting voxelization to generate
smooth weights, based on geodesic voxel distances. The method
requires no time-constants, iteration parameters, or optimization at
bind or pose time (Section 6). Additionally, by decoupling weight
assignment from distance computation it is possible to modify
weights interactively, at pose time, without requiring additional pre-
processing or computation. Several interesting applications also re-
sult from our approach which we discuss in Section 8.

2 Related Work

Weight Selection There is a large body of research on generating
appealing deformations for animated characters. To date, several
approaches have emerged including detailed anatomical models of
skin and underlying tissues [Lee et al. 2009], approximate elastic
models that may consider contact [Capell et al. 2002; Capell et al.
2005; McAdams et al. 2011], reduced-order methods that use key
deformation modes [Barbič and Zhao 2011; Kim and James 2011],
methods that rely on examples to compute corrections [Kry et al.
2002; Lewis et al. 2000; Mohr and Gleicher 2003; Sloan et al. 2001;
Wang et al. 2007], volume-based methods that embed geometry in
cages [Joshi et al. 2007; Ju et al. 2008; Lipman et al. 2008], and
closed-form methods that deform geometry based on character pose
[Jacobson and Sorkine 2011; Kavan et al. 2007; Kavan and Sorkine
2012; Magnenat-Thalmann et al. 1988].

For closed-form skinning methods, only a handful of approaches
have attempted to select good skinning weights from a single mesh
and skeleton. Katz and Tal [2003] propose a resolution-dependent
mesh segmentation strategy that can be applied to skinning. Wade
and Parent [2002] use voxelization to extract a skeleton but re-
sulting weights do not vary smoothly, causing artifacts on high-
resolution meshes. Baran and Popović [2007] compute skinning
weights by formulating a linear system based on equilibrium heat
equations over the mesh surface. To be well behaved and robustly
generate the needed tri-diagonal system, this approach relies on a
distance smoothing operation which limits input to manifold ge-
ometry. Additionally, as with other methods based on diffusion
[Chen et al. 2011; Joshi et al. 2007] or lighting models [Wareham
and Lasenby 2008], iteration parameters, time-constants, or conver-
gence thresholds must be specified for use as termination criteria;
our method requires no such parameters.

Kavan and colleagues [2012] formulate weight selection as a
quadratic optimization, using an objective based on elastic energy.
Since computations are performed on a voxel grid, their method is
also capable of handling many types of geometry encountered in
production. Though results are impressive, the proposed formula-
tion is quite costly; reported results take several minutes to com-
pute. As our goal is to develop an interactive method that produces
good results, on real-world input, and is straightforward to tune if
additional changes are desired, we avoid the indirection and runtime
cost introduced by optimization [Jacobson et al. 2011]. As with
commercial packages, such as Autodesk Maya, we use a weighting
scheme based on the distance between vertices and bones. How-
ever, we avoid common artifacts of those methods (cf. Figure 5) by
accounting for the mesh’s structure.

An alternative, to recomputing weights on each new input mesh,
is to transfer weights from existing hand-painted examples [Miller

et al. 2011]. Our approach could be used to ease authoring of new
weight templates for such systems.

Voxelization Although numerous real-time voxelization algo-
rithms have been devised most focus on building surface vox-
elizations (e.g., [Dong et al. 2004; Fang et al. 2000; Li et al.
2005]). Methods for solid voxelization are typically restricted
to closed watertight geometry and rely on parity tests to deter-
mine voxel classification. Surface intersections tests are per-
formed using rays originating at each voxel; an odd count indi-
cates the voxel is interior, while an even count indicates it is exte-
rior. Fang and Chen [2000] use a slice-wise approach, while Eise-
mann and Décoret [2008] process all slices simultaneously using
fixed-function pipeline commands. Recent GPU accelerated ap-
proaches have also been proposed that generate sparse voxeliza-
tions [Schwarz and Seidel 2010]. To use these approaches on de-
generate geometry, one can compute an intermediate watertight
mesh, but required processing can quickly dominate computation;
see Section 8 for more details.

Our voting scheme is inspired by the work of Nooruddin and Turk
[2003] who use multiple views and ray stabbing to generate candi-
date classifications for voxels. To break ties, their algorithm uses a
large odd number of views, aligning cameras with icosahedron face
normals. Our approach uses a small number of orthographic views,
slicing the model on graphics hardware. This leads to a simple im-
plementation that is very fast (cf. Table 2).

3 Overview

We describe an algorithm that automatically computes deformation
weights for interactive skin deformation algorithms, such as linear
blend skinning (LBS). Although we limit our discussion to LBS,
due to its widespread use in interactive applications, our approach
can also be used with more advanced skinning algorithms, such as
the recent work of Kavan et al.[2012].

The input to our system is a user specified rest-pose mesh M with
vertex positions:

p1, p2, . . . , pn ∈ <3. (1)

and corresponding skeleton, represented as a hierarchy of transfor-
mations:

T1, T2, . . . , Tm ∈ <3×4. (2)

Methods such as LBS require a weight function:

ωj(p) :M → < (3)

that specifies the amount of influence Tj has on a vertex with posi-
tion p. Hence, LBS will deform each vertex on M according to:

pi
′ =

m∑
j

ωj(pi)Tj

[
pi

1

]
. (4)

Selecting good weights is critical if deformations artifacts are to be
avoided; desirable criteria for weights include being independent
of mesh resolution, varying smoothly along the surface, and han-
dling transitions between joints to avoid creases [Baran and Popović
2007].

To determine weights, our method first computes a voxelized repre-
sentation of the input mesh (Section 4). This divides the bounding
volume surrounding the mesh into voxels, which we classify as in-
terior, boundary, and exterior voxels. Next, geodesic distances dij

Figure 2: Comparison of other automatic weighting schemes (B-D) with our method (E). (A) Initial bind pose. (B) Closest distance (Maya)
(C) Closest hierarchy (Maya) (D) Heat map weighting [Baran and Popović 2007] (E) Geodesic voxel binding. Distance-based methods that
ignore mesh structure (B,C) can produce severe artifacts. For watertight meshes we obtain similar results to Heat map weighting (D,E). See
Figure 8 for more complete discussion.

between voxels vi falling on skeleton “bones” and all non-exterior
voxels vj are computed. This step is repeated for each bone in the
skeleton (Section 5). Once complete, we perform a hit test to deter-
mine boundary voxels containing geometry vertices and calculate
weight values based on a simple falloff function (Section 6). Fig-
ure 1 shows an illustration of the key steps for our algorithm.

4 Voxelization

To voxelize the input geometry, we propose an approach based on
z-buffer slicing. Our hardware-accelerated method is inspired by
the approach of Fang et al. [2000], with a voting scheme adapted
from Nooruddin and Turk’s [2003] multiple view parity counting
method.

Our algorithm first computes the world space axis-aligned bound-
ing box for the input geometry and uses calculated extents to ini-
tialize the orthographic view volume. Then, for each volume slice,
the near clip plane is adjusted to match the current slice depth while
the far clip plane position is kept fixed. Back faces of the mesh are
first rendered in white to an off screen buffer, of same slice dimen-
sions with no filtering, followed by front faces in black. A white
pixel, corresponding to a voxel in the slice, is thus voted as internal
to the mesh volume. This process is repeated until the whole mesh
bounding volume has been processed for all pairs of view directions
in x, y and z as shown in Figure 3.

Finally, to classify a voxel vi as internal (1) or external (0) we com-
pile the votes from each view (x,−x,y,−y,z and−z) using the fol-
lowing scheme:

vi(x,−x)
: {0, 1} → vix ‖ vi−x

vi(y,−y)
: {0, 1} → viy ‖ vi−y (5)

vi(z,−z)
: {0, 1} → viz ‖ vi−z

If at least two of the three pairs of views agree that vi is internal to
the mesh domain, it is tagged as such:

vi : {0, 1} → (vi(x,−x)
+ vi(y,−y)

+ vi(z,−z)
) > 1. (6)

We perform a final post-processing step to extract mesh boundary
voxels. This is achieved by computing an octree from the mesh and
testing for intersections against each voxel using Akenine-Möller’s
separating axis theorem triangle/box overlap test [2001]. Remain-
ing untagged voxels are considered external to the mesh domain.

The proposed majority voting scheme gave us satisfactory result
for all production meshes we tested. For badly degenerate meshes,

Figure 4: Computing distances through the voxelized model where
white, red and blue colors represent skeleton, interior and boundary
voxels.

we cannot guarantee results will always be perfect; some potential
failure cases might include labeling interior voxels as exterior, and
so on. In such cases, it would be possible to include simple voxel
volume painting tools for touch up or make it possible for the user
to exclude views from the voting scheme in Equation 6.

5 Distance Computation

To compute the shortest distance between interior voxels falling on
skeleton bones and boundary voxels, we use a form of Djikstra’s
algorithm (cf. Algorithm 1).

For each skeleton bone bi, we start by initializing the distance value
of each non-exterior voxel to infinity (lines 2-4). Next, we iden-
tify all voxels intersecting the bone (i.e., skeleton voxels) and set
their distance to zero, prior to pushing these voxels onto a work-
ing queue (lines 6-9). While the queue is not empty, we dequeue a
voxel vi and for every neighboring voxels vj with a stored distance
dvj greater than dist, we update vj and add it to the queue (lines
10-19). Here, pv represents a voxel’s center position. Once pro-
cessed, we obtain the geodesic distance to bone bi for every voxel
of the mesh domain.

In our implementation we optimize this operation by distributing
the distance computation for each skeleton bone bi across multiple
cores.

Figure 3: Voxelization overview for “Boomer” model. (A) The character world space axis-aligned bounding box defines the initial ortho-
graphic view volume. (B) For every pair of view directions in x, y and z we position the camera in the proper axis and slice the model by
moving the near plane. (C) After compiling votes for each view using equations (5) and (6) and performing an octree hit test we obtain a
voxelization of the input geometry. (D) A cross section view of the resulting voxelization. Red and blue represent internal and boundary
voxels respectively.

Algorithm 1: Distance Computation
input: Character skeleton S and voxelized mesh V

1 foreach bone bi of S do
// Initialize voxel distance values

2 foreach non-exterior voxel vi of V do
3 dvi =∞;
4 end
5 Create empty voxel queue Q;

// Initialize bone voxels and
// add to queue.

6 foreach non-exterior voxel vi of V intersecting with bi do
7 dvi = 0;
8 Push vi to Q;
9 end

// Compute geodesic distances
10 while Q not empty do
11 Pop vi from Q;
12 foreach non-exterior voxel neighbor vj to vi do
13 dist = dvi + |pvi − pvj |;
14 if dvj > dist then
15 dvj = dist;
16 Push vj to Q;
17 end
18 end
19 end
20 end

6 Weight Computation

Once distances for non-exterior voxels are calculated we can com-
pute skinning weights. To compute final mesh weights for each
vertex used by Equation 4 we first start by performing a hit test,
using our previous computed mesh octree (cf. Section 4). This
identifies the corresponding voxel for each vertex. To compensate
for the voxel grid’s coarseness, and the fact that multiple vertices
may fall in the same voxel, we add the distance between the voxel
center pvoxel and mesh vertex position pvertex to the current bone
distances in the voxel div , as shown in Figure 4.

From this final distance value dij we compute a weight influence ωi
j

of bone i for vertex j as follows:

dij =
div + |pvertex − pvoxel|

D
(7)

ωi
j =

(
1

(1− α)(dij) + α(dij)
2

)2

(8)

where α is a parameter in the range [0, 1] allowing animators to
control bind smoothness. Increasing this parameter has the effect
of reducing the overall influence of distant bones to the vertex, cre-
ating a stiffer local bind. Note that distance values are normalized
using the product of bounding box extentsD, such that ε ≤ dij ≤ 1
to make weights independent of mesh scale. We use the minimum
distance ε to avoid numerical problems with Equation 8.

Many other falloff functions could have been employed, however,
we found Equation 8 works well on the characters we tested while
leaving some binding flexibility to animators. When the number of
influencing weights needs to be limited, as is often done in games to
enable vectorization, adjusting binding stiffness is crucial to main-
taining quality as observed in Figure 8.

Once all weights have been computed for a given vertex they are
normalized, based on the number of user-specified influences, prior
to skinning.

Figure 5: Visualization of proposed weighting function ωi
j (cf.

Equation 8). Note that weights are normalized, based on the num-
ber of user specified influences.

7 Results

We tested our method on a variety of meshes obtained from the
Internet (e.g., http://thefree3dmodels.com). No post processing or
clean-up was performed on geometry. Due to the quick turnaround
and aggressive time lines of most films and games, it is common to
find production geometry with numerous artifacts. Figure 6 shows
a few of the models we used for testing, with intersecting trian-
gles shown in red. Other types of degeneracies we encountered
include meshes composed of multiple disjoint parts, non-watertight
meshes, and meshes with non-manifold edges/vertices (cf. Table 1
for test geometry statistics).

After downloading geometry, we manually created skeletons for
each mesh. Alternatively, we could have used a method for auto-
matic skeleton creation [Wade and Parent 2002; Baran and Popović
2007], however, this was outside the scope of our work. Once
skeletons were defined, we used our method to calculate skinning
weights for each set of input meshes/skeletons. Resulting weights
were used to skin characters with LBS. All examples use four in-
fluences per vertex and α = 0.7.

To test the resulting skinning quality, we animated all characters
using a small library of motion clips. All motions were retarget-
ted using Autodesk Maya HumanIK to account for differences in
skeletal proportions between source and destination characters. In
all cases, we obtained good default skinning weights without need
for manual adjustment/weight painting. Additionally, we did not
find that limiting the number of influences had a large impact on
quality of skinning results. Table 2 lists durations for the different
stages of our algorithm on 11 test meshes. All experiments were
conducted on a MacBook Pro (2.2 GHz Intel Core i7) with 8GB of
RAM and an AMD Radeon HD 6750M 1024 MB graphics card.
Skinning results for each of these meshes can be found in the ac-
companying video.

Although our voxelization algorithm can be implemented on the
CPU, we used a hardware accelerated implementation for improved
performance. This required modest commodity hardware; our im-
plementation used only fixed-function pipeline commands and re-
lied on framebuffer objects (available since OpenGL 1.5) to manage
bounding box slice images. For systems supporting OpenGL 1.1,
an alternative implementation based on pbuffers could yield similar
performance gains.

Table 1: Statistics for 11 models used to test our method. Only the
Beast model is watertight.

Model # Faces
Non-

manifold
Separate

Mesh
Inter-
secting

Vertices/Edges Parts Faces
Bloat 4680 3 6 399
Boomer 5297 0 11 472
Mercenary 9236 1 155 3029
Radioactive 10479 0 97 2842
Sledge 12850 5 390 6772
Engineer 13217 0 108 2845
Parasite 17570 2 88 4763
Hunter 17968 2 140 6758
Shockwave 23181 7 660 14982
Pilot 35644 0 239 9528
Beast 54236 0 1 0

Table 2: Breakdown of algorithm run times for several example
models. Total computation time is broken up according to the major
steps used by our system. All values are in seconds.

Model Voxelization Voxelization Distance Weight
Internal Border Computation Computation

Bloat 6.679 3.832 2.900 0.003
Boomer 6.524 4.449 5.145 0.003
Mercenary 6.652 4.671 2.544 0.008
Radioactive 6.904 4.913 6.291 0.006
Sledge 6.822 5.413 3.712 0.031
Engineer 6.830 4.466 2.126 0.008
Parasite 7.016 3.489 0.582 0.041
Hunter 7.020 5.061 4.151 0.011
Shockwave 7.262 11.480 2.594 0.013
Pilot 7.660 4.528 3.637 0.020
Beast 8.426 4.398 1.343 0.027

8 Discussion

Binding results and performance for our method depend on the vox-
elization resolution. To simplify the implementation, we used the
same maximum number of voxels (i.e., 256 × 256 × 128 in the
x, y and z directions) for all models. We found that this worked
well despite there being large differences in test model proportions,
smoothness, and number of vertices. An alternate strategy could be
to base the voxelization resolution on some geometric feature in the
input model, such as the smallest distance between two vertices.
The impact of voxelization resolution was particularly noticeable
for A-stance rest pose meshes, such as Shockwave. Figure 7 shows
such a case; as the maximum number of voxels decreases, the hands
and legs become connected which impacts distance computations,
since character topology changes. For models such as Beast (see
accompanying video and Figure 8) that are in a T-stance, the vox-
elization resolution has a minor impact on the quality of computed
weights. Other areas requiring fine detail, such as the fingers will
also be sensitive to the choices of voxelization resolution. Practi-
cally, we found that a quick visual inspection of the resulting vox-
elization is sufficient to catch these sorts of problems. If the user
wishes to add more detail, it is possible to increase the voxelization
resolution until desired results are obtained. An alternate approach,
might be to generate a sparse voxelization with additional detail
near small features in a manner similar to Schwartz et al. [2010].
We leave this for future work.

We experimented with a number of distance metrics prior to settling
on the Euclidean norm between Manhattan voxel neighbor centers.
This included using Manhattan distance between voxels, and the
Euclidean norm to the center of all adjacent voxels. These alternate

Figure 6: 7 of the 11 models used for testing. Parasite model is shown in the accompanying video. Engineer can be seen in Figure 1, Boomer
is shown in Figure 3 while Beast is in Figure 8. Intersecting triangles are shown in red. Statistics for all test models can be found in Table 1.

Figure 7: Shockwave model voxelized at different resolutions (Left:
128× 128× 64, Middle: 64× 64× 32, Right: 32× 32× 16). As
resolution decreases character topology can change which alters
the minimum distance between voxels falling on bones and non-
exterior voxels.

metrics did not yield significant improvements, but required more
memory and complicated implementation. We also found our cho-
sen distance metric to be well suited for domains with non-uniform
voxels; by using the Euclidean norm to voxel centers we correctly
account for differences in voxel sizes that results from discretizing
the bounding box using a fixed number of voxels. For models with
few branches, such as Boomer (cf. Figure 3), distance computa-
tions can become expensive. This occurs since the queue used to
keep track of minimal distances (cf. Algorithm 1) can grow signif-
icantly.

A major motivation for the development of our new voxelization
algorithm came from experimenting with two alternate weight as-
signment schemes. In the first method, we started by computing
a discreet signed distance field in the domain of the axis-aligned
bounding box surrounding the skin mesh [Frisken et al. 2000]. Us-
ing this field, we calculated an isosurface at a small positive level
set outside the model. We used the resulting isosurface as a defor-
mation cage that could be driven by the animated skeleton, while
the original geometry was embedded in the cage using a variant of
Green coordinates [Lipman et al. 2008]. Although we often ob-
tained good results using this approach, it introduced a costly level
of indirection at pose time. Additionally, since there isn’t a straight-
forward method for determining LBS weights for the original mesh,
this made the method unusable by applications requiring skinning
weights for existing closed-form methods. To overcome this limita-
tion, we explored a second option that voxelized the resulting (wa-
tertight) isosurface, using the method of Crane et al. [2008]. This
worked well in many cases, but the test used to tag discreet points
in the signed distance field, as interior/exterior, often returned in-

correct results. This test is dependent on normal values which can
be incorrect for models with multiple disconnected components. In
both cases, we found distance field calculation to be a major com-
putational bottleneck, often taking several minutes.

Several interesting applications arise from our voxelization based
weighting algorithm. Since the process of calculating weights is
extremely fast (cf. Table 2) once the input mesh has been voxelized
and distances are computed, it is possible to update geometry with a
mesh of similar topology that can be fully enclosed by the original
voxelization volume. For example, in a game scenario, skinning
weights for geometry can be quickly recalculated as a character’s
appearance is altered (e.g., to account for being injured or joining
the undead). Additionally, since our weighting function has a sim-
ple parameterization depending only on α, it is possible for user
to interactively alter the falloff of individual areas of the mesh and
immediately see how the resulting deformations are affected. A
simple extension would be to make skinning weights pose depen-
dent by turning α for different regions of the mesh into a function of
joints orientations. Lastly, since our weight parameterization comes
from a distance based field, it is straightforward to specify regions
of the mesh that should not be deformed at runtime. This could be
useful for characters with a mix of rigid equipment and deformable
parts/clothing. In such cases bounding regions could be defined that
override computed distances, assigning infinite distance to all bones
except for a chosen “driver”.

9 Conclusions

We present a novel system for determining influence weights for
closed-form skinning methods, such as LBS. Our method is specif-
ically designed to circumvent problems we encountered with pre-
vious approaches that require watertight geometry. To achieve this,
we propose a new voxelization strategy that does not require dis-
tance field or isosurface computation and works on real-world de-
generate geometry. By not using the stencil buffer and extra clip-
ping planes, our voxelization algorithm is straightforward to imple-
ment. The only requirement for our algorithm is a mechanism that
renders the view state to an image. We use frame buffers, but other
approaches could also work. A flexible voting scheme also helps
us robustly handle ambiguities that arise when multiple triangles
intersect.

Our voxelization algorithm will benefit numerous applications in-
cluding collision detection, CSG modeling, fluid simulation [Crane
et al. 2008], model simplification [Nooruddin and Turk 2003], or
could be used to automatically extract skeletons, as part of a com-
plete auto-rigging systems [Wade and Parent 2002]. Our method

A B C D

E F G H

Figure 8: Comparison with Baran et al. [2007] (A-D) with our method (E-H). On watertight meshes Baran’s method generates appealing
results (A) but yields many small weights far from the joint of interest (B). When the number of weights is limited (D), as is often done in
games to enable vectorization, artifacts may be visible (C) (e.g., see armpit region). Our method produces visually indistinguishable results
(E) with few small weights (F). Because we concentrate most influences on bones near the joints (H), limiting influences does not introduce
problems (G). Results shown use α = 0.7.

is also complementary to the recent subspace energy minimization
method of Jacobson and colleagues [2012] which requires initial
weights to be specified for a small number of skeleton bones. Our
method does not require a fully connected skeleton and can thus
easily be applied to disjoint hierarchies.

References

AKENINE-MÖLLER, T. 2001. Fast 3d triangle-box overlap testing.
Journal of Graphics Tools 6, 29–33.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and ani-
mation of 3d characters. ACM Trans. Graph. 26, 3 (July).

BARBIČ, J., AND ZHAO, Y. 2011. Real-time large-deformation
substructuring. ACM Trans. on Graphics 30, 4, 91:1–91:7.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2002. Interactive skeleton-driven dynamic de-
formations. ACM Trans. Graph. 21, 3 (July), 586–593.

CAPELL, S., BURKHART, M., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2005. Physically based rigging for deformable
characters. In Proc. of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, ACM, New York, NY, USA,
SCA ’05, 301–310.

CHEN, C.-H., LIN, I.-C., TSAI, M.-H., AND LU, P.-H. 2011.
Lattice-based skinning and deformation for real-time skeleton-
driven animation. In Proc. of the 2011 12th International Con-

ference on Computer-Aided Design and Computer Graphics,
IEEE Computer Society, Washington, DC, USA, CADGRAPH-
ICS ’11, 306–312.

CRANE, K., LLAMAS, I., AND TARIQ, S. 2008. Real-time simu-
lation and rendering of 3d fluids. In GPU Gems 3, H. Nguyen,
Ed. Addison-Wesley, 633–675.

DONG, Z., CHEN, W., BAO, H., ZHANG, H., AND PENG, Q.
2004. Real-time voxelization for complex polygonal models. In
Proc. of the Computer Graphics and Applications, 12th Pacific
Conference, IEEE Computer Society, Washington, DC, USA,
PG ’04, 43–50.

EISEMANN, E., AND DÉCORET, X. 2008. Single-pass gpu solid
voxelization for real-time applications. In Proc. of graphics in-
terface 2008, GI ’08, 73–80.

FANG, S., FANG, S., CHEN, H., AND CHEN, H. 2000. Hardware
accelerated voxelization. Computers and Graphics 24, 200–0.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: a general rep-
resentation of shape for computer graphics. In Proc. of the 27th
annual conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’00, 249–254.

JACOBSON, A., AND SORKINE, O. 2011. Stretchable and
twistable bones for skeletal shape deformation. ACM Trans. on
Graphics 30, 6, 165:1–165:8.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deformation.
ACM Trans. on Graphics 30, 4, 78:1–78:8.

JACOBSON, A., BARAN, I., KAVAN, L., POPOVIĆ, J., AND
SORKINE, O. 2012. Fast automatic skinning transformations.
ACM Trans. Graph. 31, 4 (July), 77:1–77:10.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND
SANOCKI, T. 2007. Harmonic coordinates for character articu-
lation. ACM Trans. Graph. 26, 3 (July).

JU, T., ZHOU, Q.-Y., VAN DE PANNE, M., COHEN-OR, D., AND
NEUMANN, U. 2008. Reusable skinning templates using cage-
based deformations. ACM Trans. Graph. 27, 5 (Dec.), 122:1–
122:10.

KATZ, S., AND TAL, A. 2003. Hierarchical mesh decomposition
using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3 (July),
954–961.

KAVAN, L., AND SORKINE, O. 2012. Elasticity-inspired deform-
ers for character articulation. ACM Trans. on Graphics 31, 6,
196:1–196:8.

KAVAN, L., COLLINS, S., ZARA, J., AND O’SULLIVAN, C. 2007.
Skinning with dual quaternions. In 2007 ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games, ACM Press, 39–
46.

KIM, T., AND JAMES, D. L. 2011. Physics-based character skin-
ning using multi-domain subspace deformations. In Proc. of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ACM, New York, NY, USA, SCA ’11, 63–72.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. Eigenskin:
real time large deformation character skinning in hardware. In
Proc. of the 2002 ACM SIGGRAPH/Eurographics symposium
on Computer animation, ACM, New York, NY, USA, SCA ’02,
153–159.

LEE, S.-H., SIFAKIS, E., AND TERZOPOULOS, D. 2009. Com-
prehensive biomechanical modeling and simulation of the upper
body. ACM Trans. Graph. 28, 4 (Sept.), 99:1–99:17.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In Proc. of the 27th annual con-
ference on Computer graphics and interactive techniques, 165–
172.

LI, W., FAN, Z., WEI, X., AND KAUFMAN, A. 2005. Flow
simulation with complex boundaries. In GPU Gems 2, M. Pharr,
Ed. Addison-Wesley, 747–764.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green coor-
dinates. ACM Trans. Graph. 27, 3 (Aug.), 78:1–78:10.

MAGNENAT-THALMANN, N., LAPERRIÈRE, R., AND THAL-
MANN, D. 1988. Joint-dependent local deformations for hand
animation and object grasping. In Proceedings on Graphics in-
terface ’88, Canadian Information Processing Society, Toronto,
Ont., Canada, Canada, 26–33.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF,
R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity
for character skinning with contact and collisions. ACM Trans.
Graph. 30, 4 (July), 37:1–37:12.

MILLER, C., ARIKAN, O., AND FUSSELL, D. 2011. Frankenrigs:
Building character rigs from multiple sources. IEEE Trans. Vis.
Comput. Graph. 17, 8, 1060–1070.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Transcations on Graphics
22, 3 (jul), 562–568. Special Issue: Proc. of ACM SIGGRAPH
2003.

NOORUDDIN, F. S., AND TURK, G. 2003. Simplification and
repair of polygonal models using volumetric techniques. IEEE
Trans. on Visualization and Computer Graphics 9, 2 (Apr.), 191–
205.

SCHWARZ, M., AND SEIDEL, H.-P. 2010. Fast parallel surface
and solid voxelization on gpus. ACM Trans. Graph. 29, 6 (Dec.),
179:1–179:10.

SLOAN, P.-P. J., ROSE, III, C. F., AND COHEN, M. F. 2001.
Shape by example. In Proc. of the 2001 symposium on Interac-
tive 3D graphics, ACM, New York, NY, USA, I3D ’01, 135–143.

WADE, L., AND PARENT, R. E. 2002. Automated generation of
control skeletons for use in animation. The Visual Computer 18,
2, 97–110.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Trans. Graph. 26, 3
(July).

WAREHAM, R., AND LASENBY, J. 2008. Bone glow: An im-
proved method for the assignment of weights for mesh deforma-
tion. In Proc. of the 5th international conference on Articulated
Motion and Deformable Objects, AMDO ’08, 63–71.

