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ABSTRACT
Recent DRAM specifications exhibit increasing refresh latencies.
A refresh command blocks a full rank, decreasing available paral-
lelism in the memory subsystem significantly, thus decreasing per-
formance. Fine Granularity Refresh (FGR) is a feature recently
announced as part of JEDEC’s DDR4 DRAM specification that at-
tempts to tackle this problem by creating a range of refresh options
that provide a trade-off between refresh latency and frequency.

In this paper, we first conduct an analysis of DDR4 DRAM’s
FGR feature, and show that there is no one-size-fits-all option across
a variety of applications. We then present Adaptive Refresh (AR), a
simple yet effective mechanism that dynamically chooses the best
FGR mode for each application and phase within the application.

When looking at the refresh problem more closely, we identify in
high-density DRAM systems a phenomenon that we call command
queue seizure, whereby the memory controller’s command queue
seizes up temporarily because it is full with commands to a rank
that is being refreshed. To attack this problem, we propose two
complementary mechanisms called Delayed Command Expansion
(DCE) and Preemptive Command Drain (PCD).

Our results show that AR does exploit DDR4’s FGR effectively.
However, once our proposed DCE and PCD mechanisms are added,
DDR4’s FGR becomes redundant in most cases, except in a few
highly memory-sensitive applications, where the use of AR does
provide some additional benefit. In all, our simulations show that
the proposed mechanisms yield 8% (14%) mean speedup with re-
spect to traditional refresh, at normal (extended) DRAM operating
temperatures, for a set of diverse parallel applications.

1. INTRODUCTION
The dynamic nature of DRAM requires logic to track carefully

the DRAM lines that need to be refreshed, and to issue refresh com-
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mands in a timely fashion. In the past, refresh commands were rela-
tively short and infrequent, and thus system performance and power
were not significantly impacted. As DRAM density increased and
more bits needed to be refreshed, the industry decided to design
for a constant per-cell retention time (64 ms) and refresh interval
(tREFI), changing instead the time that each refresh command takes
to complete (tRFC). Essentially, a strategic decision was made to
refresh a larger number of rows per refresh command, rather than
issuing more refresh commands.

As tRFC increases, concern has been raised about the perfor-
mance impact of refresh [8, 17]. When a refresh command is is-
sued, it blocks a full rank, decreasing available parallelism in the
memory subsystem significantly. Memory requests to the rank cur-
rently being refreshed stall until the refresh command completes,
affecting system performance. To attack this problem, recent ap-
proaches rely on issuing refresh commands less frequently than
specified by the DRAM manufacturer [8], or scheduling refresh
commands at opportune times [17]. (We comment on related work
in Section 3.)

1.1 DDR4 DRAM and Fine Granularity Re-
fresh

First discussed in US Patent 2012/0151131 [7], a Fine Granular-
ity Refresh (FGR) feature has been recently announced as part of
JEDEC’s DDR4 DRAM specification [1]. FGR attempts to tackle
increases in tRFC by creating a range of refresh options for memory
controller use: 1x refresh is a direct extension of DDR2 and DDR3
refresh: each refresh command takes tRFC ns, and it must be issued
every tREFI=7.8 µs. 2x and 4x modes require that refresh commands
be issued twice and four times as frequently–at 3.9 and 1.95µs in-
tervals, respectively. However, in these modes, fewer DRAM rows
are refreshed per command, and as a result, their refresh latencies
tRFC_2x and tRFC_4x are shorter (although not proportionally). Ta-
ble 1 lists the FGR parameters specified for DDR4 DRAM.

1.2 Contributions
This paper makes the following contributions:

– We conduct an analysis of DDR4 DRAM’s FGR feature, and
determine that there is no single mode that works well across all
the applications studied.

– We propose Adaptive Refresh, a simple yet highly effective mech-
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Table 1: Refresh cycle times (tRFC = amount of time each re-
fresh command takes) and refresh intervals (tREFI = how fre-
quently refresh commands must be issued) in the DDR4 DRAM
specification [1]. Values for large chips are extrapolated.

Chip Size tRFC_1x tRFC_2x tRFC_4x

8 Gb 350 ns 260 ns 160 ns
16 Gb 480 ns 350 ns 260 ns
32 Gb 640 ns 480 ns 350 ns
tREFI 7.8 µs 3.9 µs 1.95 µs

anism that leverages FGR, by dynamically choosing the mode that
best suits each application, and each phase within the application.

– We introduce command queue seizure, a phenomenon that we
show will become a concern in systems built with high-density
DRAM chips (16 and 32 Gb). Command queue seizure occurs
when the memory controller issues a refresh command to a rank,
only to find that it is soon unable to process memory requests to
other ranks because the command queue is taken up by commands
associated with the rank being refreshed (and are thus ineligible for
processing).

– We propose Delayed Command Expansion (DCE) and Preemp-
tive Command Drain (PCD), two complementary mechanisms to
address the command queue seizure phenomenon. In DCE, the
memory controller withholds expansion of memory requests into
the command queue if such requests are to ranks that are currently
being refreshed. In PCD, the scheduler prioritizes commands in the
command queue that map to ranks about to be refreshed, so that
they may leave the queue and not occupy valuable slots during the
upcoming refresh cycle. The net result is a higher availability of the
command queue to memory requests that can proceed concurrently
to specific refresh actions.

Our results show that AR does exploit DDR4’s FGR effectively.
However, once our proposed DCE and PCD mechanisms are added,
FGR becomes redundant in most cases, except in a few highly
memory-sensitive applications, where the use of AR does provide
some additional benefit. In all, AR+DCE+PCD yields 8 and 14%
performance gains with respect to traditional refresh at normal and
extended DRAM operating temperatures, respectively.

2. BACKGROUND
Modern DRAM-based memory systems are organized with many

degrees of parallelism. Each microprocessor chip has one or more
memory controllers, which control one or more channels. Each
channel has a small number of ranks, where each rank contains a
handful of DRAM chips (including ECC). Within each chip are a
handful of banks. All chips in a DRAM rank respond in tandem
to commands, meaning a memory controller has scheduling paral-
lelism opportunities across banks, ranks, and channels.

For server memory systems, total system capacity is a primary
design objective. Logically speaking, a memory controller may be
able to support as many as 32 ranks (2 LRDIMMs with 2 phys-
ical ranks/DIMM and 8-high DRAM stacks per rank). However,
electrically, channels are much more constrained, due to I/O chan-
nel signaling limitations. The faster a channel is run, the more
power is burned in signaling and termination. In this paper we
simulate an energy-efficient server-class configuration: a four-rank
system at a power-friendly data rate of 1,600 Mbps. In the future,
lower-power, higher-frequency offerings may be possible through
3D TSV-Stacked Master-Slave (3DS) technology [6].

2.1 JEDEC DDR4 DRAM Specification
The initial JEDEC DDR4 DRAM specification was released in

September 2012 [1], and initial server products with DDR4 DRAM
chips are anticipated to begin shipping in 2014 [20]. There are
several key new features of this standard: memory speeds are ex-
panded to 3,200 Mbps (compared to 1,600 Mbps for the initial
DDR3 specification) with high-tap (VDDQ) termination; core and
I/O supply voltage (VDD/VDDQ) are lowered to 1.2 V (compared
to 1.5 V for DDR3 and 1.35 V for DDR3L) with a new supply
(VPP) added for word-line voltage; several reliability features are
added, such as write data CRC, command/address bus parity, and
dynamic bus inversion; and architecturally, a key change is the con-
cept of a bank group, with the number of banks increased from
eight (DDR3) to sixteen. Two (x16) to four (x4/x8) bank groups
per chip allow interleaving of column access operations between
different bank groups at the periphery blocks (data lines and data
sense amplifier) keeping column cycle time (tCCD) to the minimum
timing (4 cycles). To help with core power, the page size for x4
parts will be cut in half, dropping from 1 kByte to 512 Bytes. Sev-
eral standby power reduction features are also added, such as gear
down mode, chip-select-to-address latency, and maximum power
saving mode.

2.2 DDR4 DRAM Refresh Challenges
As technology scaling advances, DRAM tends to maintain the

same number of electrons in its storage capacitor (Yoon and Tressler
[21] estimate on the order of 100,000), so unlike NAND tech-
nology, which will soon reach tens of electrons per floating-gate
cell [21], DRAM can theoretically continue to scale. However,
concerns about the end of scaling remain well founded, since it
will become increasingly difficult to maintain the same amount of
charge in the storage capacitor in future technologies. One major
reason is that the per-cell capacitance will decrease as lithographic
scaling results in physically smaller DRAM cells, but the aspect
ratio of the deep-trench cell capacitor cannot keep growing. Sup-
ply voltage scaling to meet power reduction demands also causes
charge loss. Increased series resistance of the cell access transistor
and the bit line (due to smaller cell geometry) makes restoration
of charge into the cell slower, and leaves insufficient charge in the
storage capacitor. In addition to a decrease in charge, the input off-
set voltage of the sense amplifier also increases due to increased
variability in its transistor pair, which makes it more difficult to
sense data, even if the amount of charge is the same.

All of these scaling issues make it more difficult to meet JEDEC’s
DRAM cell retention time specification of 64 ms in future technol-
ogy. Thus, in addition to increases in tRFC as DRAM chip density
increases, it is anticipated that tREFI may also worsen.

To tackle the refresh problem, DDR4 includes several new con-
cepts, one of which we leverage in this paper: Fine Granularity
Refresh. In addition, DDR4 includes low power auto self-refresh
and temperature-controlled refresh mode, but these are related to
saving refresh power at low temperature and when idling, and are
not within the scope of this work.

3. RELATED WORK
RAIDR – Liu et al. propose RAIDR [8], a clever attempt to min-
imize refresh operations by exploiting inter-cell variation in reten-
tion time. The authors assert that only a small number of weak cells
require a conservative refresh interval of 64 ms. DRAM rows are
grouped into several retention bins, based on the measured mini-
mum retention time across all cells in the corresponding row. Rows
are then refreshed at different rates based on the bin they are clas-
sified in.
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While this may be well suited to certain domains, we believe
there are four important reasons why caution is in order when op-
erating DRAMs outside the standards specified mechanisms for
server systems, where data integrity is frequently a non-negotiable
design constraint.

– Corner sensitivity: The manifestation of a retention failure is
dependent not just on the amount of charge retained in a DRAM
cell capacitor, but also on the ability of the sensing mechanism to
distinguish a 0 from a 1. Retention characteristics are therefore
highly dependent on the combination of temperature, voltage, and
DRAM internal noise encountered during a particular test, because
the effects which must be considered are not just at the DRAM
cell, but also in the sensing mechanism. While chip temperature is
something which can be measured during an in-system chip char-
acterization run, a system operator generally has little control over
the voltages and noise in the memory subsystem, and no ability to
know the internal noise sensitivities of a part (since these will be
highly design-dependent). The weak-cell conclusions of a partic-
ular characterization pass may thus not represent worst-case reten-
tion characteristics, and it is very challenging for a system-level test
to control voltage supply variability and internal DRAM noise.

– Manufacturer freedom: JEDEC specifications only dictate a com-
mand called “Refresh” along with its duration, necessary frequency,
and how to measure the current consumed during this operation
(Idd5). Manufacturers are actually free to do whatever needs to be
done to maintain the DRAM during the tRFC duration of the re-
fresh command. From this perspective, an assumption that a re-
fresh command may only refresh some rows, or may only refresh a
particular number of rows during tRFC, is technically unsafe. While
these assumptions may be accurate for certain DRAMs, they are
not guaranteed to apply over all DRAMs across manufacturers, and
across the lifetime of any standard.

– Access-pattern-dependent mechanisms: A DRAM cell’s or row’s
retention time of its contents may not only be related to the last
time at which it was written, but may also be sensitive to the data
pattern which is stored or the access patterns to surrounding cells.

– VRT: Variable Retention Time is not a single phenomenon, but
rather a general characterization of DRAMs, which states that there
are factors which cause some percentage of DRAM cells to ex-
hibit different retention characteristics at different points in time
(e.g., exposure to very high temperature during component assem-
bly). VRT effects occur both during manufacturing and in the field.
While ECC and other error-tolerance mechanisms are designed to
handle intermittent errors, extending the interval at which cells are
refreshed introduces the risk that total error accumulation, due to
VRT, standard retention, soft errors, and other effects, may rise
above the initial design threshold for a system.

The combination of these four factors means that it may be risky
to operate DRAM cells at a refresh interval beyond the specifica-
tion range that DRAM manufacturers guarantee using their own
test methodology. We believe it is crucial to address the refresh
challenge through alternate means, for those systems where data
integrity is essential. For systems where the risk of weak-cell mi-
gration or incorrect characterization is acceptable, the work pre-
sented in this paper is largely complementary to prior refresh in-
terval extension approaches, and can be used in conjunction with
those techniques.

Elastic Refresh – JEDEC specifications allow some flexibility in
issuing refresh commands: up to eight refresh commands can be
postponed or issued in advance. Stuecheli et al. [17] propose Elas-

tic Refresh, a technique that effectively exploits the flexible dy-
namic range allowed in the JEDEC refresh specification, by being
less aggressive in issuing refresh commands. The primary idea be-
hind elastic refresh is to use predictive mechanisms that decrease
the probability of a read or a write operation from colliding with a
refresh operation. Earlier techniques make use of the flexibility in
issuing refresh operations by scheduling them any time the bus or
the rank queues are idle. The elastic refresh algorithm extends this
concept by waiting an additional period after the rank becomes idle
before it issues the refresh operation. This additional idle delay not
only reduces the priority of the refresh command, but also exploits
bursty behavior in applications.

Although Elastic Refresh lowers the priority of refresh commands
and tries to reduce collisions with reads and writes, as DRAM
scales, the increase in tRFC effectively reduces the probability of
avoiding such collisions. In this sense, our Adaptive Refresh mech-
anism is better suited for adapting to bursty behavior in systems and
avoiding collisions by moving between DDR4 DRAM’s 1x and 4x
modes. Additionally, the concept of Elastic Refresh can be easily
integrated with our proposed Adaptive Refresh scheme.

Smart Refresh and Selective DRAM Refresh – Ghosh et al. [5]
and Song [16] propose similar techniques that eliminate unneces-
sary DRAM refresh commands and overheads. The Smart Refresh
algorithm proposed in [5] maintains a “refresh-needed“ counter for
each row that gets reset every time the row gets read out or writ-
ten to. Smart Refresh relies heavily on data access patterns of the
workloads, as the number of refreshes issued only reduces if a large
number of rows are being activated. Additionally, it has a high area
overhead: for a 2 GB DRAM module, it requires 131,072 counters,
each 3-bit wide. Song’s Selective DRAM Refresh [16] proposes
the use of a reference bit for each DRAM row, which is set when
being accessed. During refresh, if a row’s reference bit is set, re-
fresh is skipped. This proposal suffers from similar issues as Smart
Refresh.

RAPID and Flikker – RAPID, proposed by Venkatesan et al. [18],
is a software solution that exploits retention time variation among
different DRAM cells. The primary idea is to allocate pages with
longer retention time before those with shorter retention time. This
allows selection of a refresh period that is dependent on the shortest
allocated page retention. RAPID risks similar problems as RAIDR,
caused by dynamic variation in retention time and DRAM scaling.
In addition, its performance is based on the utilization of the mem-
ory pages. Flikker [9], another software solution, proposes parti-
tioning data into critical and non-critical groups. Non-critical data
is then refreshed at much lower rates than critical data. However,
identifying data criticality requires substantial programmer effort
and is orthogonal to our Adaptive Refresh mechanism.

4. UNDERSTANDING DDR4 DRAM’S FINE
GRANULARITY REFRESH (FGR)

The internal operation of DRAM during refresh includes activat-
ing some number of pages, waiting for data to be fully restored,
and then precharging those pages. The number of pages that are
refreshed together depends on the device density, and can be calcu-
lated as (Density/PageSize)× (tREFI/64 ms). This corresponds to
256 pages on a 16 Gb x8 DDR4 DRAM chip for the 1x mode.

Activating a large number of pages simultaneously generates
more sensing current than the internal regulator or the power de-
livery network can sustain. Therefore, refresh pages are internally
divided into subgroups, and refresh is performed per subgroup se-
quentially, with some time delay between subgroups to reduce the
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Figure 1: Performance (higher is better) of the 1x, 2x and 4x
modes, running in the normal temperature range (below 85◦C),
normalized to the 1x mode.

peak noise current. For example, 256 pages can be divided into 32
subgroups, with each group having 8 pages, and the 32 subrefresh
operations are staggered every 10 ns (manufacturer and technology
dependent).

For a normal activation-precharge operation, the minimum row
cycle time is denoted as tRC cycles, and determines the minimum
time between accesses to different rows; but for refresh operations,
the cycle time is longer than tRC, as each sub-refresh operation acti-
vates more than one page and generates more sensing noise. We de-
note this as tRC_Refresh. When the subrefresh staggering delay tSTAG

is added, the time to complete one refresh operation in 1x mode can
be expressed as tRFC_1x = (N − 1) × tSTAG + tRC_Refresh, where N
represents the number of subgroups.

For the 2x or 4x modes, there are N/2 or N/4 subgroups, re-
spectively. Thus, the time to complete one refresh operations in 2x
mode is tRFC_2x = ((N/2)− 1)× tSTAG + tRC_Refresh, and similarly
for 4x mode.

Note that tRFC_2x is longer than half of tRFC_1x, and that tRFC_4x

is also longer than half of tRFC_2x, both due to the term tRC_Refresh.
In other words, for each subrefresh operation, there is a startup and
completion overhead time tRC_Refresh which must be amortized. For
the 2x and 4x modes, this is amortized over a smaller number of
refreshes, so the total time spent doing refreshes in 2x and 4x mode
grows, as this initiation cost is paid 2x and 4x more frequently.
This introduces a tradeoff: total DRAM stall time due to refresh
is minimized when long-latency (many-row) 1x mode is used, but
the average stall time should be smallest when shorter refresh op-
erations are used, allowing arriving reads to be issued as soon as
possible.

4.1 FGR Characterization
To understand the impact of FGR on performance, we run ex-

periments on a set of parallel applications using the 1x, 2x and 4x
refresh modes. (A detailed description of the experimental method-
ology can be found in Section 7.) Figure 1 shows the correspond-
ing performance data. From the plot we see that, on average, the 1x
mode tends to perform better than both the 2x and 4x modes. How-
ever, for certain applications like art and swim, the 4x mode tends
to perform better than both 1x and 2x modes. We also observe that
2x is always either the second best or the worst performing among
all modes. The reason is because, when moving from 1x to 2x to
4x, while tREFI scales linearly, tRFC doesn’t, and this makes the 2x
mode sub-optimal. Therefore, for the remaining part of the paper
we do not consider the 2x mode for our experiments

In order to gain insight as to why certain applications performed
better in the 1x mode and others performed better in the 4x mode,
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we choose two applications to analyze: swim (which has better 4x
performance) and equake (which has better 1x performance). We
find that for memory-intensive applications, there is a clear benefit
from short-latency refresh operations (4x mode). This is because
the command queue will often receive requests for a rank that is
being refreshed, and these commands will sit in the queue waiting
for refresh to complete. The result is a longer average DRAM ac-
cess time. Figure 2 shows the average read latency for swim (from
the SPEC-OMP parallel suite) when running in 1x and 4x modes.
4x mode has on average a smaller read latency than the 1x mode,
because DRAM commands spend less time waiting for a refresh to
complete in the 4x mode, therefore improving performance.
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Figure 3: Number of cycles the controller remains idle while a
rank is refreshing (lower is better for performance) for equake
in 1x and 4x FGR modes.

On the other hand, for applications with low memory utiliza-
tion, longer refresh commands are less disruptive to overall per-
formance. The cumulative time spent doing refreshes is lower for
long-latency commands–more rows are refreshed per command,
thus better amortizing tRC_Refresh. Figure 3 shows the average num-
ber of cycles the memory controller remains idle due to refresh for
equake (also from the SPEC-OMP parallel suite) when running the
1x and 4x refresh mode configurations. The 4x mode yields more
idle cycles than the 1x mode, which affects performance negatively.

5. ADAPTIVE REFRESH
From our above analysis, we conclude that no single refresh

mode works best in all cases. Thus, we set out to design an adaptive
FGR mechanism capable of determining the best refresh mode for
a particular workload during the course of its execution.

We propose a very simple Adaptive Refresh mechanism to achi-
eve this goal. The mechanism tracks data bus utilization as a proxy
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measurement for performance, because it is directly observable at
the memory controller, and because it tends to correlate strongly
with system performance for memory-bound applications. Specif-
ically, at each interval, we use a counter that is incremented every
time the memory controller issues a read or a write—the two com-
mands that involve an actual data transfer.

Algorithm 1 Simple FGR-Aware Adaptive Refresh
1: while application is still running do
2: Choose 1x mode and run the application for n intervals, while mon-

itoring data bus utilization
3: Choose 4x mode and run the application for n intervals, while mon-

itoring data bus utilization
4: if utilization in 1x mode ≥ utilization in 4x mode then
5: Choose 1x mode and run the application for m � n intervals
6: else
7: Choose 4x mode and run the application for m � n intervals
8: end if
9: end while

Algorithm 1 shows the simple procedure for our Adaptive Re-
fresh mechanism. We start by initially running the application in
the 1x mode for a training period of n intervals, while monitoring
data bus bandwidth. At the end of n intervals, we switch from the
1x mode to the 4x mode, and train for a period of another n in-
tervals, again while monitoring data bus bandwidth. At the end of
these 2n intervals, we compare the measured utilization for both re-
fresh modes, and pick the mode that has yielded the higher utiliza-
tion. We then continue to run using the chosen mode for a period
of m � n intervals. This whole process is repeated periodically
in order to accommodate changes in phase behavior of the applica-
tion.

Picking the right n, m, and interval duration is important. In our
experiments, we empirically determined the refresh rate for the 1x
mode (tREFI) to be a good value for our algorithm’s interval. This is
convenient because a refresh command is sent out every tREFI cycles
in the 1x mode (twice/four times as often for the 2x/4x modes), so
picking this interval trivially guarantees that the controller does not
miss any refreshes, even when switching modes. As for n and m,
we empirically determine that n = 5 and m = 100 is a good
compromise when all the associated overheads are accounted for.
We evaluate this Adaptive Refresh mechanism in Section 8.1.

Micro-architectural Support for Adaptive Refresh
Very few minor additions are required to a memory scheduler in or-
der to incorporate Adaptive Refresh. Note that a scheduler already
has registers that store the current values of tRFC and tREFI. Two
additional registers are required to store the value of the training
and testing intervals: n (3-bit register) and m (7-bit register). An-
other 7-bit register and a 7-bit adder are needed to keep track of the
elapsed intervals during the training and testing phases. Modern-
day memory controllers already have the capability of measuring
data bus utilization, and therefore no additional hardware is re-
quired to monitor the bandwidth of the data bus. However, a 13-
bit adder and two 15-bit registers are required to keep track of the
cumulative utilization across n intervals during the two training
phases. Finally, a 15-bit comparator is necessary to compare the
utilization measured during training in the 1x and 4x modes and a
2-to-1 multiplexor is needed to choose the FGR mode based on the
output of the comparator.

6. INCREASING THE COMMAND QUEUE
EFFECTIVENESS OF HIGH - DENSITY
DRAM

During a typical refresh operation, the controller cannot issue
any DRAM commands to a rank while it is being refreshed. For-
tunately, modern server memory systems have multiple ranks, and
thus when a refresh operation to a rank is underway, the controller
can still issue DRAM commands to the other ranks that are not be-
ing refreshed. In earlier technology generations like DDR3 DRAM,
the refresh latency tRFC was still small enough that issuing DRAM
commands to non-refreshing ranks could likely keep the controller
busy. However, for very dense DRAM chips, this may no longer be
the case.

Recall that, as DRAM’s chip density increases, the time required
to refresh these DRAM chips also increases. As refresh latency
begins to grow, we notice that our modeled controller remains idle
for a longer period of time despite the presence of multiple ranks
in the memory system. In this section, we introduce and analyze
a new phenomenon caused by refresh commands on the memory
controller: command queue seizure.

For a memory system designed with multiple ranks, refreshes
are staggered across the ranks. This is done primarily for two rea-
sons: (1) Issuing simultaneous refreshes to all ranks can push mem-
ory systems close to (or over) their peak power budgets (or cause
voltage drop issues). This is because refresh is the most power-
hungry DRAM operation, and the Vdd voltage rail is commonly
shared across all chips in the system. Although not specifically re-
ported in DDR JEDEC specifications, almost all the modern multi-
rank memory controllers of which we are aware stagger refreshes
among ranks for this reason (because it is a system design issue
involving power budgets). (2) From a performance perspective,
staggering refreshes to multiple ranks ensures that the controller
does not remain idle while a rank is being refreshed. Due to the
complexity involved in the design of command queues for on-chip
memory controllers in current memory systems, a majority of sys-
tem designs opt for a common command queue for all requests tar-
geting any DRAM rank on a given memory channel [14].1 For a
high-performance memory system, addresses will be hashed across
channels and ranks, enabling maximum system parallelism. An un-
derstanding of the impact of refresh on the command queue can be
obtained by looking at Figures 4 and 5. These plots show the ef-
fect of command queue seizure when running a micro-benchmark
with an even distribution of commands arriving to each rank, for a
system modeled using 4 Gb and 32 Gb DDR4 DRAM chips.

In Figure 4, we see the command queue occupancy and the num-
ber of reads being issued per cycle for a two-rank and four-rank
system using a 4 Gb chip. Let us first analyze the two-rank system.
In interval 3120, a refresh is issued to rank 0. It remains idle for
the duration of refresh while the scheduler issues commands to the
other rank in the system, rank 1. However, due to the even distri-
bution of the memory stream, the controller will steadily drain the
command queue of rank 1 requests, while filling it with requests
to rank 0. When the command queue gets filled up with requests
to rank 0, the controller stalls, as it can no longer issue any more
commands. This is indicated by the plateaus in the “# reads” line,
which tracks the cumulative count of issued read operations to all
locations in the memory system. For a four-rank system using 4 Gb
chips, this poses less of a problem, as the extra ranks add sufficient
variety of commands to the queue’s available scheduling resources.

1Additionally, experiments conducted using per-rank command
queues (as opposed to per-channel command queues) did not pro-
vide a significant improvement in performance to warrant the need.
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Figure 4: Analysis of the command queue seizure phenomenon for a 4 Gb DRAM chip running a micro-benchmark with an even
distribution of loads and stores across ranks and banks. For a two-rank system, the command queue can fill up with DRAM com-
mands to a rank being refreshed, momentarily stalling command issue and increasing the idle time of the scheduler, thereby hurting
performance. For a four-rank system, the problem is alleviated with sufficient command variety in the queue, and the controller is
able to continue to issue commands while a refresh operation completes in a target rank.

The queue seldom fills up with pending commands to the rank be-
ing refreshed, and the controller is continuously able to issue oper-
ations to the memory system (“# reads” increases monotonically).

The situation changes significantly if we consider the increased
refresh cycle times of high density DRAMs (32 Gb chips) (fig-
ure 5). Here the increased refresh latency (tRFC) blocks the rank
being refreshed for a longer period of time. This gives the com-
mand queue more time to fill up with commands to the rank being
refreshed. The situation becomes untenable for high-density mem-
ory with longer refresh latencies, and causes the controller to stall
for relatively long periods of time. The phenomenon actually wors-
ens for a four-rank system when compared to a two-rank system, as
the number of refresh commands sent in one refresh interval (tREFI)
is also twice as many.

6.1 Preemptive Command Drain
In this section we propose a new scheduling technique that helps

mitigate the negative effects of command queue seizure, which we
call Preemptive Command Drain (PCD). The idea behind PCD is
to drain the command queue of commands to a rank that is about to
be refreshed, by prioritizing them over commands to other ranks.
This is easily accomplished by checking whether the refresh count-
down of each DRAM rank is below a certain threshold. In this way,
when the refresh operation is actually issued by the controller, there
will be fewer (possibly none) commands to the refreshing rank in
the command queue, and more commands to non-refreshing ranks.
This gives the memory controller more opportunities for successful
command scheduling while the refresh operation is taking place,
thereby reducing idle cycles.

For this to be effective, it is important to pick the right refresh
countdown threshold. In the general case, we could use a simple

interval adaptation scheme, similar to the one proposed for Adap-
tive Refresh (Section 5), to determine the right threshold for each
application and each application phase. In our experimental setup,
however, we conducted a sensitivity study, and found that a thresh-
old of 150-250 cycles was universally optimal across the studied
applications and phases. Thus, without losing generality, in our
evaluation we show PCD results with a constant threshold of 200
cycles (Section 8.2).

Micro-architectural Support for PCD
Most modern memory schedulers use some variant of the FR-FCFS
scheduling algorithm proposed by Rixner et al. [12]. The basic
FR-FCFS scheduling policy prioritizes CAS commands over RAS
commands and to break ties, older over younger commands. In or-
der to incorporate PCD into FR-FCFS, a few minor changes to the
scheduling algorithm would be needed. PCD + FR-FCFS would
need to prioritizes commands in the following order: (a) CAS com-
mands over RAS commands for the soon-to-be-refreshed rank; (b)
older commands over younger commands for the soon-to-be-refres-
hed rank; (c) CAS commands over RAS commands for other ranks;
and finally (d) older commands over younger commands for other
ranks. An 8-bit comparator would be required to check if the re-
fresh countdown of a DRAM rank is below a particular threshold.
If so, commands mapping to this rank would then be selected with
higher priority.

6.2 Delayed Command Expansion
Memory controllers typically hold loads and stores received from

the last-level cache in a transaction queue. As space becomes avail-
able in the command queue, these memory requests are expanded
into the appropriate DRAM commands and transferred to the com-
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Figure 5: Analysis of the command queue seizure phenomenon for a 32 Gb DRAM chip running a micro-benchmark with an even
distribution of loads and stores across ranks and banks. In large capacity DRAM chips, for a two-rank system, once the command
queue has been filled with commands to the rank being refreshed, long tRFC times quickly leads to the memory scheduler stalling for
longer. The problem worsens for four-rank systems as the number of refresh commands issued per refresh interval doubles. The net
result is an increase in the idle time of the scheduler, which leads to a loss in performance.

mand queue. The PCD algorithm explained above tackles the neg-
ative effects of refresh on the command queue, by prioritizing the
scheduling of commands to a rank about to be refreshed, so they
can be drained from the command queue instead of getting stuck
in place for the duration of the refresh operation. This process
can also be optimized on the transaction queue side: We propose
that the memory controller be allowed to temporarily put off mem-
ory requests to a rank that is being refreshed, instead expanding
and transferring to the command queue requests to non-refreshing
ranks. This helps increase the number of issuable commands in-
side the command queue, potentially improving performance. We
call this Delayed Command Expansion (DCE), and evaluate it in
Section 8.2.

Micro-architectural Support for DCE
In our model, when memory requests arrive at the transaction queue,
they are expanded into DRAM commands in FIFO order and placed
in the command queue. In order to incorporate DCE, an additional
comparison of the rank id’s of the memory requests with the current
rank that is being refreshed would also be needed. As a conserva-
tive estimate, this requires a 2-bit comparator for each transaction
queue entry. However, it is also possible for multiple entries to
share a single comparator, as long as they are used serially. DCE is
triggered only when a rank is refreshing. Any memory controller
would already have this information stored, and hence additional
hardware would not be required to support this. Similar to PCD,
the information of whether a rank is being refreshed or not would
be determined using a comparator, and if so commands mapping to
this rank would then be selected with lower priority for expansion
into the command queue.

7. EXPERIMENTAL METHODOLOGY

7.1 Architecture Model
Our baseline processor model integrates eight cores and supports

a DDR4-1600 memory subsystem with one independent memory
channel (we model our memory subsystem based on the configura-
tions used in IBM Power7TM systems 710, 720 and 730, where the
ratio of threads to memory controllers is eight [14]). The DIMM
structure and timing parameters of our memory model follow JE-
DEC’s DDR4 SDRAM specification [1]. For power and energy
calculations, we use Idd values estimated from discussions with
authors of the JEDEC DDR4 standard and DRAM chip manufac-
turers. The micro-architectural features of the baseline processor
are shown in Table 2; the parameters of the L2 cache, the memory
system, and the DRAM power model are shown in Tables 3 and 4.

7.2 Simulation Setup and Applications
All our experiments have been carried out by extending the SESC

simulation environment [11] with DRAMSim2 [13], which has been
modified to model JEDEC’s DDR4 specification, including bank
and rank groups, and Fine Granularity Refresh. We evaluate a num-
ber of configurations as follows: The configuration 1x represents
the baseline auto-refresh policy present in current day memory sys-
tems; the 4x configuration makes use of the corresponding FGR
refresh mode; AR is our proposed adaptive refresh technique that
leverages FGR; PCD denotes our proposed Preemptive Command
Drain mechanism, wherein the scheduler prioritizes commands in
the command queue that are mapped to ranks that are about to be
refreshed; and finally, DCE is our proposed Delayed Command Ex-
pansion scheme, that withholds expansion of memory requests into
the command queue if they are to a refreshing rank. We evalu-
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ate our proposed schemes on a set of parallel applications, running
eight threads each, to completion. Our parallel workloads con-
stitute a good mix of scalable scientific programs from different
benchmark suites, as shown in Table 5.

7.3 DDR4 Extended Temperature Range
In the normal operating temperature range for DRAMs (below

85◦C), the average time between refresh commands (tREFI) is 7.8 µs.
DRAMs can also operate in the extended temperature range (be-
tween 85◦C and 95◦C), particularly in server type environments
and while using 3DS technology [6, 15]. The required time be-
tween refresh commands at high temperatures is halved to 3.9 µs.
There is global interest in expanding the operating temperature ran-
ges of data centers, driven mostly by the desire for achieving higher
operating efficiency and lower total cost of ownership [2]. In-
creasing operating temperature ranges in a data center environ-
ment causes all components in servers (including memory) to see
higher temperatures. Evaluation of the extended temperature range
is hence both necessary and critical when evaluating high-density
memory systems.

Table 2: Core Parameters.

Technology 32 nm
Frequency 3.2 GHz

Number of cores 8
Fetch/issue/commit width 4/4/4

Int/FP/Ld/St/Br Units 2/2/2/2/2
Int/FP Multipliers 1/1

Int/FP issue queue size 32/32 entries
ROB (reorder buffer) entries 96

Int/FP registers 96 / 96
Ld/St queue entries 24/24
Max. unresolved br. 24
Br. mispred. penalty 9 cycles min.

Br. predictor Alpha 21264 (tournament)
RAS entries 32

BTB size 512 entries, Direct-mapped
iL1/dL1 size 32 kB

iL1/dL1 block size 32 B/32 B
iL1/dL1 round-trip latency 2/3 cycles (uncontended)

iL1/dL1 ports 1 / 2
iL1/dL1 MSHR entries 16/16

iL1/dL1 associativity Direct-mapped/4-way
Memory Disambiguation Perfect

Coherence protocol MESI
Consistency model Release consistency

8. EVALUATION

8.1 Adaptive Refresh
Figure 6 shows the performance obtained by the 1x, 4x, and AR

configurations in the normal DRAM operating temperature range,
normalized to the performance of the 1x configuration. Our pro-
posed AR essentially matches the performance of the refresh mode
that works best for each individual application. For applications
that are not as memory-sensitive (which tend to work better in the
1x configuration), like mg, cg, equake and radix, AR outperforms
the 4x configuration significantly and is within less than 2% of the
1x configuration. For more memory-sensitive applications like art,
AR performs better than the 1x configuration, and it is within 1.5%
of the performance of the 4x mode. For some applications like fft,
ocean, scalparc, and swim, AR outperforms both the 1x and the
4x configurations, as AR successfully adapts to application phase
changes.
Analysis – Let’s look into what is happening. We first take an
example from the class of applications that are less memory sen-

Table 3: Parameters of the shared L2 and DRAM.

Shared L2 Cache Subsystem
Shared L2 Cache 4 MB, 64 B block, 8-way
L2 MSHR entries 64

L2 round-trip latency 32 cycles (uncontended)
Write buffer 64 entries

DDR4 @1600 Mbps DRAM – 16Gb chip size
Transaction Queue 128 entries

Command Queue 32 entries
Number of Channels 1

DIMM Configuration Quad rank
Number of Banks 16 per rank

Row Buffer Size 1 KB
Address Mapping Page Interleaving

Row Policy Closed Pagea

Burst Length 8
tRCD 10 DRAM cycles
tCL 10 DRAM cycles
tWL 12 DRAM cycles
tCCD 4 DRAM cycles

tCCD_L 5 DRAM cycles
tWTR 2 DRAM cycles

tWTR_L 6 DRAM cycles
tWR 15 DRAM cycles
tRTP 6 DRAM cycles
tRP 10 DRAM cycles
tRRD 4 DRAM cycles
tRTRS 2 DRAM cycles
tRAS 28 DRAM cycles
tRC 28 DRAM cycles
tFAW 20 DRAM cycles
tCKE 4 DRAM cycles

Refresh Parameters: DDR4 @1600 Mbps DRAM – 16Gb chip size
tREFI 7.8 µs

tREFI-XTemp 3.9 µs
tRFC_1x 384 DRAM cycles
tRFC_2x 280 DRAM cycles
tRFC_4x 208 DRAM cycles

aWe have conducted our experiments with open page policy and
the results and insights closely follow those for closed page, which
we present.

Table 4: Parameters used for 16 Gb DDR4 @ 1600 Mbps DRAM power man-
agement features.

IDD0 24 mA
IDD1 32 mA

IDD3P 7.2 mA
IDD2P 6.4 mA
IDD2N 10.1 mA
IDD3N 16.6 mA
IDD4R 60 mA

IDD4W 58 mA
IDD5 102 mA
IDD6 6.7 mA
IDD7 107 mA

Table 5: Simulated parallel applications and their input sets.

Data Mining [10]
scalparc Decision Tree 125k pts., 32 attributes

NAS OpenMP [4]
mg Multigrid Solver Class A
cg Conjugate Gradient Class A

SPEC OpenMP [3]
swim-omp Shallow water model MinneSPEC-Large

equake-omp Earthquake model MinneSPEC-Large
art-omp Self-organizing Map MinneSPEC-Large

Splash-2 [19]
ocean Ocean movements 514×514 ocean

fft Fast Fourier transform 1M points
radix Integer radix sort 2M integers
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Figure 7: Number of cycles per interval the controller remains idle (lower is better) while a rank is refreshing and the command
queue is not empty for the application mg. The plot to the left shows idle cycles for the 1x and 4x FGR configurations. The plot to
the right shows the same for the 4x mode and our proposed AR configuration. AR closely follows the FGR mode that has the fewest
scheduler idle cycles (1x in this case), which translates to improved performance.
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queue is not empty for the application swim when running the 4x and AR configurations. The plot shows that AR closely tracks the
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the 1x FGR mode due to a phase change in the application, as indicated by the overlaid tRFC plot which jumps to 480ns from 260ns
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Figure 6: Performance (higher is better) in the normal DRAM
temperature range for the 1x, 4x and AR configurations, nor-
malized to the performance of the 1x configuration.

sitive: mg. Figure 7 is divided into two plots: The left plot shows
the number of cycles per interval the memory controller remains
idle while a rank is refreshing (lower is better), in spite of the com-
mand queue not being empty, when running the 1x and 4x config-
urations. The right plot shows the same for AR and the 4x config-

urations. From the plot on the left, we see that the 1x configuration
has fewer scheduler idle cycles than the 4x configuration, which
translates into improved system performance. We can see that AR
(right plot) closely tracks the behavior of the 1x configuration. The
right plot does show some periodic, narrow spikes for the AR con-
figuration. These correspond to AR’s training phase in 4x mode.
As it turns out, mg doesn’t have phase changes that alter the refresh
mode patterns significantly, and 4x mode is never picked by AR.
Fortunately, since the training phase is a small fraction of the over-
all execution, it affects system performance minimally, as shown
earlier.

Next we look at an example from the class of applications for
which AR performs better than both 1x and 4x modes: swim. As
before, Figure 8 shows the number of cycles per interval the mem-
ory controller remains idle while a rank is refreshing (lower is bet-
ter), when the command queue is not empty. Similar to mg, the plot
shows that AR closely tracks the better configuration, 4x in this
case. However this time AR exhibits wide, periodic drops in idle
time. These correspond to adaptation to program phase changes,
where AR concludes that a temporary switch to 1x mode is prof-
itable. The overlaid plot of tRFC shows that this is indeed what is
happening. The net result is better performance than the static 4x
configuration, as shown before (Figure 6).
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Figure 9: Performance (higher is better) in the extended
DRAM temperature range for the 1x, 4x and AR configura-
tions, normalized to the performance of the 1x configuration.

Extended DRAM temperature range – Figure 9 shows the per-
formance obtained by the 1x, 4x and AR configurations in ex-
tended DRAM operating temperature range, normalized to the per-
formance of the 1x configuration. (Recall that operating in ex-
tended DRAM temperature range is an important consideration for
high-performance configurations.) In the extended temperature ran-
ge (XTemp), the volume of refresh commands issued essentially
doubles within the same refresh interval. This means that the con-
troller spends more time performing refresh operations. The results
show the same trends as in the earlier case of normal DRAM tem-
perature mode, only the performance benefit of picking the right
refresh mode is larger, and thus AR is even more beneficial.

8.2 Delayed Command Expansion and Pree-
mptive Command Drain
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Figure 10: Performance (higher is better) in the normal DRAM
temperature range for DCE, PCD and DCE+PCD when run-
ning in the 1x mode, normalized to the performance of the 1x
configuration.

Figure 10 shows the performance obtained by the 1x, Delayed
Command Expansion in 1x mode (DCE1x), Preemptive Command
Drain in 1x mode (PCD1x), and DCE1x+PCD1x configurations,
run under normal DRAM operating temperature conditions, and
normalized to the performance of the 1x configuration. We see that
DCE1x and PCD1x improve performance on average by 3% and
5.5% over the 1x configuration, respectively. Moreover, combining
the two schemes has an additive effect: DCE1x+PCD1x shows an
improvement in performance of 8% over the 1x configuration.
Analysis – To understand where this improvement is coming from,
let’s look at art a bit more closely. Recall that both the DCE and
PCD mechanisms attempt to increase the number of commands to
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Figure 11: Fraction of commands to non-refreshing ranks in
the command queue (higher is better) while a rank is being re-
freshed for the application art when running the 1x configura-
tion and the DCE+PCD configuration in the 1x mode.

non-refreshing ranks in the command queue, by proactively drain-
ing the queue of commands to the refreshing rank, and by prior-
itizing commands to non-refreshing ranks. Figure 11 shows the
percentage of command queue slots taken up by commands to non-
refreshing ranks per interval for the application art when running
the 1x and DCE1x+PCD1x configurations. The results show that
the configuration DCE1x+PCD1x has a much higher number of
commands to non-refreshing ranks in the command queue per in-
terval, when compared to the 1x configuration. This increases the
opportunity for issuing more commands per interval, reducing idle
cycles in the controller and improving throughput, ultimately im-
proving performance.

8.3 Putting It All Together: AR+DCE+PCD
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Figure 12: Performance (higher is better) in the normal DRAM
temperature range when running DCE+PCD in the 1x, 4x and
AR modes, normalized to the performance of the 1x configura-
tion.

Figures 12 and 13 show the performance obtained by combin-
ing our three proposed schemes when running in both normal and
extended DRAM temperature ranges, and normalized to the appro-
priate 1x mode in each case. A few interesting observations can be
made from these plots: First, for most applications, adding DCE
and PCD to the 4x mode reduces performance when compared to
adding the schemes to the 1x mode. This is because the 4x mode
cumulatively spends more time on refresh than the 1x mode. We
notice that the increase in refresh commands while running the 4x
mode increases the idle time during refresh, especially for those ap-
plications that do not provide a constant stream of loads and stores
(which helps DCE and PCD). Second, following from the above

57



0 200 400 600 800 1000
Interval

6

7

8

9

10

11

12
B

a
n
d
w

id
th

 p
e
r

In
te

rv
a
l 
(G

B
/s

)

Application: art

100

200

300

400

500

600

tR
FC

 p
e
r 

in
te

rv
a
l 
(n

s)DCE1x+PCD1x

AR+PCD+DCE AR+PCD+DCE-tRFC
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follows the 1x configuration for the most part, but also makes profitable switches to the 4x mode when it finds an opportunity for
increasing data bus utilization. This is indicated by the the overlaid tRFC plot in the AR configuration which jumps to 260ns from
480ns when these switches occur.
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Figure 13: Performance (higher is better) in the extended
DRAM temperature range when running DCE+PCD in the 1x,
4x and AR modes, normalized to the performance of the 1x
configuration.

argument, adding AR to DCE and PCD provides no significant im-
provement in performance when compared to adding the schemes
to the 1x mode. The combination of AR, DCE, and PCD, improves
performance over the 1x configuration by 8 and 14% on average
in normal and extended DRAM temperature ranges, respectively.
These results are remarkably close (in fact, virtually identical in
the case of normal DRAM temperature range) to the ones obtained
by DCE1x+PCD1x alone. What this means is that, on average
for these applications, leveraging DDR4 DRAM’s Fine Granularity
Refresh feature offers little advantage once our proposed DCE and
PCD mechanisms are in place. For applications that are particu-
larly memory sensitive and/or exhibit refresh phase behavior (art
and swim), we do observe an improvement by adding AR on top
of DCE and PCD, especially in the extended DRAM temperature
range.
Analysis – To provide further insight, we look at the access pattern
of the application art, one of the two that benefit from combining
AR to DCE+PCD. Figure 14 shows the effective data bandwidth
per interval for the DCE1x+PCD1x and the AR+DCE+PCD con-
figurations on the primary y-axis (left), and tRFC per interval for the
AR+DCE+PCD configuration on the secondary y-axis (right). (For
DCE1x+PCD1x, tRFC remains constant at 480 ns.) Around the 650
interval time frame, the application art has a memory phase change.
AR+DCE+PCD detects this change and immediately switches to
the 4x mode. DCE1x + PCD1x, however, remains in the 1x mode.

As a result, AR + DCE + PCD is able to sustain a high effective
data bandwidth, whereas DCE1x+PCD1x drops in bandwidth at
that point.

8.4 Energy Calculations

Performance Energy ED ED^2
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
M

e
tr

ic
s 

n
o
rm

a
liz

e
d
 t

o
 1

x 1x 4x AR AR+DCE+PCD

Figure 15: Mean performance, energy, energy-delay and
energy-delay squared in the normal DRAM temperature range
for the 1x, 4x, AR and AR+DCE+PCD configurations, normal-
ized to that of the 1x configuration.
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Figure 16: Mean performance, energy, energy-delay and
energy-delay squared in the extended DRAM temperature
range for the 1x, 4x, AR and AR+DCE+PCD configurations,
normalized to that of the 1x configuration.

Figures 15 and 16 show average performance, energy, energy-
delay and energy-delay squared numbers for the 1x, 4x, AR, and
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AR+DCE+PCD configurations, normalized to that of the 1x config-
uration in each case, in both normal and extended DRAM temper-
ature ranges. In the normal DRAM temperature range, AR+DCE+
PCD improves performance by 8% on average, and reduces energy-
delay and energy-delay squared by 7 and 14%, respectively. In
the extended DRAM temperature range, AR+DCE+ PCD improves
performance by 14% on average, and reduces energy-delay and
energy-delay squared by 14 and 24%, respectively. As expected,
because of the increase in the volume of refresh operations, the 4x
configuration exhibits the highest energy consumption. Thus, our
proposed AR+DCE+PCD not only improves performance signifi-
cantly, it does so by consuming the same amount of energy when
compared to the 1x configuration, for an overall improvement in
energy efficiency.

8.5 Comparison to RAIDR
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Figure 17: Average performance, energy, energy-delay, and
energy-delay squared in the normal DRAM temperature range
for the 1x, RAIDR and AR+DCE+PCD configurations, normal-
ized to that of the 1x configuration.

Figure 17 shows the performance, energy, energy delay, and en-
ergy delay squared numbers for the the 1x mode, RAIDR [8], and
AR+DCE+PCD. RAIDR is a RAS-only refresh implementation
that cuts down significantly on the number of refreshes by exploit-
ing inter-cell variation in retention, resulting in improved perfor-
mance and energy efficiency (Section 3). The plot shows that AR
+DCE+PCD virtually matches RAIDR in every performance and
energy metric. This is significant because it does so (1) without
resorting to RAIDR’s RAS-only refresh (which bypasses DRAM’s
auto-refresh feature and requires the controller to identify on the
address bus which bank needs to be refreshed at each point in
time), and (2) without making any assumptions on retention times
of DRAM cells, which may cause reliability issues (Section 3).

9. CONCLUSION
Our analysis of DDR4 DRAM’s new Fine Granularity Refresh

feature shows that there is no one-size-fits-all refresh option across
the applications that we have used in our study. This makes our
proposed Adaptive Refresh (AR) mechanism a simple yet effective
way to leverage the best FGR mode in each application and phase
within the application.

For high-density DRAM systems, we have identified a phenome-
non that we call command queue seizure, whereby the memory con-
troller’s command queue seizes up because it is full with commands
to a rank that is being refreshed. To attack this problem, we have
proposed two complementary mechanisms called Delayed Com-
mand Expansion (DCE) and Preemptive Command Drain (PCD)
which increase the number of issuable DRAM commands in the
scheduler’s command queue when a refresh operation is underway.

Once our proposed DCE and PCD mechanisms are in place,
DDR4’s FGR becomes redundant in most cases, except in highly
memory-sensitive applications, where the use of AR does provide
some additional benefit. In all, the proposed mechanisms yield sig-
nificant performance gains with respect to traditional refresh at both
normal and extended DRAM operating temperatures.
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