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Abstract

We consider the Set Once Strip Cover problem, in which n wireless sensors are deployed
over a one-dimensional region. Each sensor has a fixed battery that drains in inverse proportion
to a radius that can be set just once, but activated at any time. The problem is to find
an assignment of radii and activation times that maximizes the length of time during which
the entire region is covered. We show that this problem is NP-hard. Second, we show that
RoundRobin, the algorithm in which the sensors take turns covering the entire region, has a
tight approximation guarantee of 3

2 in both Set Once Strip Cover and the more general
Strip Cover problem, in which each radius may be set finitely-many times. Moreover, we
show that the more general class of duty cycle algorithms, in which groups of sensors take
turns covering the entire region, can do no better. Finally, we give an optimal O(n2 logn)-
time algorithm for the related Set Radius Strip Cover problem, in which sensors must be
activated immediately.
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1 Introduction

Suppose that n sensors are deployed over a one-dimensional region that they are to cover with
a wireless network. Each sensor is equipped with a finite battery charge that drains in inverse
proportion to the sensing radius that is assigned to it, and each sensor can be activated only once.
In the Set Once Strip Cover (OnceSC) problem, the goal is to find an assignment of radii
and activation times that maximizes the lifetime of the network, namely the length of time during
which the entire region is covered.

Formally, we are given as input the locations x ∈ [0, 1]n and battery charges b ∈ Qn for each of
n sensors. While we cannot move the sensors, we do have the ability to set the sensing radius ρi
of each sensor and the time τi when it should become active. Since each sensor’s battery drains in
inverse proportion to the radius we set (but cannot subsequently change), each sensor covers the
region [xi− ρi, xi+ ρi] for bi/ρi time units. Our task is to devise an algorithm that finds a schedule
S = (ρ, τ) ∈ [0, 1]n × [0,∞)n for any input (x, b), such that [0, 1] is completely covered for as long
as possible.

Motivation. Scheduling problems of this ilk arise in many applications, particularly when the
goal is barrier coverage (see [8, 21] for surveys, or [13] for motivation). Suppose that we have a
highway, supply line, or fence in territory that is either hostile or difficult to navigate. While we
want to monitor activity along this line, conditions on the ground make it impossible to systemat-
ically place wireless sensors at specific locations. However, it is feasible and inexpensive to deploy
adjustable range sensors along this line by, say, dropping them from an airplane flying overhead
(e.g. [7, 18, 20]). Once deployed, the sensors send us their location via GPS, and we wish to send
a single radius-time pair to each sensor as an assignment. Replacing the battery in any sensor
is infeasible. How do we construct an assignment that will keep this vital supply line completely
monitored for as long as possible?

Models. While the focus of this paper is the OnceSC problem, we touch upon three closely
related problems. In each problem the location and battery of each sensor are fixed, and a solution
can be viewed as a finite set of radius-time pairs. In OnceSC, both the radii and the activation
times are variable, but can be set only once. In the more general Strip Cover problem, the
radius and activation time of each sensor can be set finitely many times. On the other hand,
if the radius of each sensor is fixed and given as part of the input, then we call the problem of
assigning an activation time to each sensor so as to maximize network lifetime Set Time Strip

Cover (TimeSC). Set Radius Strip Cover (RadSC) is another variant of OnceSC in which
all of the sensors are scheduled to activate immediately, and the problem is to find the optimal
radial assignment. Figure 1 summarizes the important differences between related problems and
illustrates their relationship to one another.

Related work. TimeSC, which is known as Restricted Strip Covering, was shown to be
NP-hard by Buchsbaum et al. [6], who also gave an O(log log n)-approximation algorithm. Later,
a constant factor approximation algorithm was discovered by Gibson and Varadarajan [12].

Close variants of RadSC have been the subject of previous work. Whereas RadSC requires
area coverage, Peleg and Lev-Tov [14] studied target coverage. In this problem the input is a set of
n sensors and a finite set of m points on the line that are to be covered, and the goal is to find the
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Strip Cover:

radii & activation times

can be set finitely many times

Set Once Strip Cover (OnceSC):

radii & activation times

can be set only once

Set Time Strip Cover (TimeSC, RSC):

radii are fixed

activation times are variable

Set Radius Strip Cover (RadSC):

radii can be set only once

activation is immediate

Figure 1: Relationship of Problem Variants.

radial assignments with the minimum sum of radii. They used dynamic programming to devise a
polynomial time alorithm. Bar-Noy et al. [5] improved the running time to O(n + m). Recently,
Bar-Noy et al. [?] considered an extension of RadSC in which sensors are mobile.

Strip Cover was first considered by Bar-Noy and Baumer [3], who gave a 3
2 lower bound on

the performance of RoundRobin, the algorithm in which the sensors take turns covering the entire
region (see Observation 2), but were only able to show a corresponding upper bound of 1.82. The
similar Connected Range Assignment (CRA) problem, in which radii are assigned to points
in the plane in order to obtain a connected disk graph, was studied by Chambers et al. [11]. They
showed that the best one circle solution to CRA also yields a 3

2 -approximation guarantee, and in
fact, the instance that produces their lower bound is simply a translation of the instance used in
Observation 2.

The notion of duty cycling as a mean to maximize network lifetime was also considered in the
literature of discrete geometry. In this context, maximizing the number of covers t serves as a
proxy for maximizing the actual network lifetime. Pach [15] began the study of decomposability
of multiple coverings. Pach and Tóth [16] showed that a t-fold cover of translates of a centrally-
symmetric open convex polygon can be decomposed into Ω(

√
t) covers. This was later improved to

the optimal Ω(t) covers by Aloupis et al. [2], while Gibson and Varadarajan [12] showed the same
result without the centrally-symmetric restriction.

Motivated by prior invocations of duty cycling [19, 17, 1, 7, 9, 10], Bar-Noy et al. [4] studied a
duty cycle variant of OnceSC with unit batteries in which sensors must be grouped into shifts of
size at most k that take turns covering [0, 1]. (RoundRobin is the only possible algorithm when
k = 1.) They presented a polynomial-time algorithm for k = 2 and showed that the approximation
ratio of this algorithm is 35

24 for k > 2. It was also shown that its approximation ratio is at least
15
11 , for k ≥ 4, and 6

5 , for k = 3. A fault-tolerance model, in which smaller shifts are more robust,
was also proposed.

Our results. We introduce the Set Oncemodel that corresponds to the case where the scheduler
does not have the ability to vary the sensor’s radius once it has been activated. We show that
OnceSC is NP-hard (Section 3) and that RoundRobin is a 3

2 -approximation algorithm for both
OnceSC and Strip Cover (Section 4). This closes a gap between the best previously known
lower and upper bounds (32 and 1.82, resp.) on the performance of this algorithm. Our analysis
of RoundRobin is based on the following approach: We slice an optimal schedule into strips in
which the set of active sensors is fixed. For each such strip we construct an instance with unit
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batteries and compare the performance of RoundRobin to the RadSC optimum of this instance.
In Section 5 we show that the class of duty cycle algorithms cannot improve on this 3

2 guarantee. In
Section 6, we provide an O(n2 log n)-time algorithm for RadSC. We note that the same approach
would work for the case where, for every sensor i, the ith battery is drained in inverse proportion
to ραi , for some α > 0.

2 Preliminaries

Problems. The Set Once Strip Cover (abbreviated OnceSC) is defined as follows. Let

U
△

= [0, 1] be the interval that we wish to cover. Given is a vector x = (x1, . . . , xn) ∈ Un of n
sensor locations, and a corresponding vector b = (b1, . . . , bn) ∈ Qn

+ of battery charges, with bi ≥ 0
for all i. We assume that xi ≤ xi+1 for every i ∈ {1, . . . , n − 1}. We sometimes abuse notation by
treating x as a set. An instance of the problem thus consists of a pair I = (x, b), and a solution is
an assignment of radii and activation times to sensors. More specifically a solution (or schedule)
is a pair S = (ρ, τ) where ρi is the radius of sensor i and τi is the activation time of i. Since the
radius of each sensor cannot be reset, this means that sensor i becomes active at time τi, covers
the range [xi − ρi, xi + ρi] for bi/ρi time units, and then becomes inactive since it has exhausted
its entire battery.

Any schedule can be visualized by a space-time diagram in which each coverage assignment can
be represented by a rectangle. It is customary in such diagrams to view the sensor locations as
forming the horizontal axis, with time extending upwards vertically. In this case, the coverage of a
sensor located at xi and assigned the radius ρi beginning at time τi is depicted by a rectangle with
lower-left corner (xi − ρi, τi) and upper-right corner (xi + ρi, τi + bi/ρi). Let the set of all points
contained in this rectangle be denoted as Rect(ρi, τi). A point (u, t) in space-time is covered by a
schedule (ρ, τ) if (u, t) ∈ ⋃

iRect(ρi, τi). The lifetime of the network in a solution S = (ρ, τ) is the
maximum value T such that every point (u, t) ∈ U × [0, T ] is covered. Graphical depictions of two
schedules are shown below in Figure 2.

In OnceSC our goal is to find a schedule S = (ρ, τ) that maximizes the lifetime T . Given an
instance I = (x, b), the optimal lifetime is denoted by Opt(x, b). (We sometimes use Opt, when
the instance is clear from the context.)

The Set Radius Strip Cover (RadSC) problem is a variant of OnceSC in which τi = 0,
for every i. Hence, a solution is simply a radial assignment ρ. Set Time Strip Cover (TimeSC)
is another variant in which the radii are given in the input, and a solution is an assignment of
activation times to sensors.

Strip Cover is a generalization of OnceSC in which a sensor’s radius may be changed finitely
many times. In this case a solution is a vector of piece-wise constant functions ρ(t), where ρi(t) is
the sensing radius of sensor i at time t. The solution is feasible if U is covered for all t ∈ [0, T ], and if
∫∞
0 ρi(t) dt ≤ bi, for every i. The segment [0, 1] is covered at time t, if [0, 1] ⊆ ⋃

i[xi−ρi(t), xi+ρi(t)].

Maximum lifetime. The best possible lifetime of an instance (x, b) is 2
∑

i bi. We state this
formally for OnceSC, but the same holds for the other variants.

Observation 1. The lifetime of a OnceSC instance (x, b) is at most 2
∑

i bi.

Proof. Consider an optimal solution (ρ, τ) for (x, b) with lifetime T . A sensor i covers an interval
of length 2ρi for bi

ρi
time. The lifetime T is at most the total area of space-time covered by the
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Figure 2: RoundRobin vs. Opt with x = (14 ,
3
4) and b = (1, 1). The sensors are indicated by

(red) dots. Each of the (blue) rectangles represents the active coverage region for one sensor. The
dashed gray arrow helps to clarify which sensor is active at a particular point in time.

sensors, which is at most
∑

i 2ρi · bi/ρi.

Round Robin. We focus on a simple algorithm we call RoundRobin. The RoundRobin al-

gorithm forces the sensors to take turns covering U , namely it assigns, for every i, ρi = ri
△

=
max{xi, 1− xi} and τi =

∑i−1
j=1 bj/ρj . The lifetime of RoundRobin is thus

RR(x, b)
△

=
∑n

i=i bi/ri .

Notice that Observation 1 implies an upper bound of 2 on the approximation ratio of RoundRobin,
since ri ≤ 1, for every i. A lower bound of 3

2 on the approximation guarantee of RoundRobin was
given in [3] using the two sensor instance x = (14 ,

3
4 ), b = (1, 1). The relevant schedules are depicted

graphically in Figure 2.

Observation 2 ([3]). The approximation ratio of RoundRobin is at least 3
2 .

Given an instance (x, b) of OnceSC, let B
△

=
∑

i bi be the total battery charge of the system
and r =

∑

i
bi
B · ri be the average of the ri’s, weighted by their respective battery charge. We define

the following lower bound on RR(x, b):

RR
′(x, b)

△

= B/r .

Lemma 3. RR
′(x, b) ≤ RR(x, b), for every OnceSC instance (x, b).

Proof. We have that

RR(x, b) =
n∑

i=1

bi
ri

=
n∑

i=1

b2i
biri
≥ (

∑n
i=1 bi)

2

∑n
i=1 biri

=

∑n
i=1 bi
r

= RR
′(x, b) ,

where the inequality is due to an implication of the Cauchy-Schwarz Inequality:
∑

j

c2j
dj
≥ (

∑
j cj)

2

∑
j dj

,

for any positive c, d ∈ Rn.
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Figure 3: Proof of NP-hardness. Y = {1, 2, 3, 4} is a given instance of Partition, and (x, b) =
(
(16 ,

1
2 , . . . ,

1
2 ,

5
6 ), (5, 1, 2, 3, 4, 5)

)
is the translated OnceSC instance.

3 Set Once Hardness Result

In this section we show that OnceSC is NP-hard. This is done using a reduction from Partition.

Theorem 1. OnceSC is NP-hard.

Proof. Let Y = {y1, . . . , yn} be a given instance of Partition, and define B = 1
2

∑n
i=1 yi. We

create an instance of OnceSC by placing n sensors with battery yi at 1
2 , and two additional

sensors equipped with battery B at 1
6 and 5

6 , respectively. That is, the instance of OnceSC

consists of sensor locations x = (16 ,
1
2 , . . . ,

1
2

︸ ︷︷ ︸

n

, 56 ) and batteries b = (B, y1, . . . , yn, B). We show that

Y ∈ Partition if and only if the maximum possible lifetime of 8B is achievable for the OnceSC

instance.
First, suppose Y ∈ Partition, hence there exist two non-empty disjoint subsets Y0, Y1 ⊆ Y ,

such that Y0∪Y1 = Y , and
∑

y∈Y0
y = B =

∑

y∈Y1
y. Schedule the sensors in Y0 to iteratively cover

the region [13 ,
2
3 ]. Since all of these sensors are located at 1

2 , this requires that each sensor’s radius
be set to 1

6 , i.e. ρi+1 = 1
6 , for every i ∈ Y0. Since the sum of their batteries is B, this region can

be covered for exactly 6B time units. With the help of the additional sensors located at 1
6 and 5

6 ,
whose radii are also set to ρ1 = ρn+2 =

1
6 , the sensors in Y0 can thus cover [0, 1] for 6B time units

(see Figure 3 for an example). Next, the sensors in Y1 can cover [0, 1] for an additional 2B time
units, since they all require a radius of ρi+1 =

1
2 , for every i ∈ Y1. Thus, the total lifetime is 8B.

Now suppose that for such a OnceSC instance, the lifetime of 8B is achievable. Since the
maximum possible lifetime is achievable, no coverage can be wasted in the optimal schedule. In
this case the radii of the sensors at 1

6 and 5
6 must be exactly 1

6 , since otherwise, they would either
not reach the endpoints {0, 1}, or extend beyond them. Moreover, due the fact that all of the
other sensors are located at 1

2 , and their coverage is thus symmetric with respect to 1
2 , it cannot

be the case that sensor 1 and sensor n+2 are active at different times. Thus, the solution requires
a partition of the sensors located at 1

2 into two groups: the first of which must work alongside
sensors 1 and n + 2 with a radius of 1

6 and a combined lifetime of 6B; and the second of which
must implement RoundRobin for a lifetime of 2B. The batteries of these two partitions form a
solution to Partition.
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(a) An optimal schedule S
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Figure 4: Cutting an optimal schedule into strips. Note that coverage overlaps may occur in both
the horizontal and vertical directions in the optimal schedule, but only horizontally in a strip.

4 Round Robin

We show in Appendix 3 that OnceSC is NP-hard, so we turn our attention to approximation
algorithms. While RoundRobin is among the simplest possible algorithms (note that its running
time is exactly n), the precise value of its approximation ratio is not obvious (although it is not
hard to see that 2 is an upper bound). In [3] an upper bound of 1.82 and a lower bound of 3

2
were shown. In this section, we show that the approximation ratio of RoundRobin in OnceSC

is exactly 3
2 . The structure of the proof is as follows. We start with an optimal schedule S, and

cut it into disjoint time intervals, or strips, such that the same set of sensors is active within each
time interval. Each strip induces a RadSC instance Ij and a corresponding solution Sj . Next, we
show that for any such instance Ij , there exists a unit-battery instance I ′j with the same optimum
lifetime. Finally, we prove a lower bound on the performance of RoundRobin on such unit battery
instances. By combining these results, we prove that RR(x, b) ≥ 2

3T .

4.1 Cutting the Schedule into Strips

Given an instance I = (x, b), and a solution S = (ρ, τ) with lifetime T , let Ω be the set of
times until T in which a sensor was turned on or off, namely Ω =

⋃

i{τi, τi + bi/ρi} ∩ [0, T ]. Let
Ω = {0 = ω0, . . . , ωℓ = T}, where ωj < ωj+1, for every j. Next, we partition the time interval [0, T ]
into the sub-intervals [ωj , ωj+1], for every j ∈ {0, . . . , ℓ− 1}.

Next, we define a new instance for every sub-interval. For every j ∈ {0, . . . , ℓ− 1}, let xj ⊆ x
be the set of sensors that participate in covering [0, 1] during the jth sub-interval of time, i.e.,
xj = {xi : [ωj , ωj+1] ⊆ [τi, τi + bi/ρi]}. Also, let Tj = ωj+1 − ωj, and let bji be the energy that was

consumed by sensor i during the jth sub-interval, i.e., bji = ρi · Tj . Observe that Ij = (xj , bj) is

a valid instance of RadSC, for which ρj , where ρji = ρi for every sensor i such that xi ∈ xj, is a
solution that achieves a lifetime of exactly Tj. Figure 4 provides an illustration of this procedure.

We further modify the instance Ij = (xj, bj) and the solution ρj as follows:

• Starting with i = 1, remove sensor i from the instance, if the interval [0, 1] is covered during
[ωj , ωj+1] without i.

• Decrease the battery and the radius of the left-most sensor as much as possible, and also
decrease the battery and the radius of the right-most sensor as much as possible.

6
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(
(14 ,
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24 ), (3, 4)

)
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(
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12 ,

3
12 ,

5
12 ,

13
24 ,

17
24 ,

21
24 ,

25
24),1

)
.

Observation 4. Let sensors 1 and m be the leftmost and rightmost sensors in xj . Then, either
ρj1 = xj1 or the interval [0, xj1 + ρj1) is only covered by sensor 1. Also, either ρjm = 1 − xjm or the

interval (xjm − ρjm, 1] is only covered by sensor m.

For now, it is important to note only that RR(xj, bj) =
∑

xi∈xj

bji
ri

is the RoundRobin lifetime
of the jth strip, which is a specific RadSC instance Ij with the properties outlined above.

4.2 Reduction to Set Radius Strip Cover with Uniform Batteries

Given the RadSC instance Ij = (xj, bj) and a solution ρj, we construct an instance I ′j = (yj ,1)

with unit size batteries and a RadSC solution σj , such that the lifetime of σj is Tj . That is, the
optimal lifetime of I ′j is exactly the same as for Ij , but it uses only unit batteries.

Let Opt0 denote the optimal RadSC lifetime. We assume that bji ∈ N and bji ≥ 3 for every i,

since (i) bji ∈ Q for every i, (ii) Opt0(x, βb) = β ·Opt0(x, b), and (iii) RR(x, βb) = β ·RR(x, b).

The instance I ′j is constructed as follows. We replace each sensor i such that xji ∈ xj with bji
unit battery sensors whose average location is xi. These unit battery sensors are called the children
of i. To do this, we divide the interval [xji − ρji , x

j
i + ρji ] into bji equal sub-intervals, and place a

unit battery sensor in the middle of each sub-interval. Observe that child sensors may be placed
outside [0, 1], namely to the left of 0 or to the right of 1. The solution σj is defined as follows. For
any child k of a sensor i in Ij, we set σj

k = ρji/b
j
i . An example is shown in Figure 5.

Lemma 5. The lifetime of σj is Tj.

Proof. First, the bji children of a sensor i in Ij cover the interval [xji − ρji , x
j
i + ρji ]. Also, a child k

of i survives 1/σj
k = bji/ρ

j
i = Tj time units.

Next, we prove that the lower bound on the performance of RoundRobin may only decrease.

Lemma 6. RR
′(yj ,1) ≤ RR

′(xj , bj).

7



Proof. Let pj be the RoundRobin radii of yj. Observe that if xji ≤ 1
2 , it follows that

∑

k:k correspond to i

pjk =
∑

k:k correspond to i

max
{

yjk, 1− yjk

}

≥
∑

k:k correspond to i

(1− yjk) = bji (1− xji ) = bji r
j
i ,

and that if xji ≥ 1
2 , we have that

∑

k:k correspond to i

pjk =
∑

k:k correspond to i

max
{

yjk, 1− yjk

}

≥
∑

k:k correspond to i

yjk = bjix
j
i = bjir

j
i .

Hence,

RR
′(yj ,1) =

∑

i b
j
i

pj
=

Bj

1
Bj

∑

k p
j
k

≤ Bj

1
Bj

∑

i b
j
ir

j
i

=
Bj

rj
= RR

′(xj , bj) ,

and the lemma follows.

4.3 Analysis of Round Robin for Unit Batteries

For the remainder of this section, we assume that we are given a unit battery instance x that
corresponds to the jth strip. (We drop the subscript j and go back to x for readability.) Recall
that x ∩ [0, 1] is not necessarily equal to x, since some children could have been created outside
[0, 1] in the previous step. We show that RR

′(x) ≥ 2
3Opt0(x).

Let i0 = min {i : xi ≥ 0} and let i1 = max {i : xi ≤ 1} be the indices of the left-most and
right-most sensors in [0, 1], respectively.

Lemma 7. maxi∈{i0,...,i1−1}{xi+1 − xi} = maxi∈{1,...,n−1}{xi+1 − xi}.

Proof. By Observation 4 either ρ1 = x1 and hence none of its children are located to the left of 0,
or the points to the left of x1+ρ1 are only covered by sensor 1, which means that the gaps between
1’s children to the left of zero also appears between its children within [0, 1]. (Recall that bji ≥ 3,
for all i.) The same argument can be used for the right-most sensor.

As illustrated in Figure 6, we define

∆0
△

=

{

xi0 − xi0−1 i0 > 1,−xi0−1 < xi0 ,

2xi0 otherwise,

∆1
△

=

{

xi1+1 − xi1 i1 < n, xi1+1 − 1 < 1− xi1 ,

2(1− xi1) otherwise,

and

∆
△

= max

{

∆0,∆1, max
i∈{i0,...,i1−1}

{xi+1 − xi}
}

.

We describe the optimal RadSC lifetime in terms of ∆.

Lemma 8. The optimum lifetime of x is 2
∆ .

8
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Figure 6: Illustration of the gaps in a unit battery instance x. Note that i0 = 2 and i1 = 8. ∆0 = d1,
since sensor 1 is closer to 0 than sensor 2. Also, ∆1 = 2(1−x8). Hence, ∆ = max {d4, d1, 2(1 − x8)}.
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2 RR(x)
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∆

(a) An instance x

0 1
2

1
0

1

2 RR(x)

x1 x2 x3 x4 x5 x6
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(b) The stretched instance x′

Figure 7: Transformation of instance x to stretched instance x′. The sensor closest to 1
2 (x3)

remains in place, while the other sensors are placed at increasing intervals of ∆ away from x3. The
RoundRobin lifetime of a sensor is shown as a continuous function of its location x.

Proof. To verify that 2/∆ can be achieved, consider the solution in which ρi = ∆/2 for all i.
Clearly, [0, 1] is covered, and all sensors die after 2/∆ time units. Now suppose that a solution ρ
exists with lifetime strictly greater than 2/∆. Hence maxi{ρi} < ∆/2. By definition, ∆ must equal
∆0, ∆1, or the maximum internal gap. If the latter, then there exists a point u ∈ [0, 1] between the
two sensors forming the maximum internal gap that is uncovered. On the other hand, if ∆ = ∆0,
then if ∆0 = 2xi0 , 0 is uncovered, and otherwise, there is a point in [0, xi0 ] that is uncovered. A
similar argument holds if ∆ = ∆1.

In the next definition we transform x into an instance x′ by pushing sensors away from 1
2 , so

that each internal gap between sensors is of equal width. See Figure 7 for an illustration.

Definition 1. For a given instance x, let k be a sensor whose location is closest to 1/2. Then we
define the stretched instance x′ of x as follows:

x′i =

{

(1− rk)− (⌈n/2⌉ − i)∆ i ≤ ⌈n/2⌉ ,
(1− rk) + (i− ⌈n/2⌉)∆ i > ⌈n/2⌉ .

Observation 9. Let x′ be a stretched instance of x. Then |
{
i : x′i ≤ 1

2

}
| =

⌈
n
2

⌉
and

|
{
i : x′i >

1
2

}
| =

⌊
n
2

⌋
.

Lemma 10. Let x′ be the stretched instance of x. Then, Opt0(x
′) = Opt0(x) and RR

′(x′) ≤
RR

′(x).

Proof. First, by construction, the internal gaps in x′ are of length ∆ and ∆′
0,∆

′
1 ≤ ∆. Thus, by

Lemma 8, Opt0(x
′) = Opt0(x). By Lemma 7 we know that the sensors moved away from 1

2 , hence∑

i r
′
i ≥

∑

i ri and RR
′(x′) ≤ RR

′(x).

9



Now we are ready to bound RR(x).

Lemma 11. RR
′(x) ≥ 2

3Opt0(x), for every instance I = (x,1) of RadSC, where sensors may be
located outside [0, 1].

Proof. By Lemma 10 we may assume that the instance is stretched. First, suppose that n is even.
Since x is a stretched instance, it must be the case that exactly half of the sensors lie to the left of
1/2, and exactly half lie to the right. Hence,

r
△

=
1

n

n∑

i=1

ri =
1

n





n/2−1
∑

j=0

(rn/2 + j∆) +

n/2−1
∑

j=0

(rn/2+1 + j∆)





=
1

n

[
n

2
· rn/2 +∆

(
n/2

2

)

+
n

2
· rn/2+1 +∆

(
n/2

2

)]

=
rn/2 + rn/2+1

2
+

2∆

n

(
n/2

2

)

=
1 +∆

2
+

∆(n− 2)

4

=
1

2
+

n∆

4
,

where we have used the fact that since the sequence is stretched rn/2+rn/2+1 = 1+∆. Furthermore,
since n∆ ≥ 1, it now follows that

RR
′(x)

Opt0(x)
=

n/r

2/∆
=

n∆

1+ n∆/2
=

1
1
n∆ + 1

2

≥ 2

3
.

If n is odd, then w.l.o.g. there are n+1
2 sensors to the left of 1/2, and n−1

2 to the right. Then

r =
1

n





(n−1)/2
∑

j=0

(r(n+1)/2 + j∆) +

(n−3)/2
∑

j=0

(r(n+3)/2 + j∆)





=
1

n

[
n+ 1

2
· r(n+1)/2 +∆

(
(n+ 1)/2

2

)

+
n− 1

2
· r(n+3)/2 +∆

(
(n− 1)/2

2

)]

=
r(n+1)/2 + r(n+3)/2

2
+

r(n+1)/2 − r(n+3)/2

2n
+

∆

n
· (n− 1)2

4

≤ 1 + ∆

2
+

∆

n
· (n− 1)2

4

=
1

2
+ ∆

n2 + 1

4n
.

We have two cases. If r1 ≥ 1, then there are n − 1 gaps of size ∆, as well as one gap of size at
most ∆/2. Since the gaps cover the entire interval, we have that (n− 1)∆+ ∆

2 ≥ 1. It follows that
n∆ ≥ 2n

2n−1 . Thus, we can demonstrate the same bound, since

RR
′(x)

Opt0(x)
=

n/r

2/∆
≥ n∆

1 + (n2+1)∆
2n

=
1

1
n∆ + 1

2 +
1

2n2

≥ 2n2

3n2 − n+ 1
>

2

3
.
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Finally, we consider the case where r1 < 1. For some ǫ ∈ (0,∆/2], we can set r(n+1)/2 = 1
2 + ǫ.

Since sensors (n+ 1)/2 and (n+ 3)/2 are of distance ∆ from one another, it follows that

rn+3

2

− rn+1

2

= (1/2 + ∆− ǫ)− (1/2 + ǫ) = ∆− 2ǫ .

Moreover, we will show that ǫ ≤ ∆/4, and thus r(n+3)/2 − r(n+1)/2 ≥ ∆/2. To see this, note
first that it follows from the definition of a stretch sequence and the assumption that r1 < 1 that
r1 = r(n+1)/2 +∆(n− 1)/2 and r2 = r(n+3)/2 −∆(n− 3)/2. Hence their difference is

r1 − rn = (rn+1

2

+ 1
2∆(n− 1))− (rn+3

2

+ 1
2∆(n− 3)) = rn+1

2

− rn+3

2

+∆ = 2ǫ .

However since 1 − ∆/2 ≤ rn ≤ r1 < 1, it must be the case that r1 − rn ≤ ∆/2, and this implies
that ǫ ≤ ∆/4.

Finally, a computation similar to the one above reveals that

r ≤
rn+1

2

+ rn+3

2

2
+

rn+1

2

− rn+3

2

2n
+

∆

n

(n− 1)2

4
≤ 1 + ∆

2
− ∆

4n
+

∆

n

(n− 1)2

4
=

1

2
+

n∆

4
.

As this is the same bound that we obtained in the even case, we similarly achieve the same 2/3
bound.

4.4 Putting It All Together

It remains only to connect the pieces we have accumulated in the previous three sections.

Lemma 12. RR
′(xj, bj) ≥ 2

3Tj , for every strip j.

Proof. The result follows immediately from Lemmas 5, 6, and 11.

Our main result now follows from our construction.

Theorem 2. RoundRobin is a 3
2-approximation algorithm for OnceSC.

Proof. First, observe that

∑

j

RR(xj , bj) =
∑

j

∑

xi∈xj

bji
ri

=
∑

i

1

ri

∑

j:xi∈xj

bji ≤
∑

i

1

ri
bi = RR(x, b) .

By Lemmas 3 and 12 we have that

RR(x, b) ≥
∑

j

RR(xj , bj) ≥
∑

j

RR
′(xj , bj) ≥

∑

j

2

3
Tj =

2

3
T =

2

3
Opt(x, b) ,

and we are done.

4.5 Strip Cover

Theorem 2 readily extends to the Strip Cover problem.

Theorem 3. RoundRobin is a 3
2-approximation algorithm for Strip Cover.
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Figure 8: Best schedule vs. best duty cycle schedule. Here x = (14 ,
3
4 ,

3
4) and b = (2, 1, 1).

5 Duty Cycle Algorithms

In this paper we analyzed the RoundRobin algorithm in which each sensor works alone. One
may consider a more general version of this approach, where a schedule induces a partition of the
sensors into sets, or shifts, and each shift works by itself. In RoundRobin each shift consists of
one active sensor. We refer to such an algorithm as a duty cycle algorithm.

In this section we show that, in the worst case, no duty cycle algorithm outperforms
RoundRobin. More specifically, we show that the approximation ratio of any duty cycle algo-
rithm is at least 3

2 .

Lemma 13. The approximation ratio of any duty cycle algorithm is at least 3
2 for both OnceSC

and Strip Cover.

Proof. Consider an instance where x = (14 ,
3
4 ,

3
4) and b = (2, 1, 1). An optimal solution is obtained

by assigning ρ1 = ρ2 = ρ3 =
1
4 , τ1 = τ2 = 0 and τ3 = 4. That is, sensor 1 covers the interval [0, 0.5]

for 8 time units, sensors 2 covers [0.5, 1] until time 4, and sensors 3 covers [0.5, 1] from time 4 to 8.
This solution is optimal in that it achieves the maximum possible lifetime of 8 = 2

∑

i bi.
On the other hand, the best duty cycle algorithm is RoundRobin, which achieves a lifetime

of 16/3 time units. (The shifts {1, 2} and {3} would also result in a lifetime of 16/3 time units.)
Both schedules are shown in Figure 8.

6 Set Radius Strip Cover

In this section we present an optimal O(n2 log n)-time algorithm for the RadSC problem. Recall
that in RadSC we may only set the radii of the sensors since all the activation times must be set
to 0. More specifically, we assign non-zero radii to a subset of the sensors which we call active,
while the rest of the sensors get ρi = 0 and do not participate in the cover.

Given an instance (x, b), a radial assignment ρ is called proper if the following conditions hold:

1. Every sensor is either inactive, or exhausts its battery by time T , where T is the lifetime of
ρ. That is, ρi ∈ {0, bi/T},

2. No sensor’s coverage is superfluous. That is, for every active sensor i there is a point ui ∈ [0, 1]
such that ui ∈ [xi − ρi, xi + ρi] and ui 6∈ [xk − ρk, xk + ρk], for every active k 6= i.

12



Lemma 14. There is a proper optimal assignment for every RadSC instance.

Proof. Let I = (x, b) be a RadSC instance, and let ρ be an optimal assignment for I with lifetime
T . We first define the assignment ρ′ = b/T and show that it is feasible. Since ρ has lifetime T ,
any point u ∈ [0, 1] is covered by some sensor i throughout the time interval [0, T ]. It follows that
ρi ≤ bi/T = ρ′i. Hence, u ∈ [xi − ρ′i, xi + ρ′i], and thus ρ′ has lifetime T . Next, we construct
an assignment ρ′′. Initially, ρ′′ = ρ′. Then starting with i = 1, we set ρ′′i = 0 as long as ρ′′

remains feasible. Clearly, ρ′′i ∈ {0, bi/T}. Furthermore, for every sensor i there must be a point
ui ∈ [xi−ρ′′i , xi+ρ′′i ] such that ui 6∈ [xk−ρ′′k, xk+ρ′′k], for every active k 6= i, since otherwise i would
have been deactivated. Hence, ρ′′ is a proper assignment with lifetime T , and is thus optimal.

Given a proper optimal solution, we add two dummy sensors, denoted 0 and n + 1, with zero
radii and zero batteries at 0 and at 1, respectively. The dummy sensors are considered active. We
show that the optimal lifetime of a given instance is determined by at most two active sensors.

Lemma 15. Let T be the optimal lifetime of a given RadSC instance I = (x, b). There exist two
sensors i, k ∈ {0, . . . , n+ 1}, where i < k, such that T = bk+bi

xk−xi
.

Proof. Let ρ be the proper optimal assignment, whose existence is guaranteed by Lemma 14. We
claim that there exist two neighboring active sensors i and k, where i < k, such that ρi+ρk = xk−xi.
The lemma follows, since ρi = bi/T and ρk = bk/T .

Observe that if ρi+ρk < xk−xi, for two neighboring active sensors i and k, then there is a point
in the interval (xi, xk) that is covered by neither i and k, but is covered by another sensor. This
means that either i or k is redundant, in contradiction to ρ being proper. Hence, ρi+ ρk ≥ xk−xi,
for every two neighboring active sensors i and k.

Let α = min
{

ρk+ρi
xk−xi

: i, k are active
}

. If α = 1, then we are done. Otherwise, we define the

assignment ρ′ = ρ/α. ρ′ is feasible since ρ′i + ρ′k = 1
α (ρi + ρk) ≥ xk − xi, for every two neighboring

active sensors i and k. Furthermore, the lifetime of ρ′ is αT , in contradiction to the optimality of
ρ.

Lemma 15 implies that there are O(n2) possible lifetimes. This leads to an algorithm for solving
RadSC.

Theorem 4. There exists an O(n2 log n)-time algorithm for solving RadSC.

Proof. First if n = 1, then ρ1 ← r1
△

= max(x1, 1−x1) and we are done. Otherwise, let Tik ← bk+bi
xk−xi

,
for every i, k ∈ {0, . . . , n + 1} such that i < k. After sorting the set {Tik : i < k}, perform a
binary search to find the largest potentially feasible lifetime. The feasibility of candidate Tik can
be checked using the assignment ρikℓ ← bℓ/Tik, for every sensor ℓ.

There are O(n2) candidates, each takes O(1) to compute, and sorting takes O(n2 log n) time.
Checking the feasibility of a candidate takes O(n) time, and thus the binary search takes O(n log n).
Hence, the overall running time is O(n2 log n).

7 Discussion and Open Problems

We have shown that RoundRobin, which is perhaps the simplest possible algorithm, has a tight
approximation ratio of 3

2 for both OnceSC and Strip Cover. We have also shown that OnceSC
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is NP-hard, but it remains to be seen whether the same is true for Strip Cover. Future work
may include finding algorithms with better approximation ratios for either problem. However, we
have eliminated duty cycle algorithms as candidates. Observe that both OnceSC and TimeSC

are NP-hard, while RadSC can be solved in polynomial time. This suggests that hardness comes
from setting the activation times.

We have assumed that the battery charges dissipate in direct inverse proportion to the assigned
sensing radius (e.g. τ = b/ρ). It is natural to suppose that an exponent could factor into this
relationship, so that, say, the radius drains in quadratic inverse proportion to the sensing radius
(e.g. τ = b/ρ2). One could expand the scope of the problem to higher dimensions. Before moving
both the sensor locations and the region being covered to the plane, one might consider moving
one but not the other. This yields two different problems: 1) covering the line with sensors located
in the plane; and 2) covering a region of the plane with sensors located on a line.
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