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Abstract

We present algorithms for implementing local spectrum redistribution in wireless networks
using a mechanism design approach. For example, in single-hop request scheduling, secondary
users are modeled as rational agents that have private utility when getting assigned a channel
for successful transmission. We present a rather simple algorithmic technique that allows to
turn existing and future approximation algorithms and heuristics into truthful mechanisms for
a large variety of networking problems. In contrast to previous work, our approach works
for virtually all known interference models in the literature, including the physical model of
interference based on SINR. It allows to address single-hop and multi-hop scheduling, routing,
and even more general assignment and allocation problems. Our mechanisms are randomized
and represent the first universally-truthful mechanisms for these problems with rigorous worst-
case guarantees on the solution quality. In this way, our mechanisms can be used to obtain
guaranteed solution quality even with risk-averse or risk-seeking bidders, for which existing
approaches fail.
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1 Introduction

A major challenge in the development of future wireless networking technology lies in spectrum
scarcity, i.e., the limited availability of frequency bands for existing and new devices or services. To
a large extent this problem results from the static allocation and licensing rules currently in use,
where licenses for frequency bands are given to large service providers for entire countries. There
is a major research effort underway in computer science and engineering to overcome this static
allocation approach. The main idea is to motivate the licensed primary users to open up their
bands in local areas and enable secondary users to use these local spectrum opportunities.

An attractive approach to implement secondary usage are auctions. There is a rich theory in
economics showing that auctions allow to implement global objectives in a market with rational
participants and private information. Auction mechanisms allow to implement secondary spectrum
usage as a market, in which primary users can sell access to their unused licensed spectrum bands to
secondary users [3]. In this scenario, secondary users are assumed to be selfish and rational. They
can manipulate the outcome of a mechanism by misreporting their valuation and try to obtain a
desired channel using smaller payments. Therefore, we desire a truthful mechanism that computes
allocation and payments in a way that no user has an incentive to lie. It ensures that every user
maximizes his utility by reporting the true valuation. For decades, the most prominent technique
to design truthful mechanisms was VCG [5, 11, 23], which applies only if the chosen allocation
optimizes social welfare exactly. Unfortunately, for non-trivial spectrum auctions social welfare
maximization is NP-hard. The challenge is thus to find mechanisms that (1) are truthful, (2) run
in polynomial time, and (3) provide allocations with near-optimal social welfare.

Our Contribution We introduce a unified framework to design simple polynomial-time mecha-
nisms for a large variety of problems within secondary spectrum usage and prove non-trivial worst-
case guarantees on their social welfare. We heavily extend the current literature on secondary
spectrum auctions in several ways.

First, many existing secondary spectrum auctions model interference as a binary property using,
e.g., unit-disk graphs, interference boundaries, or are otherwise based on local binary conflicts [9,
25–27]. These approaches lack many important features of realistic signal propagation. Instead, we
here use realistic interference models based on the signal-to-interference-plus-noise ratio (SINR),
for which allocation problems are often significantly more complicated to analyze.

Second, while there exist approaches to secondary spectrum auctions with SINR [15, 16], they
are mostly unsuitable for practical use. Being polynomial-time algorithms in principle, their main
drawback is the time-intensive use of randomized meta-rounding [4, 19] and the ellipsoid method
for convex optimization. The meta-rounding technique relies on the ellipsoid method and iterative
application of separation oracles. This approach is used by virtually all known secondary spectrum
auctions with non-trivial performance guarantees, even the ones for binary interference models [9,
27]. In contrast, our mechanisms are fast, surprisingly simple to grasp and implement, without
complicated convex optimization techniques. Nevertheless, we prove non-trivial worst-case bounds
on their allocation quality.

Third, the meta-rounding approach used in related work yields randomized mechanisms that
are truthful in expectation, i.e., if users care only about the expectation of utility, they have no
incentive to lie. Truthfulness in expectation is a strong assumption, because users must be risk-
neutral. Such mechanisms lose their truthfulness if users are, e.g., risk-averse or risk-seeking or
take further parameters of the utility distribution into account. In contrast, our mechanisms are
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universally truthful, randomization has no effect on incentives. Our mechanisms can be thought of
as probability distributions over deterministic truthful mechanisms. We use randomization only to
guarantee good social welfare.

Fourth, while we present our approach for secondary markets with single-hop transmissions in
the SINR model, it turns out to be much more flexible. In fact, it is applicable to a large variety
of mechanism design problems in (wireless) networks. The main criterion is that feasibility in the
underlying allocation problem is downward closed. This holds, e.g., for all allocation problems that
can be modeled via packing linear or integer programs. We highlight this extension of our approach
for multi-hop routing problems with binary [27] or even SINR interference.

The general idea of our approach is as follows. Similar to [6], we first determine a “representa-
tive” valuation of the users by independently at random moving each user into a statistics group
with small probability. The users in this group are asked their valuation and discarded without
channel and payments. Based on their reports, a representative valuation is determined, from which
we obtain a random take-it-or-leave-it price p. Each surviving user is asked if he would want to
buy a channel at price p. If not, the user leaves the auction, otherwise he survives. For the set of
surviving users, we then determine an allocation using an arbitrary polynomial-time approxima-
tion algorithm for the channel allocation problem. Finally, each user that ends up with a channel
pays the price p, all others pay nothing. While truthfulness of this scheme can be shown rather
directly, the challenge is proving that this general framework allows to obtain non-trivial worst-case
guarantees on social welfare and revenue.

Related Work In recent years, there have been numerous studies of different flavors of the prob-
lem of maximizing the number of successful transmissions in a wireless network with interference.
Early works model this problem essentially as a maximum independent set problem in graphs [7,22].
However, as physical conditions are only poorly captured this way, starting with a paper by Mosci-
broda and Wattenhofer [20] attention has shifted to models based on SINR. Many approximation
algorithms use fixed power assignments, e.g., uniform ones [2, 14], or, more generally, monotone
ones [12, 13]. Better results in terms of the approximation factor can, however, be achieved by
making also the power assignment itself subject to optimization [17, 18]. To illustrate our tech-
niques, we use the latter algorithm, which is the best algorithm to solve the combined selection
and power-control problem so far. However, we also show that our approach is much more general,
allowing it to be used with any of the algorithms mentioned above as well as any future algorithm.

Designing auction mechanisms for secondary spectrum markets has attracted increased research
interest in recent years. Usually, socially optimal channel assignment poses NP-hard graph coloring
and maximum independent set problems. In these cases, the classic approach of VCG for designing
truthful mechanisms [5,11,23] cannot be applied efficiently. Most approaches to spectrum auctions
are single-parameter problems, where each user has a single numerical value for getting any one
of a set of channels. They are often based on the classic monotonicity characterization of truthful
mechanisms [21]. Zhou et al [25] studied monotone deterministic algorithms for a secondary spec-
trum auction in a graph-based interference model. This was extended by Zhou and Zheng [26] to
a double auction framework. More recently, Gopinathan et al [9] studied truthful-in-expectation
mechanisms via randomized meta-rounding that allow to bound the worst-case approximation fac-
tor and allow to incorporate additional objectives like fairness. In a related work, Gopinathan et
al [8] also studied revenue optimization using concepts introduced for revenue-optimizing auctions
of digital goods. Very recently, Zhu et al [27] proposed deterministic monotone mechanisms for a
single-parameter multi-hop routing model. They also provided truthful-in-expectation mechanisms
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based on randomized meta-rounding with provable worst-case performance.
All the above mentioned works address single-parameter domains. The general case, in which

each user can have a different valuation for each subset of acquired channels, was studied in our
work [16] for single-hop scheduling in a general framework encompassing graph-based and SINR
interference models. Very recently, we provided improved results in the same framework for the
popular subclasses of symmetric and submodular user valuations [15]. In both papers, we proposed
truthful-in-expectation mechanisms based on randomized meta-rounding with provable worst-case
guarantees. Our guarantees depend on the inductive independence number [1], a non-standard
graph parameter that can capture feasibility in virtually all known interference models.

Outline The remainder of this paper is structured as follows. We define the initial scenario and
mechanism design basics in Section 2. In Section 3 we describe our mechanism for single-hop request
scheduling in the SINR model. In Section 4, we then show how to generalize our technique to many
other problems, including single- and multi-hop scheduling in the SINR and other interference
models. Finally, we conclude in Section 6.

2 Preliminaries

Network Model We will first explain our approach in the context of single-hop wireless trans-
mission scheduling and then generalize our technique later on. We assume there is a primary user
that holds a set C of k channels in a local area. There is a set N of n secondary users that strive
to obtain a channel. Each user corresponds to a communication request or link between points in
a metric space. Link i consists of sender si and receiver ri.

For each channel, the primary user assigns licenses to allow a subset L ⊆ N of users to use the
channel. If link i gets a license, sender si transmits on the channel a signal with power σi. We will
consider different power assignments below. The signal strength decays exponentially over distance
with exponent α > 1. Given the subset L ⊆ N of links and a power assignment σ : L → R>0, the
transmission on link i ∈ L is successful if the signal-to-interference-plus-noise ratio (SINR) γi(L, p)
is above some predefined threshold β > 0:

γi(L, σ) =
σi/dαii

N +
∑

j∈L,j 6=i

σj/dαji
≥ β , (1)

where dji is the distance between sender sj and receiver ri and N is ambient noise. This condition
captures the intuition that at ri the decayed signal of si is significantly louder than interference
from decayed signals of other senders and noise.

Each user i has a benefit wi for being able to transmit successfully on a channel. In particular,
its benefit is wi > 0 if and only if he gets a license for at least one channel on which condition (1)
is fulfilled. Otherwise, its benefit is 0. The goal of the primary user is to compute an allocation
A = (L1, . . . ,Lk) of secondary users in N to channels to maximize social welfare, i.e., the sum of
benefits of successful users.

Mechanism Design Benefits are private information of secondary users. Before the allocation
each secondary user i must report its benefit wi for a successful transmission; we say user i makes
bid bi. Users are rational and selfish, they would like to obtain a channel at the lowest possible
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cost. Depending on the channel allocation algorithm, user i might benefit from misreporting its
value and have an incentive to lie bi 6= wi.

This fundamental problem has been studied for several decades in the area of mechanism design.
To avoid manipulation and set incentives for truthful bids, we design a truthful mechanism. It
collects the vector of bids b = (bi)i∈N , allocates users to channels, and charges payments pi(b) to
user i ∈ N . User i ∈ N has a quasi-linear utility

ui(b) =

{

wi − pi(b) (1) holds on at least one channel assigned to i

0 otherwise .

A deterministic mechanism is truthful if no user profits from lying. More formally, we require that

ui(bi, b−i) ≤ ui(wi, b−i) for all bi ≥ 0 and b−i , (2)

where we use b−i to denote the vector b of bids excluding bid bi. The classic technique to com-
pose deterministic truthful mechanisms is VCG [5, 11, 23], but it applies only when the allocation
maximizes social welfare exactly. Maximizing social welfare in the channel allocation problem is
NP-hard even for special cases [2]. We have to find other ways to obtain truthful mechanisms with
good social welfare guarantees that run in polynomial time.

Towards this end, we study randomized mechanisms, which are truthful in expectation if (2)
holds for the expected utility of every user. Truthfulness in expectation has the drawback that the
outcome of random coins must be invisible to the users, and except for the expectation every user
must be indifferent to all other parameters of its utility distribution.

A much stronger condition is fulfilled if a randomized mechanism is universally truthful. We can
interpret a universally truthful mechanism as having a number of deterministic truthful mechanisms
and initially making one randomized decision which one of the deterministic mechanisms to apply.
Here truthfulness is independent of randomization, so the mechanism could make the random
decision in public before collecting bids. The reason we use randomization is to obtain a better
approximation of social welfare.

3 Universally Truthful Auctions for Single-Hop SINR Scheduling

The general structure of our mechanism is presented in Algorithm 1. It is inspired by a universally
truthful mechanism for combinatorial auctions by Dobzinski et al. [6]. At the beginning, the
mechanism decides at random whether the actual allocation algorithm is executed at all. The
purpose of this step is to address the case when there is a super-dominant bidder whose bid is
much higher than the sum of valuations of all other bidders. To treat this case, the mechanism
runs a second-price auction in which only a single bidder is served with a small, constant probability
ε. In this case, only the bidder having the highest bid is allocated a channel and is charged the
second highest bid.

With probability 1 − ε, the actual allocation algorithm is performed. We consider prior-free
mechanisms without any knowledge on the bidders’ valuations. Therefore, we sample a number of
bidders that are asked for their valuation and discarded afterwards. If the auction mechanism is
applied repeatedly in practice, knowledge about typical bidder valuations might become available
due to experience, which allows to skip this sampling step. Having obtained knowledge on “typical”
valuations, we determine a price in a random experiment. The price p is obtained by choosing X
uniformly at random from {0, 1, . . . , ⌈log n⌉+1} and setting p := 2−X ·B, where B is the largest bid
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Algorithm 1: Universally-truthful framework

1 set SEC -PRICE to 1 with probability ε, otherwise to 0;
2 if SEC -PRICE = 1 then
3 Let i∗ be a bidder such that bi∗ = maxi∈N bi;
4 Pick an arbitrary channel in C and allocate it to i∗;
5 Charge pi∗(b) := maxi∈N\{i∗} bi;

6 All other bidders i are not allocated and charged pi(b) := 0;

7 else
8 forall the i ∈ N do
9 add i to STAT with probability ε, otherwise to FIXED

10 Set B := maxi∈STAT bi;
11 choose X uniformly at random from {0, 1, . . . , ⌈log n⌉+ 1};
12 Set p := 2−X ·B;
13 Set M := {i ∈ FIXED | bi ≥ p};
14 Run UnweightedPacking(M, C) which returns allocation (L1, . . . ,Lk);

15 If i ∈
⋃k
j=1Lj, charge pi(b) := p, otherwise pi(b) := 0;

that was observed in the sampling phase. Afterwards, we only consider bidders that are willing to
pay at least p. For these bidders, we compute an allocation, in which each bidder is either selected
and assigned to a channel in C or it is discarded (see below). In the end, each bidder that is selected
and assigned to a channel is charged p. The discarded bidders are not charged.

The selection of bidders and allocation to channels is delegated to a procedure called Unweighted-

Packing(M, C). Given a set M ⊆ N of bidders, it computes a partial allocation of bidders in M to
channels in C that is feasible with respect to the SINR constraints. Note that the routine does not
get to know the valuations of bidders, instead it aims at maximizing only the number of selected
bidders. Their actual valuations are neglected at this stage. We here assume that the application
scenario allows power control, which allows us to employ Algorithm 2 originally presented in [17]. It
is known that this algorithm always computes feasible allocations. In particular, the desired power
assignment fulfilling the SINR constraints of all selected links in Line 5 exists. Furthermore, it is a
constant-factor approximation algorithm for the optimization problem of maximizing the number
of feasible requests on k channels (for a detailed treatment see [17]). In our case, this implies that
for a given setM , we have the following property: Let S =

⋃k
j=1Lj be the set of bidders selected on

any channel after executing UnweightedPacking(M, C). Let furthermore F ⊆M be any arbitrary
set of bidders such that there is a feasible allocation of all bidders in F to the channels in C. Then
we have |S| ≥ κ · |F | for some constant κ ≤ 1.

If the application scenario does not allow power control, we can alternatively implement Unweigh-
tedPacking(M, C) by adapting algorithms for fixed power assignments. We discuss this issue as
part of the general treatment in the next section.

We will first show that Algorithm 1 is a universally truthful mechanism. Given any fixed
outcome of the random experiments, no bidder can profit from misreporting the valuation.

Theorem 1. Algorithm 1 is universally truthful.

Proof. We have to show that the mechanism is a distribution over (deterministic) truthful mecha-
nisms. Let us now fix the outcome of SEC -PRICE . In case of SEC -PRICE = 0, fix furthermore
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all random choices leading to the division into STAT and FIXED, and also the random choice of
X leading to p.

Now, consider a single bidder i ∈ N . We have to show that she cannot gain by misreporting
the valuation. For this purpose, we distinguish between the outcomes of the randomization.

Case 1: SEC -PRICE = 1 In this case, we perform the classic deterministic second-price
Vickrey auction for a single item [23] that is known to be monotone [21] and truthful.

Case 2: SEC -PRICE = 0 and i ∈ STAT Bidder i will not be allocated anything, inde-
pendent of the bid. Thus, she has no incentive to misreport.

Case 3: SEC -PRICE = 0 and i ∈ FIXED The bid bi only determines whether or not
i is contained in set M . The price p cannot be influenced by i, because it is determined only by
the bidders in STAT. Now, let us assume that i reports a false bid b′i, which results in a different
allocation S′.

The two cases that either bi, b
′
i ≥ p or bi, b

′
i ≤ p are irrelevant as in both cases M , the allocation

and the payment are the same for bi and b
′
i. Hence, it remains to consider the cases bi < p ≤ b′i and

b′i < p ≤ bi. In the first case, i can be contained in S′ but not in S. If i 6∈ S′, she has zero utility
0 for both bids. If i ∈ S′, then bidder i has to pay p, which is more than her valuation. Hence,
her quasi-linear utility is negative as opposed to zero utility for bid bi. In the case b′i < p ≤ bi, we
have in turn that i ∈ S but i 6∈ S′. In case of bidding bi, the utility is bi − p ≥ 0, whereas in case
of bidding b′i it is 0. In any case, the utility is maximized by bidding bi.

This shows that our algorithm is a truthful mechanism independent of random choices. We now
proceed to the proof that the allocation returned by the mechanism provides a non-trivial worst-
case approximation guarantee. Our proof proceeds in two cases. If the bid of the highest bidder is
very large compared to the optimal social welfare, then we resort to the single-item Vickrey auction
executed with some probability that gives him a channel. In this way, our algorithm secures the
high bid with significant probability. Otherwise, we bound the social welfare of our allocation using
the total revenue generated through the prices p paid by the allocated bidders. As no bidder gets
negative utility, the revenue is a lower bound for the welfare of the allocation obtained by the
algorithm.

Theorem 2. Let A be the allocation returned by the mechanism and A∗ be the allocation optimizing
social welfare. Then we have

E [b(A)] = Ω

(

ε

log n

)

· b(A∗) .

Proof. We denote the highest bid by B∗ = maxi∈N bi. Note that the channels are important for
feasibility of the solution but not for the social welfare. In particular, a bidder is indifferent about

Algorithm 2: UnweightedPackingPC(M, C) [17]

1 initialize L′
1, . . . ,L

′
k = ∅ ;

2 for ℓ′ ∈ R in order of increasing length do

3 if there is some j ∈ C such that
∑

(s,r)∈Lj

d(s,r)<d(s′,r′)

d(s,r)α

d(s,r′)α + d(s,r)α

d(s′,r)α ≤ 1
2·3α·(4β+2) then

4 add ℓ′ to Lj;

5 compute power assignment σ such that all SINR constraints are fulfilled;
6 return (L1, . . . ,Lk);
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the channel he obtains. Hence, we will focus on S to denote simply the set of bidders allocated to
at least one channel by the algorithm. Similarly, we use S∗ to denote the set of bidders receiving
at least one channel in the optimum.

Case 1: b(A∗) < 8 · B∗ To bound the social welfare in this case, we only consider the
event that SEC -PRICE = 1. This happens with probability ε. We know that, provided that
SEC -PRICE = 1, the social welfare of the computed solution is precisely B∗. That is, the ex-
pected social welfare is at least

E [b(A)] ≥ ε ·B∗ ≥
ε

8
· b(A∗) .

This completes the proof for the first case.
Case 2: b(A∗) ≥ 8 · B∗ Let i∗ be a bidder with the highest bid bi∗ = B∗. To bound the

expected revenue, we only consider cases, in which SEC -PRICE = 0 and i∗ ∈ STAT.
Under the assumption that i∗ ∈ STAT, we denote by Sj the set of bidders getting at least one

channel when X = j. In particular, Sj is the set of bidders allocated by the packing algorithm
when executed on the set Mj = {i ∈ FIXED | bi ≥ 2−j · B∗}. Using p = 2−j · B∗, the expected
revenue of the mechanism can be bounded by

1

⌈log n⌉+ 2
·E





⌈log n⌉+1
∑

j=0

2−j · B∗ · |Sj |

∣

∣

∣

∣

∣

∣

i∗ ∈ STAT



 .

By linearity of expectation, this is equal to

1

⌈log n⌉+ 2

⌈logn⌉+1
∑

j=0

2−j · B∗ · E [|Sj| | i
∗ ∈ STAT] . (3)

Furthermore, let us define S∗
j = {i ∈ S∗ | bi ≥ 2−j ·B∗} as the set of bidders receiving a channel

in the optimum and having a bid at least 2−j ·B∗. Obviously, S∗
j ∩ FIXED is a subset of Mj , and

it can be turned into a feasible allocation because it allocates only a subset of bidders from the
optimum. Hence, using our assumption on the quality of algorithm UnweightedPacking, we have
|Sj | ≥ κ · |S∗

j ∩ FIXED| for a suitable constant κ. Furthermore, we can bound the expected size of
S∗
j ∩ FIXED by

E
[

|S∗
j ∩ FIXED|

∣

∣ i∗ ∈ STAT
]

= E
[

|S∗
j ∩ FIXED \{i∗}|

]

= (1− ε)|S∗
j \ {i

∗}| ≥ (1− ε)(|S∗
j | − 1) .

The value of this is at least

1

⌈log n⌉+ 2

⌈log n⌉+1
∑

j=0

2−jB∗κ · (1− ε)(|S∗
j | − 1) ≥

(1− ε)κ

⌈log n⌉+ 2









⌈logn⌉+1
∑

j=0

2−jB∗ · |S∗
j |



− 2B∗



 .

To derive the approximation factor now, we have to bound b(A∗) in terms of the cardinalities
of the S∗

j sets. As a first step, we consider links that are not contained in any of these sets. For
this purpose, let us define Y = N \ S⌈logn⌉+1. The contribution of these links to the social welfare
is at most

∑

i∈Y

bi ≤ n · 2−⌈log n⌉−1 · B∗ ≤
b(A∗)

2
,
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because b(A∗) ≥ B∗. This yields for the remaining links

⌈log n⌉+1
∑

j=0

2−j · B∗ · |Sj | ≥
b(A∗)

4
.

Combining this bound with the previously obtained bound on revenue, we get that the expected
revenue is at least

(1− ε)κ

⌈log n⌉+ 2

(

b(A∗)

4
− 2B∗

)

≥
(1− ε)κ

⌈log n⌉+ 2
·
b(A∗)

8
.

For small ε, this shows that the revenue is in Ω
(

ε·κ
logn

)

· b(A∗). As no bidder has negative utility,

this shows the same bound for the social welfare. With κ being constant, we obtain the claim of
the theorem in Case 2 with SEC -PRICE = 0 and i∗ ∈ STAT.

Finally, SEC -PRICE = 0 and i∗ ∈ STAT happens with probability (1−ε) ·ε. In all other cases,
we underestimate the welfare of the solution computed by the mechanism by 0. For the expected
social welfare obtained by our algorithm this yields

E [b(A)] ≥
(1− ε)2 · ε · κ

(⌈log n⌉+ 2) · 8
· b(A∗) .

This proves the claim for Case 2 and yields the theorem.

4 General Technique for Universally Truthful Network Auctions

In this section, we demonstrate that our approach from the previous section allows to build univer-
sally truthful mechanisms for virtually all secondary spectrum auctions. To illustrate our results,
we will focus on secondary network auctions studied Zhu et al. [27]. In this model, secondary net-
works are selfish users participating in an auction. Each user has a network Gi with a dedicated
source node si and destination node di that are publicly known. User i wants to connect si to di
without interference, and any interference-free si-di-path has value wi for her. The valuation wi is
private information. The allocation problem of the mechanism is to select a subset S ⊆ N of the
users. For each selected user i ∈ S, it has to allocate a path of links connecting si to di in Gi. For
each used link in any of the Gi graphs, it furthermore has to select a channel from C. The selection
of paths and channels has to be free of interference. The interference constraint is modeled using
an additional conflict graph H as follows. The vertex set of H consists of all links of the Gi-graphs.
The edges of H indicate which links in the Gi-graphs collide due to interference. An allocation of
channels to links and paths to bidders is only feasible if none of the used links that are on the same
channel are connected by an edge in H.

The overall approach of the mechanism is as before. The users here are again single-parameter
agents – their private information is the single numerical value wi representing the value for an
interference-free si-di-path in Gi. Zhu et al [27] present a deterministic heuristic for the allocation
problem that satisfies Myerson’s monotonicity condition [21] and can therefore be turned into
a truthful mechanism. Furthermore, they discuss a truthful-in-expectation mechanism based on
randomized meta-rounding with a provable approximation guarantee. The guarantee depends on
parameters like the maximum length of an allocated path and structural properties of the conflict
graph H.
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Algorithm 3: Universally-truthful framework

1 For each bidder i: If there is no allocation that yields i as winner, remove i from N ;
2 Set SEC -PRICE to 1 with probability ε, otherwise to 0;
3 if SEC -PRICE = 1 then
4 Let i∗ be a bidder such that bi∗ = maxi∈N bi;
5 Compute the allocation in which only i∗ is a winner;
6 Charge pi∗(b) := maxi∈N\{i∗} bi;

7 All other bidders i are charged pi(b) := 0;

8 else
9 forall the i ∈ N do

10 add i to STAT with probability ε, otherwise to FIXED

11 Set B := maxi∈STAT bi;
12 Choose X uniformly at random from {0, 1, . . . , ⌈log n⌉+ 1};
13 Set p := 2−X ·B;
14 Set M := {i ∈ FIXED | bi ≥ p};
15 Run UnweightedPacking(M) which returns allocation A;
16 If i contained in A, charge pi(b) := p, otherwise pi(b) := 0;

There are further fundamental similarities with our single-hop scheduling approach. This sce-
nario also exhibits a packing structure. Each bidder i either obtains some interference-free path,
for which her valuation is wi, or she is not served at all. In this sense, an allocation determines a
set W of winners that become successful in the solution, we will say they are assigned a “license”
for successful transmission. The social welfare of the allocation is given by

∑

i∈W wi. By packing
structure we refer to the property that for any feasible allocation, we can remove any winner i′ ∈W
without changing the feasibility of the allocation for any other bidder. In both, secondary network
and single-hop scheduling scenarios, this is due to the fact that by removing bidders, interference
for the other bidders can only decrease. In the secondary network setting, removing bidders and
their paths will never introduce new conflicts. They same is true for request scheduling, because
the SINR can only increase by removing bidders and SINR constraints cannot be violated this way.

To formalize this property, we introduce a family W ⊆ 2N consisting of sets of bidders. Each
W ∈ W represents a subset of bidders that are assigned a license in a particular feasible solution.
That is, if we consider a fixed allocation, each i ∈ W obtains a license, whereas no i 6∈ W gets a
license. If a scenario has a packing structure, the family W is downward closed : For any W ∈ W
all subsets are contained in W as well, i.e., if W ∈ W and W ′ ⊆W , then also W ′ ∈ W.

For the single-hop scenario considered in Section 3, W contains all sets W ⊆ N of links that
can be allocated to the channels in C such that there is a power assignment fulfilling all SINR
constraints. In case of the secondary network setting, it contains all sets W ⊆ N for which there
is an allocation to channels guaranteeing an interference-free selection of paths.

Based on this property, we can generalize the framework introduced in the previous section
as shown in Algorithm 3. We first adjust the set of bidders N to remove all bidders that can
never be part of a feasible allocation. Because W is downward closed, it suffices to check for each
single i ∈ N if there is a feasible allocation with W = {i}. This step is unnecessary for single-hop
scheduling with power contorl in the previous section, as sufficiently large powers guarantee that
every single bidder could become successful if she is the only one assigned to transmit.
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In the main routine, our mechanism relies on an algorithm UnweightedPacking(M). Given at
set M of candidate bidders, it calculates a feasible allocation A, in which only the bidders in W
are served. Here algorithm UnweightedPacking again neglects the bids.

Theorem 3. Algorithm 3 is universally truthful.

Proving truthfulness can be done by literally the same arguments as used in the proof of
Theorem 1. Also, we can again show an approximation guarantee based on the applied algorithm
UnweightedPacking(M). In the following, we assume that this algorithm is a ψ-approximation,
meaning that for the winning set W , we have |W | ≥ ψ ·maxW ′∈W∩2M |W ′|. Given this guarantee,
we can show the following approximation factor for the complete mechanism.

Theorem 4. Let A be the allocation returned by the mechanism and A∗ be the allocation optimizing
social welfare. Then we have

E [b(A)] = Ω

(

εψ

log n

)

· b(A∗) .

The proof of this theorem is almost identical to the proof of Theorem 2 (with winner sets W
taking the role of sets S of scheduled users) and is presented for completeness in the appendix.

5 Applications and Results

In the following, we discuss some applications of our approach, for which we obtain universally
truthful mechanisms with non-trivial worst-case guarantees using our general technique.

Power Control As seen above, we can design universally truthful mechanisms for single-hop
request scheduling in the SINR model with power control that yield approximation factors of
O(log n). If we cannot use power control and must resort to fixed power schemes, there might
exist request that do not overcome noise with their fixed power assignment. Here we can use
the general framework and implement the allocation algorithm UnweightedPacking(M) by, e.g.,
adapting the algorithms of Goussevskaia et al. [10], Halldórsson and Mitra [13], or Halldórsson et
al. [12]. While these algorithms have been designed to maximize the number of feasible requests
on a single channel, it is rather easy to observe that they maintain their approximation guarantees
even if we can assign requests to more than one channel (for completeness, see Theorem 5 in the
Appendix). This way, we obtain universally truthful mechanisms for single-hop scheduling with,
e.g., approximation factors of O(log n) for uniform, linear, and square-root power assignments.

Interference Models Instead of SINR interference, we can also use any graph-based interference
models, such as the protocol model or the disk-graph model. For the two latter models, there exist
constant-factor approximation algorithms to maximize the number of feasible requests on a single
channel. For the disc-graph model a 5-approximation algorithm is folklore. For the protocol
model, one can construct conflict graphs with constant inductive independence number [16, 24],
using which a simple greedy algorithm constructs a constant-factor approximation for capacity
maximization [1]. As we prove in Theorem 5 in the Appendix, we can generically extend these
algorithms to constant-factor approximation algorithms for capacity maximization with multiple
channels. Using these algorithms for UnweightedPacking(M, C), we obtain universally truthful
mechanisms for single-hop scheduling in disc graph or protocol models with approximation factors
of O(log n).

10



Secondary Networks In the secondary network model above, we can use algorithms described
by Zhu et al [27] as a subroutine for UnweightedPacking(M) in our general framework. In this
way, we obtain a universally truthful mechanism with approximation factor O(g(Lmax,∆) · log n).
For a description of the factor g(Lmax,∆), see [27].

General Packing Problems More generally, every allocation problem in (wireless) networks
that has a packing structure and allows a non-trivial approximation algorithm can be turned into
a universally truthful mechanism using our approach, while spending only an additional O(log n)
factor in the guarantee. This includes, e.g., a large variety of routing, scheduling, congestion, and
assignment problems in networks.

6 Conclusion

In this paper, we have presented a technique to design universally truthful secondary spectrum
auctions that extends the literature on existing spectrum auctions in several ways. Furthermore,
it allows to turn arbitrary approximation algorithms into truthful mechanisms in a large variety
of previously studied models. To apply our technique to further settings, one only needs to adapt
the respective allocation algorithm UnweightedPacking(M), which does not have to fulfill any
further requirements. In any case, we guarantee that bidders cannot benefit from misreporting
their valuation, even if they are risk-averse or risk-seeking.

An interesting topic for future work is to generalize the approach to multi-parameter mechanism
design. In terms of secondary spectrum auctions, this means, for example, that each user’s valuation
depends on the amount of interference that it is exposed to, rather than only considering whether
interference is too high or not.
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A Appendix

A.1 Missing Proofs

Proof. (of Theorem 4) We denote the highest bid by B∗ = maxi∈N bi. Let W denote the set of
winning bidders in the computed allocation. Similarly, let W ∗ to denote the set of winning bidders
in allocation that maximizes social welfare.

Case 1: b(A∗) < 8 · B∗ To bound the social welfare in this case, we only consider the
event that SEC -PRICE = 1. This happens with probability ε. We know that, provided that
SEC -PRICE = 1, the social welfare of the computed solution is precisely B∗. That is, the ex-
pected social welfare is at least

E [b(A)] ≥ ε ·B∗ ≥
ε

8
· b(A∗) .

This completes the proof for the first case.
Case 2: b(A∗) ≥ 8 · B∗ Let i∗ be a bidder with the highest bid bi∗ = B∗. To bound the

expected revenue, we only consider cases, in which SEC -PRICE = 0 and i∗ ∈ STAT.
Under the assumption that i∗ ∈ STAT, we denote by Wj the set of winning bidders when

X = j. That is, Wj is the set of bidders allocated by the packing algorithm when executed on the
set Mj = {i ∈ FIXED | bi ≥ 2−j ·B∗}. Using p = 2−j ·B∗, the expected revenue of the mechanism
can be bounded by

1

⌈log n⌉+ 2
· E





⌈log n⌉+1
∑

j=0

2−j · B∗ · |Wj |

∣

∣

∣

∣

∣

∣

i∗ ∈ STAT



 .

By linearity of expectation, this is equal to

1

⌈log n⌉+ 2

⌈logn⌉+1
∑

j=0

2−j · B∗ ·E [|Wj| | i
∗ ∈ STAT] . (4)

Furthermore, let us define W ∗
j = {i ∈ W ∗ | bi ≥ 2−j · B∗} as the set of winning bidders in

the optimum and having a bid at least 2−j · B∗. Obviously, W ∗
j ∩ FIXED is a subset of Mj . As

W is downward closed, it is also contained in W. Hence, using our assumption on the quality of
algorithm UnweightedPacking, we have |Wj | ≥ ψ · |W ∗

j ∩FIXED|. Furthermore, we can bound the
expected size of W ∗

j ∩ FIXED by

E
[

|W ∗
j ∩ FIXED|

∣

∣ i∗ ∈ STAT
]

= E
[

|W ∗
j ∩ FIXED \{i∗}|

]

= (1− ε)|W ∗
j \ {i∗}|

≥ (1− ε)(|W ∗
j | − 1) .

The value of this is at least

1

⌈log n⌉+ 2

⌈logn⌉+1
∑

j=0

2−j ·B∗ · ψ · (1− ε)(|W ∗
j | − 1)

≥
(1− ε)ψ

⌈log n⌉+ 2









⌈logn⌉+1
∑

j=0

2−j ·B∗ · |W ∗
j |



− 2B∗



 .
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To derive the approximation factor now, we have to bound b(A∗) in terms of the cardinalities
of the W ∗

j sets. As a first step, we consider bidders that are not contained in any of these sets.
For this purpose, let us define Y = N \ S⌈logn⌉+1. The contribution of these bidders to the social
welfare is at most

∑

i∈Y

bi ≤ n · 2−⌈log n⌉−1 · B∗ ≤
b(A∗)

2
,

because b(A∗) ≥ B∗. This yields for the remaining links

⌈log n⌉+1
∑

j=0

2−j · B∗ · |Wj | ≥
b(A∗)

4
.

Combining this bound with the previously obtained bound on revenue, we get that the expected
revenue is at least

(1− ε)ψ

⌈log n⌉+ 2

(

b(A∗)

4
− 2B∗

)

≥
(1− ε)ψ

⌈log n⌉+ 2
·
b(A∗)

8
.

For small ε, this shows that the revenue is in Ω
(

ε·ψ
logn

)

· b(A∗). As no bidder has negative utility,

this shows the same bound for the social welfare.
Finally, SEC -PRICE = 0 and i∗ ∈ STAT happens with probability (1−ε) ·ε. In all other cases,

we underestimate the welfare of the solution computed by the mechanism by 0. For the expected
social welfare obtained by our algorithm this yields

E [b(A)] ≥
(1− ε)2 · ε · ψ

(⌈log n⌉+ 2) · 8
· b(A∗) .

This proves the claim for case 2 and yields the theorem.

A.2 Extending Capacity Maximization Algorithms to Multiple Channels

In order to apply algorithms that are meant to solve the single-channel allocation problem in the
context of multiple channels, we can use the following reduction: We iteratively fill each of the sets
L1, . . . ,Lk by applying the single-channel algorithm on all remaining users. We can show that we
only lose a constant-factor in terms of the approximation guarantee.

Theorem 5. Given an algorithm with approximation factor of ψ for the unweighted single-channel
allocation problem, we obtain a ((1− 1/e)ψ)-approximation algorithm for the unweighted k-channel
problem.

Proof. Let L1, . . . ,Lk be the set of users selected for the respective channels by the algorithm. Let
OPT be the total number of selected users in the optimal solution.

Let us consider the jth run of the algorithm, which selects the users for set Lj. We know that

at this stage at most
∑j−1

i=1 |Li| have been selected in previous rounds. This means that at least

OPT−
∑j−1

i=1 |Li| users that are selected in the optimal solution are still unselected. In the optimal

allocation these are allocated to at most k different channels, meaning that at least
OPT−

∑j−1

i=1
|Li|

k

can share a channel. By using the approximation guarantee of the single-channel algorithm, we get

|Lj | ≥ ψ
OPT−

∑j−1
i=1 |Li|

k
.
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Adding
∑j−1

i=1 |Li| to both sides, we get

j
∑

i=1

|Li| ≥

j−1
∑

i=1

|Li|+ ψ
OPT−

∑j−1
i=1 |Li|

k

=

(

1−
ψ

k

) j−1
∑

i=1

|Li|+
ψ

k
OPT .

Solving this recursion, this yields

k
∑

i=1

|Li| ≥
k−1
∑

i=0

(

1−
ψ

k

)i

·
ψ

k
OPT

=

(

1− ψ
k

)k

1−
(

1− ψ
k

) ·
ψ

k
OPT

=

(

1−
ψ

k

)k

OPT

≥

(

1−
1

e

)

ψOPT .

This shows the claim.
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