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Abstract
We present a new online algorithm for profit-oriented scheduling on multiple speed-scalable pro-
cessors. Moreover, we provide a tight analysis of the algorithm’s competitiveness. Our results
generalize and improve upon work by Chan, Lam, and Li [10], which considers a single speed-
scalable processor. Using significantly different techniques, we can not only extend their model
to multiprocessors but also prove an enhanced and tight competitive ratio for our algorithm.

In our scheduling problem, jobs arrive over time and are preemptable. They have different
workloads, values, and deadlines. The scheduler may decide not to finish a job but instead to
suffer a loss equaling the job’s value. However, to process a job’s workload until its deadline
the scheduler must invest a certain amount of energy. The cost of a schedule is the sum of
lost values and invested energy. In order to finish a job the scheduler has to determine which
processors to use and set their speeds accordingly. A processor’s energy consumption is power
Pα(s) integrated over time, where Pα(s) = sα is the power consumption when running at speed
s. Since we consider the online variant of the problem, the scheduler has no knowledge about
future jobs. This problem was introduced by Chan, Lam, and Li [10] for the case of a single
processor. They presented an online algorithm which is αα + 2eα-competitive. We provide an
online algorithm for the case of multiple processors with an improved competitive ratio of αα.

1 Introduction

From an economical point of view, the value of energy has increased tremendously during the
last decades. This applies not only to the energy consumed in small-scale computer systems
but especially to the energy consumption in large data centers. According to current reports
(e.g., Barroso and Hölzle [6]), the decisive factors regarding the costs of running a data center
are mostly the cooling process and the actual computations rather than the acquisition of
the necessary hardware. Thus, in order to maximize their revenue, data centers strive to
minimize the energy consumption while still guaranteeing a sufficiently high quality of service
to their customers. One way to approach this goal are technical solutions improving the
involved hardware. However, coupling such solutions with canonical or standard algorithms
wastes much potential. Only by designing sophisticated algorithms can one hope to fully
exploit their power and possibilities. A prominent example for this is dynamic speed scaling, a
technology that adapts a processor’s speed according to the current workload (Intel SpeedStep
or AMD PowerNow!). Simply decreasing the speed at times of small load may lower the total
energy consumption substantially. However, a lower speed often also implies a lower quality
of service, which in turn may impair the data center’s revenue. One needs clever algorithms
to fully utilize speed scaling and to achieve a provably good or even optimal profit.
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2 Profitable Scheduling on Multiple Speed-Scalable Processors

But how exactly should a data center make use of speed scaling in order to maximize
profit? On a relatively basic level, one can imagine a data center’s situation as follows: Jobs
of different sizes and values arrive over time at the data center. For finishing a customer’s
job in time, the data center receives a payment corresponding to the job’s value. However, to
finish a job the data center has to invest an amount of energy depending on the job’s size and
potential time constraints. Investing into low-value jobs that require much energy may lower
the profit. Even processing jobs whose values seem to justify the energy investment may be
bad, as this may hinder the efficient processing of more lucrative jobs that arrive later. Thus,
one has to carefully choose not only how and when to process the different jobs but also
which to process at all. We propose an algorithm that handles this scenario provably well
and improves upon the former best known result. Moreover, we generalize the model to the
important case of multiple processors (until now, only a single speed-scalable processor was
considered). Our analysis is partly based on an intriguing new technique recently suggested
by Gupta, Krishnaswamy, and Pruhs [12]. We adapt and extend it to suit our problem and
show its large potential compared to the classical analysis methods prevailing in this area
(see “Our Contribution” later in this section).

Related Work.
There exists plenty of work concerning energy-efficient scheduling strategies in both theoretical
and practical contexts. Dynamic speed scaling (also referred to as dynamic voltage scaling)
is one of the most important technical tools to save energy in modern systems. It allows
the scheduler to dynamically adapt the system’s speed to the current workload. A recent
survey by Albers [1] gives a good and compact overview on the state of the art of algorithmic
research in this area. In the following, we concentrate on models for speed-scalable processors
and jobs with deadline constraints. Theoretical work in this area has been initiated by Yao,
Demers, and Shenker [14]. They considered a single speed-scalable processor that processes
preemptable jobs which arrive over time and come with different deadlines and workloads.
Yao, Demers, and Shenker studied the question of how to finish all the jobs in an energy-
minimal way. In their seminal work [14], they modeled the power consumption Pα(s) of a
processor running at speed s by a constant degree polynomial Pα(s) = sα. Here, the energy
exponent α is assumed to be a constant α ≥ 2. In classical CMOS-based systems α = 3
usually yields a suitable approximation of the actual power consumption. Yao, Demers, and
Shenker developed an optimal offline algorithm, known as YDS, as well as the two online
algorithms Optimal Available (OA) and Average Rate (AVR). Up to now, OA remains one
of the most important algorithms in this area, being an essential part of many algorithms for
both the original problem as well as for its manifold variations. Using a rather complex but
elegant amortized potential function argument, Bansal, Kimbrel, and Pruhs [3] proved that
OA is exactly αα-competitive. They also proposed a new algorithm, named BKP, which
achieves a competitive ratio of essentially 2eα+1. The algorithm qOA presented by Bansal
et al. [5] is particularly well suited for low powers of α, where it outperforms both OA and
BKP. In this work, the authors also proved that no deterministic algorithm can achieve a
competitive ratio of better than eα−1/α. In their recent work, Albers, Antoniadis, and Greiner
[2] presented an optimal offline algorithm for the multiprocessor case. Moreover, using this
algorithm, they were able to also extend OA to the multiprocessor case and proved the same
competitive ratio of αα as in the single processor case.

All results mentioned so far are concerned only with the energy necessary to finish all
jobs. With respect to the profitability aspect, the two most relevant results for us are due
to Chan, Lam, and Li [10] and Pruhs and Stein [13]. Both proposed a model incorporating
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profitability into classical energy-efficient scheduling. In the simplest case, jobs have values
and the scheduler is no longer required to finish all jobs. Instead, it can decide to not process
jobs whose values do not justify the foreseeable energy investment necessary to complete
them. The objective is to maximize the profit [13] or, similarly, to minimize the loss [10]. As
argued by the authors, the latter model has the benefit of being a direct generalization of the
classical model by Yao, Demers, and Shenker. For maximizing the profit, Pruhs and Stein
[13] showed that in order to achieve a bounded competitive ratio, resource augmentation
is necessary and gave a scalable online algorithm. For minimizing the loss, Chan, Lam,
and Li [10] gave an αα + 2eα-competitive algorithm. Another very important and recent
work is due to Gupta, Krishnaswamy, and Pruhs [12] and considers the Online Generalized
Assignment Problem (OnGAP). The authors showed an interesting relation to a multitude
of problems in the context of speed-scalability (not only for scheduling). They developed a
convex programming formulation of the problem and applied well-known techniques from
convex optimization. Especially, they used a greedy primal-dual approach as known from
linear programming (see, e.g., [9]). This way, they designed an online algorithm for the
classical model by Yao, Demers, and Shenker (no job values; one processor) which is very
similar to OA and proved the exact same competitive ratio of αα.

Our Contribution.
We develop and analyze a new online algorithm for scheduling valuable jobs on multiple
speed-scalable processors. Our algorithm improves upon known results in two respects: For
the single processor case it improves the best known competitive ratio from αα + 2eα to αα.
Moreover, this constant competitive ratio holds even for the case of multiple processors. To
the best of our knowledge, this is the first algorithm that is able to handle the multiprocessor
case in this scenario. We also show that our analysis is tight in that the proven competitive
ratio is optimal for our algorithm.

Our analysis is significantly different from the typical potential function argument which is
dominant in the analysis of online algorithms in this research area. Instead, we make use of a
framework recently suggested by Gupta, Krishnaswamy, and Pruhs [12]. It utilizes well-known
tools from convex optimization, especially duality theory and primal-dual algorithms. We
develop a convex programming formulation and design a greedy primal-dual online algorithm
for the problem at hand. Compared to the original framework, we have to overcome the
additional issue of integral variables in our convex program that are caused by the new
profitability aspect. Moreover, the handling of multiple processors proves to be a challenging
task. It not only causes a much more complex objective function in the convex program but
also makes it harder to grasp the structural properties of the resulting schedule. Our result
shows that this technique is not only suitable for the classical energy-efficient scheduling
model but also for more complex variations of it, as conjectured by Gupta, Krishnaswamy, and
Pruhs. It is interesting to note that, in terms of the analysis, this approach goes back to the
roots of Yao, Demers, and Shenker’s model, as the optimality proof of the YDS algorithm [4]
is based on a similar convex programming formulation and the well-known KKT conditions
from convex optimization [8]. Our algorithm can be seen as greedily increasing the convex
program’s variables while maintaining a relaxed version of these KKT conditions.

2 Model & Preliminaries

We consider a system of m speed-scalable processors. That is, each processor can be set to
any speed s ∈ R≥0 (independently from the others). When running at speed s, the power
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consumption of a single processor is given by the power function Pα(s) = sα. Here, the
constant parameter α ∈ R>1 is called the energy exponent. A problem instance consists of a
set J = { 1, 2, . . . , n } of n jobs. Each job j ∈ J is associated with a release time rj , a deadline
dj , a workload wj , and a value vj . A schedule S describes if and how the different jobs are
processed by the system. It consists of m speed functions Si : R≥0 → R≥0 (i ∈ { 1, 2, . . . ,m })
and a job assignment policy. The speed function Si dictates the speed Si(t) of the i-th
processor at time t. The job assignment policy decides which jobs to run on the processors.
At any time t, it may schedule at most one job per processor, and each job can be processed
by at most one processor at any given time (i.e., we consider nonparallel jobs). Moreover,
jobs are preemptive: a running job may be interrupted at any time and continued later on,
possibly on a different processor. The total work processed by processor i between time t1
and t2 is

∫ t2
t1
Si(t) dt. Similarly, the overall power consumed by this processor during the

same time is
∫ t2
t1

Pα(Si(t)) dt. Let sj(t) denote the speed used to process job j at time t. We
say job j is finished under schedule S if S processes (at least) wj units of j’s work during the
interval [rj , dj). That is, if we have

∫ dj
rj
sj(t) dt ≥ wj .

A given schedule S may not finish all n jobs. In this case, the total value of unfinished
jobs is considered as a loss. Thus, the cost of S is defined as the sum of the total energy
consumption and the total value of unfinished jobs. More formally, if Jrej denotes the set of
unfinished (aka rejected) jobs under schedule S, we define the cost of schedule S by

cost(S) :=
m∑
i=1

∫ ∞
0

Pα(Si(t)) dt+
∑
j∈Jrej

vj . (1)

Our goal is to construct a low-cost schedule in the online scenario of the problem. That is,
the job set J is not known a priori, but rather revealed over time. Especially, we do not
know the total number of jobs, and the existence as well as the attributes of a job j ∈ J are
revealed just when the job is released at time rj . We measure the quality of algorithms for
this online problem by their competitive ratio: Given an online algorithm A, let A(J) denote
the resulting schedule for job set J . The competitive ratio of A is defined as

sup
J

cost(A(J))
cost(OPT(J)) , (2)

where OPT(J) denotes an optimal schedule for the job set J . Note that, by definition, the
competitive ratio is at least one.

2.1 Convex Programming Formulation
In the following, we develop a convex programming formulation of the above (offline)
scheduling problem to aid us in the design and analysis of our online algorithm (cf. Section 3).
Following an idea by Bingham and Greenstreet [7], we partition time into atomic intervals
Tk using the jobs’ release times and deadlines. The goal of our convex program is to compute
what portion of each job to process during the different atomic intervals in an optimal
schedule. Once we have such a fixed work assignment, we use a deterministic algorithm by
Chen et al. [11] to efficiently compute an energy-minimal way to process the corresponding
work on them processors in this interval. The energy consumption of the resulting schedule in
the interval Tk can be written as a convex function Pk of the work assignment. This function
plays a crucial role in the optimization objective of our convex program, and studying its
properties and the corresponding schedule’s structure is an important part of our analysis.
We will elaborate on Pk once we have derived the convex program (see Section 2.2).
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min
0�x

y∈{ 0,1 }n

N∑
k=1
Pk(x1k, x2k, . . . , xnk) +

∑
j∈J

(1− yj)vj

s.t. yj −
N∑
k=1

cjkxjk ≤ 0 , j ∈ J

Figure 1 Mathematical programming formulation (IMP) of our scheduling problem.

For a given job set J , let us partition the time horizon into N ∈ N atomic intervals Tk
(k ∈ { 1, 2, . . . , N }) as follows. We define Tk := [τk−1, τk) where τ0 < τ1 < . . . < τN are
chosen such that { τ0, τ1, . . . , τN } = { rj , dj | j ∈ J }. Let lk := τk − τk−1 denote the length
of interval Tk. Note that there are at most 2n− 1 intervals. To model the deadline constraint
of job j, we introduce parameters cjk ∈ { 0, 1 } that indicate whether Tk ⊆ [rj , dj) (cjk = 1)
or not (cjk = 0). Our program uses two types of variables: load variables xjk ∈ [0, 1] for each
job j ∈ J and each atomic interval k ∈ { 1, 2, . . . , N }, and indicator variables yj ∈ { 0, 1 }
for each job j ∈ J . The variable xjk indicates what portion of j’s workload is assigned to
interval Tk and the variable yj indicates whether job j is finished (yj = 1) or not (yj = 0).
Figure 1 shows the complete (integral) mathematical program (IMP) for our scheduling
problem. The first summand in the objective corresponds to the energy spent in the different
intervals. The second summand charges costs for all unfinished jobs. The set of constraints
ensures that a job can be declared as finished only if it has been completely assigned to
intervals Tk lying in its release-deadline interval [rj , dj). We use x and y to refer to the full
vectors of variables xjk and yj , and we use the symbol “�” for element-wise comparison.

If we relax the domain of (IMP) such that 0 � y � 1, we get a convex program. We refer
to this convex program as (CP). By introducing dual variables λj (also called Lagrange
multipliers) for each constraint of (CP) we can write its Lagrangian L(x, y, λ) as

N∑
k=1
Pk(x1k, x2k, . . . , xnk) +

∑
j∈J

(1− yj)vj +
∑
j∈J

λj

(
yj −

N∑
k=1

cjkxjk

)
. (3)

It is a linear combination of the convex program’s objective and constraints. Instead of
prohibiting infeasible solutions (as done by the convex program), it charges a penalty for
violated constraints (assuming positive λj). Now, the dual function of (CP) is defined as

g(λ) := inf
0�x

0�y�1

L(x, y, λ). (4)

An important property of the dual function g is that for any λ � 0, the value g(λ) is a lower
bound on the optimal value of (CP). Moreover, since (CP) is a relaxation of (IMP), g(λ) is
also a lower bound on the optimal value of (IMP). See the book by Boyd and Vandenberghe
[8] for further details on these and similar known facts about (convex) optimization problems.

2.2 Power Consumption in Atomic Intervals
Let us give a more detailed description of the function Pk(x1k, x2k, . . . , xnk). We defined Pk
implicitly by mapping a given work assignment x1k, x2k, . . . , xnk for interval Tk to the power
consumption of Chen et al.’s algorithm [11] during Tk. This guarantees an energy-minimal
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Time⌧k�1 ⌧k

}
}

CPU 1

CPU 2

CPU 3

CPU 4

dedicated

pool

(a) Before the arrival of a new job.
Time⌧k�1 ⌧k

}

}
dedicated

pool

CPU 1

CPU 2

CPU 3

CPU 4

(b) After the arrival of a new job.

Figure 2 Schedules computed by Chen et al.’s algorithm before and after the arrival of a new job.

schedule for the given work assignment. In the following, we give a concise description of
this algorithm and derive a more explicit formulation as well as some properties of Pk.

To ease the discussion, let us assume that the jobs are numbered such that x1kw1 ≥
x2kw2 ≥ · · · ≥ xnkwn. In a nutshell, Chen et al.’s algorithm can be described as follows.
Define the job set

ψ(k) :=
{
j ∈ J

∣∣∣∣ j ≤ m ∧ xjk > 0 ∧ xjkwj ≥
∑
j′>j xj′kwj′

m− j

}
. (5)

These jobs are called dedicated jobs and are scheduled on their own dedicated processor using
the energy-optimal (since minimal) speed sjk := xjkwj

lk
. All remaining jobs, called pool jobs,

are scheduled on the remaining (pool) processors in a greedy manner. The intuition is that
dedicated jobs are larger than the remaining average workload and thus must be processed on
a dedicated processor. See [7, Section 3.1] for a relatively short but more detailed description
of the algorithm. Figure 2 illustrates the resulting schedule and how it may change due to
the arrival of a new job. Using the above definition of dedicated jobs we can write Pk as

Pk(x1k, . . . , xnk) =
∑

j∈ψ(k)

lk Pα
(
xjkwj
lk

)
+ (m− |ψ(k)|)lk Pα

(∑
j /∈ψ(k) xjkwj

(m− |ψ(k)|)lk

)
. (6)

The following proposition gathers some important properties concerning the power consump-
tion function Pk of an atomic interval Tk.

I Proposition 1. Consider an arbitrary atomic interval Tk together with its power consump-
tion function Pk : Rn≥0 → R. This function has the following properties:

(a) It is convex and Pk(0) = 0.
(b) It is differentiable with partial derivatives ∂ Pk

∂x
jk

(x1k, . . . , xnk) = wj · Pα′ (sjk). Here, sjk
denotes the speed used to schedule the workload xjkwj in Chen et al.’s algorithm:

sjk =

xjkwj/lk , if j is a dedicated job∑
j /∈ψ(k)

xjkwj

(m−|ψ(k)|)lk , if j is a pool job.
(7)

Proof Sketch. (a) The equality Pk(0) = 0 is obvious from the definition of Pk. The
convexity follows easily from [7, Lemma 3.2]. There, the authors proved the convexity of
(x1k, . . . , xnk) 7→ Pk(x1k/w1, . . . , xnk/wn) (a linear transformation of Pk).
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(b) Differentiability is obvious for all points (x1k, . . . , xnk) for which all the inequalities
xjkwj >

∑
j′≥j

xj′kwj′/(m− j) in Equation (2.2) are strict: For these, we have a small interval
around xjk such that the set ψ(k) of dedicated jobs does not change. On these intervals, Pk
is essentially a linear map of the differentiable function Pα(s) = sα. For other points, one can
compute the left and right derivatives in xjk, distinguishing whether job j switched between
a dedicated processor and a pool processor, whether j stays on a dedicated processor, or
whether j stays on a pool processor and some other jobs switch between processor types. All
cases yield the same left and right derivatives as given in the statement. J

We will also need to compare the result of Chen et al.’s algorithm before and after the
arrival of a new job (cf. Figure 2). That is, how can the workloads on the processors change
when a single entry of the work assignment changes from zero to some positive value?

I Proposition 2. Consider Chen et al.’s algorithm called for some interval Tk with the two
work assignments x = (x1, x2, . . . , xn, 0) and x′ = (x1, x2, . . . , xn, z) (i.e., before and after
the arrival of a new job). Let Li and L′i denote the total workload on the i-th fastest processor
in the resulting schedules, respectively. Then, we have 0 ≤ L′i − Li ≤ z.

Proof Sketch. We consider only the normalized case. That is, the case of unit workloads
(wj = 1 for all jobs) and an atomic interval of unit length (lk = 1). The general case
follows by a straightforward adaption. Without loss of generality, we furthermore assume
x1 ≥ x2 ≥ · · · ≥ xn. Note that we do not presume any relation between the newly arrived
workload z and the remaining workloads. Let S and S′ be the schedules produced by Chen
et al.’s algorithm for the work assignments x and x′, respectively. Similarly, we use d and
d′ to denote the number of dedicated processors, and Lpool and L′pool for the workload of a
pool processor in S and S′, respectively. Remember that pool processors have the smallest
workload. That is, we have Li ≥ Lpool and L′i ≥ L′pool for all i ∈ { 1, 2, . . . ,m }.

We start with the proof of L′i−Li ≥ 0. Observe that the arrival of the workload z will not
cause any of the former pool jobs to become a dedicated job (cf.. Equation (5)). Moreover,
by the same equation, for each dedicated processor that becomes a pool processor we also get
a new pool job that has a workload of at least Lpool. Thus, the workload of pool processors
from S can only increase. The workload of the i-th fastest dedicated processor in S is exactly
xi. If it becomes a pool processor, we have xi < L′pool = L′i, yielding Li = xi < L′i. If it stays
a dedicated processor, its workload is the i-th largest value in {x1, . . . , xn, z } and, thus, at
least as large as the i-th largest value in {x1, . . . , xn }, yielding Li ≤ L′i. To prove the second
statement, L′i − Li ≤ z, let us assume L′i − Li > z and seek a contradiction. We distinguish
two cases, depending on the type (pool or dedicated) of the i-th fastest processor in S′:

processor i is a pool processor in S′ Note that z < L′i − Li ≤ L′i and i being a pool
processor implies that z is also scheduled on a pool processor (cf.. Equation (5)). As
d′ is the number of dedicated processors, we must have i > d′. Moreover, all the jobs
with workload less than L′d′ must be pool jobs in S′. These are exactly the jobs which
are scheduled on the processors d′ + 1, . . . ,m in schedule S. Thus, the total workload of
all pool processors in S′ equals (m− d′)L′i = z +

∑
j>d′ Lj . Using i > d′, L′i′ − Li′ ≥ 0

for all i′ ∈ { 1, 2, . . . ,m }, and that all pool processors in S′ have the same workload, we
get z = (m − d′)L′i −

∑
j>d′ Lj =

∑
j>d′(L′i − Lj) =

∑
j>d′(L′j − Lj) ≥ L′i − Li. This

contradicts our assumption.
processor i is a dedicated processor in S′ Our assumption implies L′i > Li + z ≥ z. To-

gether with i being a dedicated processor this yields L′i = xi (because xi remains the
i-th largest value in {x1, x2, . . . , xn, z }). But the assumption also implies L′i > Li + z ≥
Li ≥ xi. We get the contradiction xi = L′i > xi. J
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1 {executed each time a new job j ∈ J arrives}
2 init xjk, yj , and λj with zero for all k ∈ { 1, 2, . . . , N }
3 compute λjk := δ ∂ Pk

∂x
jk

(x1k, x2k, . . . , xjk, 0, . . . , 0) for each interval Tk ⊆ [rj , dj)
4
5 let the set Tmin contain all Tk with minimal λjk

6 for each Tk ∈ Tmin in parallel:
7 increase xjk in a continuous way (which in turn raises λjk according to line 3)
8 ensure that all λjk of intervals in Tmin remain equal
9 update Tmin whenever the λjk reach a λjk′ with Tk′ /∈ Tmin

10 stop increasing once one of the following comes true
11 (a)

∑
xjk = 1 : set yj := 1, λj := λjk

12 (b) λjk = vj : reset xjk := 0, λj := λjk

Listing 1 Primal-Dual Algorithm PS with parameter δ.

3 An Online Greedy Primal-Dual Algorithm

The goal of this section is to use the convex programming formulation (CP) and its dual
function g : Rn → R to derive a provably good online algorithm for our scheduling problem.
We start by describing an algorithm that computes a solution to (CP) in an online fashion,
but knowing the time partitioning Tk (k ∈ { 1, 2, . . . , n }). Subsequently, we explain how this
solution is used to compute the actual schedule and how we handle the fact that the actual
atomic intervals are not known beforehand. To solve (CP), we use a greedy primal-dual
approach for convex programs as suggested by Gupta, Krishnaswamy, and Pruhs [12]. Our
algorithm extends their framework to the multiprocessor case and to profitable scheduling
models. It shows how to incorporate rejection policies into the framework (handling the
integral constraints in the convex program) and how to cope with more complex power
functions of a system (in our case Pk).

The Primal-Dual Algorithm.

Our primal-dual algorithm, in the following referred to as PD, maintains a set of primal
variables (x, y) and a set of dual variables λ, all initialized with zero. Whenever a new job (i.e.,
a constraint in (CP)) arrives, we start to increase the primal variables xjk (k ∈ { 1, 2, . . . , N })
in a greedy fashion until either the full job is scheduled (i.e.,

∑
k xjk = 1) or the planned

energy investment for job j becomes too large compared to its value. In the latter case,
the variables xjk are reset to zero, λj is set to vj , and yj remains zero (the job is rejected).
Otherwise, we set yj to one (the job is finished) and λj to essentially the current rate of cost
increase per job workload. When greedily increasing the primal variables, we assign the next
infinitesimal small portion of job j to those atomic intervals that cause the smallest increase
in costs. Essentially, these are the intervals where j’s workload would be scheduled with the
slowest speed. See Listing 1 for the algorithm.

The described algorithm is similar to primal-dual algorithms known from linear pro-
gramming, where primal and/or dual variables are raised at certain rates until the (relaxed)
complementary slackness conditions are met. In fact, this algorithm is derived by using
relaxed versions of the Karush-Kuhn-Tucker (KKT) conditions, essentially a generalization
of the complementary slackness conditions for convex (or even general nonlinear) programs.
The actual schedule used is the one computed by Chen et al.’s algorithm when applied to
the current work assignment given by the primal variables xjk for the atomic interval Tk.
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Time
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21
tcurr

(a) PD Schedule

Time

Speed

21
tcurr

(b) OA Schedule

Figure 3 The dashed lines indicate atomic intervals; the bars below, the jobs’ availability. Note
that PD’s schedule is more conservative in comparison, leaving more room for scheduling jobs that
might occur during the last atomic interval.

Concerning the Time Partitioning.
Our algorithm formulation assumes a priori knowledge of the atomic intervals Tk. However,
since the jobs arrive in an online fashion, the exact partitioning is actually not known to
the algorithm. One can reformulate the algorithm such that it uses the intervals T ′k induced
by the jobs J ′ = { 1, 2, . . . , j } ⊆ J it knows so far. If a refinement of an atomic interval
T ′k = Tk1 ∪ Tk2 occurs due to the arrival of a new job, the already assigned job portions
are simply split according to the ratios |Tk1 |/|T ′k| and |Tk2 |/|T ′k|. This reformulated algorithm
produces an identical schedule. To see this, note that the algorithm with a priori knowledge
of the refinement T ′k = Tk1 ∪ Tk2 treats both intervals Tk1 and Tk2 as identical (with respect
to their relative size |Tki |/|T ′k|) up to the point when the job causing the refinement arrives.

Relation to the OA Algorithm.
For the case of a single processor and sufficiently high job values, algorithm PD is quite
similar to the popular OA algorithm by Yao, Demers, and Shenker [14]. When a new job
arrives, PD essentially finds the atomic intervals of lowest speed and increases their speed
to free computational resources to be used for the new job. This is also true for the OA
algorithm. However, while PD never changes how other jobs are distributed over atomic
intervals, OA may actually influence this distribution. Figure 3 gives a simple example for
the structural difference of the resulting schedules. Another interesting observation is that,
in the single processor case, our analysis yields the very same optimal rejection policy as
an OA-based algorithm by Chan, Lam, and Li [10]. Indeed, as we will see in Section 4, our
analysis yields that δ = α1−α is the optimal choice for the parameter δ. Using this parameter,
one can easily check that our rejection policy essentially states to reject a job if its energy
consumption in the planned schedule exceeds αα−2 · vj . Or, equivalently, a job is rejected if
its speed in the planned schedule exceeds α

α−2
α−1 · (v/w)α−1, the rejection policy from [10].

4 Analysis

In the following, let (x̃, ỹ) and λ̃ denote the primal and dual variables computed by our
algorithm PD. Remember that the final schedule computed by PD is derived by applying
Chen et al.’s algorithm to the x̃1k, . . . , x̃nk values in each atomic interval Tk. We refer to
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this schedule as the (x̃, ỹ)-schedule or simply as the schedule PD. Our goal is to use g(λ̃) to
bound the cost of this schedule (referred to as cost(PD)). Our main result is

I Theorem 3. The competitive ratio of algorithm PD with the parameter δ set to 1
αα−1 is

at most αα. Moreover, there is a problem instance for which PD is exactly by a factor of αα
worse than an optimal algorithm. That is, our upper bound is optimal.

For the upper bound, we show that cost(PD) ≤ ααg(λ̃). Since, by duality, g(λ̃) is
also a lower bound on the optimal value of (CP) and, thereby, on the optimal value of
(IMP), we get cost(PD)

cost(OPT) ≤ α
α. The lower bound follows from a known result for traditional

energy-efficient scheduling (without job values but the necessity to finish all jobs) by setting
the job values sufficiently high.

In the remainder, we develop the key ingredients for the proof of Theorem 3. We start
in Section 4.1 and derive a more explicit formulation of the dual function value g(λ̃) by
relating it to a certain (infeasible) solution to our convex program (CP) and a corresponding
schedule. Section 4.2 further simplifies this formulation by expressing g(λ̃) solely in terms of
the jobs (instead of their workloads in different atomic intervals). Based on this job-centric
formulation, Section 4.3 develops different bounds for the dual function value depending on
certain job characteristics. The actual proof of Theorem 3 combines these bounds and can
be found in Section 4.4.

4.1 Structure of an Optimal Infeasible Solution
First of all, note that the value g(λ̃) = inf L(x, y, λ̃) (cf. Equation (4)) is finite and obtained
by a pair (x̂, ŷ) of primal variables. These primal variables can be interpreted as a (possibly
infeasible) solution to the convex program (CP). Moreover, for our fixed dual variable λ̃,
this solution is optimal in that it minimizes the sum of the objective cost and the penalty for
violated constraints. In this sense, we refer to (x̂, ŷ) as an optimal infeasible solution. Our
goal is to understand the structure of this solution, which will eventually allow us to write
g(λ̃) in a more explicit way. The results of this subsection are related to results from [12],
but more involved due to the more complex nature of our objective function.

Note that x̂ and ŷ may differ largely from x̃ and ỹ. However, the following lemmas show a
strong correlation between this optimal infeasible solution and the feasible (partially integral)
solution computed by algorithm PD.

I Lemma 4. Consider an optimal infeasible solution (x̂, ŷ). Without loss of generality, we
can assume that it has the following properties:

(a) ŷ = ỹ

(b) For any atomic interval Tk, there are at most m different jobs j with x̂jk > 0.

Proof. (a) Consider an arbitrary job j ∈ J and remember that the domain for the variables
ŷj is restricted to [0, 1]. The contribution of variable ŷj to g(λ̃) = L(x̂, ŷ, λ̃) is exactly
ŷj(λ̃j − vj), as can be seen by considering Equation (3). If λ̃j < vj , this is minimized by
choosing ŷj maximal (ŷj = 1). Otherwise, we must have λ̃j = vj (by the definition of
algorithm PD). This allows us to choose ŷj arbitrarily, such that we can set it to zero. Both
choices correspond exactly to the way ỹj is set by algorithm PD.
(b) Assume there are more than m jobs with x̂jk > 0. We can assume cjk = 1 for these
jobs, because otherwise we could set x̂jk = 0 without increasing g(λ̃) = L(x̂, ŷ, λ̃). Now, the
values x̂1k, . . . , x̂nk correspond to a work assignment for the atomic interval Tk, as used by
Chen et al.’s algorithm (cf. Section 2.2). By Equation (3), the contribution of these values
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to g(λ̃) = L(x̂, ŷ, λ̃) is given by Pk(x̂1k, . . . , x̂nk)−
∑
j∈J λ̃j x̂jk. Since there are more than

m jobs j with nonzero x̂jk, at least two of them must share a processor in the schedule
computed by Chen et al.’s algorithm for this work assignment. In other words, there are two
pool jobs j, j′ ∈ J \ ψ(k) with x̂jk, x̂j′k > 0. Together with Equation (6), we see that the
contribution of x̂jk and x̂j′k to g(λ̃) consists of two terms: a convex term

(m− |ψ(k)|)lk Pα

(∑
j /∈ψ(k) x̂jkwj

(m− |ψ(k)|)lk

)

and a linear term −λ̃j x̂jk − λ̃j′ x̂j′k. By changing x̂jk and x̂j′k along the line that keeps the
sum x̂jkwj + x̂j′kwj′ constant, we can decrease one of the variables (say x̂jk) and increase
the other such that the first (convex) term remains constant and the second (linear) term is
not increased. This will not effect the type (dedicated or pool) of other jobs. The only job
that may change its type is job j′, as it may become a dedicated job. Once this happens,
we iterate the process with two other pool jobs. As the number of dedicated jobs is upper
bounded by m, this can happen only finitely often. Thus, at some point we can decrease x̂jk
all the way to zero without increasing the dual function value g(λ̃). We continue eliminating
x̂jk variables until at most m of them are nonzero. J

Given an atomic interval Tk, we call the jobs j with x̂jk > 0 the contributing jobs of Tk and
denote the corresponding job set by ϕ(k). As done in the proof of Lemma 4, we can consider
x̂ as a work assignment for the atomic intervals Tk. By applying Chen et al.’s algorithm, we
get a schedule whose energy cost in interval Tk is exactly Pk(x̂1k, . . . , x̂nk). We refer to this
schedule as the (x̂, ŷ)-schedule. Using this terminology, the second statement of Lemma 4
essentially says that in this schedule at most m jobs are scheduled in any atomic interval
Tk. Moreover, it follows immediately from the description of Chen et al.’s algorithm that all
contributing jobs are dedicated jobs of the corresponding atomic interval.

We can derive a slightly more explicit characterization of the contributing jobs ϕ(k) of
an atomic interval Tk by exploiting that (x̂, ŷ) is a minimizer of (x, y) 7→ L(x, y, λ̃).

I Lemma 5. Consider any atomic interval Tk and its contributing jobs ϕ(k). Define the
value ŝj := (λ̃j/αwj)

1
α−1 for any job j.

(a) For any j ∈ ϕ(k) we have x̂jk = lk
wj
ŝj = lk

wj
(λ̃j/αwj)

1
α−1 . Moreover, j is scheduled at

constant speed ŝj in the (x̂, ŷ)-schedule.
(b) The total contribution of the x̂jk variables to the dual function value g(λ̃) is

(1− α)lk
∑

j∈ϕ(k)

(
x̂jkwj
lk

)α
= (1− α)lk

∑
j∈ϕ(k)

ŝαj . (8)

(c) Let nk denote the number of jobs available in the atomic interval Tk (i.e., jobs with
cjk = 1). The contributing jobs ϕ(k) are the min(m,nk) jobs with maximal ŝj-values
under all available jobs.

Proof. (a) By definition, x̂ is a minimizer of x 7→ L(x, ŷ, λ̃). This implies that we must have
∂L
∂x
jk

(λ̃, x̂, ŷ) = 0 for any contributing job j ∈ ϕ(k). We get

0 = ∂L
∂x
jk

(λ̃, x̂, ŷ) = ∂ Pk
∂x
jk

(x̂1k, . . . , x̂nk)− λ̃j

= wj · Pα′
(
x̂jkwj
lk

)
− λ̃j = αwj

(
x̂jkwj
lk

)α−1
− λ̃j ,
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which yields the first statement by rearranging. The second statement follows from this by
noticing that x̂jkwj

lk
is the speed used by Chen et al.’s algorithm for the (dedicated) job j.

(b) By definition of g(λ̃) = L(x̂, ŷ, λ̃), we get that the total contribution of the x̂jk variables
is (there are no pool jobs!)

Pk(x̂1k, . . . , x̂nk)−
∑

j∈ϕ(k)

λ̃j x̂jk =
∑

j∈ϕ(k)

lk Pα
(
x̂jkwj
lk

)
−
∑

j∈ϕ(k)

λ̃j x̂jk

= lk
∑

j∈ϕ(k)

Pα(ŝj)− αlk
∑

j∈ϕ(k)

λ̃j
αwj

ŝj = (1− α)lk
∑

j∈ϕ(k)

ŝαj .

(c) The contributing jobs must be chosen such that their contribution is minimized. Using
statement (b) and α > 1, we see that this is the case when choosing the maximal number of
available jobs (at most m) with the largest ŝj-values. J

4.2 A Job-centric Formulation of the Dual Function

In the following, we assume that the optimal infeasible solution (x̂, ŷ) adheres to Lemma 4.
That is, we have ŷ = ỹ and we can relate the optimal infeasible solution to the (x̂, ŷ)-schedule
which schedules in each atomic interval Tk exactly the |ϕ(k)| (≤ m) available jobs with the
largest ŝj = (λ̃j/αwj)

1
α−1 -values, each on its own dedicated processor at speed ŝj . We use the

somewhat lax notation k ∈ ϕ−1(j) to refer to the atomic intervals Tk to which j contributes.
Our main goal in this section is to derive a formulation of the dual function value solely in
terms of the jobs. We will also define and discuss the trace of a job, which helps to relate
any job (even if unfinished) to a certain amount of energy consumed by our PD algorithm.

Given a job j ∈ J , let l(j) :=
∑
k∈ϕ−1(j) lk denote the total time it is scheduled in the

(x̂, ŷ)-schedule. Moreover, let Eλ̃(j) denote the total energy invested by the (x̂, ŷ)-schedule
into job j. Now, we can formulate the following lemma.

I Lemma 6. For any job j ∈ J , the total energy invested by the optimal infeasible solution
into job j is Eλ̃(j) = l(j)ŝαj . Moreover, the dual function value g(λ̃) can be written as

g(λ̃) = (1− α)
∑
j∈J

Eλ̃(j) +
∑
j∈J

λ̃j . (9)

Proof. The equality Eλ̃(j) = l(j)ŝαj follows immediately from the above definitions, as j is
processed by the (x̂, ŷ)-schedule at constant speed ŝj for a total time of exactly l(j). For the
lemma’s main statement, remember that ŷj = 0 if and only if λ̃j = vj . Otherwise we have
ŷj = 1. Thus, the contribution of ŷj to g(λ̃) is exactly (1− ŷj)vj+ λ̃j ŷj = λ̃j . As we have seen
in Lemma 5 for a fixed k, the contribution of all x̂jk to g(λ̃) is exactly (1− α)lk

∑
j∈ϕ(k) ŝ

α
j .

Summing over all k, we get that the total contribution of the x̂-variables equals

N∑
k=1

(1− α)lk
∑

j∈ϕ(k)

ŝαj = (1− α)
N∑
k=1

∑
j∈ϕ(k)

lkŝ
α
j = (1− α)

∑
j∈J

N∑
k∈ϕ−1(j)

lkŝ
α
j

= (1− α)
∑
j∈J

l(j)ŝαj = (1− α)
∑
j∈J

Eλ̃(j).

Summing up the contributions of the x̂- and ŷ-variables we get the desired statement. J
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Tracing a Job.
Given a job j, we define its trace as a set of tuples (Tk, i) with k ∈ { 1, 2, . . . , N } and
i ∈ { 1, 2, . . . ,m }. That is, a set of atomic intervals, each coupled with a certain processor.
Our goal is to choose these such that we can account the energy Eλ̃(j) used in the optimal
infeasible solution on job j to the energy used by algorithm PD during j’s trace (on the
coupled processors). For the formal definition, let us first partition the contributing jobs ϕ(k)
of an interval Tk into the subset ϕ1(k) := { j ∈ ϕ(k) | ỹj = 1 } of jobs finished by PD and
the subset ϕ2(k) := { j ∈ ϕ(k) | ỹj = 0 } of jobs unfinished by PD. Now, for any job j ∈ J
we define its trace Tr (j) as follows:

Case ỹj = 1: (Tk, i) ∈ Tr (j) ⇐⇒ ŝj is the i-th largest value1 in { ŝj′ | j′ ∈ ϕ1(k) }
Case ỹj = 0: (Tk, |ϕ1(k)|+ i) ∈ Tr (j)⇐⇒ ŝj is the i-th largest value in { ŝj′ | j′ ∈ ϕ2(k) }

That is, jobs that are finished by PD are mapped to the fastest processors in each atomic
interval Tk for which they are contributing jobs, in decreasing order of their ŝj-values. Jobs
contributing to Tk but which are unfinished by PD are mapped to the remaining processors
(the exact order is not important in this case). Note that by this mapping, all traces Tr (j)
are pairwise disjoint. We use the notation EPD(j) to refer to the power consumption of PD
during j’s trace. That is, the power consumption on the i-th fastest processor in the atomic
interval Tk for any (Tk, i) ∈ Tr (j). We use EPD to denote the total power consumption of
PD. Since the job traces are pairwise disjoint, we obviously have EPD ≥

∑
j∈J EPD(j).

The following proposition formulates an important structural property of a job’s trace. It
gives us different lower bounds on the speed used by PD during a job’s trace, depending
on whether it is finished or not. To this end, let s̃j denote the speed PD planned to use for
job j just before λ̃j got fixed (i.e., just before PD decides whether to finish j or not). If j is
finished, we have (cf. algorithm description and Proposition 1)

λ̃j = δ ∂ Pk∂x
jk

(x̃1k, . . . , x̃jk, 0, . . . , 0) = δwj Pα′ (s̃j) . (10)

Solving this for s̃j yields s̃j = (λ̃j/δαwj)
1/α − 1 = δ−

1/α − 1ŝj . Similarly, we also get s̃j =
δ−

1/α − 1ŝj for unfinished jobs. We use x̌j =
∑
x̌jk < 1 to denote the corresponding portions

of the unfinished job j planned to be scheduled by PD just before j was rejected.

I Proposition 7. Consider (Tk, i) ∈ Tr (j) for a job j ∈ J . Let s(i, k) denote the speed of
the i-th fastest processor during Tk in the final schedule computed by PD. Then:

(a) If j is finished by PD, then s(i, k) ≥ s̃j.
(b) If j is not finished by PD, then s(i, k) ≥ s̃j − x̌jkwj

lk
.

Proof. (a) Remember that s̃j = δ−
1/α − 1ŝj . Because of this relation and the definition of

(Tk, i) ∈ Tr (j), we must have that s̃j is the i-th largest value in { s̃j′ | j′ ∈ ϕ1(k) }. Together
with Lemma 5(c), we even have that s̃j is the i-th largest value under all available jobs
finished by PD. At the time τk−1 (the start of interval Tk), all these available jobs j′ have
arrived. We consider two cases: If j is a dedicated job at this time, it is scheduled with a
speed of exactly s̃j . Moreover, all the i− 1 available jobs j′ with s̃j′ ≥ s̃j are dedicated jobs
and are scheduled with a speed of s̃j′ , respectively. Thus, j is scheduled on the i-th fastest
processor, yielding s(i, k) ≥ s̃j . If j is a pool job at this time, it is scheduled on one of the
pool processors at a speed of at least s̃j . But then, since pool processors are the slowest
processors, the i-th fastest processor must also run at a speed of at least s̃j .

1 Ties are resolved arbitrarily but consistently.
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(b) Remember that x̌jk denotes the portion of job j PD planned to schedule in Tk just before
j got rejected. If j was planned as a dedicated job, we have lks̃j = x̌jkwj . This trivially
yields the desired statement because of s(i, k) ≥ 0. If j was not planned as a dedicated job, it
was to be processed on a pool processor. Let L(i, k) denote the workload on the i-th fastest
processor during Tk just after j was rejected (i.e., without x̌jkwj). Similarly, let L′(i, k)
denote the workload on the i-th fastest processor during Tk just before j was rejected (i.e.,
including x̌jkwj). Proposition 2 gives us L′(i, k)− L(i, k) ≤ x̌jkwj . Moreover, since j was
planned as a pool job (which run at minimal speed), we must have lks̃j ≤ L′(i, k). Combining
these inequalities yields that the speed L(i, k)/lk on the i-th fastest processor during Tk at j’s
arrival was at least s̃j − x̌jkwj

lk
. As Proposition 2 also implies that the workload (and, thus,

the speed) of the i-th fastest processor in an atomic interval can only increase due to the
arrival of new jobs, we get the desired statement. J

4.3 Balancing the Different Cost Components
As our goal is to lower-bound the dual function value g(λ̃) = (1 − α)

∑
Eλ̃(j) +

∑
λ̃j by

the cost of algorithm PD, we have to relate the values Eλ̃(j) and λ̃j to the energy- and
value- costs of PD. It depends on the job itself how this is done exactly. For example, in
the case of finished jobs, both terms can be related to the actual energy consumption of PD
in a relatively straightforward way. This becomes much harder if the job is not finished by
PD: after all, in this case PD does not invest any energy into the job. The job’s trace plays
a crucial role in this case, as it allows us to account the energy investment of the optimal
infeasible solution to the energy PD consumed during the trace. The next proposition gathers
the most important relations to be used in the following proofs.

I Proposition 8. Consider an arbitrary job j ∈ J :

(a) Eλ̃(j) = λ̃j
x̂j
α

(b) If j is finished by PD, then Eλ̃(j) ≤ δ
α
α−1EPD(j).

(c) If j is not finished by PD and x̂j > δ
1

α−1 , then

Eλ̃(j) < δ
α
α−1

(
1− δ

1
α−1

x̂j

)−α
EPD(j). (11)

Proof. (a) We use the identities ŝj = (λ̃j/αwj)
1

α−1 and l(j)ŝj = x̂jwj (cf. Lemma 5) and
compute

Eλ̃(j) = l(j)ŝαj = l(j)ŝj · ŝα−1
j = x̂jwj ·

λ̃j
αwj

= λ̃j
x̂j
α
.

(b) Assume j is finished by PD. Remember that s̃j denotes the speed assigned to j when it
arrived and λ̃j got fixed. We have the relation s̃j = δ−

1/α − 1ŝj (cf. Section 4.2). Let smin
denote the minimal speed of j’s trace in the final (x̃, ỹ)-schedule produced by PD. That
is, there is a tuple (Tk, i) ∈ Tr (j) such that the i-th fastest processor in Tk runs at speed
smin and EPD(j) ≥ l(j)sαmin. By Proposition 7 we must have smin ≥ s̃j . We compute

Eλ̃(j) = l(j)ŝαj = δ
α
α−1 l(j)s̃αj ≤ δ

α
α−1 l(j)sαmin ≤ δ

α
α−1EPD(j).

(c) Applying Proposition 7 to all (Tk, i) ∈ Tr (j) yields that the total workload L that is
processed by PD during j’s trace is at least l(j)s̃j − x̌jwj > l(j)s̃j − wj . The minimum
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energy necessary to process this workload in l(j) time units is l(j) (L/l(j))α. We compute

EPD(j) ≥ l(j)
(
L

l(j)

)α
> l(j)

(
l(j)s̃j − wj

l(j)

)α
= l(j)s̃αj

(
1− wj

s̃j l(j
)
)α

= δ−
α
α−1Eλ̃(j)

(
1− δ

1
α−1

x̂j

)α
.

Rearranging the inequality yields the desired statement. J

Note that the bound for unfinished jobs in Proposition 8 has an additional factor > 1
compared to the one for finished jobs. However, for large enough x̂j this factor becomes
nearly one. Thus, we will apply this bound only in cases of large x̂j . If x̂j is relatively small,
we will instead bound Eλ̃(j) only by its value. We continue by describing the different types
of jobs we consider. In total, we differentiate between three job categories:

Finished Jobs These are all jobs j with ỹj = 1 (i.e., jobs finished by PD). As mentioned
above, we bound both components Eλ̃(j) and λ̃j of g(λ̃) by the actual energy consumption
of PD. We use J1 := { j ∈ J | ỹj = 1 } to refer to this job category.

Unfinished, Low-yield Jobs We use the term low-yield jobs to refer to jobs not finished by
PD and which have a relatively small x̂j . That is, jobs of which the optimal infeasible
solution does not schedule too large a portion. Intuitively, the value of such jobs must
be small, because otherwise it would have been beneficial to schedule a larger portion
of them in the optimal infeasible solution. In this sense, these jobs are low-yield and
we will exploit this fact by bounding both components Eλ̃(j) and λ̃j of g(λ̃) by the job
value PD is charged for not finishing j. More formally, this job category is defined as
J2 := { j ∈ J | ỹj = 0 ∧ x̂j ≤ α−α1−α

α−1 }.
Unfinished, High-yield Jobs Correspondingly, the term high-yield jobs refers to jobs finished

by PD and which have a relatively large x̂j . More exactly, these jobs are given by
J3 := { j ∈ J | ỹj = 0 ∧ x̂j > α−α1−α

α−1 }. This proves to be the most challenging case, as
neither do the jobs feature a particularly small value nor does PD invest any energy
into their execution. Instead, we use a mix of the job’s value and the energy spent by
PD during j’s trace to account for its contribution. One has to carefully balance what
portions of Eλ̃(j) and λ̃j to bound by either EPD(j) or by vj .

In accordance with these job categories, we split the value of the dual function by the
corresponding contributions. That is, g(λ̃) =

∑3
i=1 gi(λ̃), where gi(λ̃) = (1−α)

∑
j∈Ji Eλ̃(j)+∑

j∈Ji λ̃j . The following lemmas bound each contribution separately.

I Lemma 9 (Finished Jobs). g1(λ̃) ≥ δEPD + (1− α)δ
α
α−1

∑
j∈J1

EPD(j).

Proof. We have g1(λ̃) = (1−α)
∑
j∈J1

Eλ̃(j) +
∑
j1∈J λ̃j . Using Proposition 8(b) and α > 1

we bound the first summand by (1−α)δ
α
α−1

∑
j∈J1

EPD(j). For the second summand, we get

∑
j∈J1

λ̃j =
∑
j∈J1

N∑
k=1

x̃jkλ̃j =
∑
j∈J1

N∑
k=1

x̃jkδ
∂ Pk
∂x
jk

(x̃1k, . . . , x̃jk, 0, . . . , 0)

= δ

N∑
k=1

∑
j∈J

x̃jk
∂ Pk
∂x
jk

(x̃1k, . . . , x̃jk, 0, . . . , 0) ≥ δ
N∑
k=1
Pk(x̃1k, . . . , x̃nk) = δEPD.

The involved inequality is based on the fact that for any differentiable convex function
f : Rn → R with f(0) = 0 and x ∈ Rn≥0 we have

∑n
j=1 xj

∂f
∂x
j
(x1, . . . , xj , 0, . . . , 0) ≥ f(x)

(see, e.g., [8, Chapter 3]). Together the bounds yield the lemma’s statement. J
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I Lemma 10 (Low-yield Jobs). g2(λ̃) ≥ α−α
∑
j∈J2

vj.

Proof. Proposition 8(a) together with the fact that λ̃j = vj for j ∈ J2 yields Eλ̃(j) = vj
x̂j
α .

Applying this to g2(λ̃) we get

g2(λ̃) =
∑
j∈J2

(1− α)Eλ̃(j) +
∑
j∈J2

λ̃j =
∑
j∈J2

1− α
α

x̂jvj +
∑
j∈J2

vj =
∑
j∈J2

(
1− α− 1

α
x̂j

)
vj

Def.
≥
J2

∑
j∈J2

(
1− α− α1−α

α

)
vj = α−α

∑
j∈J2

vj . J

I Lemma 11 (High-yield Jobs). g3(λ̃) ≥ 1−α
αα

∑
j∈J3

EPD(j) + α−α
∑
j∈J3

vj if δ ≤ 1
αα−1 .

Proof. We make use of both Proposition 8(a) and Proposition 8(c). First note that the
prerequisite δ ≤ 1

αα−1 together with α > 1 and j ∈ J3 gives us the relation δ
1

α−1 ≤ 1
α ≤ 1 ≤

α−α1−α

α−1 < x̂j . This allows us to apply Proposition 8(c). The second summand of g3(λ̃) is
split into two parts, one of which is accounted for by energy invested by PD and the other
one by lost value due to unfinished jobs:

g3(λ̃) =
∑
j∈J3

(1− α)Eλ̃(j) +
∑
j∈J3

λ̃j

=
∑
j∈J3

(1− α)Eλ̃(j) +
∑
j∈J3

(
1− α−α

)
λ̃j +

∑
j∈J3

α−αλ̃j

=
∑
j∈J3

(1− α)Eλ̃(j) +
∑
j∈J3

(
1− α−α

) αEλ̃(j)
x̂j

+
∑
j∈J3

α−αvj

=
∑
j∈J3

(1− α)Eλ̃(j)
(

1− α− α1−α

(α− 1)x̂j

)
+
∑
j∈J3

α−αvj

>
∑
j∈J3

(1− α)δ
α
α−1EPD(j)

(
1− δ

1
α−1

x̂j

)−α(
1− α− α1−α

(α− 1)x̂j

)
+
∑
j∈J3

α−αvj

≥
∑
j∈J3

(1− α)α−α
(

1− 1
αx̂j

)−α(
1− 1

x̂j

)
EPD(j) +

∑
j∈J3

α−αvj

≥ (1− α)α−α
∑
j∈J3

EPD(j) +
∑
j∈J3

α−αvj .

The first inequality applies Proposition 8(c), the penultimate inequality the relations deduced
from the prerequisite, and the last inequality is the application of Bernoulli’s inequality. J

4.4 Deriving the Tight Competitive Ratio

It remains to derive our final upper bound on the competitive ratio of PD. We do so by
combining the bounds from Lemma 9, Lemma 10, and Lemma 11.

I Theorem 3. The competitive ratio of algorithm PD with the parameter δ set to 1
αα−1 is

at most αα. Moreover, there is a problem instance for which PD is exactly by a factor of αα
worse than an optimal algorithm. That is, our upper bound is optimal.
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Proof. If we combine the results from Lemma 9 to Lemma 11 we get

g(λ̃) ≥ α1−αEPD + (1− α)α−α
∑

j∈J1∪J3

EPD(j) + α−α
∑

j∈J2∪J3

vj

≥ α1−αEPD + (1− α)α−α
∑
j∈J

EPD(j) + α−α
∑

j∈J2∪J3

vj

≥
(
α1−α + (1− α)α−α

)
EPD + α−α

∑
j∈J2∪J3

vj = α−α cost(PD).

Now, let OPT denote an optimal schedule for the current problem instance. Moreover, let
OPT′ denote an optimal solution to the relaxed mathematical program (CP). Obviously,
it holds that cost(OPT′) ≤ cost(OPT). By duality, we know that g(λ̃) ≤ cost(OPT′). By
combining these inequalities we can bound PD’s competitiveness by

cost(PD) ≤ ααg(λ̃) ≤ αα cost(OPT′) ≤ αα cost(OPT).

For the lower bound, consider a single processor and assume the job values are high
enough to ensure that PD finishes all jobs. We create a job instance of n jobs in the same
way as done in [3] for the lower bound on OA and AVR. That is, job j ∈ J = { 1, 2, . . . , n }
arrives at time j − 1 and has workload (n− j + 1)−1/α. All jobs have the same deadline n.
Now, whenever one of the jobs arrives, PD schedules all remaining jobs at the energy-optimal
(i.e., minimal) speed as pool jobs. In other words, it computes a schedule that is optimal for
the remaining known work. This is exactly what OA does (hence its name), which means
that we get the same lower bound of αα as for OA (cf. [3, Lemma 3.2]). J

5 Conclusion

We presented a new algorithm and an analysis based on duality theory for scheduling valuable
jobs on multiple speed-scalable processors. Using duality theory to approach the analysis of
energy-efficient scheduling algorithms was recently proposed by Gupta, Krishnaswamy, and
Pruhs [12]. Given that the first formal proof of the original offline algorithm’s optimality was
achieved by means of duality theory using the KKT conditions [4], it seems that this is a
very natural way to approach this kind of problems. However, almost all results for online
algorithms in this area use amortized competitiveness arguments similar to the original proof
of OA’s competitiveness, one of the first and most important online algorithms for energy-
efficient scheduling. While this approach proved to be elegant and very powerful, designing
suitable potential functions is difficult and needs a quite high amount of experience with
the topic. Adapting these potential functions to new model variations and generalizations,
or tuning them to narrow the gap to the known lower bounds is non-trivial and remains a
challenging task. We think that using well-developed utilities from duality theory for convex
programming may prove to be a worthwhile and promising alternative approach. Our results
underline this conjecture, not only improving upon known results proved using the classical
method but also generalizing them to the important case of multiple processors.
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