
Towards a Workload for Evolutionary Analytics

Jeff LeFevre
+∗

Jagan Sankaranarayanan∗ Hakan Hacıgümüş
∗

Junichi Tatemura
∗

Neoklis Polyzotis
+

∗
NEC Labs America, Cupertino, CA

+

University of California Santa Cruz
{jlefevre,alkis}@cs.ucsc.edu, {jagan,hakan,tatemura}@nec-labs.com

ABSTRACT
Emerging data analysis involves the ingestion and explo-
ration of new data sets, application of complex functions,
and frequent query revisions based on observing prior query
answers. We call this new type of analysis evolutionary an-
alytics and identify its properties. This type of analysis is
not well represented by current benchmark workloads. In
this paper, we present a workload and identify several met-
rics to test system support for evolutionary analytics. Along
with our metrics, we present methodologies for running the
workload that capture this analytical scenario.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Performance
attributes

General Terms
Measurement, Performance

Keywords
Databases, big data, workloads, benchmark, metrics, analyt-
ics, Hadoop, data warehouse, query revisions

1. INTRODUCTION
A new analytical landscape has emerged, exemplified by

the popularity of“big data”systems such as Hadoop as well as
the recently added support for big data processing by all ma-
jor data warehouse vendors [8,10]. Data volumes are growing
rapidly and log files are an important data source, e.g., so-
cial media or sensor data. Queries are often exploratory in
nature, and system-facilitated data exploration has been pro-
posed in [4,11,21,24]. Given this scenario, new requirements
for analysis have been noted in [5], including the need to ac-
cess “disparate, decentralized data” [6]. Analysis frequently
includes complex processing methods such as user defined
functions (UDFs), e.g., [2, 9, 15], created by expert users for
domain-specific processing needs.

In this new analytical setting, data analysts and data sci-
entists are becoming increasingly important to businesses [3,
19]. Because analysts are tasked with finding value within
their growing data sources, the speed at which an analyst
can iterate through successive investigations to gain insight
is crucial [12]. To measure system performance, there is a
need for a workload and metrics to capture this emerging
type of analytics. It is important to understand the features
of this new type of workload and effective ways to evaluate
system performance in this space. We term this scenario

evolutionary analytics and identify the following three im-
portant characteristics of evolutionary analytics that are not
captured by existing benchmarks.

1. Query Evolution. Queries are exploratory and evolve over
time. A query may go through multiple evolutions (ver-
sions) whereby an analyst iteratively formulates, tests,
and refines hypotheses during investigation. Query re-
visions appear as a sequence of mutations to the orig-
inal query, and this temporal nature is a key feature.
While traditional interactive OLAP may perform oper-
ations such as roll-up or drill-down to slightly modify the
query, revisions in exploratory analysis can include more
types of changes to the query and a longer sequence of
changes, as we define in Section 3.1. Typical revisions
are minor refinements as well as more significant changes
such as augmented functions, addition (or removal) of
sub-queries, or incorporating new data sources to obtain
richer answers.

2. Data Evolution. Queries may incorporate new data from
external sources such as raw logs or local data files. New
data sources should be easily ingested or accessible for
use during query processing, and these data sources may
have evolving schemas. A formal ETL (extract, trans-
form, load) project for a data warehouse can have a very
high cost in dollars and design time. Enabling access to
diverse data sources via ETL on-the-fly is a key feature
of this new analytical environment.

3. User Evolution. A flexible and accessible system should
enable new users to get started posing queries testing dif-
ferent hypotheses, potentially over old or new data sets.
New users in the system arrive less frequently than query
revisions, and their queries do not closely resemble an-
other user’s queries.

In this paper, we propose a workload with these features
and metrics to test how well a system supports them. Query
response time is a primary metric but it is useful to under-
stand system performance for other metrics as well. For ex-
ample, response time may hide several other system over-
heads, such as the overhead to tune the physical design (if
this happens online as queries get executed) or the cost to
load data (if it has to be ETL’ed on-the-fly). By separating
out these overheads in different metrics, we can see where
each system excels and also understand how to develop hy-
brid systems that combine their best features.

Figure 1 shows our proposed metrics as dimensions (al-
though not completely orthogonal). Query response time
indicates how quickly analysts can arrive at answers when
testing hypotheses. Tuning overhead represents the time ex-

ar
X

iv
:1

30
4.

18
38

v3
 [

cs
.D

B
]

 2
7

Ju
n

20
13

Tuning
Overhead
(seconds)

Query
Response Time (seconds)

Cost ($)

Storage (TB) Data Arrival to
Query Time (seconds)

Hadoop
DW

Figure 1: System metrics for evolutionary analytics

pended for physical design tuning, i.e., creating indexes and
materialized views, to improve query processing speed. Data
arrival to query time indicates the time until newly arrived
data is query-able. Storage in terabytes indicates the over-
head for all data and auxiliary data structures (indexes and
views). Cost in dollars represents the system cost to process
the workload. Along each dimension, we indicate the rela-
tive performance of a traditional data warehouse (dw) and
a Hadoop system. This illustration shows how to compare
and contrast different systems using our proposed metrics.
We present experimental results for four data systems using
these metrics in Section 4.

In this paper we make the following contributions.

• We define evolutionary analytics along with our notions
of query evolution, data evolution, and user evolution,
and introduce a workload with these properties.

• We propose relevant metrics for evolutionary analytics
and describe their tradeoffs.

• We show how metrics can be used to guide the design of
hybrid systems that target the best features of specialized
processing engines.

2. WORKLOAD CHARACTERISTICS AND
SYSTEM METRICS

In this section we first describe our workload properties
and contrast with other benchmarks, then we describe our
metrics to test system support for evolutionary analytics and
highlight the various tradeoffs for each metric.

2.1 Workload Characteristics
Data analysis queries dealing with low-structured or log

data must often perform data extraction tasks as well as an-
alytical tasks, including the application of machine learning
algorithms. Some recent examples of such queries are given
in [18, 22]. These queries reference Twitter data and static
data such as IMDB or historical business sales data. They
use several UDFs which perform sentiment analysis and clas-
sification tasks. One query infers movie rating trends for two
consecutive months, and the other computes the impact of a
marketing campaign in different sales regions. These queries
are representative of current data processing tasks.

Given our previously described workload needs and exam-
ples from recent data analysis tasks, we determine the fol-
lowing desirable characteristics for the query workload of the
benchmark.

• Significant query complexity, including common UDFs,
performing non-trivial analysis tasks to gain insights and
find value within unproven data sources.

• Several successive versions for each query, representing

data exploration during hypothesis testing and query re-
finement.

• Access realistic data sets during query processing. These
should include raw logs and static/historical data sets.

Current analytical benchmarks such as TPC-H and TPC-
DS [25] do not adequately capture this type of analytical
workload. For instance, TPC-DS queries focus on known
data and known reporting tasks, with a carefully designed,
fixed schema for a data warehouse. This is not always pos-
sible in the current analytical scenario, as the use-case may
not afford the up-front, top-down design of a traditional data
warehouse. In contrast to query evolution where a query goes
through an ordered sequence of mutations, the set of report-
ing queries in TPC-DS represent independent tasks where
the ordering of one query is not dependent on the previously
executed query. In contrast to data evolution, TPC-DS main-
tenance workloads reflect table inserts from its counterpart
OLTP database, but they do not reflect a growing log or
arrival of a new data source.

2.2 System Metrics
We propose the following metrics to evaluate a system for

evolutionary analytics.

Query response time. Query performance is a key metric
of the benchmark, and measures total workload execution
time. This metric serves as the primary indicator of how
well a system is able to support the workload features and
process the workload efficiently.

Tuning overhead. Physical design tuning can greatly im-
prove query performance. Tuning might be considered offline
during a system maintenance window or online during work-
load processing. This metric reports the cumulative time
spent on tuning, which is the time spent to run a tuning tool
and the time to materialize all indexes and views.

Data arrival to query time. This metric reports the time
until newly arrived data is available to query. Data prepa-
ration is an atomic operation that enables the data to be
accessed by a query. This may include the schema definition
such as a create table statement and a load operation.

Storage size. This metric indicates the total storage re-
quired in terabytes. Total storage includes that required for
all base data, and all indexes and materialized views. Stor-
age size can be asymmetrical even for base data, considering
some systems replicate data by design (e.g., Hadoop).

Monetary cost. This metric indicates the total system cost
for query processing and data storage. For simplicity, in this
work we use dollar cost to include only machine time and
storage cost. A better cost metric could be total cost of
ownership (TCO), which includes system administration cost
as well as hardware cost. The cost metric can guide tradeoffs
that are tolerable for a given environment, i.e., exploratory
analysis where return on investment may not be known.

2.2.1 Metric tradeoffs
Our metrics can be used to understand the various trade-

offs to consider for system design. Previous studies [20] have
considered load times and query response time. Here we in-
troduce additional metrics and show how they interact with

each other. Clearly response time interacts with all of the
other metrics of data loading, physical design tuning, stor-
age space, and cost. Reducing response time can be achieved
through a combination of tradeoffs among the other metrics.

For example, tuning overhead impacts both query response
time and storage size. A good physical design can consume
multiple times the size of the base data, but may reduce
workload cost dramatically. Due to their size, the choice of
indexes and views will also appear as a tradeoff along the
storage metric. Loading may require data cleaning, trans-
formation, and copying/storing the data, which is a typical
ETL task in a data warehouse. In contrast, using Hive [24]
requires only the schema definition to be provided before a
query can access the data. This presents a tradeoff between
query response time and data load time.

The cost metric leads to interesting tradeoffs for sys-
tem design. In particular, the advent of the cloud en-
ables pay-as-you-go performance, allowing for a rich set of
choices for query processing. For example, Hadoop [1, 7],
databases [1,16], and recently even petabyte-scale data ware-
houses (e.g.,Redshift [1]) are all available on-demand. More-
over, a mixture of systems may be used for query processing
as we show later in Section 4.2.

The importance of each metric may be weighed differently
for a particular environment. The purpose of including all
five of them is to help understand the impact of various trade-
offs in order to guide system design. Next we describe the
specifics of our workload and how to evaluate system perfor-
mance using these metrics.

3. THE WORKLOAD
Our workload considers 8 hypothetical analysts who write

queries for marketing scenarios involving restaurants using
social media data and static data. For social media data we
use a sample of the Twitter data stream and user check-in
data from Foursquare. For static data we include a Land-
marks data set (landmark locations). Each analyst poses
one query which is then revised multiple times. There are
4 versions of each query, representing the original query and
3 subsequent revisions. Next we define the types of changes
allowed for each revision, and then provide a workload that
uses these changes.

3.1 Query building blocks
Queries that evolve during exploratory data analysis may

follow certain patterns of common changes. As an analyst
revises a query, she may tweak the selectivity to produce
greater or fewer answers, include additional data sources for
stronger evidence of hypothesis, add a UDF to perform a spe-
cialized processing function, or refine the results by including
or removing a query sub-goal as more is learned about the
data after each query revision.

To make these changes concrete, we evaluated complex an-
alytical queries from several sources to find evidence of the
manner in which queries evolve. The TPC-DS [25] workload
includes 4 interactive OLAP queries that go through 2 revi-
sions each. Taverna [23] queries on MyExperiment [17] are
scientific queries that retain all of their revisions. Each of
the top 10 most-downloaded Taverna queries had 2–11 revi-
sions. Yahoo! Pipes [26] has many versions of user queries
over open-access web data, with more than 99 data sources.
Queries in Pipes are easily clone-able and modified by any
user, and in one instance we observed a query with more

than 49 revisions. These observations suggest that queries in
evolutionary analytics typically go through several revisions.

Specifically, we commonly observed the following 4 types
of changes during query revisions from a sampling of [23,25,
26]. We note these changes are not mutually exclusive nor
exhaustive but representative.

(U) (P)

more

less

(G) (L)

LOG1 LOG2

Figure 2: Dimensions of change for query revisions
(P) Parameters: The query parameters are modified to

obtain slightly different results (Figure 2P). For example, the
analyst may alter a selection predicate or a top-k value to
allow more or less data in the output.

(L) Logs: An analyst may make use of an additional data
source in the query to obtain richer results (Figure 2L).

(U) UDFs: An analyst may add or replace a set of opera-
tions in the query with a specialized UDF.

(G) Sub-Goals: Typically, an analyst writes several sub-
queries that each achieves a single goal and then joins these
to obtain the final output (Figure 2G). A revision may add
or remove a sub-goal.

These four dimensions {P,L,U,G} serve as our evolving
query building blocks. For each query revision, the changes
are expressed by one or more of these dimensions.

3.2 Queries
We give a high-level description of each query scenario in

Table 1 left column, and the right column specifies the change
from one version to the next in terms of our query building
blocks. For instance, let Q represent the analyst’s first ver-
sion of the query. Then each subsequent version (i.e., 2,3,4) is
represented by indicating the dimensions that were changed
during each revision in the following way:

Q→ {P,L,G} → {P} → {P,G} (1)

To illustrate this process, we start with Example 1 as the
first version of Analyst 1’s query in Table 1. This version is
indicated by Q above. Analyst 1 first desires to find users
who like wine, are affluent, and have many good friends.

Example 1. (a): EXTRACT user from Twitter log.
Apply UDF-CLASSIFY-WINE-SCORE on each user tweet
to obtain a wine-score. Groupby user, compute a wine-
sentiment-score for each user.

(b): From Twitter log, apply UDAF-CLASSIFY-
AFFLUENT on tweets to classify a user as affluent or not.

(c): From Twitter log, create social network between every
user pair using tweet source and dest. GROUPBY user pair
in social network, count tweets. Assign friendship-strength-
score to each user pair.

JOIN (a),(b), and (c). Threshold based on wine-sentiment-
score, friendship-strength-score.

Next the analyst wants to find more evidence that the
user likes wine. She revises the query by changing {P,L,G},
adding two new data sources {L} (Foursquare and Land-
marks), a new sub-goal {G} that computes a checkin-count
for users who go to wine places, and decreases the threshold
parameter {P} for wine-sentiment-score since she will have
evidence a user likes wine from 2 data sources. Example 2
below describes version 2 of the query.

Table 1: Eight analyst marketing scenarios, along with the dimensions modified during each of the 4 evolutions
Analyst1 wants to identify a number of “wine lovers” to send them a coupon for a new wine
being introduced in a local region. This evolution investigates ways of finding suitable users to
whom sending a coupon would have the most impact.

Q → {P,L,G} → {P} → {P,G}

Analyst 2 wants to find influential users who visit a lot of restaurants for inclusion in an adver-
tisement campaign. The evolution of this scenario will focus on increasingly sophisticated ways
of identifying users who are “foodies”.

Q → {L,U,G} → {P,G} → {P,G}

Analyst3 wants to start a gift recommendation service where friends can send a gift certificate
to a user u1. We want to generate a few restaurant choices based on u1’s preferences and his
friend’s preferences. The evolution in this scenario will investigate how to generate a diverse set
of recommendations that would cater to u and his close set of friends.

Q → {P,G} → {P,L,G} → {G}

Analyst4 wants to identify a good area to locate a sports bar. The area must have a lot of
people who like sports and check-in to bars, but the area does not already have too many sports
bars in relation to other areas. The evolution focuses on identifying a suitable area where there
is high interest but a low density of sports bars.

Q → {U,G} → {L,U,G} → {U,G}

Analyst5 wants to give restaurant owners a customer poaching tool. For each restaurant r, we
identify customers who go to a “similar” restaurant in the area but do not visit r. The owner
of r may use this to target advertisements. The evolutionary nature focuses on determining
“similar” restaurants and their users.

Q → {L,G} → {L,U} → {P,G}

Analyst6 tries to find out if restaurants are losing loyal customers. He wants to identify those
customers who used to visit more frequently but are now visiting other restaurants in the area
so that he can send them a coupon to win them back. The evolutionary nature of this scenario
will focus on how to identify prior active users.

Q → {L,G} → {P,G} → {P,G}

Analyst7 wants to identify the direct competition for poorly-performing restaurants. He first
tries to determine if there is a more successful restaurant of similar type in the same area. The
evolutionary nature focuses on identifying good and bad restaurants in an area, as well as what
customers like about the menu, food, service, etc. about the successful restaurants in the area.

Q → {L,G} → {G} → {U,G}

Analyst8 wants to recommend a high-end hotel vacation in an area users will like based on their
known preferences for restaurants, theaters, and luxury items. The evolutionary nature focuses
on matching user’s preferences with the types of businesses in an area.

Q → {L,G} → {U,G} → {P,L, U,G}

Example 2. (d): EXTRACT from Foursquare log. For
each checkin, obtain the user and restaurant name. Using
the Landmarks data, filter by checkin to places of type wine-
bar. Groupby user, compute checkin-count.

(e): Decrease wine-sentiment-score threshold
JOIN (a),(b),(c) and (d). Threshold based on new wine-

sentiment-score in (e), friendship-strength-score.

Query versions 3 and 4 are revised similarly but are omit-
ted due to lack of space. A detailed description of all queries
is provided in the extended version [14].

4. RUNNING THE BENCHMARK
We now present our benchmark methodology for query

evolution, user evolution, and data evolution and we show
an example of benchmark results. We consider the initial
system state to be idle, with no previously loaded data or
executed queries.

4.1 Benchmark methodology

Query evolution. This test will use all analysts 1–8 and all
query versions from each analyst. (1) From initial system
state, execute analyst 1 query versions 1 through 4 in suc-
cession, returning to initial system state before each version.
(2) From initial system state, execute analyst 1 query ver-
sions 1 through 4 in succession, without returning to initial
system state before each version. Compare metrics from (1)
and (2), and repeat for each remaining analyst. This com-
parison highlights a system’s ability to process any repeating
tasks from the same user.

User evolution. This test will use all analysts 1–8 but only
version 1 of each analyst’s query. First, assume some order
of analysts 1–8. (1) From initial system state, execute each
analyst’s query in the chosen order, returning to initial sys-
tem state before each query. (2) From initial system state,

execute each analyst’s query in the chosen order, without re-
turning to initial system state before each query. Compare
metrics from (1) and (2). This comparison highlights a sys-
tem’s ability to process similar tasks from different users.

Data evolution. This test will use a single data source, e.g.,
Twitter log, and the subset of data requested in the first
step should be a number of columns equal to half of the total
number of columns in the log schema. The columns should be
randomly chosen each time. (1) From an initial system state,
an analyst requests a subset of data from a new data source.
(2) An analyst requests one additional attribute from the
data source in (1), in each successive version of the query. (3)
A new analyst requests a subset of data previously accessed
by the analyst in (1). (4) Repeat (1), (2), (3) returning to the
initial state after each query. Compare metrics from (1), (2),
(3) with (4). This comparison highlights a system’s ability
to access subsets of data from a new data source on demand.

4.2 Example benchmark results
Next, we briefly show a sample reporting on the relative

performance of four data systems using our workload and
metrics for a user evolution scenario. The experimental setup
consists of 9 nodes running a widely used commercial parallel
data warehouse (DW) and 14 nodes running Hadoop. The
ratio of Hadoop nodes to DW nodes is 1.5×. The DW and
Hadoop clusters are independent, and nodes are connected
with 1 GbE. Each node has two 2.4 GHz xeon CPUs and
a local 2 TB disk. In this test, our data includes a 1 TB
Foursquare log, a 1 TB Twitter log and 12 GB Landmarks
log. We use Hive [24] to execute our queries on the Hadoop
system. Since all systems utilize the base data stored in
Hadoop, we omit this from the storage metric.

Figure 3 reports the results for the user evolution scenario.
HADOOP corresponds to a Hadoop-only execution of the
query. DW executes the query on the DW but uses Hadoop
as an ETL tool to extract the subset of data required by the

 100

 1000

 10000

 100000

H
AD

O
O
P

D
W

M
V-H

D
P

M
S

Q
u
e
ry

 T
im

e
 (

s
e
c
s
)

 0

 10000

 20000

 30000

 40000

 50000

 60000

H
AD

O
O
P

D
W

M
V-H

D
P

M
S

L
o
a
d
 T

im
e
 (

s
e
c
s
)

0 0
 0

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

H
AD

O
O
P

D
W

M
V-H

D
P

M
S

T
u
n
in

g
 T

im
e
 (

s
e
c
s
)

0 0
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260

H
AD

O
O
P

D
W

M
V-H

D
P

M
S

C
o
s
t
($

)

 0.01

 0.1

 1

 10

H
AD

O
O
P

D
W

M
V-H

D
P

M
SA

d
d
it
io

n
a
l
S

to
ra

g
e
 (

T
B

)

0

Figure 3: Figure shows a sample reporting of 4 data systems on a user evolution scenario

query. MV-HDP corresponds to a system that we developed
in [13] that rewrites Hadoop queries based on opportunistic
materialistic views left behind from prior execution runs. MS
is an implementation of a multi-store query optimizer (sim-
ilar to [22]) that uses both Hadoop and a data warehouse
together to execute each query. For MS, the load time refers
only to the time to move and then load data on-the-fly from
HADOOP to DW after partial execution in HADOOP.

It can be seen from the figure that reporting on the 5 met-
rics exposes their tradeoffs, which are not easily captured
when reporting just on the query execution time. Since
Hadoop performs ETL on the fly, query performance is quite
poor compared to the DW. On the other hand, the superior
performance of the DW is offset by the high cost of loading
the data into the data warehouse. Both MV-HDP and MS
show tradeoffs that reduce query response time. HADOOP
and MV-HDP do not incur any tuning overhead whereas DW
and MS require a tuning phase to provide good performance.
We used Amazon EC2 and Redshift [1] pricing to approxi-
mate the dollar cost of the machines and storage (using cost
for machines similar to those in our in-house clusters). The
cost values show that HADOOP is far cheaper than DW while
MS is cheaper than both, and MV-HDP has the lowest cost.
Finally, it can be seen that MV-HDP incurs a significant stor-
age overhead by retaining results as opportunistic views from
all the prior executions runs. The tradeoff with storage size
improves query response time compared to HADOOP.

5. DISCUSSION
In the new analytical space, the key question is how to

design systems to address emerging needs. The continued
popularity of Hadoop and data warehouses notwithstanding,
these are only suitable when the required use-case matches
either of their starkly different characteristics. One focuses
on being able to query the data right away, tolerating lesser
performance. The other focuses on performance at the ex-
pense of significant delay in being able to query the data.
These systems represent two ends of a spectrum, and the
influx of so many new data processing systems shows that
these two distinct choices are not meeting all current needs.

In this paper, our metrics highlight the tradeoffs among
many design choices and the metrics can be used to guide
system development. For example, we show 2 systems that
remedy one dimension by shifting the tradeoff with another
dimension. With MV-HDP we show that increased storage
leads to better performance than Hadoop. With MS we show
that one can remedy the loading time of a data warehouse
to an extent by sacrificing some of DW performance. An
interesting further research direction is to leverage the best
properties of several systems to create hybrid systems.

6. REFERENCES
[1] Amazon Web Services (EC2, RDS, Redshift).

http://aws.amazon.com/.
[2] Apache Mahout. http://mahout.apache.org/, 2010.
[3] D. Bowie. Do you need a data scientist? CIO, Sept. 2012.

[4] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
SSDBM, 2009.

[5] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton. MAD Skills: new analysis practices for big data.
VLDB, 2(2):1481–1492, 2009.

[6] M. Franklin, A. Halevy, and D. Maier. From databases to
dataspaces: a new abstraction for information management.
ACM Sigmod Record, 34(4):27–33, 2005.

[7] Google Compute Engine.
https://cloud.google.com/products/compute-engine.

[8] T. Groenfeldt. Big data knows you, even if you don’t know
big data. Forbes, Nov. 2011.

[9] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li,
et al. The MADlib analytics library: or MAD skills, the
SQL. VLDB, 5(12):1700–1711, 2012.

[10] D. Henschen. IBM beats Oracle, Microsoft with big data
leap. InformationWeek, Oct. 2011.

[11] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon,
and D. Suciu. A case for a collaborative query management
system. In CIDR, 2009.

[12] S. LaValle, E. Lesser, R. Shockley, M. Hopkins, and
N. Kruschwitz. Big data, analytics and the path from
insights to value. MIT Sloan Management Review,
52(2):21–32, 2011.

[13] J. LeFevre, J. Sankaranarayanan, H. Hacıgümüş,
J. Tatemura, and N. Polyzotis. Exploiting opportunistic
physical design in large-scale data analytics. CoRR, 2013.

[14] J. LeFevre, J. Sankaranarayanan, H. Hacıgümüş,
J. Tatemura, and N. Polyzotis. Towards a workload for
evolutionary analytics. CoRR, 2013.

[15] LinkedIn. http://data.linkedin.com/opensource/datafu,
2011.

[16] Microsoft Windows Azure. http://www.windowsazure.com/.
[17] MyExperiment. http://myexperiment.org/workflows.
[18] H. Park, R. Ikeda, and J. Widom. RAMP: A system for

capturing and tracing provenance in MapReduce workflows.
VLDB, 4(12), 2011.

[19] D. Patil. Building Data Science Teams. O’Reilly, 2011.
[20] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,

S. Madden, and M. Stonebraker. A comparison of
approaches to large-scale data analysis. In SIGMOD, 2009.

[21] T. Sellam and M. Kersten. Meet Charles, big data query
advisor. In CIDR, 2013.

[22] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal.
Optimizing analytic data flows for multiple execution
engines. In ICDE, pages 829–840, 2012.

[23] Taverna Workflow Management System.
http://www.taverna.org.uk.

[24] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain,
J. Sen Sarma, R. Murthy, and H. Liu. Data warehousing
and analytics infrastructure at facebook. In SIGMOD, 2010.

[25] Transaction Processing Peformance Council. www.tpc.org.
[26] Yahoo! Pipes. http://pipes.yahoo.com.

7. QUERY DESCRIPTIONS
In this section we describe each of the queries. These

queries use three datasets: a Twitter data stream of user
tweets, a Foursquare (4SQ) data stream of user checkins, and
a Landmarks log of locations and their types. The identity of
users is common across the Twitter and 4SQ logs, while iden-
tity of locations is common across the 4SQ and Landmarks
logs. All logs are stored as json text.

We present 8 Analyst’s queries with 4 versions each. For
each analyst, we state a high-level goal of what the analyst
is trying to achieve, as well as 4 query versions toward the
stated goal. Each query version modifies the previous ver-
sion. For each query, we describe the task rather than pro-
vide an implementation in particular language since many
are possible, e.g., SQL, HiveQL, Pig, Java, etc.

During a typical exploration, and analyst may spend a
lot of time identifying the data distribution to get an un-
derstanding of where the density and sparsity lies. For this
reason, the queries below have parameters indicated by an
underline that an analyst would modify in order to obtain a
representative answer set. Choosing an appropriate value or
interpretation of the underlined parts of the queries is a nec-
essary step an analyst performs. This may require a trial and
error process resulting in additional versions of the queries.
We leave these values unspecified as they are a function of
the real-world datasets used.

Finally, it is important to note that the queries are not rigid
interpretations of a goal, but rather one approach toward an-
swering a question. For example, there may be several ways
to interpret what it means to be “good” friends in a social
network. Furthermore, even for a particular interpretation,
there may be several ways to express it as a query. Hence,
other variations of a query are possible.

User Defined Functions referenced by queries
The following queries reference multiple UDFs, for which
we provide a brief description below. Text classifiers can
be implemented using a bag-of-words method. For exam-
ple, classes such as coffee-drinker may include the words
(coffee, espresso, latte, french press) while wine-lover may
include (cabernet, vineyard, merlot, chardonnay). By accept-
ing a bag of words as an argument, these UDFs are easily
reusable. However, this does not exclude other classification
methods. UDAFs perform a groupby on a key and apply
similar classification on the elements of a group.

1. UDF-CLASSIFY-WINE-SCORE: Input is text and out-
put is wine-score indicating a strong presence of wine-
terms.

2. UDF-CLASSIFY-FOOD-SCORE: Input is text and out-
put is food-sentiment-score indicating a strong presence
of food-terms.

3. UDF-GRID-CELL: Input is lat-lon coordinates and grid
resolution, and output is a grid-cell number.

4. UDF-CLASSIFY-BEER-SCORE: Input is text and out-
put is beer-score indicating a strong presence of beer-
terms.

5. UDF-MENU-SIMILARITY: Input is two lists of menu
items and output is a score indicating the similarity of
the lists.

6. UDF-NLP-ENTITITY-SENTIMENT: Input is text and
output is the entities extracted from the text with a
sentiment-score for each entity.

7. UDF-CLASSIFY-LUXURY-SCORE: Input is text and
output is a binary value indicating if the text concerns
luxury items.

8. UDF-SENTIMENT: Input is text and output is a
sentiment-score expressing positive or negative sentiment
with the score indicating the strength of the sentiment.

9. UDAF-CLASSIFY-AFFLUENT: Input is all text from a
given user and output is a binary value indicating if the
user is affluent or not.

10. UDAF-CLASSIFY-SPORTS: Input is all text from a
given user and output is a binary value indicating if the
user is interested in sports or not.

7.1 Analyst 1
Analyst1 wants to identify a number of “wine lovers” to

send them a coupon for a new wine being introduced in a local
region. This evolution investigates ways of finding suitable
users to whom sending a coupon would have the most impact.

7.1.1 Analyst 1, Version 1

• Analyst goal: Find users that like wine, have strong
friendships, and are affluent.

• Query: From Twitter, apply UDF-CLASSIFY-WINE-
SCORE on each user’s tweets and groupby user to pro-
duce wine-sentiment-score for each user. Threshold on
wine-sentiment-score above x1.

From Twitter, compute all pairs 〈u1, u2〉 of users that
communicate with each other, assigning each pair a
friendship-strength-score based on the number of times
they communicate. Threshold on friendship-strength-
score above x2.

From Twitter, apply UDAF-CLASSIFY-AFFLUENT on
users and their tweets.

Join results by user.

7.1.2 Analyst 1, Version 2

• Analyst goal: Next, consider users to be wine-lovers if
they checkin to many wine places.

• Query: From previous version, reduce wine-sentiment-
score threshold to x′2 since now there will be additional
evidence a user likes wine.

From 4SQ, identify places that users checkin. Join with
places in Landmarks. Select users that checkin to places
of type wine-bar. For each user, count the number of
checkins. Threshold on checkin-count above x3.

Join these with users from previous version.

7.1.3 Analyst 1, Version 3

• Analyst goal: Now find users that are also in the San
Francisco area as well as prolific on Twitter.

• Query: From previous version, select users local to San
Francisco. Threshold on tweet-count above x4. Adjust
x1, x2, x3 appropriately to produce “enough” answers.

7.1.4 Analyst 1, Version 4

• Analyst goal: Finally, require that a user’s friends must
also visit wine-places.

• Query: For user pairs 〈u1, u2〉, threshold on u2 checkin-
score above x5. For each user u1, count the number of
friends with checkin-count above threshold. Retain u1

if count above x6. Join these with users from previous
version.

7.2 Analyst 2
Analyst 2 wants to find influential users who visit a lot of

restaurants for inclusion in an advertisement campaign. The
evolution of this scenario will focus on increasingly sophisti-
cated ways of identifying users who are “foodies”.

7.2.1 Analyst 2, Version 1

• Analyst goal: Find users who frequently visit restaurants.

• Query: From 4SQ, identify places that users checkin. Join
with places in Landmark log. Select users that checkin to
places of type restaurant. For each user, count the num-
ber of times they checkin to a place of type restaurant.
Compute the normalized-count based on the maximum
count across all users. Threshold on normalized-count
above x1.

7.2.2 Analyst 2, Version 2

• Analyst goal: Additionally, user also likes food if they
talk positively about food.

• Query: From Twitter, apply UDF-CLASSIFY-FOOD-
SCORE on each user’s tweets and groupby user to pro-
duce food-sentiment-score for each user. Threshold on
food-sentiment-score above x2.

Join these users with users in previous version.

7.2.3 Analyst 2, Version 3

• Analyst goal: Further define that a user likes food if they
dine at many different types of restaurants.

• Query: Revise previous version by counting the number
of times a user has visited each distinct type of restaurant.
Select users who have visited x3 distinct restaurant types
at least x4 times.

7.2.4 Analyst 2, Version 4

• Analyst goal: Finally, require that these users do not
frequently visit restaurants with low ratings.

• Query: From previous version, compute the percentage of
each user’s checkins to restaurants with ratings less than
x5. Threshold on percent below x6.

7.3 Analyst 3
Analyst3 wants to start a gift recommendation service

where friends can send a gift certificate to a user u. We
want to generate a few restaurant choices based on u’s pref-
erences and u’s friend’s preferences. The evolution in this
scenario will investigate how to generate a diverse set of rec-
ommendations that would cater to u, and u’s close set of
friends.

7.3.1 Analyst 3, Version 1

• Analyst goal: For each user u, identify those restaurants
that u’s good friends frequently visit.

• Query: From Twitter, compute all pairs 〈u1, u2〉 of users
that communicate with each other, assigning each pair a
friendship-strength-score based on the number of times
they communicate. Threshold on friendship-strength-
score above x1.

From 4SQ, identify places that users checkin. Join with
places in Landmarks. Select users that checkin to places
of type restaurant.

For each user u1, find all the restaurants that her friends
u2 have visited. For each restaurant, count the number
of checkins. Threshold on count above x2.

7.3.2 Analyst 3, Version 2

• Analyst goal: Next, only consider users that have friends
in the same area as well as other friends in common.

• Query: Revise the previous version by redefining what it
means to be good friends. From Twitter, recompute all
pairs 〈u1, u2〉 of users that live in the same area, and have
a friendship-strength-score above x3. Additionally, a user
pair 〈u1, u2〉 are said to be good friends if they have more
than x4 friends in common.

7.3.3 Analyst 3, Version 3

• Analyst goal: Next, identify only those restaurants that
are the same type as a user’s favorite restaurant.

• Query: From 4SQ, for each user u1, find favorite restau-
rant type by counting the number of checkins to each
restaurant, and select the restaurant with the max num-
ber of checkins as u1’s favorite restaurant r.

Join with Landmarks to obtain r’s type.

From the previous version, select only those restaurants
for u1 that belong to the same type as u1’s favorite type.

7.3.4 Analyst 3, Version 4

• Analyst goal: Finally, find additional restaurants that are
similar to those visited by a user’s friends.

• Query: From 4SQ, for all restaurant pairs 〈r1, r2〉, count
the number of users that have visited both restaurants.
Threshold on count above x5. All remaining pairs 〈r1, r2〉
are considered to be similar since they have many com-
mon customers. For each user u1, suggest r2 if r1 is a
restaurant frequently visited by u1’s friends.

7.4 Analyst 4
Analyst4 wants to identify a good area to locate a sports

bar. The area must have a lot of people who like sports and
check-in to bars, but the area does not already have too many
sports bars in relation to other areas. The evolution focuses
on identifying a suitable area where there is high interest but
a low density of sports bars.

7.4.1 Analyst 4, Version 1

• Analyst goal: Find users who like beer and where they
live.

• Query: From 4SQ, identify users and their location that
frequently mention the word “beer” in their text. For
each user, count the occurrences of the word. Threshold
on count above x1.

7.4.2 Analyst 4, Version 2

• Analyst goal: Next, find areas where there are many beer
lovers.

• Query: From the previous version, use UDF-GRID-CELL
to map user locations to a grid cell. Count number of
users in each grid cell. Threshold on count above x2.

7.4.3 Analyst 4, Version 3

• Analyst goal: Next, find areas with many users that like
beer and sports but do not have many sports bars.

• Query: From Twitter, apply UDAF-CLASSIFY-
SPORTS on users and their tweets. Then apply a UDF-
CLASSIFY-BEER-SCORE to better identify users that
like beer, and produce a beer-score for each user. Join
sports and beer users. Threshold on beer-score above
x3. Next, apply UDF-GRID-CELL to map user locations
to a grid cell. Count number of users in each grid cell.
Threshold on count above x4.

From Landmarks, obtain restaurant name, type and lo-
cation. Select places that are type equal to sports bar.
Next, apply UDF-GRID-CELL to map place locations to
a grid cell. Count number of restaurants in each grid cell.
Threshold on count below x5.

Join grid cells from user locations and sports bar loca-
tions.

7.4.4 Analyst 4, Version 4

• Analyst goal: Finally, find area with high user interest
but few popular sports bars relative to the number of
users.

• Query: From 4SQ, identify places that users checkin.

Join with places in Landmarks. Select places that are
type equal to sports bar. For each place, count the num-
ber of checkins. Threshold on count above x6.

Next, apply UDF-GRID-CELL to map place locations to
a grid cell. Count the number of places per grid cell.

Join this with the grid cells from previous version.
Threshold on ratio of user to sports bars count above
x7.

7.5 Analyst 5
Analyst5 wants to give restaurant owners a customer

poaching tool. For each restaurant r, we identify customers
who go to a “similar” restaurant in the area but do not visit
r. The owner of r may use this to target advertisements. The
evolutionary nature focuses on determining “similar” restau-
rants and their users.

7.5.1 Analyst 5, Version 1

• Analyst goal: Find similar restaurants based the overlap
of users that checkin to each place.

• Query: From 4SQ, for all restaurant pairs 〈r1, r2〉, count
the number of users that have visited both restaurants.
Threshold on count above x1.

7.5.2 Analyst 5, Version 2

• Analyst goal: Next, find restaurants that are similar as
indicated by a user or the user’s friends frequently visiting
the same places.

• Query: From Twitter, compute all pairs 〈u1, u2〉 of users
that communicate with each other, assigning each pair a
friendship-strength-score based on the number of times
they communicate. Threshold on friendship-strength-
score above x2.

From 4SQ, for all restaurant pairs 〈r1, r2〉, count the num-
ber of users that have visited both restaurants, as well as
the number of times a user u1 has visited r1 and one of

their friends u2 has visited r2. Threshold on count above
x3.

7.5.3 Analyst 5, Version 3

• Analyst goal: Next, find restaurant pairs that are also
similar based on the similarity of their menus.

• Query: From Landmarks, create restaurant pairs 〈r′1, r′2〉
that have the same zip code and type. For each
pair, apply UDF-MENU-SIMILARITY to obtain menu-
similarity-score. Threshold on menu-similarity-score
above x4.

Join pairs 〈r′1, r′2〉 with pairs 〈r1, r2〉 from the previous
version.

7.5.4 Analyst 5, Version 4

• Analyst goal: Finally, find users that visit one restaurant
but not a similar restaurant.

• Query: From 4SQ, for each restaurant r, identify the users
that have visited r and the count of times they have vis-
ited. For each restaurant pair 〈r1, r2〉 from the previous
version, select users u that have visited r1 more than x5

times and visited r2 less than x6 times.

7.6 Analyst 6
Analyst6 tries to find out if restaurants are losing loyal

customers. He wants to identify those customers who used
to visit more frequently but are now visiting other restaurants
in the area so that he can send them a coupon to win them
back. The evolutionary nature of this scenario will focus on
how to identify prior active users.

7.6.1 Analyst 6, Version 1

• Analyst goal: For each restaurant, identify other restau-
rants with the same zip code and type that are less pop-
ular.

• Query: From Landmarks, create restaurant pairs 〈r1, r2〉
that have the same zip code and type, and r2 has a much
lower checkin count than r1.

7.6.2 Analyst 6, Version 2

• Analyst goal: Now, identify restaurants that have lately
become less popular.

• Query: From 4SQ, identify places that users checkin.

Join with places in Landmarks that have type restau-
rant. For each restaurant, compute the average number
of checkins per month in the last x1 months and the num-
ber of checkins in the last 1 month.

Threshold on the ratio of recent checkins to historical
average checkins below x2.

7.6.3 Analyst 6, Version 3

• Analyst goal: Next, find users that stopped visiting those
restaurants.

• Query: For restaurant r identified as becoming less pop-
ular in the previous version, and a user u that visited r,
compute the average number of checkins per month by
user u in the last x3 months and the number of check-
ins by user u in the last 1 month. Compute the ratio of
recent checkins to historical average checkins

Threshold on ratio below x4.

7.6.4 Analyst 6, Version 4

• Analyst goal: Finally, find users that no longer frequent
a particular restaurant but still visit other restaurants in
the same area.

• Query: From 4SQ, for each user u, count the number of
checkins by zip code. Threshold on count above x5.

For each less popular restaurant r identified in previous
version, retain u only if u still frequently visits restaurants
in the same zip code as r.

7.7 Analyst 7
Analyst7 wants to identify the direct competition for

poorly-performing restaurants. He first tries to determine
if there is a more successful restaurant of similar type in the
same area. The evolutionary nature focuses on identifying
good and bad restaurants in an area, as well as what cus-
tomers like about the menu, food, service, etc. about the
successful restaurants in the area.

7.7.1 Analyst 7, Version 1

• Analyst goal: For each zip code, identify good and bad
restaurants.

• Query: From Landmarks, identify places that are restau-
rants, and apply UDF-SENTIMENT on the restaurant
comments to obtain a sentiment-score. For each zip code,
retain restaurants with sentiment-score above x1 or below
x2 as good and bad restaurants.

7.7.2 Analyst 7, Version 2

• Analyst goal: Next, refine the discrimination of restau-
rants as good and bad based on their popularity.

• Query: From 4SQ, obtain the checkin count for every
restaurant.

Threshold on count above x3. Join with the good restau-
rants from the previous version.

Threshold on count below x4. Join with the bad restau-
rants from the previous version.

7.7.3 Analyst 7, Version 3

• Analyst goal: Further discriminate restaurants as good
and bad based repeat checkins.

• Query: From 4SQ, obtain the checkin count for every
restaurant. For each restaurant, count the number of
users that checkedin only once, and the number of users
that checkedin more than x5 times. Compute the ratio of
single checkins to multiple checkins.

Threshold on ratio below x6. Join with the good restau-
rants from the previous version.

Threshold on ratio above x7. Join with the bad restau-
rants from the previous version.

7.7.4 Analyst 7, Version 4

• Analyst goal: Next, for each restaurant, find the most
frequent entities with positive and negative comments.

• Query: From 4SQ, apply UDF-NLP-ENTITITY-
SENTIMENT per user checkin. For each restaurant and
each entity, aggregate the sentiment-score. Threshold on
sentiment-score above x5.

Join with good and bad restaurants from previous version.

7.8 Analyst 8
Analyst8 wants to recommend a high-end hotel vacation

in an area users will like based on their known preferences
for restaurants, theaters, and luxury items. The evolutionary
nature focuses on matching user’s preferences with the types
of businesses in an area.

7.8.1 Analyst 8, Version 1

• Analyst goal: Find users who talk about ‘luxury items’.

• Query: From Twitter, apply UDF-CLASSIFY-LUXURY-
SCORE on user tweets. For each user, count the number
of tweets about luxury-items. Threshold on count above
x1.

7.8.2 Analyst 8, Version 2

• Analyst goal: Next, identify restaurants those users fre-
quently visit.

• Query: From 4SQ, for each user, count the number of
checkins per restaurant. Threshold on count above x2.

Join with users from previous version.

For each restaurant, count the total number of checkins
by all these users. Threshold on count above x3.

7.8.3 Analyst 8, Version 3

• Analyst goal: Next, find areas that have a high density of
these restaurants and identify the distribution of restau-
rant types in the area.

• Query: For the restaurants from the previous version, ap-
ply UDF-GRID-CELL. Count the number of restaurants
per grid cell. Threshold on count above x4.

For each grid cell, compute a histogram on the restaurant
type and count.

7.8.4 Analyst 8, Version 4

• Analyst goal: Finally, match users to grid cells and find
luxury hotels in their matching grid cell.

• Query: For each user u from previous version, identify
location, and compute a histogram on the restaurant type
and u’s checkin count.

Match u to a grid cell such that the grid cell is sufficiently
far away from u’s location, and there is a significant over-
lap between u’s histogram and grid-cell g histogram from
previous version.

From Landmarks, find hotels with rating greater than
x5 stars, and apply UDF-GRID-CELL to convert hotel
location to grid cell g′.

For each user u, join grid cell g with g′ to identify hotels
in an area matching u’s restaurant preferences.

	1 Introduction
	2 Workload characteristics and system metrics
	2.1 Workload Characteristics
	2.2 System Metrics
	2.2.1 Metric tradeoffs

	3 The Workload
	3.1 Query building blocks
	3.2 Queries

	4 Running the Benchmark
	4.1 Benchmark methodology
	4.2 Example benchmark results

	5 Discussion
	6 References
	7 Query Descriptions
	7.1 Analyst 1
	7.1.1 Analyst 1, Version 1
	7.1.2 Analyst 1, Version 2
	7.1.3 Analyst 1, Version 3
	7.1.4 Analyst 1, Version 4

	7.2 Analyst 2
	7.2.1 Analyst 2, Version 1
	7.2.2 Analyst 2, Version 2
	7.2.3 Analyst 2, Version 3
	7.2.4 Analyst 2, Version 4

	7.3 Analyst 3
	7.3.1 Analyst 3, Version 1
	7.3.2 Analyst 3, Version 2
	7.3.3 Analyst 3, Version 3
	7.3.4 Analyst 3, Version 4

	7.4 Analyst 4
	7.4.1 Analyst 4, Version 1
	7.4.2 Analyst 4, Version 2
	7.4.3 Analyst 4, Version 3
	7.4.4 Analyst 4, Version 4

	7.5 Analyst 5
	7.5.1 Analyst 5, Version 1
	7.5.2 Analyst 5, Version 2
	7.5.3 Analyst 5, Version 3
	7.5.4 Analyst 5, Version 4

	7.6 Analyst 6
	7.6.1 Analyst 6, Version 1
	7.6.2 Analyst 6, Version 2
	7.6.3 Analyst 6, Version 3
	7.6.4 Analyst 6, Version 4

	7.7 Analyst 7
	7.7.1 Analyst 7, Version 1
	7.7.2 Analyst 7, Version 2
	7.7.3 Analyst 7, Version 3
	7.7.4 Analyst 7, Version 4

	7.8 Analyst 8
	7.8.1 Analyst 8, Version 1
	7.8.2 Analyst 8, Version 2
	7.8.3 Analyst 8, Version 3
	7.8.4 Analyst 8, Version 4

