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ABSTRACT
Reducing peak demand is an important part of ongoing
smart grid research efforts. To reduce peak demand, util-
ities are introducing variable rate electricity prices. Recent
efforts have shown how variable rate pricing can incentivize
consumers to use energy storage to cut their electricity bill,
by storing energy during inexpensive off-peak periods and
using it during expensive peak periods. Unfortunately, vari-
able rate pricing provides only a weak incentive for dis-
tributed energy storage and does not promote its adoption
at scale. In this paper, we present the storage adoption cycle
to describe the issues with incentivizing energy storage us-
ing variable rates. We then propose a simple way to address
the issues: augment variable rate pricing with a surcharge
based on a consumer’s peak demand.

The surcharge encourages consumers to flatten their de-
mand, rather shift as much demand as possible to the low-
price period. We present PeakCharge, which includes a new
peak-aware charging algorithm to optimize the use of energy
storage in the presence of a peak demand surcharge, and use
a closed-loop simulator to quantify its ability to flatten grid
demand as the use of energy storage scales. We show that
our system i) reduces upfront capital costs since it requires
significantly less storage capacity per consumer than prior
approaches, ii) increases energy storage’s ROI, since the sur-
charge mitigates free riding and maintains the incentive to
use energy storage at scale, and iii) uses aggregate storage
capacity within 18% of an optimal centralized system.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Sys-
tems—Command and control

Keywords
Energy, Battery, Electricity, Grid, Peak shaving

1. INTRODUCTION
As is now well-known, a significant fraction of the electric

grid’s capital and operational expenses (CapEx and OpEx)
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result from satisfying its peak power demands. For exam-
ple, recent work estimates that 10%-18% of North American
CapEx, in terms of energy generation capacity, is idle and
wasted over 99% of the year [8]. Similarly, peak demand also
influences OpEx, by i) requiring utilities to operate high cost
and inefficient “peaking” generators to meet demand [1], ii)
contributing to higher transmission charges, which are set
based on peak demand, and iii) forcing utilities to offset
supply shortages by purchasing electricity in the wholesale
market at inopportune times, i.e., when it is most expen-
sive. Thus, reducing peak demand and its impact on CapEx
and OpEx is an important part of ongoing smart grid re-
search efforts. One way to reduce peak demand that has
received significant attention in the research community is
leveraging energy storage to shift some demand from peak
to off-peak periods. To shift demand, prior work proposes
to store energy during off-peak periods, which increases off-
peak demand, and use it during peak periods, which then
decreases peak demand [4, 7, 11, 13, 22, 23, 24].

To implement the approach, utilities may either i) install
large-scale centralized energy storage systems at strategic
points in the grid, such as at power plants and substa-
tions [13], and directly control when they store and release
energy, or ii) incentivize consumers to install and control
their own small-scale energy storage systems distributed at
buildings throughout the grid. Prior research has focused
largely on the latter case, since the increasing adoption of
variable rate pricing plans by utilities [6, 16, 21] provides an
incentive [4, 7, 11, 22, 23, 24], and endowing buildings with
energy storage has additional value-added benefits, e.g., pro-
viding power during outages and conditioning power to in-
crease its quality. Since variable rate pricing plans charge
higher rates during periods of peak demand, consumers that
store energy during off-peak periods—when prices are low—
and use it during peak periods—when prices are high—are
able to lower their electricity bill. While many energy stor-
age technologies exist, including pumped water storage, fly-
wheels, and compressed air, batteries are currently the most
viable option for storing energy at building-scale.

Prior research analyzes the potential savings for residen-
tial [4, 7, 23, 24] and industrial [11, 22] consumers to install
batteries. The focus is largely on cost-benefit analyses us-
ing existing pricing plans, which vary electricity’s price per
kilowatt-hour (kWh). Unfortunately, for the reasons below,
these plans provide only a weak incentive for distributed en-
ergy storage and do not promote its adoption at large scales.
Large Upfront Capital Costs. Since today’s pricing
plans typically exhibit low prices during off-peak nighttime



periods and high prices during peak daytime periods, they
incentivize consumers to shift all of their demand to the
off-peak period. Of course, the cost of batteries limits the
amount of storage capacity available to shift demand. In
our prior work on SmartCharge, we show that for a resi-
dential home with near the average U.S. electricity usage,
∼24kWh of capacity1 maximizes the return-on-investment
(ROI) when taking into account battery costs [15]. Given
typical battery lifetimes, we estimate the annual amortized
cost to maintain 24kWh of energy storage to be $1416 [15].
Since the annual electricity bill for an average U.S. home is
$1419 [5], battery costs effectively prevent (at current price
levels) a positive ROI using this much energy storage.
Rebound Peaks and Grid Instability. Current pricing
plans incentivize all consumers to charge their batteries dur-
ing off-peak, low-price periods. Thus, at large scales, simul-
taneous battery charging during off-peak periods will trigger
rebound peaks if prices do not change to reflect the resulting
increases in off-peak demand. Our prior work shows that if
prices do not change and 100% of consumers install 24kWh
of energy storage, then the peak demand period will migrate
to the (previously) off-peak period and actually increase,
rather than decrease, peak demand by nearly 120% [15].
Note that most variable rate pricing plans in use are Time-
of-Use (TOU) plans with rates that do not react quickly to
changes in demand, but instead are manually reset by utili-
ties on an infrequent basis, e.g., monthly or seasonally [16].
Uncertain Return-on-Investment. One way to pre-
vent rebound peaks is to alter electricity rates in real-
time as peak and off-peak demand changes. Although not
widespread, some utilities are experimenting with real-time
pricing (RTP) plans for residential consumers, where rates
vary dynamically each hour based on demand [6, 21]. Un-
fortunately, consumers only benefit from energy storage by
exploiting the difference between peak and off-peak prices.
With RTP plans, as peak demand declines and off-peak de-
mand rises due to the increasing use of energy storage, the
difference between the peak and off-peak price narrows, re-
ducing energy storage’s benefits [24]. In the extreme, if grid
demand is near flat then the price of electricity will be similar
at all times [4, 15, 24]. Once the peak/off-peak price differ-
ential is not large enough to compensate for the conversion
losses from storing energy in batteries, there is no benefit
to using energy storage. Our prior work estimates that grid
demand would be near flat once just 22% of consumers in-
stall 24kWh of energy storage [15], which is consistent with
related work [4, 24]. Consumers are unlikely to invest in en-
ergy storage with such uncertain future long-term benefits.
Socialized Benefits and Free Riders. For residential
consumers, the annual cost to install and maintain battery-
based energy storage is much higher—around 10X for aver-
age consumers in the U.S.—than the annual savings on an
electric bill using current battery costs, electricity rates, and
pricing plans [15]. However, prior work does not consider the
grid-wide reductions in generation costs from lowering the
grid’s aggregate peak demand. Unfortunately, with existing
pricing plans, these cost savings are distributed (or social-
ized) across all consumers, since they manifest themselves as
cheaper electricity rates. Thus, variable rate pricing plans
provide a weak, non-optimal incentive for energy storage.
Strengthening the incentive requires eliminating free riders

1Operated at a maximum of 45% depth-of-discharge.

to ensure that the consumers that invest in energy storage
reap its full benefits, especially given the large capital costs.

The problems above arise from the interaction between
current pricing plans and battery charging algorithms that
minimize cost. We argue that solving these problems re-
quires re-designing both pricing plans and charging algo-
rithms to explicitly encourage energy storage adoption. In
particular, any charging algorithm should prevent grid in-
stability regardless of the pricing plan, similar to how TCP
prevents Internet congestion even though it does not max-
imize end-user bandwidth. Likewise, pricing plans should
sustain, not eliminate, the incentive to use energy storage
as capacity scales. Finally, the charging algorithm and pric-
ing plan should work together to ensure a stable grid, while
also maximizing energy storage’s ROI at scale.

1.1 Contributions
Ideally, energy storage distributed at buildings throughout

the grid would behave like centrally-controlled energy stor-
age of equal capacity. That is, the “right” fraction of build-
ings would i) charge their batteries whenever grid demand is
below average and ii) discharge their batteries whenever grid
demand is above average, such that aggregate grid demand
remains flat and constant at the average. Of course, ensur-
ing the behavior of any self-organizing distributed system
emulates that of an equivalently-sized centralized system is
challenging. In this case, determining when and how many
batteries should charge requires explicit feedback from the
grid and coordination among all buildings, which does not
scale. This paper targets an alternative approach: designing
a charging algorithm and pricing plan where individual con-
sumers (partially) flatten their own demand. As we discuss,
our distributed approach does not require global coordina-
tion between consumers and the utility, and addresses each
of the issues with scaling distributed energy storage.

The main drawback to incentivizing consumers to flatten
their own demand is that it may require more aggregate en-
ergy storage capacity to flatten grid demand than the mini-
mum required using a centralized approach. Since batteries
are expensive, minimizing overall storage capacity and dis-
tributing it as widely as possible among consumers is crit-
ical to reducing per-consumer capital costs and increasing
ROI. Our hypothesis is that, when consumers’ peak demand
is well-aligned, a charging algorithm and pricing plan that
flattens each consumer’s demand uses aggregate storage ca-
pacity near the optimal centralized approach. In evaluating
our hypothesis we make the following contributions.
Scalable Design. We describe the storage adoption cycle
that arises as energy storage scales. We show that exist-
ing charging algorithms and pricing plans cannot simultane-
ously minimize an electric bill and ensure grid stability at
scale. In particular, preventing rebound peaks requires some
(explicit or implicit) feedback from the grid to signal algo-
rithms to rate-limit charging as demand rises. To resolve
the cycle, we propose augmenting variable rate plans with
a peak demand surcharge, and then modifying charging al-
gorithms to account for it. Our system, called PeakCharge,
is a complete redesign of our SmartCharge system [15] that
optimizes a consumer’s electricity costs in the presence of a
peak demand surcharge.
Closed-loop Experimentation. We implement a closed-
loop simulator, which replays traces of real household de-
mand, using a representative generator dispatch stack,
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Figure 1: Prior switch-based architectures do not
significantly lower an individual building’s peak de-
mand. Figure from [15].

which specifies the cost to generate electricity as demand
rises, to dynamically compute electricity rates based on de-
mand. Our simulator is closed-loop since our charging algo-
rithm reacts to the rates, which in-turn alters demand and
then changes the rates. In contrast, prior work has evalu-
ated energy storage using only open-loop simulations, where
consumer behavior does not affect prices. Using our simu-
lator, we experimentally verify the undesirable behavior of
existing charging algorithms and pricing plans at scale.
Grid- and Consumer-scale Evaluation. We evaluate
both the grid- and consumer-scale effects of PeakCharge,
comparing it with prior “greedy” approaches that store as
much energy as possible during low-price periods. Our
analysis shows that, when compared with these systems,
PeakCharge i) reduces upfront capital costs since it requires
significantly less storage capacity per consumer and ii) in-
creases ROI, since a peak surcharge mitigates free riding and
maintains energy storage’s incentive at large scales, while re-
quiring aggregate storage capacity within 18% of optimal.

2. OVERVIEW AND APPROACH
Our work leverages the use of battery-based energy stor-

age systems to reduce electricity costs. We assume an intel-
ligent battery-based energy storage system that is capable of
determining when, and how much, to charge and discharge
batteries based on variable electricity rates over time to min-
imize electricity costs. To be cost-effective, these systems
must i) limit energy storage capacity due to battery costs,
which, amortized over their lifetime, are currently $100-$200
per year per kWh of usable capacity for the VRLA/AGM
lead acid variety widely used in stationary energy storage
systems, and ii) account for the ∼20% conversion loss from
storing energy in batteries. Note that, since a lead-acid bat-
tery’s lifetime is a function of its depth-of-discharge (DOD),
a 24kWh battery operated at 50% DOD has only 12kWh
of usable capacity. As in past work, we consider both the
savings from batteries and their cost (20% energy loss and
capital cost) when considering a system’s ROI.

2.1 PeakCharge Architecture
Previously proposed architectures for leveraging energy

storage [15] use a programmatic power transfer switch,
which allows them to toggle a building’s power supply be-
tween the grid and a battery. Thus, in addition to a charging
algorithm that decides when and how much to charge bat-
teries, the system also decides when to toggle the building’s
power supply between the grid and the battery, based on
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Figure 2: PeakCharge architecture, which includes a
battery capable of programmatically controlling the
rate of discharge wired in parallel with the grid.

expectations of future prices and demand. Of course, when
batteries supply power, the building’s load dictates the rate
of discharge due to Kirchhoff’s laws. Although not program-
matic, such switches are common in commercial standby
UPS systems, which automatically switch to battery power
when grid voltage falls below a preset threshold. The coarse
switching architecture works well in previous systems, since
they connect to the grid and charge batteries during lengthy
low-price periods at night before switching to battery power
during lengthy high-price periods during the day.

In contrast, we assume a system architecture that is capa-
ble of controlling a battery’s rate of discharge independent of
the building’s load. For example, if a building is consuming
1kW of power, the system is able to control the fraction of
the 1kW the battery supplies, with the grid supplying the re-
mainder. Thus, the system may choose to satisfy 1kW of de-
mand using 500W via the battery and 500W via the grid, or
using 200W via the battery and 800W via the grid. Control-
ling the rate of discharge is necessary for PeakCharge’s ap-
proach, which encourages buildings to flatten their demand
rather than simply shift large amounts of demand from day-
time to nighttime. As Figure 1 demonstrates, for individual
buildings, the simple switching architecture does not signif-
icantly reduce (or flatten) an individual building’s peak de-
mand. The figure (from [15]) illustrates how, due to off-peak
battery charging, our prior switch-based SmartCharge sys-
tem simply shifts the original peak demand to the off-peak
period to minimize electricity costs.

There are two primary ways to control a battery’s rate of
discharge. A simple approach is to install multiple switches
capable of switching separate fractions of a building’s load
between grid and battery power. For example, the system
may be able to individually switch each circuit. In this case,
the system controls the rate of discharge by monitoring the
load on each circuit and switching some subset of circuits
to the battery to achieve a specific rate of discharge. An
alternative, cleaner approach depicted in Figure 2 is to con-
nect the battery in parallel to the grid and use a discharge
controller to programmatically limit the rate of discharge.
These controllers use pulse-width modulation (PWM) to



control the charge or discharge rate by connecting and dis-
connecting the battery at rapid frequencies. Unfortunately,
controllers capable of programmatically setting the rate of
discharge are not widely available, since their primary pur-
pose today is in testing equipment [26]. However, program-
matic control may become more widespread in the future,
since recent work beyond our own also requires this capa-
bility [14, 25]. We assume this latter method is available to
control the discharge rate in PeakCharge.

Finally, both our work and prior work derives from the
fact that the marginal cost for a utility to generate each
additional watt of power increases non-linearly as utilities
activate additional generators to satisfy increasing demand.
Utilities maintain a dispatch stack of generators: as grid de-
mand rises utilities activate, or “dispatch,” additional gen-
erators in ascending order of their marginal cost. Figure 3
shows the demand-cost function we use to compute gener-
ation costs based on demand in our closed-loop simulator,
and demonstrates the non-linear relationship between cost
and demand. To derive our function, we scaled real demand-
cost data from the Southeastern U.S. from a 2008 report [9]
by the Federal Energy Regulatory Commission (FERC) to
match the peak demand in our traces, discussed in Section 5,
while also ensuring a median electricity cost of 10¢/kWh,
which is near the average cost of electricity in the U.S. We
then fitted an exponential function to this scaled data for
use in our simulations.

2.2 The Storage Adoption Cycle
Figure 4 depicts the storage adoption cycle that arises

from the use of distributed energy storage at large scales
to minimize electricity costs in the presence of variable rate
electricity prices. At the top of the figure, variable demand
for power first causes the price of electricity over time to
change based on the demand-cost function from Figure 3.
Variable pricing, in turn, incentivizes consumers to adopt
energy storage to reduce their costs by shifting demand to
low price periods. However, as more consumers shift demand
using energy storage, the difference between the grid’s peak
and off-peak demand narrows resulting in a flatter grid de-
mand profile. As a result, prices also flatten to reflect the
new demand distribution. Unfortunately, flat prices elimi-
nate the incentive to use energy storage, which causes de-
mand to vary again and the cycle to repeat. Of course,
our depiction is idealistic. It assumes, first, a high enough
price differential to warrant energy storage, which is not the
case today, as outlined in Section 1. Second, grid/utilities
may not explicitly want to incentivize energy storage. In
practice, completing each step would take a long time, po-
tentially requiring significant regulatory changes and large
capital investments. Further, the phenomenon depicted in
Figure 4, and described below is only for illustrative pur-
poses to demonstrate potential trends as the use of energy
storage scales.

The storage adoption cycle may also cause grid instabil-
ity if prices do not react fast enough to changes in demand.
To demonstrate the potential for instability, we ran a sim-
ple experiment using our trace-driven closed-loop simulator
to show how grid power demand could experience signifi-
cant oscillations even if utilities alter prices each day based
on the previous day’s demand. Day-ahead planning is com-
mon, since consumers require some pricing feedback to ad-
just their behavior and utilities require some advance notice
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Figure 3: The model we use in our simulator of the
marginal cost to generate electricity as demand in-
creases. The fitted function we use is based on scaled
data from a recent FERC report [9].

to activate generators. The simulator, which we discuss in
Section 5, takes traces of demand as input; in this case,
we use demand traces we collected of 194. For our experi-
ment, 49 of the 194 homes have usable energy storage capac-
ity that is 50% of their average daily demand, where each
home uses a “greedy” charging algorithm similar to prior
work [15], which minimizes electricity costs by charging as
much as possible during the lowest price periods. Our sim-
ulator is closed-loop, since it computes the next day’s prices
each hour using Figure 3’s demand-cost function and the
previous day’s demand.

Figure 5 shows how the peak demand periods change dra-
matically each day. On the first day, everyone charges during
the low-price period at night (12am-6am), which increases
demand during that period and, hence, also increases the
price of electricity during that time on the second day. As a
result, on the second day the lowest-price period shifts to the
morning (6am-12pm), which is the low-demand period from
the previous day, and causes peak demand to shift dramat-
ically from the nighttime 12am-6am period to the morning
6am-12pm period. Since generators require lead time to ac-
tivate, utilities carefully plan generator dispatch schedules
each day based on the previous day’s demand. If demand
were to change dramatically each day, as in this scenario,
the grid would be incapable of balancing supply and de-
mand. This simple example highlights how naive battery
charging-discharging algorithms can potentially cause grid
instability for some of the existing pricing plans, like [6], [16],
under certain conditions. Note that, in this paper, we do not
evaluate the cost-benefit tradeoff between the excessive dis-
tributed storage (caused by our approach) and the potential
affects of the storage adoption cycle.

2.3 An Optimal Approach
Before describing PeakCharge’s charging algorithm, we

first define and consider an optimal centralized battery
charging scheme. Ideally, to minimize generation costs based
on the demand-cost function from Figure 3, the optimal ap-
proach would shift aggregate grid demand such that it was
the same—equal to average demand—all the time. If we as-
sume a centrally controlled battery array, then an optimal
algorithm simply charges and discharges batteries whenever
grid demand is below or above average, respectively, such
that demand is always equal to the average. With this al-
gorithm, the minimum energy capacity necessary to flatten
demand is equal to the maximum capacity ever required
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to charge or discharge the batteries to sustain the average.
Of course, as mentioned in Section 1, a centralized system
has drawbacks compared to the distributed approach, which
provides value-added benefits to consumers.

As an example, Figure 6 depicts a grid demand profile
from the first day of our trace of 194 homes, as well as
the average demand for the day. In this case, the maxi-
mum capacity required to charge or discharge the battery
occurs between hour 16 and 23 and equals 392kWh (equiv-
alent to the area between the instantaneous demand and
the average demand from hour 16 to 23). With the optimal
approach this 392kWh of storage would reduce generation
costs by 23% based on our demand-cost function in Figure 3.
If this storage capacity were distributed evenly among all
194 homes, then each home would need only 2.02kWh of
usable energy storage (or 4.5kWh of rated capacity used
at 45% depth-of-discharge to maximize lifetime). This ca-
pacity is over 5X less than the 24kWh of rated capacity
each home requires to maximize energy storage’s ROI based
on our previous SmartCharge work [15], which uses exist-
ing variable rate pricing plans and a “greedy” charging algo-
rithm. Qualitatively, this result holds for any greedy battery
charging-discharging approach for price saving, and not just
SmartCharge. Since battery costs scale linearly with ca-
pacity, maintaining 5X less capacity decreases costs by 5X
(from $1416 amortized per year to maintain 24kWh to $266
per year to maintain 4.78kWh). The example demonstrates
how minimizing capacity, and distributing it as widely as
possible among consumers reduces the ROI per consumer of
energy storage.

3. SCALABLE DESIGN
The storage adoption cycle discourages distributed energy

storage from scaling to a large fraction (> 20%) of con-
sumers. Unfortunately, variable rate electricity prices incen-
tivize consumers with energy storage to use greedy battery
charging algorithms, which charge batteries as much as pos-
sible during the lowest price periods to minimize electricity
costs. At large scales, the use of greedy charging algorithms
results in either i) large rebound peaks (if prices do not re-
act to changing demand), ii) grid instability (if prices react
slowly to changing demand as in Figure 5), or iii) no bene-
fit to the consumer (if prices react quickly to changing de-
mand by flattening). None of these outcomes is desirable.
Variable rate pricing is effective at reducing peak demand
today only because electricity’s price elasticity of demand
is typically low, i.e., consumers do not react strongly to
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Figure 5: Load oscillations in our simulated micro-
grid, in presence of day-ahead real time pricing.

changes in electricity’s price. As a result, only a small frac-
tion of consumer demand shifts to low price periods. In con-
trast, large-scale distributed energy storage makes electric-
ity’s price completely elastic with demand, causing a large
fraction of demand to shift to the lowest price period.

Properly incentivizing distributed energy storage at scale
requires rethinking electricity pricing plans. Our premise is
that augmenting existing variable rate pricing plans with a
peak demand surcharge (or penalty) is a simple and effec-
tive way of addressing the storage adoption cycle. A peak
demand surcharge bills consumers $X/kWh based on their
peak demand over an N minute interval within some billing
period M . Typical values are N = 1 hour and M = 1
day; for example, in this case, the consumer in Figure 1
would incur an additional charge for using ∼5kWh during
their peak hour of that day. Utilities already use such a
peak demand surcharge for large, primarily industrial, con-
sumers. Put simply, a large peak demand surcharge incen-
tivizes consumers to flatten their own demand to minimize
their peak, rather than simply shift as much demand to the
lowest price period. Of course, if consumers flatten their
own demand, then grid demand will also flatten. We discuss
below, how penalizing peak usage addresses the problems
from Section 1. While the incentive to flatten due to a peak
surcharge disappears once a home reaches peak demand, we
design our proposed peak-aware charging algorithm to avoid
peaks when possible. Our results indicate that the algorithm
is successful most of the time.

3.1 Benefits of a Peak Demand Surcharge
First, flattening a consumer’s demand takes significantly

less energy storage capacity than shifting all of it to the low-
est price period. For example, Figure 7 shows that, while
12kWh of usable energy storage is only capable of shifting
a fraction of demand to the low price period, it is more
than enough to completely flatten the original demand from
Figure 1. As a result, the approach encourages distribut-
ing aggregate storage capacity widely across consumers, re-
quiring less storage capacity per consumer, and resulting in
lower upfront capital costs and higher per-consumer ROI.
In effect, to flatten grid demand, the approach incentivizes
a large number of consumers to install a small amount of
energy storage (and make a small investment), rather than
incentivizing a small number of consumers to install a large
amount of energy storage (and make a large investment).
Second, the approach prevents rebound peaks and grid insta-
bility, since consumers are (partially) flattening, rather than
shifting, their demand. Third, the approach maintains the
incentive to use energy storage as capacity scales, since con-
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sumers always benefit from not paying an additional peak
demand surcharge, regardless of other consumers’ behavior.
Finally, utilities can mitigate free riding by altering the peak
demand surcharge, in addition to the electricity rate, as gen-
eration costs change, since only the set of consumers with
energy storage are able to automatically optimize for peak
demand. Thus, a higher peak demand surcharge and lower
rates will penalize consumers with energy storage less than
consumers without it.

Of course, utilities must use a peak demand surcharge in
conjunction with existing variable rate schemes, since only
charging based on peak demand would encourage more en-
ergy use. For example, with only a peak demand surcharge,
if a residential consumer runs a dryer that causes their peak
load to be 7kW over an hour, the consumer has no incentive
to ever reduce their demand below 7kW. Since the home in
Figures 1 and 7 has an average electricity usage of ∼1kW,
billing solely based on peak demand would allow the con-
sumer to use 7X more electricity at no extra cost. Thus,
utilities must balance the size of the peak demand surcharge
with the electricity rates to encourage flattening without in-
centivizing consumers to use significantly more electricity.
We examine how the size of the peak demand surcharge af-
fects our battery charging algorithm in Section 5.

While this paper focuses primarily on how a peak demand
surcharge addresses the storage adoption cycle, it also has
other benefits. For instance, homes without energy stor-
age could reduce their electricity costs using automated load
scheduling techniques that flatten demand, e.g., via Smart-
Cap [3] or nPlug [10]. Consumers have little monetary in-
centive to use these techniques today, since most deferrable
loads, e.g., refrigerators, air conditioners, heaters, dehumid-
ifiers, are unable to defer their usage (by up to 12 hours)
to low-price nighttime periods without causing significant
harm, e.g., spoiled food or an uncomfortable environment.
In addition, as recent work shows, flattening demand using
a battery preserves privacy [14, 25], since it removes power
variations that Non-Intrusive Load Monitoring (NILM) al-
gorithms use to identify appliance usage and behavioral pat-
terns. Unfortunately, with existing variable rate plans con-
sumers with a battery must choose to either use it to reduce
their electricity bill or preserve privacy, but not both. A
peak demand surcharge could enable consumers to minimize
their electricity bill and preserve their privacy.

3.2 Drawbacks of a Peak Demand Surcharge
The primary drawback to encouraging consumers to flat-

ten their own demand is that, in aggregate, it may require
consumers to install more energy storage capacity than nec-
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essary to flatten grid demand. To understand why, con-
sider a simple grid with only two homes, where each day the
first home uses 1kW from 12am-12pm and 2kW from 12pm-
12am, while the second home uses 2kW from 12am-12pm
and 1kW from 12pm-12am. In this case, to flatten their own
demand, each home requires 6kWh of energy storage for a
total of 12kWh of capacity, which the homes would charge
at a rate of 500W/hour when usage is 1kW and discharge at
a rate of 500W/hour when usage is 2kW. However, in aggre-
gate, the two homes’ demand is already flat—using exactly
3kW all the time—without any energy storage. Thus, in
this case, energy storage is not necessary. The waste occurs
because the peak periods of the two homes are not aligned
with each other; if their peak periods were exactly aligned
then they would each require 6kWh to flatten demand (and
12kWh would be the minimum capacity necessary to flatten
aggregate demand). In general, the aggregate energy storage
capacity necessary to flatten grid demand by flattening each
home’s demand will diverge more from the optimal amount
the more the peak and off-peak periods of the homes become
less aligned. Of course, in practice, homes in the grid exhibit
peak demand at similar times, which naturally reduces the
divergence from optimal. We quantify this divergence using
our closed-loop simulator and demand traces in Section 5.

As we discuss, augmenting existing variable rate plans
with a peak demand surcharge requires rethinking the
greedy charging algorithms used in prior work. Below, we
present PeakCharge’s peak-aware charging algorithm, which
minimizes a consumer’s electricity bill in the presence of a
peak-demand surcharge.

4. PEAK-AWARE CHARGING
Our initial approach to designing PeakCharge’s battery

charging algorithm was to simply modify the algorithm from
our prior work on SmartCharge [15]. SmartCharge uses a
linear program (LP) that executes at the beginning of each
day and takes as input next-day electricity prices, which are
typically well-known, and expected demand each hour to
determine how to charge and discharge a battery through-
out the day. The LP is optimal, i.e., minimizes costs, if
future demand is known. For completeness, we include a
description of this LP and its constraints in the Appendix.
Since future demand is not known, we use machine learn-
ing, specifically a support vector machine with a polynomial
kernel, to predict next-day demand over the five multi-hour



periods each day in Ontario’s TOU pricing plan [16]. On
average, our predictions were within 6% of demand for a
representative home, and SmartCharge’s LP achieved cost
savings within 10-15% of an oracle with perfect future knowl-
edge. As a result, for PeakCharge, we initially added con-
straints to SmartCharge’s LP to account for the new peak
demand surcharge. As with SmartCharge, given perfect fu-
ture knowledge, the LP is optimal at minimizing costs. Un-
fortunately, our experimental results were far from optimal:
the PeakCharge variant did not result in flatter consumer
demand and did not minimize electricity costs. In this case,
rates were based on the Ontario TOU scheme, and the peak
demand surcharge was applied to the peak hour of each day.

We found the reason for the poor results to be that, with
a peak-demand surcharge, the LP is highly sensitive to the
prediction of the peak demand hour each day. Unfortu-
nately, predicting next-day demand at the granularity of an
hour is much less accurate than over the multi-hour peri-
ods used in SmartCharge. Further, ensuring high prediction
accuracy for the peak hour is more difficult that ensuring
a high average accuracy. In contrast, SmartCharge, which
only optimized for variable electricity prices, is much less
sensitive to prediction accuracy. While there are corner cases
the LP is able to optimize for with accurate predictions, in
general, it will always charge a battery as much as possi-
ble during the lowest-rate nighttime periods. Thus, simply
charging the battery at its maximum rate overnight, regard-
less of the predictions of next-day demand, accounts for the
vast majority of the savings in SmartCharge and other sys-
tems. One implication of a sensitivity to demand prediction
accuracy is that optimizing for a peak demand surcharge be-
comes more difficult the longer the time interval M the peak
is evaluated over, since predictions predictions are generally
less accurate over longer time horizons. For instance, many
utilities charge industrial consumers a surcharge for their
peak demand hour within an entire month, requiring them
to accurately predict demand (including the peak) each hour
of the month to determine when to charge and discharge the
battery using our LP above.

4.1 Optimizing for the Peak
Based on our experiences with the LP, rather than retrofit

a greedy algorithm originally designed to minimize costs for
variable electricity rates, to account for a peak demand sur-
charge, we instead began by designing an algorithm to min-
imize costs for a peak demand surcharge in the absence of
variable electricity rates. Our starting point is the same
algorithm we outlined in Section 2.3 for flattening grid de-
mand, but applied to individual buildings. The system se-
lects a target average power and then simply charges and
discharges batteries whenever demand is below or above the
target, respectively, such that demand is always equal to the
average. Note that rather than run our algorithm once per
day (at the beginning of the day) using predictions of next-
day demand, as with SmartCharge, this algorithm naturally
operates in an online manner, adjusting the charging and
discharging of the battery in real time based on changing
demand. This peak-centric algorithm works well as long as
i) the target average is near the actual average power, and
ii) the storage capacity is large enough to flatten demand.

If the target average is too small, then the approach will
not store enough energy to reduce the peak by its maximum
amount; if the target is too large, then it will store more

energy than necessary throughout the day. However, im-
portantly, while the algorithm is sensitive to a prediction of
average power, it does not require shorter time-scale predic-
tions of future demand, e.g., hourly day-ahead predictions,
as in the LP approach. Average power predictions over long
time periods tend to be much more accurate than demand
predictions over short time-scales far into the future. In
fact, when predicting average power, the longer the time-
scale, generally the more accurate the prediction [19], e.g.,
the average power of a home each year tends to vary less
than each day. In addition, accurate predictions of average
power over long periods, e.g., a day or month, do not require
sophisticated methods [19, 20]. In this paper, to predict av-
erage demand over an interval, we simply use the average
demand over the previous interval.

If the available storage capacity is too small, then the ap-
proach may discharge batteries when demand is only slightly
above average, causing there to be little energy left for the
highest peaks. In this case, short time-scale predictions of
future demand are necessary to optimize use of the avail-
able storage capacity, i.e., save stored energy for the highest
peaks each day or month. Thus, with a peak demand sur-
charge, the less storage capacity a consumer has, the more
fine-grained and accurate the predictions required to mini-
mize cost. However, importantly, as discussed earlier, flat-
tening consumer demand requires much less energy storage
capacity than shifting it to take advantage of variable rates.

4.2 Optimizing for Peaks and Variable Rates
Our peak-centric algorithm focuses only on flattening de-

mand. As a result, it minimizes a consumer’s electricity
costs when their bill is based solely on a peak demand sur-
charge in absence of variable rates charged per kWh of en-
ergy use. Given our basic algorithm, we must modify it to
optimize for cost in the presence of both a peak demand
surcharge and variable rates. With a high peak demand
surcharge the algorithm should behave like the peak-centric
algorithm, and with a low peak demand surcharge the algo-
rithm should behave greedily, i.e., by charging at its maxi-
mum rate during low-price periods. To understand the deci-
sion of whether to behave greedily or peak-centric, consider
the inequality below, which compares the benefit of greedily
taking advantage of variable rates versus the cost of raising
peak demand. In this case, we consider only two rate peri-
ods: high and low, where Chigh is the cost per kWh during
the high rate period and Clow is the cost per kWh during the
low rate period. In addition, T is the length of the low-price
period, P is the cost per kWh of usage during the peak hour
each day, eloss is the energy conversion loss as a percentage
stored energy (typically 80% in practice), and Xmax is the
maximum charging rate of the battery.

XmaxelossChighT −XmaxClowT > XmaxP (1)

The left side of the inequality is the maximum monetary
benefit of greedily charging the battery at its maximum rate
during the low-price period and then discharging it dur-
ing the high-price period, while the right side is the cost
of the peak demand surcharge from charging the battery at
its maximum rate. If the inequality holds then the ben-
efit of charging greedily during the lowest-price period is
greater than the cost, signaling that a consumer should act
greedily. If not, then a consumer may benefit from acting
peak-centric by charging (or discharging) at less than the



maximum rate during low-price periods. Unfortunately, de-
termining exactly how much less to charge (or discharge)
than the maximum is challenging, requiring the same ac-
curate short time-scale, e.g., hourly, predictions of future
demand that SmartCharge’s LP requires. As a result, we
adopt a heuristic approach using four simple cases, as out-
lined below, based on whether the electricity rate is high or
low and the demand is above or below average.

• If the electricity rate is low and demand is below av-
erage, then greedily charge at the maximum rate if (1)
holds, else charge at a rate to sustain the target average
demand.

• If the electricity rate is low and demand is above av-
erage, then greedily charge at the maximum rate if (1)
holds, else discharge at a rate to sustain the target aver-
age demand.

• If the electricity rate is high and demand is below av-
erage, then greedily discharge at the full rate (bounded
by the building’s demand) if (1) holds, else do nothing.

• If the electricity rate is high and demand is above av-
erage, then greedily discharge at the full rate (bounded
by the building’s demand) if (1) holds, else discharge at
a rate to sustain the target average demand.

Rather than add more cases, to extend the approach to
multiple rate periods, we simply divide each period into two
bins, based on whether its price is higher and lower than
average, and compute Chigh and Clow by taking the average
of the cost per period (weighted by the length of the period)
in each respective bin. Based on the cases, if the inequality
holds then the algorithm simply acts greedily by charging
at the maximum rate when the electricity price is low, while
discharging at the maximum rate (bounded by the building’s
demand) when the electricity price is high. In contrast, if
the inequality does not hold, then the algorithm simply tog-
gles to using the peak-centric algorithm, with one exception.
If the electricity rate is high and demand is below average,
it balances the objective of the greedy algorithm, i.e., to
discharge, and the peak-centric algorithm, i.e., to charge,
by doing nothing. Note that, in the extreme, since variable
rates are based on the grid’s demand, as grid demand flat-
tens the rates will equal each other and the algorithm will
become entirely peak-centric.

Using our peak-aware algorithm above, when the peak
demand surcharge is high relative to the electricity rates,
the algorithm above charges and discharges the battery to
hit the expected average demand; in contrast, when it is low,
the algorithm devolves to a greedily charges the battery at
the maximum rate during the lowest price periods.

4.3 Summary
Our peak-aware algorithm above optimizes for a peak de-

mand surcharge by using inequality (1) to determine when
to act greedily and when to optimize for the peak. In the
next section, we compare the peak-aware algorithm with an
online greedy algorithm that is conceptually similar to our
previous LP-based approach, but operates in an online man-
ner by charging at the maximum rate during the lowest-price
periods at night and discharging during the highest price
periods during the day. Since battery capacity is typically
much lower than each day’s energy usage, this simple variant
performs similarly to our previous LP-based approach.

As an additional point of comparison, we also experiment

with a variant of the greedy algorithm with an additional
congestion parameter, which limits the maximum charging
rate of the battery by a factor Plimit, which is between 0 and
1. Enforcing a limit on the battery charging rate is a simple
way to ensure grid stability and prevent rebound peaks, even
using greedy charging. Of course, in practice, this parame-
ter requires feedback and enforcement from a utility, which
could either directly disseminate Plimit to consumers or al-
low them to indirectly infer it, e.g., by using subtle changes
in line voltage as a signal of grid demand as in nPlug [10].
We show that while our congestion-aware greedy variant pre-
vents rebound peaks and grid instability, without a peak de-
mand surcharge, it reduces the savings (and ROI) of energy
storage for consumers.

5. EVALUATION
To evaluate the charging algorithms from the previous sec-

tion, we built a closed-loop simulator that takes as input
traces of building energy usage. The simulator is closed-
loop, since it determines the price of electricity each hour of
each day based on the demand from i) the same hour on the
previous day and ii) the demand-cost function in Figure 3;
we call this Day-Ahead Real-Time (or DART) pricing, since
each day’s prices are known at the beginning of the day. In
addition to DART, our simulator also supports open-loop
TOU pricing, where prices do not change based on demand.
As in our prior work [15], we use TOU prices based on On-
tario’s rates [16]; specifically, 6.3¢ per kWh from 11pm to
6am (off-peak period), 11.8¢ per kWh between 6am to 10am
and 4pm to 11pm (peak periods), and 9.9¢ per kWh from
10am to 4pm (mid-peak period).

In addition to the rate plans above, the simulator also
supports a peak demand surcharge in $/kW of peak usage.
The surcharge applies to the highest average demand over
a 30 minute sliding window across each day. Our default
surcharge in the experiments below, unless otherwise noted,
is $3/kW. This surcharge is high relative to the rates, i.e.,
inequality (1) does not hold, although with DART pricing
rates may rise (since they vary every day based on demand).
As in our prior work [15], we use a maximum charge rate of
C/4 for the usable storage capacity, i.e., the battery charges
to full capacity in 4 hours, which translates to a C/8 rate for
a battery used at 45% DOD. We use power demand traces
from 194 homes, which have an in-panel energy meter to
record usage each minute, for ten consecutive days. While
our traces are not at utility scale, i.e., with tens of thousands
of residential homes as well as commercial and industrial
buildings, they are sufficient to verify the trends in using
energy storage at scale and to explore the behavior of our
algorithm. However, the benefits of storage at scale will
certainly vary based on the characteristics of each grid’s (and
building’s) demand profile.

As with our previous work [2], we plan to make our
traces available for download from our Smart* data repos-
itory located at http://smart.cs.umass.edu. Finally, we ex-
periment with the algorithms from the previous section—
greedy, peak-aware, and congestion-aware greedy—using
DART (closed-loop) and TOU (open-loop) rate plans, ex-
amining both the grid-scale and consumer-scale effects.

5.1 Grid-scale Effects
We first examine the effect of rebound peaks when con-

sumers use energy storage at large scales. Figure 8 shows the
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Figure 8: Generation cost savings compared to using no energy storage for both closed-loop DART (a) and
open-loop TOU (b) pricing plans. Zoom-in of generation cost savings for peak-aware algorithm (c).
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Figure 9: Peak reduction as a percentage compared to using no energy storage for both closed-loop DART
(a) and open-loop TOU (b) pricing plans. Zoom-in of peak reduction for peak-aware algorithm (c)

savings in generation costs across the entire grid compared to
no energy storage, as the percentage of homes using energy
storage scales up with both DART (a) and TOU (b) pricing.
In this case, each home has usable energy storage capacity
that is 50% of their average daily demand. The graph shows
that as the number of homes using energy storage scales up,
the greedy algorithm, akin to our SmartCharge algorithm,
increases generation costs, i.e., the savings are negative, due
to simultaneous battery charging and large rebound peaks
after 20% of homes use energy storage (with DART).

TOU pricing scales slightly better than DART because the
closed-loop pricing results in very low rates when consumers
are not charging, which reflect in the next day’s prices. Since
TOU rates do not change, it does not suffer from oscillations
in peak demand or prices. The congestion-aware greedy vari-
ant (with a limit on the charging rate of 60% the maximum
rate) in both cases is more scalable, but still results in re-
bound peaks once enough homes adopt energy storage (35%
for DART and 45% for TOU). In contrast, the peak-aware
algorithm steadily decreases the grid’s generation costs as
more homes use energy storage, signaling that homes and
the grid are successfully flattening demand. The congestion-
aware greedy variant demonstrates an important point: con-
sumers could prevent rebound peaks by rate-limiting their
charging, but they would reduce their cost savings.

Figure 8(c) zooms in on the Peak-aware(DART), Peak-
aware(ToU) lines from Figure 8(a) and (b), respectively. It
demonstrates the steadily increasing, rather than decreas-
ing, cost savings as more homes use energy storage. Notice
maximum savings from the three variants is similar: this
reflects that in each case the aggregate energy storage is
sufficient to flatten demand. The difference with the peak-
aware algorithm is that it distributes this capacity across
100% of consumers, while the other algorithms distribute
it across a much smaller set of consumers. Figure 9 shows
the corresponding reduction in peak demand for the same
experiment, which, as expected, shows similar trends as the
generation cost savings. Namely, the grid’s peak demand
steadily decreases, rather than increases, as more homes use

energy storage with the peak-aware algorithm. As an exam-
ple of this decrease in peak demand, Figure 10(a) and (b)
show the time-series of power usage of an example day in
our trace both with and without energy storage (for DART
and TOU pricing).

We also run a similar experiment, but rather than vary
the percentage of homes using energy storage we vary the
amount of energy storage each home has as a fraction of
its demand. In this case, 100% of homes have energy stor-
age. Figures 11(a) and (b) show the generation cost sav-
ings and peak reduction, respectively. In both cases, the
results show that each home only needs energy storage ca-
pacity that is a small fraction of its average demand. In
Figure 11(a), generation cost savings stop increasing once
homes have energy storage capacity that is 20% of their av-
erage demand. Similarly, Figure 11(b) shows the grid’s peak
not decreasing further at the same 20% threshold. At the
20% threshold, the aggregate storage capacity across homes
is near the optimal storage capacity required to flatten de-
mand (from Section 2.3). In contrast, using our previous
work on SmartCharge without a peak demand surcharge, a
representative home required 50% of their average demand
in storage capacity to maximize their ROI [15].

The previous experiments used the same, relatively high,
peak demand surcharge of $3/kW, such that inequality (1)
does not hold and our peak-aware algorithm focuses on flat-
tening demand. Figure 12 demonstrates the percentage peak
reduction across the 194 homes in our traces as we vary
the peak demand surcharge for both TOU and DART pric-
ing plans. In this case, all homes use energy storage with
usable capacity that is 50% of their average demand. As
expected, for low surcharge values the homes are greedy
resulting in large rebound peaks—larger than the original
peaks—from simultaneous battery charging during low-price
periods. However, once the peak demand surcharge passes
the threshold defined by inequality (1) the homes switch
to flattening their demand. In this case, for high peak de-
mand surcharges the algorithm reduces the peak 10-15%.
The threshold near $0.60/kW represents the tipping point
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Figure 10: Time series of aggregate grid demand for TOU (a) and DART (b) pricing for both without energy
storage and using our peak-aware algorithm with each home having energy storage.
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Figure 11: Cost savings (a) and grid peak reduction (b) as a function of each home’s energy storage capacity.

where the benefit of charging the battery at its maximum
rate during the lowest-price hour is not worth the cost of the
peak demand surcharge.

Lastly, we revisit the analysis of the optimal minimum
amount of energy storage capacity necessary to flatten grid
demand in a centrally controlled system (from Section 2.3).
For that trace, the minimum capacity required was 393kWh.
For the same trace, our peak-aware algorithm requires
481kWh of aggregate capacity across the grid to maximize
its peak reduction and generation savings from flattening de-
mand. Figure 10 shows the high-level trend of aggregate de-
mand achieved by the peak-aware algorithm relative to raw
consumption. As the figure demonstrates, the peak-aware
algorithm is not able to perfectly flatten demand due to in-
accuracy in choosing the target average, which may result
in high peaks if a home’s battery is empty during a period
of high demand. While predicting average demand over a
long period is more accurate than predicting hourly demand
over the same period, it is not perfect due to changing con-
sumer behavior. Despite the inaccuracy, the approach comes
within 18% of the optimal centralized approach.

5.2 Consumer-scale Effects
With distributed energy storage in use large scales, the

peak reductions and cost savings for individual consumers
mirror the reductions and savings in the grid. To show
this, we use the TOU pricing scheme, which, as shown
above, performs similarly to DART. We take a representa-
tive home with near the average demand for a home in our
trace and look at its individual peak reduction and cost sav-
ings (as both a percentage and in dollars) as function of the
home’s usable energy storage capacity for our peak-aware
algorithm. Figure 13 shows the results. As in the grid, the
peak-aware algorithm reaches its maximum peak reduction

(Figure 13(a)) when usable storage capacity is only 20% of
average demand (rather than 50% with a greedy approach
like SmartCharge [15]). Further, for less than 2X the energy
storage capacity, the percentage cost savings in the electric
bill (Figure 13(b)) is in the same 10-15% range as we found
in SmartCharge. Thus, the ROI for the consumer is much
higher, since consumers achieve similar savings using much
less energy storage capacity, which overwhelmingly domi-
nates the cost of the system. Finally, Figure 13 shows the
average per day dollar savings, which mirrors the trend in
the overall percentage savings.

The results above clearly demonstrate the benefits, as the
use of energy storage scales, of incentivizing consumers to
flatten their own demand using a peak demand surcharge.
For the similar cost savings per consumer using energy stor-
age, the approach requires much less storage capacity, result-
ing in a higher ROI. Further, this ROI does not diminish as
more consumers use energy storage, since the utility is able
to control each consumer’s incentivize to flatten demand us-
ing the peak demand surcharge independent of the electricity
rates. This also mitigates free riding, since consumers with-
out energy storage are less able to control their peak demand
and benefit from reducing their peak. By incentivizing all
consumers to use energy storage, the approach encourages
distributing the aggregate energy storage necessary to flat-
ten grid demand across a wide set of consumers, which all
share in the savings. In prior work, with only variable elec-
tricity rates, the consumers not using energy storage also
benefit from lower overall generation costs (and electricity
rates) as storage capacity increases, which, in turn, dimin-
ishes the savings for the consumers that use energy storage.
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Figure 13: Percentage peak reduction (a), percentage cost savings (b), and dollar cost savings (c) for an
individual home using our peak-aware algorithm as the home’s energy storage capacity varies using our
peak-aware algorithm under a peak-demand surcharge.
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Figure 12: Increasing the peak demand surcharge
prevents rebound peaks in the grid by incentivizing
consumers to flatten their demand.

6. RELATED WORK
As mentioned in Section 1, numerous researchers have

studied the use of energy storage at homes and buildings to
shift demand and cut electricity bills under emerging vari-
able rate electricity pricing plans. Daryanian et al. [7] was
the first to propose this form of energy arbitrage. This work,
as well as work by van de ven et al. [23], study the prob-
lem from a theoretical standpoint, e.g., assuming certain
demand distributions, without evaluating their solutions on
real data. More recently, our own work on SmartCharge [15],
as well as work by Carpenter et al. [4], study a similar prob-
lem in a realistic setting taking into account battery ineffi-
ciencies, stochastic demand in residential settings, and exist-
ing variable rate pricing plans in Ontario and Illinois. Both
papers mention the problems with scaling distributed energy
storage to many consumers, but neither i) explores the full
implications of large scale adoption, including the decreas-
ing ROI for consumers with storage as adoption scales nor
ii) proposes or evaluates a solution to the problem. Johnson
et al. [12] formulate the peak shaving problem based on a
pricing plan where customers are billed for their peak usage.
The authors present an optimal offline algorithm, and a com-
petitive online algorithm for solving the problem. However,
they do not focus on or evaluate the proposed algorithms at
large scales, as the use of energy storage increases.

While the data sets in these papers are different, they both
show that ∼20% of homes using energy storage maximizes
the grid’s peak reduction. After this point, rebound peaks
and simultaneous battery charging begin to reduce energy
storage’s benefits, ultimately leading to a higher peak usage
than without energy storage if prices do not react to demand.
In earlier work, Vytelingum et al. [24] shows formally that
under variable electricity rate pricing plans there is a Nash
equilibrium that maximizes social welfare, e.g., cost savings,
once only 38% of U.K. households use energy storage (based

on a U.K. data set). Although slightly higher than the ∼20%
of homes found above, the paper’s trend is the same: beyond
a certain point with existing variable rate electricity prices
the benefits of consumers installing energy storage begin to
decrease. We argue that, due to the high cost of batteries,
when designing incentivizes for distributed energy storage,
the goal should be to encourage the distribution of aggregate
capacity as widely as possible among consumers.

While the work above focuses on residential settings,
prior work has also looked at similar problems from the
perspective of industrial consumers, particularly data cen-
ters [11, 22], but has not examined the impact of storage at
scale. Prior work also highlights the effect of variable rate
pricing on grid stability [17, 18], showing that real-time pric-
ing has the potential to create an unstable closed feedback
loop. We show this experimentally in Figure 5 in the pres-
ence of large-scale energy storage. Finally, we know of no
work that proposes and evaluates using a peak demand sur-
charge to maintain a stable grid and prevent rebound peaks
by incentivizing consumers to flatten their own demand.

7. CONCLUSION
This paper examines the effects of using energy storage

distributed at buildings and homes throughout the grid to
flatten grid demand. In particular, we show that as more
consumers adopt energy storage, a number of problems arise
that impact grid stability and generation costs. As a result,
we propose to augment traditional variable rate electricity
pricing plans with a substantial peak demand surcharge,
which incentivizes consumers to flatten their demand rather
than shift it all to a low-price period. Utilities already use
peak demand surcharges for large industrial consumers; we
argue that, to incentivize distributed energy storage, they
may want to broaden their use to other consumers.

We then design PeakCharge, which includes an online al-
gorithm to minimize electricity costs in the presence of vari-
able rates and the peak demand surcharge. Using a closed-
loop simulator, we show that our algorithm is effective at
both i) maintaining the incentives for consumers to use en-
ergy storage at large scales and ii) ensuring grid stability.
Further, our results indicate the aggregate energy storage
capacity to flatten grid demand by incentivizing consumers
to flatten their own demand is within 18% of the minimum,
optimal capacity to flatten grid demand in a centralized sys-
tem. Since flattening a home’s demand requires over 2X
less storage capacity per consumer to maximize consumer
savings, it significantly reduces the ROI of energy storage,
which is dominated by battery costs.



Parameter Definition

T Time in T discrete intervals 1 to T
I Length of each of the discrete time intervals
si Power charged in interval i
di Power discharged in interval i
e Battery efficiency, 0 ≤ e ≤1
pi Grid power demand in interval i
ci Power cost per kWh in interval i
mi Charge for electricity in interval i
C Battery capacity in kWh
li Aggregate grid demand in interval i.
L Peak grid demand over all intervals
c′ Peak demand surcharge

Table 1: Parameter definitions for linear program.

APPENDIX
Below is the modification of the LP from SmartCharge to
minimize an electricity bill using energy storage in the pres-
ence of a peak demand surcharge, given future knowledge of
next-day prices and next-day demand each hour. Table 1 de-
fines the optimization’s parameters. The formal objective is
to minimize

∑T
i=1 mi each day, given constraints below. The

first five constraints are present in SmartCharge’s original
LP: constraints (1) and (2) ensure positive energy is charged
and discharged from the battery, constraint (3) bounds the
battery’s charging rate, constraint (4) preserves conserva-
tion of energy (including energy conversion efficiency), and
constraint (5) bounds the battery’s capacity. The final three
constraints (in bold) are necessary to optimize for a peak de-
mand surcharge: constraint (6) computes the bill based on
variable rate prices and the peak demand surcharge, con-
straint (7) represents grid’s demand in the ith interval, and
constraint (8) is the size of the peak demand surcharge.

si ≥ 0, ∀i ∈ [1, T ] (2)

si ≤ C/4, ∀i ∈ [1, T ] (3)

di ≥ 0, ∀i ∈ [1, T ] (4)
i∑

t=0

dt ≤ e ∗
i∑

t=0

st, ∀i ∈ [1, T ] (5)

(

i∑
t=0

st −
i∑

t=0

dt/e) ∗ I ≤ C,∀i ∈ [1, T ] (6)

mi = (pi + si − di) ∗ I ∗ ci + L ∗ c′, ∀i ∈ [1,T] (7)

li = pi + si − di, ∀i ∈ [1,T] (8)

li ≤ L,∀i ∈ [1,T] (9)
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