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ABSTRACT
In this work, we recognised office worker activities that are
relevant for energy-related control of appliances and build-
ing systems using sensors that are commonly installed in new
or refurbished office buildings. We considered desk-related
activities and people count in office rooms, structured into
desk- and room-cells. Recognition was performed using fi-
nite state machines (FSMs) and probabilistic layered hidden
Markov models (LHMMs).

We evaluated our approach in a real living-lab office, in-
cluding three private and multi-person office rooms. As ex-
ample devices, we used different ceiling-mounted PIR sen-
sors based on the EnOcean platform and plug-in power me-
ters. In at least five days of study data per office room,
including reference sensor data and occupant annotations,
we confirmed that activities can be recognised using these
sensors. For computer and desk work, an overall recogni-
tion accuracy of 95% was achieved. People count was esti-
mated at 87% and 78% for the best-performing two office
rooms. We furthermore present building simulation results
that compare different control strategies. Compared to mod-
ern BEMS, our results show that 21.9% and 19.5% of electri-
cal energy can be saved for controls based on recognised desk
activity and estimated people count, respectively. These re-
sults confirm the relevance of building energy management
based on activity sensing.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms
(including Monte Carlo), Statistical computing ; I.2.6 [Arti-
-ficial Intelligence]: Learning—Parameter learning ; I.5.1
[Pattern Recognition]: Models—Deterministic, Statisti-
cal ; I.5.2 [Pattern Recognition]: Design Methodology—
Classifier design and evaluation, Feature evaluation and se-
lection, Pattern analysis; I.6.6 [Simulation and
Modeling]: Applications
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1. INTRODUCTION
Commercial buildings are among the largest energy con-

sumers and CO2 producers worldwide [7]. While efficiency
improvements in installation and appliances can contribute
to lower consumption and cost, a large additional poten-
tial for energy savings exists in actively controlling build-
ing spaces according to their actual dynamic usage. Mod-
ern Building (Energy) Management Systems (BMS, BEMS)
typically operate by adjusting heating, ventilation and air-
conditioning (HVAC) and lighting based on readings from
various types of sensors distributed within a building. Be-
sides room conditions (e.g., temperature, humidity, light
level), motion sensors and energy meters are frequently in-
stalled sensing modalities in new or refurbished commer-
cial buildings. Although most energy consumers in offices
support rapid control cycles and different operating states,
the data provided by building sensors is not fully exploited
in current BEMS. Where BEMS systems do not adapt dy-
namically to occupant activities energy could be wasted. In
particular, dynamic information on user activities is cur-
rently not considered for building control. For example, to
properly ventilate a building space, the actual people count
in the office space is key to adjust air supply and temper-
ature in order to maintain user comfort, as suggested by
the ANSI/ASHRAE standard [2]. According to Erickson
and Cerpa [5] an occupancy-driven ventilation strategy alone
could reduce total energy usage by 8.1%. Through a busi-
ness day, office building users follow various activities and
occupy different building spaces. Current buildings only use
presence or motion detectors in offices to switch lights on
or off according to occupancy. Standby power detectors are
used to switch off devices that remain in low-power mode,
while not being used.

More detailed information on office activities could save
energy. For example, detecting whether users perform paper-
based or computer-based work could enable BEMS to dim
lights during screen-work and increase lighting levels during
paper-based work as well as to control office appliances [12].
To date, most approaches to activity recognition in offices re-
lied on a variety of specifically added sensors, such as video
and ultrasound sensors, or required users to use wearable
technology (see related work in Sec. 2). In those approaches,
the set of commonly installed and networked sensors that
are available for BEMS management was not considered.
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Adding and maintaining further sensors increases cost and
burden for building management, thus should be minimised.
Using existing sensors could provide options for activity-
based control, ideally by updating BEMS software only.

In this paper we investigate an opportunistic approach to
office activity recognition by using a subset of sensors that
can be frequently found readily installed in office buildings.
Our aim is thus to derive a set of activities that is rele-
vant for energy-related control of appliances and building
systems (HVAC, lighting, other office appliances). We then
evaluate activity recognition performance using the oppor-
tunistic, hence often available, sensor set. In particular, this
paper provides the following contributions:

1. We present our activity recognition and energy saving
approach using sensors frequently installed in build-
ings. We detail our recognition approach using finite
and probabilistic state models that can be applied with
building sensor data. We recognise activities that have
potential to lead to energy savings, including desk work
activities and people count per office.

2. We give an overview on the living-lab installation of
three different office rooms, in which we investigated
our opportunistic sensing approach in a continuous
recording study during five or more days per room.
While occupants followed their regular office activities,
data from the various in-building sensors were acquired
together with complementary reference sensors to sub-
sequently analyze recognition performances.

3. We determine the relevance of the considered activity
sets regarding their energy saving potential using simu-
lations. Here we compare several commonly used con-
trol strategies in buildings with our activity-based ap-
proach. Along the installation of our living-lab build-
ing, we illustrate the potential energy saving using op-
portunistic activity-based sensing.

Relations of office activities and building energy require-
ments have been shown previously through simulations. How-
ever, the feasibility of using standard office building sensors
to recognise activities, which are relevant for energy saving,
yet has to been confirmed. In this paper, we focus on identi-
fying relevant office activities and recognition approaches as
a first, but essential step towards improving energy efficient
building operations. For this purpose, our work considers
real offices, where participants work regularly.

2. RELATED WORK
Passive infrared sensors (PIR) are widely used in activity

recognition, but most commonly in presence and motion de-
tection, to track people’s paths, in order to switch on and off
lights, HVAC systems, and appliances. In [1] PIR sensors
and magnetic door switches were used to detect occupancy
of certain building spaces and control the HVAC system ac-
cordingly. Using information about occupancy from a pilot
testbed and building simulation, potential energy savings
between 10% to 15% were estimated.

Besides HVAC system control, PIR sensors together with
other sensor modalities are commonly used for controlling
lighting and appliances. In a work of Marchiori and Qi [13],
PIR sensors and door switches were used together with en-
ergy controllers to manage different office appliances accord-

ing to occupancy. Authors in [4] used motion and light sen-
sors to determine high energy consumption points that can
be optimized to gain greater efficiency. Their energy con-
sumption optimization was based on occupancy and the level
of ambient and artificial light. Savings from 58.6% in open-
plan offices to 70.9% in corridors were estimated. To learn
occupancy patterns and movement behavior, authors in [6]
and [5] used wireless cameras. Camera nodes were placed at
the boundaries between different areas to detect transition
between them. Besides tracking people, the approach was
used to estimate the number of people in the room and to
predict room usage. Based on known occupancy patterns,
HVAC control strategies could be optimized to save 8.1% of
energy needs.

In several previous works, occupancy information was con-
sidered for control purposes. Even though occupancy in-
formation has proven to be valuable for controlling light-
ing, HVAC, and different appliances, and previous studies
showed substantial energy saving potential, those works did
not consider actual user activity. Our present study focuses
on occupant activity and behaviour as a key information for
building adaptation and energy saving, thus not limited to
occupancy only.

Wojek et al. [23] used cameras and omni-directional micro-
phones for room-level people tracking in offices and laborato-
ries. The authors recognized whether users were participat-
ing in meetings, involved in discussions, paper work, phone
calls, or the office was empty. Oliver and Horwitz used USB
cameras and binaural microphones for detecting office activ-
ities [17, 18]. Based on audio data they were able to differ-
entiate human speech, music, silence, ambient noise, phone
ringing and typing. From video data, the system detected
whether people were present in the office. At the highest
layer in their model, activities, such as phone conversation,
ongoing presentation, distant conversation, nobody in the
office, and user present and engaged in some other activity
were modelled. Since cameras and microphones are often
considered to reveal privacy-sensitive details, authors in [24]
proposed solution for user activity recognition and tracking
by using a network of PIR sensors only. They grouped sen-
sors into clusters to represent e.g. entering, leaving, tuning,
walking up and down. Superclusters were used to model
visiting, chatting and meeting activities. Their approach re-
quired a dense installation of PIR sensors. In [16] authors
used PIR, pressure sensors and microphones for recogniz-
ing five different activities: working with PC, working with-
out PC, having a meeting, presence, and absence. Jahn et
al. [11] proposed ubiquitous sensor-based system for tracking
user actions relevant for sustainable behaviour. In particu-
lar, power consumption, presence, lighting, window move-
ment, and heating temperature was monitored. The work
showed that user behaviour and awareness is relevant for
reducing energy waste.

Studies investigating office activity recognition showed that
high performance could be reached for several sensor modal-
ities and information sources. Although cameras and mi-
crophones would provide rich information about user activ-
ities, they are often considered privacy-intrusive by occu-
pants, and thus could affect user behaviour and comfort.
PIR sensors and plug-in power meters, as used for motion
detection and power measurements of computer screens in
our study, could provide sufficient information to recognise
activity. Since both, PIRs and plug-in power meters are
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regularly used in offices already, acceptance by occupants is
likely. Furthermore, previous works on office activity recog-
nition did not consider activities related to energy saving
potential, as it is targeted in our study.

Opportunistic sensing approaches have been investigated
to combat the constraints in obtrusiveness, privacy, and cost
associated to the previously mentioned concepts, which are
key to our application too. In the context of smart homes,
infrastructure-mediated sensing or ’home bus snooping’ was
investigated to recognize user activities by single-point sens-
ing. Patel et al. [20] analyzed electricity line noise of different
device in homes. By observing the device operation, the au-
thors derived information about user location and activity.
In the approach of Froehlich et al. [9] water fixtures were
monitored, including sink, toilet, shower, bathtub, clothes
washer and dishwasher. Another approach was proposed by
Patel et al. [19] for detecting human movement by differen-
tial pressure sensing at the home-based HVAC system. Ac-
cording to differential pressure it was possible to determine
location of pressure disturbances and determine when peo-
ple were passing through doorways as well as to detect door
opening and closing. Although these approaches are easy
to deploy and very promising, they are mainly applicable to
private houses.

Our approach focuses on identifying activities in office
buildings, where a single-point sensing approaches are not
feasible due to the larger variability in installed appliances,
variety in occupant behavior patterns, and need for scalable
sensing solutions. We thus consider an opportunistic sensing
approach that relies on modalities often available in modern
or refurbished buildings.

In [10] and [22] authors used user access badges, identifi-
cation via Wi-Fi points, user calendars, Instant Messaging
clients, and computer system activity, in order to track users
and recognize their activities. With this rich information
about users, these opportunistic approaches showed good
recognition accuracies and potential for energy saving. In
contrast, our approach considers motion as a binary signal
and energy consumption of computer screens only. In this
work, sensor data is not used to identify users, neither to
track them.

3. RECOGNITION CONCEPT
Our opportunistic sensing and recognition approach builds

on a subset of sensors that are often already installed in office
buildings. This section details modalities considered and de-
scribes the office activity recognition algorithms developed
to derive activity information from the sensors.

3.1 Opportunistic in-building activity sensing
Since energy conservation and cost represent major chal-

lenges for building operators and facility managers, various
wired and wireless in-building sensing systems have been in-
troduced to support BMS control. Among them, motion de-
tectors are typically used to control lights in different zones.
Lights are switched on and off according to user presence.
Power meters are used to measure consumption of plug-in
appliances. Figure 1 illustrates the modalities commonly
available and considered for activity recognition in this work.

Depending on building type and primary occupant use,
additional modalities could be available, such as window
switches (where windows can be opened), temperature, hu-
midity, and many further modalities. In our approach, we

Figure 1: Illustration of sensor modalities that are
frequently installed in modern buildings and consid-
ered here for activity recognition: (1) per-desk mo-
tion detectors at the ceiling for lighting and HVAC
control, and (2) power meters to control plug-in ap-
pliances.

focus on a subset of sensing options that can provide in-
formation on office activities relevant for building control.
Hence we neglected some data sources that may not be com-
monly available or are otherwise not providing information
that is directly coupled to user relevant activity. In Section 6
we confirmed the relevance of the selected activity sets.

3.2 Desk-cell and room-cell activities
We matched general office activities, their relevance for

energy-related control and information provided by the modal-
ities described above to a shortlist of activities that can be
considered by our opportunistic approach. In order to main-
tain scalability, we partitioned the recognition problem in
desk-cell and room-cell, as there can be a variable number
of desks in one room or building space.
Desk-cell activities. For an individual desk, major states
include Away and Presence, where the latter can take differ-
ent forms according to the actual activity: Computer work,
summarizing computer-based activities, andDesk work, sum-
marizing other desk work not actively working in front of the
computer. The different activities during Presence can be
used to control appliances, such as computer screens when
users are not working with their computers, or to adjust
lighting conditions for paper-based work. Clearly, Away and
Presence as indicators of occupancy are crucial for HVAC,
lighting, and appliances control.
Room-cell activities and states. Room-cell activities
and states include People count, which describes the number
of occupants actually working in a room. Based on People
count, HVAC systems could adjust the ventilation of fresh
air and temperature within a room.

All considered activities are listed together with related
sensor modalities and intended use of the recognition result
in Table 2. Subsequently, we derived algorithms that could
process the opportunistic sensor data continuously and rec-
ognize office activities.
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3.3 Desk activity recognition
We chose graphical models to implement our recognition

approach in desk- and room-cells. Two different methods
were used: finite state machines (FSMs) and layered hidden
Markov models (LHMMs). Finite state machines allowed
us to describe state logic and sensor data fusion. How-
ever, FSMs are deterministic, requiring expert knowledge
and manual design of states and conditions.

Unlike FSMs, HMMs are non-deterministic models, where
transitions between states and observation emissions are mod-
eled probabilistically. During the LHMM training phase,
unlabeled sensor data was used. Since labeled training data
was not required, LHMMs can be derived even without ex-
pert knowledge. Moreover, as we showed in our previous
study [15], less than two days of training data were needed
to achieve robust recognition of activities in two office rooms
and LHMMs can be learned independent of a particular oc-
cupant desk. Table 1 lists all features considered in our
models and Table 2 summarizes recognition goals, activity
sets, features, and example applications considered in this
work.

Table 1: Features derived from PIR sensors and
plug-in power meters that where used in our recog-
nition models.

Nr. Feature description Symbol

1 PIR state sPIR

2
Screen energy

consumption above
standby threshold

vEnergyi
>φEnergy

3
Screen energy

consumption below
standby threshold

vEnergyi
≤ φEnergy

Finite state machines (FSM). For per-desk PIR sensors
in new building installations, the states Presence and Away
are conveniently detectable by sPIRi for desk i. Our Desk
activity state-model however includes sub-states for Com-
puter work and Desk work while in state Presence. The sub-
states are recognized based on consumed energy vEnergyi of
the screen at desk i, as shown in Figure 2. This approach
assumes that the screen will enter standby mode if no user
activity is detected. Consequently, if the consumed outlet
energy is below a known threshold, the screen is assumed
to be in standby. With this hierarchical state-model, we
obtained a more specific representation of activities while
working at a desk. When a user is present, but the computer
has switched off the screen (hence vEnergyi ≤ φEnergy), Desk
work is reported and Computer work otherwise.

Nevertheless, most PIR sensors used in office buildings
are detecting motion, thus may miss to detect presence ac-
curately. To prevent falsely reporting Away while a user is
sitting motionless, we introduced an intermediate state Tem-
porary away and prolonged Presence state for a predefined
time ΔtPresence. We observed that ΔtPresence can be con-
figured depending on the PIR sensor model used (see Sec. 4
for details). Only if sPIRi = 0 and vEnergyi ≤ φEnergy,
Away is reported.
Layered Hidden Markov Models (LHMMs). A hid-
den Markov model (HMM) is a Markov model in which the
observation is a probabilistic function of hidden states. To
specify an HMM, two model parameters are needed: N rep-
resenting the number of individual model states, and M,

Figure 2: Desk activity state-model for classifying
S1-Away, S2-Temporary away and S3-Presence, S′

1-
Desk work and S′

2-Computer work per office desk i.
State S3p represents the prolonged Presence state.
See Section 3 for details. The energy consumption
threshold φEnergy and Presence state prolongation
time ΔtPresence were set empirically as detailed in
Section 4.

describing the number of distinct observation symbols per
state. The individual symbols are denoted as V = {v1, v2, ...
, vM}. Moreover, the HMM description requires specifying
three sets of probability measures A, B and π, which are
state-transition probability distribution, observation sym-
bol probability distribution, and initial state distribution,
respectively [21].

In order to derive HMM model parameters, unlabeled se-
quences of observations and states were used in a training
step. The model parameter estimation, λ = (A,B, π) was
done using MATLAB [14].

Considering that Computer work and Desk work could
exist only if the system is in a Presence state, we chose
a layered HMM approach for recognizing activities. The
classic LHMM approach used a bank of HMM classifiers to
discriminate observation sequences [18]. The HMMs at a
next level L+1 take outputs of the HMM at level L as their
inputs. In our study, the first layer consisted of three nodes
to model Presence, Away and Temporary Away states, as
shown in Figure 3.

Unlike the classical LHMM approach, we used the Viterbi
algorithm [21] to find most probable sequences of hidden
states as a result of an observed event sequence. The result
of the first layer was then used as an input for the second
layer, which had two nodes representing Computer work and
Desk work states.

3.4 People count estimation
To count people in an office room, we combined informa-

tion from Presence states of all desk cells NDesks in an office
room. Our people count result is thus based on a combina-
tion of all distributed PIR sensor information. Upon a tran-
sition to or from the Presence state by our desk-cell recogni-
tion, people count was increased or decreased. To enable the
system to perform rapid control decisions, we used the in-
termediate state Temporary away for updating the estimate,
rather than Away. We applied the people count estimation
based on results from both, FSM and LHMM models.
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Table 2: Summary of our opportunistic sensing approach used for recognizing office activities. Activities
were selected from a general set of office activities according to their relevance for energy-related control.
Desk and room cells were considered to maintain scalability for office buildings of different sizes.

Recognition Opportunistic Activities Example energy saving

goal sensor application in offices

Desk-cell activities per desk i = 1 . . . NDesks

“Desk activity”

Per-desk PIR (sPIRi
) Away

Control appliances, e.g. shut-off
computer screens when their
users are away; decrease lighting
for computer-based work.

Per-desk PIR (sPIRi
) Presence

Per-desk PIR (sPIRi
), Computer work

plug-in power meter (vEnergyi
)

Per-desk PIR (sPIRi
) Desk work

plug-in power meter (vEnergyi
)

Room-cell activities and states

“People count” Room PIR network (sPIRi
∀i) People count Room conditioning

Figure 3: Layered representation of HMMs used in
our recognition approach. Layer 1 consists of three
states S1-Away, S2-Temporary away and S3-Presence,
where different PIR states and power measurements
represent observations (O1, O2, O3, O4). The Viterbi
algorithm was used to find optimal state sequences,
linked to an observed event sequence. Our esti-
mated state sequence represented the input for the
second layer, where S′

1- Desk work and S′
2-Computer

work states were activated during the S3 (Presence)
state.

4. IMPLEMENTATION AND STUDY
DESIGN

This section details our living-lab implementation and study
design used to analyze the opportunistic sensing approach.
We describe the sensor selection to resemble commonly ex-
pectable performance. Study design considerations are de-
scribed regarding opportunistic data acquisition and activity
ground truth.

4.1 Living-lab implementation
In order to validate our approach, we set up a living-lab

installation at multiple office rooms at the TU Eindhoven
University campus. We investigated the scalability of our
system and deployed installation in three offices with dif-
ferent structure: private (1-person office), a 3-persons office

and a 4-persons offices. Each room cell was partitioned into
several desk cells (NDesk) according to number of users. Fig-
ure 4 shows a schematic representation of the office layout
and sensor modalities used in the installation. Table 3 shows
the type and quantity of the sensors used in our installations.

Table 3: Duration of the study, desk-cells configu-
rations and type and quantity of sensors in private,
3-persons and 4-persons offices.

Private 3-persons 4-persons
office office office

Days of the
study

5, including
2 week-
end days

7, including
2 week-
end days

5 working
days

Number of
desk-cells

1 3 4

Office sensors

PIR Eltako
FBH63AP

0 2 2

PIR Thermokon
SR-MDS

1 1 2

Plug-in power
meters Plugwise

circles
1 3 4

In our living-lab installation, we used self-powered wire-
less PIR sensors based on the EnOcean wireless protocol1

at 868MHz with solar harvesting units: FBH63AP from
Eltako2 and SR-MDS from Thermokon3. All PIRs were
ceiling-mounted, directly facing the desk areas. The office
room height was ∼3.2m. Both models report measurements
upon brightness changes of more than 10 lux, every 100 s,
and directly when motion was detected. When no motion is
detected, the Eltako model waits for 100 s before sending an
off event, while the sensor from Thermokon waits for 1000 s.
This duration was not adjustable for both models. Based
on initial tests, we partly covered the PIR sensor lenses to
narrow the sensor’s field of view and to adjust focus to a
specific desk. We set the state prolongation ΔtPresence for
the Eltako PIR to 240 s, and to 0 s for Thermokon.

For their solar harvesting operation, EnOcean sensors re-
quired sufficient lighting conditions. Nevertheless, our mount-

1www.enocean.com
2www.eltako.com
3www.thermokon.de
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Figure 4: Schematic representation of a multi-user
office room layout with four desk cells used in our
investigation. Corresponding to the opportunistic
sensor modalities introduced in Sec. 3, we used sev-
eral sensor types and modalities. The room height
is 3.2m.

ing locations did not hamper a continuous operation of the
sensors.

To monitor energy consumption of desk screens we used
Plugwise plug-in power meters4 ’Circles’ that communicate
via ZigBee wireless protocol at 2.4GHz. Plugwise provided
instantaneous power consumption of the screens at a sam-
pling frequency of ∼1min. Desk screens have a maximal
power consumption rating of 41Wh and a standby con-
sumption of ∼2Wh. We set the energy consumption thresh-
old to φEnergy=2.2Wh. The energy consumption threshold
was chosen in accordance with Directive 2005/32/EC [8].
Screens standby time was configured to 2min, based on the
empirical observation in our living-lab that this setting is
not considered uncomfortable for users. We used Context
Recognition Network Toolbox (CRNT) [3] for recording and
synchronization of the data streams via wireless USB inter-
faces.

4.2 Study design
Using the living-lab installation as detailed above, we im-

plemented a multi-day study in the different offices with
desks occupied by PhD students who were regular users of
these desks. Participants were asked to maintain their work-
ing style as usual. No activities were scripted or prescribed
in any form during the recordings. Recording durations and
desk-cells configuration is shown in Table 3.

In order to obtain ground truth for the activities per-
formed, including computer and desk work, participants were

4www.plugwise.com

asked to manually annotate their activities with a resolution
of 1min on a pencil-and-paper form. The form was designed
such that regularly recurring activities could be rapidly filled
in.

Since manual annotations can be inaccurate, we decided
to use a pair of ultrasonic range finders (USR) as comple-
mentary sensor modalities to obtain reference data about the
participants’ presence. From USR data we derived presence
as a threshold function of user’s distance from the screen.
The model SRF08 from Devantech was used and attached to
the top of both sides of the screens except in the 4-persons
office, where we used one sensor only. Sampling frequency
was set to 1 s. The maximum range distance was set to
1m to prevent unwanted reflections from the other objects.
The actual installation setup for one desk cell is shown in
Figure 5.

Figure 5: Living-lab installation for one desk cell, in-
cluding ceiling-mounted PIR and plug-in power me-
ter sensors. Ultrasound range sensors (USRs) were
used as reference to derive ground truth for partic-
ipant activities only.

4.3 Deriving ground truth
To complement the laborious manual annotations during

the multi-day recordings, we used a USR-based activity de-
tection of Away and Presence. In order to confirm the USRs’
accuracy, we validated the classification performance in com-
parison to manual activity annotations of one user. The user
was selected based on self-reported compliance in complet-
ing the manual annotation form.

The comparison between USR-based detection and user
annotation resulted in a 94% agreement, except for the 4-
persons office where only one USR was available. We con-
sidered this agreement as sufficient to further use the USR-
based activity detection for evaluating the opportunistic sen-
sor and recognition algorithm performances. To further ob-
tain activity ground truth for the activities Computer work
and Desk work, we merged USR-based activity detection
with manual annotations of the users. In the 4-persons office
dataset, manual annotations were used as they were found
to be more accurate.

Subsequently, reference for people count was derived by
considering the USR-based results from all desk cells. When
the USR-based detection changed from Away to Presence,
reference people count was increased, when passing to Away,
reference people count was decreased.
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5. RECOGNITION ANALYSIS
Figure 6 illustrates the sensor readings for one participant

during a typical recording day in our study, including PIR
sensor, screen power consumption, and the participant’s ac-
tivity annotation. As the waveforms illustrate, a general
activity pattern is readily observable from sensor readings.

Figure 6: Example recording day from the study of
one participant. Manual annotations of participant’s
activity were: 0=Away, 1=Desk work, 2=Computer
work.

After entering the office room (1), the participant’s ini-
tial activity was Desk work (2), which is confirmed by the
screen’s power consumption readings (3). Screen consump-
tion alternated between 2Wh and 41Wh during the day
according to the user’s activity (4). When the participant
left the desk (5), a delay was observable between the partici-
pant’s activity transitions from Computer work to Away (6)
and changes in the screen’s consumption (7). This delay re-
flects the computer standby time of 2min. We frequently
observed that the PIR sensor falsely reported Away when
a user was sitting still at the desk. It can be concluded
that the PIR sensor was not sufficiently sensitive to recog-
nize low amplitude motions. Our recognition could partly
compensate this effect as the screen power consumption was
incorporated too.

Desk activity recognition. Activity classification re-
sults for the Desk activity recognition approach are shown
in Table 4. We derived the office-specific accuracy and re-
ported durations of classified activities to represent the data
amount for each condition. As the results show, FSMs and
LHMMs yielded similar performance. Overall accuracy for
Presence and Away was 82.4%. The results for Presence in
the 3-persons and 4-persons office were lower than those for
the private office, reflecting the different characteristics of
PIR sensors used. This finding confirms observations made
from the waveforms above and indicates that differences in
hardware characteristics can affect accuracy.

Average performance for discriminating Desk work and
Computer work was 95% for both, FSMs and LHMMs. The
lower accuracy for Desk work was observed for the private
office only. The private office occupant reported only very
few minutes of Desk work throughout the study. We at-

Table 4: Classification results of the Desk activity
recognition. Since ground truth was differently de-
rived for Presence vs. Away and Computer work vs.
Desk work, separate totals are shown.

Activity
Private
office

3-
persons
office

4-
persons
office

Presence
FSM Accuracy[%] 75.0 56.3 63.5

LHMM Accuracy[%] 75.0 56.3 63.5
total time [h] 11.3 60.3 93.7

Away
FSM Accuracy[%] 98.0 96.3 89.5

LHMM Accuracy[%] 98.0 96.3 89.5
total time[h] 82.5 371.8 70.7

Total
FSM Accuracy[%] 87.0 88.3 72.0

LHMM Accuracy[%] 87.0 88.3 72.0
total time[h] 93.8 432.1 164.0

Desk
work

FSM Accuracy[%] 39.0 77.0 72.5

LHMM Accuracy[%] 43.0 77.7 73.0
total time[h] 0.3 5.8 15.4

Computer
work

FSM Accuracy[%] 100.0 97.3 96.5

LHMM Accuracy[%] 100.0 98.3 94.5
total time[h] 10.2 42.7 78.3

Total
FSM Accuracy[%] 97.0 97.3 92.5

LHMM Accuracy[%] 98.0 98.0 91.8
total time[h] 10.6 48.5 93.7

tributed the lower recognition performance to these short
desk work activity interrupts of the occupant.

Figure 7 shows the average activity recognition perfor-
mances for the Desk activity recognition. As the results con-
firm, the LHMM-based approach can obtain similar recogni-
tion performances compared to the manually designed FSMs.

Figure 7: Average recognition performances for
the Desk activity recognition. FSMs and LHMMs
yielded similar results for all activities.

People count recognition. The people counting esti-
mation performance and total people counts are shown in
Table 5. Overall, an accuracy of 66.3% was obtained for
FSMs and LHMMs. It could be noticed that accuracy of
counting people for the 4-persons office was lower compared
to the other two offices. This result can be explained by the
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low sensitivity of the PIR sensor model used in the 4-persons
office, which resulted in a larger number of false negatives
as discussed earlier. The accuracy per desk-cell represents
the model’s ability to recognize Presence and Away states,
since the number of people will increase with activation of
any PIR sensor and decrease with its deactivation. The re-
lation of presence recognition and people count estimation is
directly reflected in the accuracy of the private office setting.

Similar to the Desk activity recognition, FSMs and LH-
MMs yielded identical estimation people count estimation
results. In the LHMM-based approach, we learned data
model without using labeled training data, while the FSM-
based approach relied on a manually state design. The re-
sults confirmed that the unsupervised learning approach ap-
plied to derive the LHMMs is viable.

Table 5: People count estimation results. FSMs and
LHMMs yielded identical estimation results due to a
similar presence recognition performance. The PIR
sensor model deployed in the 4-persons office showed
insufficient sensitivity, resulting in reduced estima-
tion performances.

Activity
Private
office

3-
persons
office

4-
persons
office

FSM Accuracy [%] 87 78 34
LHMM Accuracy [%] 87 78 34

Total counts 468 2476 277

6. ENERGY CONSUMPTION ANALYSIS
We investigated whether the activities considered in our

investigation are relevant for saving energy in office build-
ings. In this section, we compare the benefit of activity-
based controls when using office-installed sensors, to sev-
eral alternative control strategies without activity inference.
These alternative controls can be frequently found in current
BEMS.

6.1 Simulation approach
We used the EnergyPlus simulation software5 for this anal-

ysis. EnergyPlus is an energy analysis and thermal load
simulation tool developed by the US Department of Energy.
It takes into account several parameters, including weather
conditions, orientation and construction of the building, HVAC
system, and occupancy. Key parameters of our simulation
are shown in Table 6.

For all energy consumption simulations, we considered the
4-person multi-user office room shown in Figure 4 as an ex-
ample. This room represents one thermal zone. We chose a
fan coil unit as HVAC system and used yearly weather data
for Amsterdam, the Netherlands, to simulate realistic envi-
ronmental conditions. Space conditioning was determined
according to setpoints that are typically applied in central
Europe (see Tab. 6). The lighting system in this office room
consisted of 15 dimmable fluorescent light tubes (length:
1200mm), rated at 36W per tube.

6.2 Desk activity recognition
Here we focused on lighting as one example to assess po-

tential energy savings of activity-based control. To compare

5apps1.eere.energy.gov/buildings/energyplus

Table 6: Simulation parameters used in our energy
consumption analysis to assess the benefit of activity
sensing to save energy.

SIMULATION PARAMETERS

HVAC system
Fan coil unit,

1 zone

Lighting system
15 dimmable fluorescent tubes,

surface mounted

Area 24m2

Location
Amsterdam,

The Netherlands

Heating setpoints
21.1◦C occupied,
12.8◦C unoccupied

Cooling setpoints
23.9◦C occupied,

40.0◦C unoccupied (system off)

saving options, we considered several control types and used
average activity patterns and sensor data from to our study
to model user behaviours as described

Manual Control. Manual Control considers the situa-
tion where users would operate a lighting system. We as-
sume here that the first person entering to the office room
will switch lights on and the last person leaving the office
will switch them off. Lights provided their maximal lux
level, hence energy consumption would amount to 540Wh.
This situation can be considered as an extreme, uncontrolled
condition, and serves as baseline for our comparison.

Presence-based Control. This control option considers
that a PIR sensors would detect presence and consequently
switch lights on. If no movement is detected, the PIR will
switch lights off. The lights provide maximal lux level when
activated. We derived PIR activations by combining mea-
surements of all individual PIR sensors in our study.

Presence-per-desk-based Control. In the considered
office room four light tubes are dedicated to each desk, ex-
cept for desk 4, where there are only three tubes (see Fig-
ure 4). When sPIRi = 1 for desk i, lights dedicated to desk i
will be activated and on maximal lux level. When sPIRi = 0
desk lights will be deactivated.

Activity-based Control. According to standard (BS
EN 12464-1:2011), lower lighting levels (∼500 lux) are suffi-
cient for computer work, while desk-related work requires
≥750 lux. For activity-based control, we simulated a re-
duction of light level by ∼30% during Computer Work and
maintained lights maximal lux level during Desk Work. In
our study, at least three light tubes were dedicated to each
desk, providing total maximum of 7500 lm per desk. Per
desk area (∼5m2), the available lux level was thus 1500 lux.
If no presence was detected, lights would go off. Common
lighting of the room was activated according to general room
presence.

Analysis results.
In our simulations, we used actual data recorded from the

4-person office of our living-lab (see Table 3). The average
power consumption per year of all control options is shown in
Figure 8. For Manual Control, average power consumption
on a yearly basis was 1199.48 kWh. For Presence-based Con-
trol, consumption decreased by 25.4%. When presence per
desk was considered (Presence-per-desk-based Control), con-
sumption decreased by 63.2% compared to Presence-based
Control. By adding information on the participant’s activ-
ity and adjusting lighting level accordingly in Activity-based
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Control, average consumption per year was 257.5 kWh. Con-
sumption in Activity-based Control was further 21.9% lower
than the Presence-per-desk-based Control. Overall, the dif-
ference between Manual Control and Activity-based Control
was 78.5%.

Figure 8: Lighting system average power consump-
tion per year according to our energy consumption
simulation. The results indicate savings for differ-
ent control strategies, where Activity-based Control
achieved an overall saving of 78.5% compared to
Manual Control. This evaluation corresponds to the
recognition of the 4-person office room in our living-
lab.

6.3 People count estimation
People count in an office room has a large influence on the

required ventilation rate. An increase in ventilation rate will
increase power consumption of the fan coil unit. According
to the ASHRAE Standard 62.1 [2] ventilation rates can be
derived using:

Vbz = RpPz +RaAz, (1)

where Rp represents outdoor airflow rate per person, Pz is
the population, Ra represents outdoor airflow rate per unit
area and Az is zone area.

We simulated people count in relation to required airflow,
while considering a real fan coil unit. In this analysis, we
used the UniTrane size 016 from Trane, as an example de-
vice. Based on simulated airflow, a relation of people count
and HVAC energy consumption is illustrated in Table 7.

We combined real data recordings and recognition from
our study and energy consumption estimations to assess the
effect of actual people count recognition on HVAC energy
consumption. In particular, we considered the following con-
trol strategies:

Time-based Control. In many buildings without pres-
ence detection, HVAC systems are operated according to
fixed schedules. Facility managers set the HVAC to active
before people would usually enter a building or office room,
and shut it off when people left. This control procedure
did not consider actual people count in a building. For our
analysis, we assumed that the HVAC system will operate at

6www.engineer.trane.com

maximal speed and providing maximal air flow from 6:00 to
22:00.

Manual Control. This strategy assumes that users would
operate the HVAC system. We considered that HVAC sys-
tem would be activated when first person enters the office
and deactivated when last person leaves the office.

Presence-based Control. Here, presence as reported
by any PIR sensor in our example office room would con-
trol activation of the HVAC system. The HVAC would be
operated at maximal speed.

People Count-based Control. In this strategy, we con-
sider people count estimation and would control the HVAC
system’s fan coil unit accordingly. Thus, based to the de-
tect number of occupants, power consumption of a fan coil
unit will change. This approach resembles simulation results
illustrated above.

Analysis results.
A comparison chart of the average power consumption

derived in all control strategies is shown in Figure 9. Aver-
age power consumption per year for Time-based Control and
Manual Control was 104 kWh and 55.5 kWh respectively,
which is a difference of 46.6%. When using presence de-
tection (Presence-based Control) at the office level, 25.4%
was saved, compared to Manual Control. By considering
the number of people in an office, fan speed was adjusted
and with it air flow and power consumption. Here, en-
ergy consumption for People Count-based Control decreased
by additionally 19.5%, resulting in a power consumption
of 33.4 kWh on yearly basis. Nevertheless, here we esti-
mated only the energy consumption related to fan opera-
tions, which does not consider energy needed for cooling
and heating. Thus it can be expected that actual energy
savings due to people count estimated could be larger.

Figure 9: HVAC system average power consump-
tion per year considering a fan coil unit operated ac-
cording to different control strategies. Results show
that actual people count estimates as obtained in
the study can reduce energy consumption for 39.9%
comparing to Manual Control.

Figure 10 illustrates the influence of different control strate-
gies on lighting system power consumption per day: (a)Man-
ual Control, (b) Presence-based Control, (c) Presence-per-
desk-based Control and (d) Activity-based Control. In ad-
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dition, activity annotations are shown for Away, DW-Desk
work, and CW-Computer work of the four occupants. Occu-
pants were assumed to be present if they reported their in-
volvement in computer or desk-based activity. For this illus-
tration, power consumptions and annotations were averaged
in two minute windows. As the diagrams illustrate, power
consumption decreases profoundly from Manual Control to
Presence-based Control, and further reductions are notice-
able for Presence-per-desk-based Control. During a period
from 13:00 to 14:00, most of the occupants were involved
in Computer work, and lighting system consumed less than
200Wh, for Activity-based Control. This low consumption
corresponds to the decrease of ∼30% compared to the same
period in Presence-per-desk-based control (∼300Wh).

Table 7: Influence of people count on airflow and
power consumption of a fan coil unit. We considered
here the HVAC unit UniTrane size 01 from Trane.

Number of people Airflow [m3/h] Power [W]

0 0 0
1 36.36 17
2 72.72 23.84
3 109.44 25
4 145.80 25

7. DISCUSSION AND CONCLUSIONS
In this work, we investigated the potential of using a sub-

set of commonly installed office building sensors for recog-
nizing activities that are relevant for energy saving in ap-
pliances and building systems. While these sensors are cur-
rently installed in buildings to directly control appliances,
lighting, and HVAC, we used them to extract more detailed
office activities. We selected desk-related activities and peo-
ple count in office rooms. FSM and LHMM recognition
models were implemented to capture state logic and data
fusion. As we showed here, the models and approach could
be applied in private and multi-user offices.

Our living-lab study helped to confirm that standard of-
fice sensors are in principle sufficient for the recognition task.
We consider this result relevant, as the considered sensor
modalities and similar ones are frequently found in modern
or recently refurbished office buildings and require minimal
maintenance. While such installed sensors are intended for
closed-loop operation, sensor are often integrated into wired
or wireless building networks, thus information can be in-
tercepted. Thus, our concept could be applied without ad-
ditional sensor installation, as it was frequently assumed in
previous investigations.

The activity recognition accuracy of our system could be
compared to the study of Nguyen et al. [16], who used ded-
icated infrared, pressure and acoustic sensors. The authors
focused on similar activities in an experimental office room
occupied by a single user and recorded for five working days.
Activities corresponding to Away and Computer work could
be recognized at 96.5% and 100%, which is similar to the
98.0% and 100% obtained in our study, respectively. We
observed lower accuracies for Presence (75.0%) and Desk
work (43.0%), compared to 94.3% and ∼94.9% (Working
without PC ) in their study. We interpret that the reduced
performances in our “Private office” setting could be ex-
plained by the small recording time for Desk work and by

using a PIR sensor and a power meter alone. Beside mo-
tion sensors, pressure sensors in chairs and microphones were
used in the study of Nguyen et al. When compared to the
overall performance across all offices in our study, we as-
sume that the diversity in occupation with multiple users
and natural working habits in our living-lab could explain
differences. Unlike our study, where users were present for
165.34 h and away for 525 h, in their study only 4.42 h and
5.2 h were recorded, respectively.

Our energy consumption analysis showed energy saving
potential for activity-based controls over using individual
sensors only and manual control. Most of modern BMS and
BEMS systems control lighting and HVAC systems based
on occupancy only. Results of our study and simulations
showed that by identifying user activities and people count
per room, it is possible to save 21.9% and 19.5% of energy,
respectively, over common BEMS systems. These results
were based on our study data and recognition results in a
4-person office room. Although we consider the energy sav-
ing estimations as realistic for the considered office room,
consumption may vary for other building setups that involve
other users and include other installations. For example, flu-
orescent light tubes may not be very common in newly built
commercial buildings. However, when considering modern
LED lighting, e.g. the Philips Master LEDtube at 1200mm
length consuming 19Wh, our activity-based control could
still save ∼500 kWh per year for our example office room.

In our study, we divided office room into four zones where
dedicated lights were operated according to activities. If an
office room provides common lights for all zones as part of
the overall lighting, per-room savings obtained by activity-
based control will depend on the ratio between common
lights and desk-related lights. While, additional common
lights would decrease the saving potential, many office rooms
already constrain common lighting to safety requirements.

We observed that sensor models from different manufac-
turers require specific recognition model settings to achieve
optimal performance. To an extreme, sensitivity of some
particular sensor models may not be adequate for all recogni-
tion tasks here. Furthermore, in our approach, we assumed
that office computers were adequately configured and sus-
pending the screen if no activity occurred. This may be
acceptable in many environments, however could be a limi-
tation if users work without a separately controllable screen.
EnergyStar7 states that 95% of deployed screens and 25% of
office computers have power management features enabled,
which supports our power metering approach.

While we recorded screen power in the study, our recogni-
tion approach does not require power metering. As alterna-
tive, a computer software could be used to track mouse and
keyboard activities and thus identify computer work. More
generally, office buildings include a variety of installations
and appliances. We consider that our approach could be
adapted to available sensor resources in a given building.

Since we modeled activities per desk-cell and used desk-
specific sensors, information regarding the activity of indi-
vidual occupants could be revealed. However, for our recog-
nition approach it is not required to identify and track oc-
cupants.

Further elaboration of the recognition models and addi-
tional sensors, such as door and window switches, could in-

7www.energystar.gov
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Figure 10: Illustration of the lighting system power consumption per day. The consumption traces were simu-
lated based on the occupant activity annotations of four office users shown in the bottom plot (DW: Desk work,
CW: Computer work). The following control strategies were considered: (a) Manual Control, (b) Presence-
based Control, (c) Presence-per-desk-based Control, (d) Activity-based Control. Power consumptions and an-
notations were averaged using two minute windows.

crease the activity-based control options in buildings. The
effort to configure model parameters during the deployment
could be minimised through automatic teach-in procedures,
similar to the commissioning of current building sensor net-
works.

Further studies, involving longer recording periods, more
office rooms and participants should be conducted in order
to confirm the recognition accuracy and potential energy
savings in real office settings, as the living-lab used in this
work.
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