
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
CAe 2013, July 19 – 21, 2013, Anaheim, California.
Copyright © ACM 978-1-4503-2203-4/13/07 $15.00

Generative Fluid Profiles for Interactive Media Arts Projects

Angus Graeme Forbes∗

School of Information: Science, Technology, and Arts
University of Arizona

Tobias Höllerer†

Dept. of Computer Science
UC Santa Barbara

George Legrady‡

Media Arts and Technology
UC Santa Barbara

Abstract

This paper presents a real-time, interactive fluid simulation and vec-
tor visualization technique that can be incorporated in media arts
projects. These techniques– referred to collectively as the Fluid
Automata system– have been adapted for various configurations, in-
cluding mobile applications, interactive 2D and 3D projections, and
multi-touch tables, and have been presented in a number of differ-
ent environments– both academic and artistic– including galleries,
conferences, and a virtual reality research lab. We describe specific
details about the fluid simulation component, which, by changing
a small number of parameters, allows users to quickly generate a
vast number of “fluid profiles” and thus to explore a wide range of
aesthetic possibilities that are easy to incorporate into media arts
projects. In particular, we present this fluid simulation (and accom-
panying visual representation) as an example of how media artists
can create novel versions of existing visualization techniques in or-
der to emphasize variability, experimentation, and interactivity.

CR Categories: I.3.7 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; J.5 [Arts and Humanities]:
Fine Arts—Miscellaneous

Keywords: fluid simulation, vector visualization, video process-
ing, collaborative installation, mobile multimedia art, media art in-
stallation

1 Introduction

Scientific visualization projects aim to help researchers identify and
reason about salient aspects of their data. While an aesthetic sen-
sibility may contribute to the success of a visualization technique,
this is not normally the primary motivation for its creation. Media
arts projects, on the other hand, generally place aesthetic consider-
ations at the forefront of their concerns. Similarly, physical simu-
lations are concerned with accuracy and realism rather than exten-
sibility and interaction, which are central to media arts. However,
media arts projects, due to time constraints or limitations in tech-
nical knowledge, often incorporate readily-available techniques not
originally intended for artistic production, and thus that are not nec-
essarily easily adaptable to artistic situations.

This paper presents a series of media arts projects that make use
of fluid simulation and vector visualization in a variety of config-

∗e-mail:angus.forbes@sista.arizona.edu
†e-mail:holl@cs.ucsb.edu
‡e-mail:legrady@arts.ucsb.edu

Figure 1: Photograph of viewers wearing 3D active stereo glasses
within an installation of Annular Genealogy inside the Allosphere
Research Facility at UC Santa Barbara.

urations. We describe our implementation of a vector visualiza-
tion technique and, more thoroughly, the creation of a custom fluid
simulation algorithm. We discuss in particular our reasoning when
adapting existing techniques in order to make our artworks more
useful within a media arts context. Our system has been incor-
porated in a variety of different projects, including: an iPad ap-
plication, a virtual reality environment, an interactive collaborative
installation, and a multi-touch table. Although the core technol-
ogy has been featured in variously-named projects, we refer to it
as the Fluid Automata system hereafter, unless referencing specific
aspects of a particular project.

Figure 2: Users gathered around a multi-touch table running a
project that uses the Fluid Automata system.

The initial implementation of the Fluid Automata system was pre-
sented as an interactive generative art system that allowed users
to explore the relationship of aesthetics and scientific visualiza-
tion and the interplay between collaboration and discovery. It was
then updated and made available as a downloadable iOS applica-
tion. This stand-alone mobile application invites users to create

37

Figure 3: Examples of output from an iPad application utilizing the Fluid Automata system showing the wide range of aesthetic possibilities
generated by the system when using different fluid profiles defined by customizing the fluid, visualization, and noise parameters.

dynamic generative art via responsive tactile gestures using a tablet
computer. The aesthetic experience includes both controlling the
system through multi-touch and also adjusting a wide range of pa-
rameters to discover new patterns and visual properties; the user
can manipulate both the underlying system and its visual represen-
tation.

Following those initial implementations, the Fluid Automata sys-
tem has been presented in a number of different environments, em-
phasizing different aspects of exploration that are enabled by the
project. For instance, one installation emphasizes collaborative ex-
perience, inviting multiple users to participate in shaping and in-
teracting with the system, which is projected large-scale onto a
wall [Forbes 2011]. The Fluid Automata system has also been in-
corporated into a visual instrument to provide live accompaniment
to a dynamic musical piece created by the composer, Kiyomitsu
Odai, called Studies in Brownian (F*) Motion. An extension of this
project, an audio-visual art piece titled, Annular Genealogy (dis-
cussed in [Forbes and Odai 2012]), was installed in the AlloSphere
Research Facility, a spherical virtual reality environment housed
in the California NanoSystems Institute at the University of Cali-
fornia, Santa Barbara [Amatriain et al. 2009]. In this project, the
tablet’s multi-touch, gyroscope, and accelerometer sensors are used
to navigate and interact with a fluid system projected on the upper
hemisphere of the AlloSphere. Additionally, the tablet can be used
to update fluid parameters of the system. Figure 1 shows a still
from the Annular Genealogy installation. In each of these pieces–
whether running on a tablet or a desktop computer– the main com-
ponents of the Fluid Automata system (the fluid system and the
visualization system) run on the GPU using custom GLSL shader
programs.

Earlier iterations of this project are described in [Forbes et al. 2012],
which provides a general overview of the Fluid Automata system in
different contexts, but especially of the the iPad implementation. In
this paper, we focus primarily on the fluid dynamics engine, elab-
orating on the technical details of the system, and indicating how
the manipulation of a small set of parameters can generate a wide
variety of fluid profiles.

2 Fluid Simulation

A number of interactive art projects use fluid simulation as a com-
ponent of the work. A method created by Jos Stam in 1999 (and
presented to the game developers community in 2003) to create a
stable fluid system first made it possible to represent realistic look-
ing fluids at real-time frame rates [Stam 1999; Stam 2003]. Many
interactive artworks have made use of this technique. For instance,
Memo Atken has created a series of demonstrations based upon
Stam’s method, showcasing them using mobile devices for interac-
tion and making the code available for OpenFrameworks and Pro-
cessing multimedia frameworks [Atken 2009]. Another project that
incorporates Stam’s method is Wakefield and Ji’s Artficial Nature.
This project uses computer vision techniques to allow participants
to interact with a 3D fluid representation through the movement of
their bodies [Wakefield and Ji 2009]. Other fluid simulation meth-
ods, such as [Guay et al. 2011], are optimized for real-time interac-
tion in video games. Although simulation methods generally focus
on producing accurate representations of natural systems, the Fluid
Automata system demonstrates that aesthetically-interesting visu-
als with a wide variation of movement and color can be produced
from a simple set of rules that do not attempt to exactly reproduce
natural systems. In this sense, although influenced by physical sim-
ulation, Fluid Automata could be considered a “generative art” sys-
tem [Galanter 2003; Boden and Edmonds 2009].

While the name of the system was inspired (perhaps only poeti-
cally) by the biologist Tibor Gánti’s discussions of “chemotons”
[Gánti 1997; Gánti 2003], the initial kernel of insight for the Fluid
Automata system arose while thinking about how to create a simple
rule-based system to produce emergent behavior. Cellular automata
systems, made popular through the introduction of John Conway’s
“Game of Life” [Gardner 1970], demonstrate complex behavior
emerging through an iterative system that updates the state of each
element (positioned in a uniform grid) based on a set of basic rules.
These rules determine the next state of each element by querying
each of its neighbors. In Conway’s original automata system, each
pixel has a binary state, and either “lives” (is set to 1) or “dies”
(is set to 0) based upon the number of surrounding pixels that are
on or off. In many implementations of the Game of Life, users in-

38

Figure 4: Details of high-resolution output demonstrating “unre-
alistic” fluid simulation. The top image shows the addition of a
high amount of vorticity; the bottom image shows the “spikiness”
associated with a high amount of energy.

teract with the system by using a mouse to turn pixels on or off.
Other cellular automata systems, including many that are explored
in Stephen Wolfram’s “A New Kind of Science” [Wolfram 2002],
explore different rule sets and involve multiple states.

Through much experimentation, the current version of the Fluid
Automata system effectively simulates the movement of fluid using
an 8-bit cellular automata system that stores 256 states for orien-
tation and 256 states for magnitude for each pixel. Retaining the
discretization and simplicity central to cellular automata systems
allows us to create a complex system that is linear and replicable.
Unlike the majority of commonly-implemented fluid simulations
which utilize the non-linear Navier-Stokes equations, our algorithm
is always stable at any length of timestep. That is, our system is
inherently non-realistic due to the fact that there is no mass conser-
vation condition and because the fluid is compressible. Although
our system is not physically accurate, it has the advantage of be-
ing easy to modify in real-time, and, more importantly, it is easy to
comprehend and relatively straightforward to implement, leading to
its incorporation in a range of projects.

Since one of the goals in the creation of the Fluid Automata system
is to emphasize creativity and interactivity, we created a robust sim-
ulation engine that allows a wide range of fluid-like behaviors to be
explored. For instance, our system allows users to set parameters
describing viscosity, rotational energy, and various momentum pa-
rameters. Various versions of this system have been implemented
in the different projects that use the Fluid Automata system, taking
advantage of available hardware on different devices. But, at its
most basic, the system distributes a flow of energy throughout the
system as follows:

1. The screen is divided into a grid of cells.

2. New energy is added into the grid by user interaction.

a

b

c

original energy split energyratios

 forward:side = 50%/50%
 left:right = 50%/50%

 angularity = pi/2

 forward:side = 20%/80%
 left:right = 15%/85%

 angularity = 3/4pi

 forward:side = 70%/30%
 left:right = 50%/50%

 angularity = pi/6

Figure 5: Examples of fluid systems with different characteristics,
i.e., fluid profiles, based on different settings. The settings can be
changed in real-time. The left side of the chart represents the energy
in a single cell; the right side of the chart shows how the energy
is split into different streams based upon the parameters defining
the ratio between forward and orthogonal momentum; the ratio be-
tween left and right momentum; and the angularity of the orthog-
onal momentum. In the top row (a), energy with a magnitude of
255 and an orientation of pi/2 is split evenly between forward and
orthogonal momentum. In the middle row (b), most of the energy
in the cell remains moving in the original direction; the orthogonal
energy is close to the forward orientation. In the bottom row (c),
most of the energy is moving to the side, with a high angularity, and
with an uneven distribution between the left and right sides. (Note,
the arrows representing energy vectors are not drawn exactly to
scale.)

3. The energy at each cell is split into three streams, a forward
stream and a left and a right stream.

4. In each of the defined directions for each stream defined in
step 3, the energy of each cell is moved into the neighboring
cell via the following process:

(a) The cell is displaced along the vector describing the en-
ergy stream.

(b) For each neighboring cell the displaced cell intersects
with, we create a “partial” vector by scaling the original
vector with the amount of intersection.

(c) This partial is added to the cell it intersects with.

5. When this process is finished for the entire grid, the partials
associated with each cell are combined, creating a new vector
replaces the current vector in the cell.

6. Energy is removed from the system by scaling the energy in
each cell by a dampening factor.

7. Steps 2 through 6 are iterated at each timestep until there is
no energy left in the system.

More formally, we define a fluid system acting on a grid G of cells
Ci,j each containing an energy vector E⃗i,j , with a particular mag-
nitude m and orientation θ, and where 0 < i < columns and
0 < j < rows. The resolution of the grid depends on the effec-
tiveness of the hardware. On a third generation iPad, the maximum
resolution at real-time frame rates is a 25x25 grid of cells; on a

39

desktop computer with a modern graphics card, a 100x100 grid of
cells or greater will run at interactive frame rates.

0 1

2 3

0 1

2 3

a b

Figure 6: Example showing how a single stream of energy in a
single cell is distributed to other cells. In this example, we see in
the left grid (a) that the energy in cell 0 is pointing in the direction
pi/4 with a magnitude of 0.5. The dotted box shows where the “dis-
placed” cell intersects with its neighbors. The largest intersection
of energy stays within the original cell (cell 0); a tiny amount of en-
ergy is pushed into cell 3; and a small amount of energy is pushed
into cells 1 and 2. In the right grid (b) we see the distribution of
energy from this single cell into its neighbor cells and back into
itself.

In order to define a fluid profile for the system, we define two ra-
tios that regulate that behavior of energy as it moves through the
cells. The first, the momentum ratio, or r1, defines how much en-
ergy moves forward versus moving to the sides. The second, the di-
rectionality ratio, or r2, defines how much energy moves to the left
versus moving to the right. We further define a parameter, angular-
ity, as ̸ ϕ ∈ [0, π), describing a rotation offset from ̸ θ. Additional
parameters influencing the fluid profile are the viscosity of the sys-
tem, which acts as a dampening factor defining the rate at which
energy is removed from the system, and the sensitivity which con-
trols how much energy is added to the system through some form
of user interaction. New energy is added into the cells in a partic-
ular direction using the multitouch capabilities of the tablet device.
The amount of energy that is added in a particular touch depends
upon the sensitivity parameter, which can be adjusted during run-
time. The magnitude of energy is also determined by how far the
current position of the touch is from its previous position. This dif-
ference also determines the direction of the added energy. If there
is no change in position, then the energy is added in the last known
direction. This vector of new energy is added with any existing
energy at the currently touched cell to update E⃗i,j .

At each timestep t during the operation of the fluid system, the en-
ergy E⃗ in Ci,j is split into three separate streams: a forward stream,
F⃗ , and two “orthogonal” streams, L⃗ and R⃗. Using the current fluid
profile (the values for the parameters of momentum, directionality,
and angularity), and the current magnitude and orientation for each
cell, we define these three streams like so (in Equations 1 through
3):

F⃗ =

(
r1m
θ

)
(1)

L⃗ =

(
(1− r2)(1− r1)m

θ + ϕ

)
(2)

R⃗ =

(
r2(1− r1)m

θ − ϕ

)
(3)

Figure 5 shows examples of how the current total energy in a cell is
split into three streams based on these parameters. Every cell in G

thus contains three separate streams of energy, F⃗ , L⃗, and R⃗. These
streams are used to define the flux of energy moving from each cell
into its neighboring cells.

We define a “displaced” cell D(C, v⃗) as a copy of a cell C ∈ G
that moves along a vector v⃗ positioned at the center of C. This
displaced cell D intersects with between 1 and 4 cells (the original
cell C itself and up to three neighboring cells). The magnitude of
any energy vector is constrained to range between 0 and 1. When
displacing a cell, the magnitude is scaled by the length of a cell
side. For instance, if the grid is divided into 10x10 cells, then each
cell side is .1 in length. And so the magnitude in a cell is scaled
by 1/10th before being displaced. This ensures that a displaced
cell will only ever intersect a cell that is its immediate neighbor
(although exceptions to this constraint may have interesting creative
possibilities.) The amount of overlap between the displaced cell and
the cell it intersects with determines how energy is placed into that
cell. We define an intersection I(D,C) simply as the amount of
overlap between the displaced cell and another cell (Equation 4).
The value of any intersection can range between 0 (no intersection)
and 1 (full overlap).

I(D,C) =
(
Area(D) ∩Area(C)

)
/Area(C) (4)

And we use this value to create a “partial” vector p⃗ via a function
P (N, v⃗, C) for each energy stream. This partial is calculated sim-
ply by scaling the stream by the amount it overlaps with the current
cell, as defined in Equation 5:

P (N, v⃗, C) = I(D(N, v⃗), C) ∗ v⃗ (5)

In Equation 5, N refers to a neighbor cell of a cell C ∈ G and
v⃗ refers to one of the energy vectors (F⃗ , L⃗, or R⃗) in that neigh-
bor cell. Figure 6 depicts an example of this displacement and the
subsequent generation of partials. For each cell Ci,j in G, we then
examine each neighbor to determine how much each of its three
streams overlap. We sum the partials created by any intersection
between the neighbor streams to generate the new energy vector for
the cell (Equations 6 through 9). It is important to note that we are
considering a cell to be a neighbor of itself. For instance, if a vector
of magnitude 0.5 is pushed upwards at 90 degrees, it would inter-
sect with both the current cell and the neighbor cell above it. Since
the displaced cell would move a distance of 50% of its height from
its current position, it would end up intersecting the current cell
and the neighbor cell equally, and thus a copy of the vector, scaled
by 50%, would be placed in each of the cells. Figure 6 shows a
typical example of a single stream of energy in a single cell be-
ing distributed to its neighbors. Excluding any dampening factor or
any new energy added from user interaction, the system will retain
exactly the same amount of energy over each timestep.

F⃗i,j,t =

i+1∑
p=i−1

j+1∑
q=j−1

P (Cp,q, F⃗p,q,t−1, Ci,j) (6)

L⃗i,j,t =

i+1∑
p=i−1

j+1∑
q=j−1

P (Cp,q, L⃗p,q,t−1, Ci,j) (7)

R⃗i,j,t =

i+1∑
p=i−1

j+1∑
q=j−1

P (Cp,q, R⃗p,q,t−1, Ci,j) (8)

E⃗i,j,t = F⃗i,j,t + L⃗i,j,t + R⃗i,j,t (9)

40

Other parameters can also be adjusted to create different charac-
teristics for a particular fluid profile. These include: controlling
the “jitter”, or randomness of the system, and clamping the maxi-
mum outflow for the cells within the grid. We also experimented
with a toroidal representation of the system where fluid energy
wraps around the edges of the screen, instead of bouncing off the
edges. Setting a maximum outflow parameter interestingly creates
the sense of ice cracking and melting when a particular threshold
is exceeded. And different settings of viscosity and angularity can
create more or less turbulent behaviors. While it may be surprising
that a simple heuristic could mimic the complexity of fluids, the
iterative nature of the system does in fact create a wide variety of
fluid-like structures, including the creation of eddies, vortices, and
turbulence. Figure 3 and Figure 4 show examples of fluid systems
with different fluid profiles defined by different settings for the an-
gularity and directionality parameters.

Figure 7: Example output using a custom color palette with high-
contrast image processing variables.

Just as simulations for realistic films and video games do not feel
constrained by a perfect representation of the physics of a visual
effect, so to should media artists not feel constrained by a perfect
representation of existing algorithms and equations for a particular
kind of effect. In our case, by creating our own fluid system with
a wide range of parameter adjustments we were able to extend the
aesthetic applicability and variation of the fluid system to capture
unusual behaviors not normally depicted with fluid representations.
Although the system appears realistic, it in fact sacrifices physical
accuracy in order to emphasize interactivity, expressivity, and ex-
perimentation.

3 Fluid Visualization

A perennial concern of scientific visualization is the effective vi-
sualization of salient features of a vector field, as indicated by
the wide variety of approaches to their representation [McLough-
lin et al. 2010]. A popular technique introduced in 1993, called
Line Integral Convolution, effectively identifies detailed curvature
features of a vector field. In this technique each pixel of a back-
ground image is filtered along “streamlines” defined by the vector
field [Cabral and Leedom 1993]. Another early technique, Chore-
ographed Image Flow, describes using image warping to gener-
ate animations for an animated representation of flow-fields [Sims
1992]. A more recent technique, Image Based Flow Visualization,
represents flow using the iterative deformation of a texture mesh
along the directions of the vector fields. In this technique, an image
is blended together with the distorted version of itself at each frame
[Van Wijk 2002]. While the creators of these techniques recognize
and discuss applications outside of scientific visualization, more re-
cent papers more closely examine the relationship between aesthet-
ics and visualization. For instance, [Kirby et al. 2005] specifically

looks at the various stylized qualities involved in painting and the
possibility of brushstroke techniques for inspiring more effective
scientific visualization methods. And [Neyret 2003] introduces a
technique that allows artists to control small-scale animations on
“advected” textures.

The main image processing scheme in the Fluid Automata system
is based on a feedback loop whereby a high-resolution background
image is perpetually blended together with a distorted version of
itself. The characteristics of the distortion are based directly on
the current state of the fluid system. This system is similar to van
Wijk’s Image Based Flow Visualization, which has been extended
for use in a variety of scientific visualization applications, includ-
ing animated and 3D flows [Van Wijk 2002; Telea and van Wijk
2003]. Again, since the focus of the application is aesthetic explo-
ration, we provide the user with a variety of tools to alter aspects of
these blending operations, and in addition introduce an image pro-
cessing layer whereby the user can change a variety of parameters,
including: the rate and amount of blending, the type and quality
of the background texture, and the brightness, contrast, and satu-
ration of the blended image. The default background texture is a
grayscale noise texture at a resolution exactly matching the display
size. However, we have experimented with various types of back-
ground textures, including lower resolution textures, static colored
textures, static image textures, dynamic textures that are updated
by noise functions, and dynamic textures that are updated by a live
video feed. Figure 7 shows an image created using a static colored
background texture with high contrast and high saturation image
processing parameters. Figure 11 shows an image with no satura-
tion and that uses a low resolution, black and white background tex-
ture to create an interesting “smearing” effect. And Figure 8 shows
an image that is created using a live video feed as the background
image, rather than an image populated with randomly-colored pix-
els.

Figure 8: Photo of iPad application using the Fluid Automata sys-
tem with a live video feed replacing the background noise texture.

In Figure 9 we provide an overview of the fluid visualization pro-
cess over the course of a single frame. At ti, we: a) distort the
previous image texture (if i > 0, otherwise we use a copy of the
background texture) based on user interaction and the current fluid
profile; b) blend in the background texture with the distorted texture
based on a blending parameter (that can be updated in real-time by
a user); and then c) apply image processing filters (based on the im-
age processing parameters described above) to the image to create
a final output texture for this frame at ti+1. This output texture is
then used as the input texture for the next frame.

41

Previous
Texture distort Distorted

Texture
blend

Background
Texture

Intermediate
Texture process Output

Texture

Video Photo Noise

user
interaction

fluid profile
blend parameters image processing

parameters
Display

fluid shader imaging shaderblending shader

Figure 9: Schematic for the main functionality of the Fluid Automata system. The output texture after one timestep becomes the input for the
next timestep.

4 Interaction

The Fluid Automata system has been incorporated into a variety
of different projects. In earlier projects that used the system, such
as a multimedia application for the iPad and an interactive instal-
lation involving multiple users, the main interaction modality is
the multi-touch interface, used either to interact with a fluid sys-
tem displayed on the tablet, or to interact collaboratively with a
fluid system projected on the wall or within a 3D virtual reality en-
vironment [Forbes et al. 2012]. Research investigating interactive
flow visualization indicates that novel interaction techniques can
successfully enable collaboration and encourage exploration [Isen-
berg et al. 2009]. Much experimentation went into making the user
interaction with the fluid system feel responsive and inviting: by
tapping the screen the user adds energy to the system; moving a fin-
ger across the screen overrides the fluid dynamic system by forcing
the vector to move in the indicated direction; and multiple fingers
can be used to push energy around in a more complex way, possibly
by more than one person. Other gestures can also be enabled to up-
date fluid properties or image processing parameters. For instance,
a pinching gesture using all five fingers simultaneously causes the
entire background texture to scale up or scale down, creating a
zooming effect. Similarly, a five-fingered panning gesture causes
the entire background texture to be translated in the direction of the
pan (as determined by the centroid of the five fingers), shifting all
of the fluid vectors so that they point in that direction. In addition
to being able to add energy to the system, users can update the fluid
parameters and image processing parameters in real-time, or select
a specified fluid profile defined at a previous time. In a basic version
of the project, running on an iPad, users can double-tap the screen
to bring up a set of controllers that affect the various parameters of
the system. Figures 10a and 10b show a detail of sliders affecting
the image processing parameters and fluid parameters, respectively.
Users can also save the current fluid profile at any time, allowing it
to be quickly retrieved in future sessions. Other types of interaction
are specified for the different iterations of the project. For instance,
the Fluid Automata system has been ported to a multi-touch table,
as shown in Figure 2, to make it easier for multiple people to inter-
act with the system at the same time, and where specific gestures
are defined that allow users to alter the intensity of the turbulence
of the system.

The Fluid Automata system has also been adapted for use as an
instrument for controlling audio-visual compositions. In this con-
figuration the output of the application is projected onto a large dis-
play. In addition to being controlled by multitouch, the system can
respond to Open Sound Control (OSC) messages sent by another
computer that, for instance, are generated by musical events. Ad-

ditionally, fluid vectors and various fluid parameters can be trans-
mitted wirelessly via OSC to influence the composition. We have
also experimented with attaching piezo sensors to the iPad itself in
order to directly input data into an algorithmic composition engine.
[Forbes and Odai 2012] explores using the Fluid Automata system
in combination with musical data.

Figure 10: Details of the iPad controller. The sliders are used to
update (a) the image processing parameters and (b) the fluid profile
parameters in real-time.

5 Conclusion

Projects built using the Fluid Automata system exist at the cross-
roads of visualization and art, using simulation and scientific vi-
sualization methods as the basis of interactive, generative art. In
presenting our system, we hope that other media artists will be able
to use and extend the system for new creative projects. Moreover,
we hope that the detailed description of the generative fluid dy-
namics system demonstrates that there is an appropriate balance
between accuracy, realism, and the ease of exploring creative pos-
sibilities that can be reached by creators of computational systems.
Finally, by describing the steps taken to extend cellular automata
into a more extensive system for art production, we hope especially
that our system serves to encourage media artists to explore de-
signing their own systems (based perhaps on other simulation algo-
rithms) rather than relying solely on existing techniques that may
not be particularly appropriate or adaptable to media arts projects.

Acknowledgements

We thank our colleagues at the University of Arizona, Javier Ville-
gas and Christopher Jette (both in the School of Information: Sci-
ence, Technology, and Arts), and especially A. M. Proedhel (in the

42

Figure 11: Example output of visualization using low-resolution
binary background that creates a sharp, smearing effect.

Department of Computer Science) for providing useful feedback
during the writing and editing of this paper.

References

AMATRIAIN, X., KUCHERA-MORIN, J., HOLLERER, T., AND
POPE, S. T. 2009. The allosphere: Immersive multimedia for
scientific discovery and artistic exploration. IEEE MultiMedia,
64–75.

ATKEN, M., 2009. Msa fluid demos. http://www.memo.tv.

BODEN, M. A., AND EDMONDS, E. A. 2009. What is generative
art? Digital Creativity 20, 1-2, 21–46.

CABRAL, B., AND LEEDOM, L. C. 1993. Imaging vector fields us-
ing line integral convolution. In Proceedings of the 20th annual
conference on Computer graphics and interactive techniques,
ACM, 263–270.

FORBES, A. G., AND ODAI, K. 2012. Iterative synaesthetic com-
posing with multimedia signals. In Proceedings of the Interna-
tional Computer Music Conference (ICMC), 573–578.

FORBES, A. G., HÖLLERER, T., AND LEGRADY, G. 2012. Ex-
pressive energy: The fluid automata project. In Proceedings of
the International Symposium on Electronic Art (ISEA), 65–70.

FORBES, A. G. 2011. Fluid Automata. IEEE VisWeek 2011 Art
Show Catalog, edited by D. Keefe, B. Campbell, and L. Thorson.

GALANTER, P. 2003. What is generative art? complexity theory
as a context for art theory. In In GA2003–6th Generative Art
Conference.

GÁNTI, T. 1997. Biogenesis itself. Journal of Theoretical Biology
187, 4, 583–593.

GÁNTI, T. 2003. The principles of life. Oxford University Press.

GARDNER, M. 1970. Mathematical games: The fantastic com-
binations of john conway’s new solitaire game “life”. Scientific
American 223, 4, 120–123.

GUAY, M., COLIN, F., EGLI, R., ET AL. 2011. Simple and fast
fluids. GPU Pro, 2, 433–444.

ISENBERG, T., HINRICHS, U., AND CARPENDALE, S. 2009.
Studying direct-touch interaction for 2d flow visualization. Col-
laborative Visualization on Interactive Surfaces-CoVIS’09, 17.

KIRBY, R. M., KEEFE, D., AND LAIDLAW, D. H. 2005. Painting
and visualization. The Visualization Handbook, 873–891.

MCLOUGHLIN, T., LARAMEE, R. S., PEIKERT, R., POST, F. H.,
AND CHEN, M. 2010. Over two decades of integration-based,
geometric flow visualization. In Computer Graphics Forum,
vol. 29, Wiley Online Library, 1807–1829.

NEYRET, F. 2003. Advected textures. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, Eurographics Association, 147–153.

SIMS, K. 1992. Choreographed image flow. The Journal Of Visu-
alization And Computer Animation 3, 1, 31–43.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 121–128.

STAM, J. 2003. Real-time fluid dynamics for games. In Proceed-
ings of the game developer conference, vol. 18.

TELEA, A., AND VAN WIJK, J. 2003. 3d ibfv: Hardware-
accelerated 3d flow visualization. In Proceedings of the 14th
IEEE Visualization 2003 (VIS’03), IEEE Computer Society, 31.

VAN WIJK, J. 2002. Image based flow visualization. ACM Trans-
actions on Graphics (TOG) 21, 3, 745–754.

WAKEFIELD, G., AND JI, H. H. 2009. Artificial nature: Immer-
sive world making. In Applications of Evolutionary Computing.
Springer, 597–602.

WOLFRAM, S. 2002. A new kind of science. Wolfram media, Inc.,
Champaign, IL, USA.

43

44

