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Abstract
An interprocedural analysis is precise if it is flow sensitive and fully
context-sensitive even in the presence of recursion. Many methods
of interprocedural analysis sacrifice precision for scalability while
some are precise but limited to only a certain class of problems.

Soot currently supports interprocedural analysis of Java pro-
grams using graph reachability. However, this approach is restricted
to IFDS/IDE problems, and is not suitable for general data flow
frameworks such as heap reference analysis and points-to analysis
which have non-distributive flow functions.

We describe a general-purpose interprocedural analysis frame-
work for Soot using data flow values for context-sensitivity. This
framework is not restricted to problems with distributive flow func-
tions, although the lattice must be finite. It combines the key ideas
of the tabulation method of the functional approach and the tech-
nique of value-based termination of call string construction.

The efficiency and precision of interprocedural analyses is heav-
ily affected by the precision of the underlying call graph. This is
especially important for object-oriented languages like Java where
virtual method invocations cause an explosion of spurious call
edges if the call graph is constructed naively. We have instantiated
our framework with a flow and context-sensitive points-to analysis
in Soot, which enables the construction of call graphs that are far
more precise than those constructed by Soot’s SPARK engine.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis

General Terms Algorithms, Languages, Theory

Keywords Interprocedural analysis, context-sensitive analysis,
points-to analysis, call graph

1. Introduction
Interprocedural data flow analysis incorporates the effects of proce-
dure calls on the callers and callees. A context-insensitive analysis
does not distinguish between distinct calls to a procedure. This
causes the propagation of data flow values across interprocedurally
invalid paths (i.e. paths in which calls and returns may not match)
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resulting in a loss of precision. A context-sensitive analysis restricts
the propagation to valid paths and hence is more precise.

Two most general methods of precise flow and context-sensitive
analysis are the Functional approach and the Call Strings ap-
proach [11]. The functional approach constructs summary flow
functions for procedures by reducing compositions and meets of
flow functions of individual statements to a single flow function,
which is used directly in call statements. However, constructing
summary flow functions may not be possible in general. The
tabulation method of the functional approach overcomes this
restriction by enumerating the functions as pairs of input-output
data flow values for each procedure, but requires a finite lattice.

The call strings method remembers calling contexts in terms of
unfinished calls as call strings. However, it requires an exponen-
tially large number of call strings. The technique of value based
termination of call string construction [5] uses data flow values to
restrict the combinatorial explosion of contexts and improves the
efficiency significantly without any loss of precision.

Graph reachability based interprocedural analysis [9, 10] is a
special case of the functional approach. Formally, it requires flow
functions 2A 7→ 2A to distribute over the meet operation so that
they can be decomposed into meets of flow functions A 7→ A.
Here A can be either a finite set D (for IFDS problems [9]) or a
mapping D 7→ L (for IDE problems [10]) from a finite set D to a
lattice of values L. Intuitively, A represents a node in the graph
and a function A 7→ A decides the nature of the edge from the
node representing the argument to the node representing the result.
Flow function composition then reduces to a transitive closure of
the edges resulting in paths in the graph.

The efficiency and precision of interprocedural analyses is heav-
ily affected by the precision of the underlying call graph. This is
especially important for object oriented languages like Java where
virtual method invocations cause an explosion of spurious call
edges if the call graph is constructed naively.

Soot [12] has been a stable and popular choice for hundreds
of client analyses for Java programs, though it has traditionally
lacked an interprocedural framework. Bodden [4] has recently
implemented support for interprocedural analysis using graph
reachability. The main limitation of this approach is that it is not
suitable for general data flow frameworks with non-distributive
flow functions such as heap reference analysis or points-to analysis.
For example, consider the Java statement x = y.n to be processed
for points-to analysis. If we have points-to edges y → o1 and
o1.n→ o2 before the statement (where o1 and o2 are heap objects),
then it is not possible to correctly deduce that the edge x→ o2
should be generated after the statement if we consider each input
edge independently. The flow function for this statement is a func-
tion of the points-to graph as a whole and cannot be decomposed
into independent functions of each edge and then merged to get a
correct result.
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We have implemented a generic framework for performing flow
and context-sensitive interprocedural data flow analysis that does
not require flow functions to be distributive. However, the flow
functions must be monotonic and the lattice of data flow values
must be finite. The framework uses value-based contexts and is an
adaptation of the tabulation method of the functional approach and
the modified call strings method.

Our implementation is agnostic to any analysis toolkit or inter-
mediate representation as it is parameterized using generic types.
Since our core classes are similar to the intra-procedural framework
of Soot, it integrates with Soot’s Jimple IR seamlessly.

We have instantiated our framework with a flow and context-
sensitive points-to analysis in Soot, which enables the construction
of call graphs that are far more precise than those constructed by
Soot’s SPARK engine.

The rest of the paper is organized as follows: Section 2 describes
our method. Section 3 outlines the API of our implementation
framework. Section 4 presents the results of call graph construc-
tion. Finally, Section 5 concludes the paper by describing the cur-
rent status and future possibilities of our work.

2. Interprocedural Analysis Using Value Contexts
The tabulation method of the functional approach [11] and the
modified call strings approach [5] both revolve around the same
key idea: if two or more calls to a procedure p have the same the
data flow value (say x) at the entry of p, then all of them will
have an identical data flow value (say y) at the exit of p. The
tabulation method uses this idea to enumerate flow functions in
terms of pairs of input-output values (x, y) whereas the modified
call strings method uses it to partition call strings based on input
values, reducing the number of call strings significantly.

The two methods lead to an important conclusion: Using data
flow values as contexts of analysis can avoid re-analysis of proce-
dure bodies. We make this idea explicit by defining a value context
X = 〈method, entryValue〉, where entryValue is the data flow
value at the entry to a procedure method. Additionally, we de-
fine a mapping exitValue(X) which gives the data flow value at
the exit of method. As data flow analysis is an iterative process,
this mapping may change over time (although it will follow a
descending chain in the lattice). The new value is propagated to
all callers of method if and when this mapping changes. With this
arrangement, intraprocedural analysis can be performed for each
value context independently, handling flow functions in the usual
way; only procedure calls need special treatment.

Although the number of value contexts created per procedure is
theoretically proportional to the size of the lattice in the worst-case,
we have found that in practice the number of distinct data flow val-
ues reaching each procedure is often very small. This is especially
true for heap-based analyses that use bounded abstractions, due to
the locality of references in recursive paths. This claim is validated
is Section 4, in which we present the results of a points-to analysis.

Algorithm
Figure 1 provides the overall algorithm. Line 1 declares three glob-
als: a set of contexts that have been created, a transition table map-
ping a context and call site of a caller method to a target context at
the called method and a work-list of context-parametrized control-
flow graph nodes whose flow function has to be processed.

The procedure INITCONTEXT (lines 2-11) initializes a new
context with a given method and entry value. The exit value is
initialized to the > element. IN/OUT values at all nodes in the
method body are also initialized to >, with the exception of the
method’s entry node, whose IN value is initialized to the context’s
entry value. All nodes of this context are added to the work-list.

1: global contexts, transitions, worklist
2: procedure INITCONTEXT(X)
3: ADD(contexts,X)
4: Set EXITVALUE(X)← >
5: Let m← METHOD(X)
6: for all nodes n in the body of m do
7: ADD(worklist, 〈X,n〉)
8: Set IN(X,n)← > and OUT(X,n)← >
9: end for

10: Set IN(X, ENTRYNODE(m))← ENTRYVALUE(X)
11: end procedure
12: procedure DOANALYSIS
13: INITCONTEXT(〈main, BI〉)
14: while worklist is not empty do
15: Let 〈X,n〉 ← REMOVENEXT(worklist)
16: if n is not the entry node then
17: Set IN(X,n)← >
18: for all predecessors p of n do
19: Set IN(X,n)← IN(X,n) u OUT(X, p)
20: end for
21: end if
22: Let a← IN(X,n)
23: if n contains a method call then
24: Let m← TARGETMETHOD(n)
25: Let x← CALLENTRYFLOWFUNCTION(X,m, n, a)
26: Let X ′ ← 〈m,x〉 . x is the entry value at m
27: Add an edge 〈X,n〉 → X ′ to transitions
28: if X ′ ∈ contexts then
29: Let y ← EXITVALUE(X ′)
30: Let b1 ← CALLEXITFLOWFUNCTION(X,m, n, y)
31: Let b2 ← CALLLOCALFLOWFUNCTION(X,n, a)
32: Set OUT(X,n)← b1 u b2
33: else
34: INITCONTEXT(X ′)
35: end if
36: else
37: Set OUT(X,n) ← NORMALFLOWFUNCTION(X,n, a)
38: end if
39: if OUT(X,n) has changed then
40: for all successors s of n do
41: ADD(worklist, 〈X, s〉)
42: end for
43: end if
44: if n is the exit node then
45: Set EXITVALUE(X)← OUT(X,n)
46: for all edges 〈X ′, c〉 → X in transitions do
47: ADD(worklist, 〈X ′, c〉)
48: end for
49: end if
50: end while
51: end procedure

Figure 1. Algorithm for performing inter-procedural analysis
using value contexts.

The DOANALYSIS procedure (lines 12-51) first creates a value
context for the main method with some boundary information (BI).
Then, data flow analysis is performed using the traditional work-list
method, but distinguishing between nodes of different contexts.

A node is removed from the work-list and its IN value is set to
the meet of the OUT values of its predecessors (lines 16-21). For
nodes without a method call, the OUT value is computed using the
normal flow function (line 37). For call nodes, parameter passing is
handled by a call-entry flow function that takes as input the IN value
at the node, and the result of which is used as the entry value at the



main()

p = 5n1

q = f(p, -3)c1

r = g(-q)c4

exitn6

f(a, b)

if (...)n2

c = a * bn3 c = g(10)c2

n4

return cn5

g(u)

v = f(-u, u)c3

return vn6
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〈X1, a
+b−〉
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+b−〉

〈X3, a
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+b−〉

〈X3, a
−b+〉

〈X1, a
+b−c−〉
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−b+c−〉
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+〉

〈X2, u
+v−〉

(a) Control flow graphs annotated with context-sensitive data flow values

>

− 0 +

⊥
(b) Lattice for a single variable

Context Proc. Entry Exit
X0 main > p+q−r−

X1 f a+b− a+b−c−

X2 g u+ u+v−

X3 f a−b+ a−b+c−

(c) Value contexts for the program

X0 X1 X2 X3

c1 c2 c3

c2c4

(d) Context transition diagram

Figure 2. A motivating example of a non-distributive sign-analysis performed on a program with mutually recursive procedures.

callee context (lines 24-26). The transition from caller context and
call-site to callee context is also recorded (line 27). If a context with
the target method and computed entry value has not been previously
created, then it is initialized now (line 34). Otherwise, the exit value
of the target context is used as the input to a call-exit flow function,
to handle returned values. A separate call-local flow function takes
as input the IN value at the call node, and propagates information
about local variables. The results of these two functions are merged
into the OUT value of the call node (lines 29-32).

Once a node is processed, its successors are added to the work-
list if its OUT value has changed in this iteration (lines 39-43). If
the node is the exit of its procedure (lines 44-49), then the exit value
of its context is set and all its callers are re-added to the work-list.

The termination of the algorithm follows from the monotonicity
of flow functions and the finiteness of the lattice (which bounds the
descending chain as well as the number of value contexts).

The algorithm can easily be extended to handle multiple en-
try/exit points per procedure as well as virtual method calls by
merging data flow values across these multiple paths. It can also
be easily adapted for backward data flow analyses.

Example
Consider the program in Figure 2 (a), for which we wish to perform
a simplified sign analysis, to determine whether a scalar local
variable is negative, positive or zero. The call from main to f at c1
will only return when the mutual recursion of f and g terminates,
which happens along the program path n2n3n4n5. Notice that the
arguments to f at call-site c3 are always of opposite signs, causing
the value of variable c to be negative after every execution of n3 in
this context. Thus, f and hence g always returns a negative value.

To compute this result using the algorithm described above, we
use data flow values that are elements of the lattice in Figure 2 (b),
where > indicates an uninitialized variable and ⊥ is the conserva-
tive assumption. We use superscripts to map variables to a sign or
⊥, and omit uninitialized variables.

At the start of the program no variables are initialized and hence
the analysis starts with the initial value context X0 = 〈main,>〉.
For work-list removal, we will use lexicographical ordering of
contexts (newer first) before nodes (reverse post-order).

The flow function of 〈X0, n1〉 is processed first, which makes
p positive (written as p+). The next node picked from the work-list

is c1, whose call-entry flow function passes one positive and one
negative argument to parameters a and b of procedure f respec-
tively. Thus, a new value context X1 = 〈f, a+b−〉 is created and
the transition 〈X0, c1〉 → X1 is recorded.

Analysis proceeds by processing 〈X1, n2〉 and then 〈X1, c2〉,
which creates a new value context X2 = 〈g, u+〉 due to the
positive argument. The transition (X1, c2) → X2 is recorded.
When 〈X2, c3〉 is processed, the arguments to f are found to be
negative and positive respectively, creating a new value context
X3 = 〈f, a−b+〉 and a transition (X2, c3)→ X3.

The work-list now picks nodes of context X3, and when
〈X3, c2〉 is processed, the entry value at g is u+, for which a value
context already exists – namely X2. The transition 〈X3, c2〉 → X2

is recorded. The exit value of X2 is at the moment > because its
exit node has not been processed. Hence, the call-exit flow function
determines the returned value to be uninitialzed and the OUT of
〈X3, c2〉 gets the value a−b+. The next node to be processed
is 〈X3, n3〉, whose flow function computes the sign of c to be
negative as it is the product of a negative and positive value. The
IN value at 〈X3, n4〉 is (a−b+c− u a−b+) = a−b+c−. Thus, the
sign of the returned variable c is found to be negative. As n4 is the
exit node of procedure f, the callers of X3 are looked up in the
transition table and added to the work-list.

The only caller 〈X2, c3〉 is now re-processed, this time resulting
in a hit for an existing target context X3. The exit value of X3

being a−b+c−, the returned variable v gets a negative sign, which
propagates to the exit node n6. The callers of X2, namely 〈X1, c2〉
and 〈X3, c2〉, are re-added to the work-list.
〈X3, c2〉 is processed next, and this time the correct exit value of

target context X2, which is u+v−, is used and the OUT of 〈X3, c2〉
is set to a−b+c−. When its successor 〈X3, n4〉 is subsequently
processed, the OUT value does not change and hence no more
nodes of X3 are added to the work-list. Analysis continues with
nodes of X1 on the work-list, such as 〈X1, c2〉 and 〈X1, n3〉. The
sign of c is determined to be negative and this propagates to the end
of the procedure. When exit node 〈X1, n5〉 is processed, the caller
of X1, namely 〈X0, c1〉, is re-added to the work-list. Now, when
this node is processed, q is found to be negative.

Value-based contexts are not only useful in terminating the anal-
ysis of recursive procedures, as shown above, but also as a simple
cache table for distinct call sites. For example, when 〈X0, c4〉 is



Context<M,N,A>

+ getMethod(): M
+ getEntryValue() : A
+ getExitValue() : A
+ getValueBefore(N) : A
+ getValueAfter(N) : A

InterProceduralAnalysis<M,N,A>

+ topValue() : A
+ boundaryValue(M) : A
+ copy(A) : A
+ meet(A,A) : A
+ normalFlowFunction(Context<M,N,A>, N, A) : A
+ callEntryFlowFunction(Context<M,N,A>, M, N, A) : A
+ callExitFlowFunction(Context<M,N,A>, M, N, A) : A
+ callLocalFlowFunction(Context<M,N,A>, N, A) : A
+ programRepresentation() : ProgramRepresentation<M,N>
+ doAnalysis() : void
+ getContexts() : Map<M,List<Context<M,N,A>>>
+ getMeetOverPathsSolution() : DataFlowSolution<M,N,A>

ForwardInterProceduralAnalysis<M,N,A>

+ doAnalysis() : void

BackwardInterProceduralAnalysis<M,N,A>

+ doAnalysis() : void

ProgramRepresentation<M,N>

+ getEntryPoints() : List<M>
+ getControlFlowGraph(M) : DirectedGraph<N>
+ isCall(N) : boolean
+ resolveTargets(M, N) : List<M>

Figure 3. The class diagram of our generic interprocedural analysis framework.

processed, the positive argument results in a hit for X2, and thus
its exit value is simply re-used to determine that r is negative.
Figure 2 (b) lists the value contexts for the program and Figure 2 (c)
shows the transitions between contexts at call-sites.

A context-insensitive analysis would have merged signs of a
and b across all calls to f and would have resulted in a ⊥ value for
the signs of c, v, q and r. Our context-sensitive method ensures a
precise data flow solution even in the presence of recursion.

Notice that the flow function for n3 is non-distributive since
fn3(a+b−) u fn3(a−b+) = a+b−c− u a−b+c− = a⊥b⊥c−

but fn3(a+b− u a−b+) = fn3(a⊥b⊥) = a⊥b⊥c⊥. Hence this
problem does not fit in the IFDS/IDE framework, but such flow
functions do not pose a problem to our algorithm.

3. Implementation Framework
The implementation framework consists of a handful of core
classes as shown in Figure 3. The use of generic types makes the
framework agnostic to any particular toolkit or IR. The classes are
parameterized by three types: M represents the type of a method,
N represents a node in the control flow graph and A is the type
of data flow value used by the client analysis. The framework
can be naturally instantiated for Soot using the type parameters
SootMethod and Unit for M and N respectively.

Users would extend ForwardInterProceduralAnalysis or
BackwardInterProceduralAnalysis, which are subclasses of
an abstract class InterProceduralAnalysis. The abstract meth-
ods topValue, boundaryValue, copy and meet provide a hook
for client analyses to express initial lattice values and basic op-
erations on them. The major functionality of the client analysis
would be present in the *FlowFunction methods, whose roles
were explained in Section 2. Additionally, clients are expected
to provide a ProgramRepresentation object, which specifies
program entry points (for which boundary values are to be defined)
and resolves virtual calls. Our framework ships with default pro-
gram representations for Soot’s Jimple IR. The launch point of the
analysis is the doAnalysis method, which is implemented as per
the algorithm from Figure 1 in the directional sub-classes.

The Context class encapsulates information about a value con-
text. Every context is associated with a method, an entry value and
an exit value, each of which can be retrieved using the correspond-
ing getter methods. The getValueBefore and getValueAfter
methods return data flow values for a context just before and after a
node respectively. This is the recommended way for accessing the

results of the analysis in a context-sensitive manner. A mapping
of methods to a list of all its contexts is available through the
getContexts method of the InterProceduralAnalysis class.
Alternatively, getMeetOverValidPathsSolution can be used to
obtain a solution that is computed by merging data flow results
across all contexts of each method. The DataFlowSolution class
(not shown in the figure) simply provides getValueBefore and
getValueAfter methods to access the resulting solution.

4. The Role of Call Graphs
We initially developed this framework in order to implement heap
reference analysis [6] using Soot, because it could not be en-
coded as an IFDS/IDE problem. However, even with our general
framework, performing whole-program analysis turned out to be
infeasible due to a large number of interprocedural paths arising
from conservative assumptions for targets of virtual calls.

The SPARK engine [7] in Soot uses a flow and context insensi-
tive pointer analysis on the whole program to build the call graph,
thus making conservative assumptions for the targets of virtual
calls in methods that are commonly used such as those in the Java
library. For example, it is not uncommon to find call sites in library
methods with 5 or more targets, most of which will not be traversed
in a given context. Some call sites can even be found with more than
250 targets! This is common with calls to virtual methods defined
in java.lang.Object, such as hashCode() or equals().

When performing whole-program data flow analysis, the use
of an imprecise call graph hampers both efficiency, due to an
exponential blow-up of spurious paths, and precision, due to the
meet over paths that are actually interprocedurally invalid, thereby
diminishing the gains from context-sensitivity.

Soot provides a context-sensitive call graph builder called PAD-
DLE [8], but this framework can only perform k-limited call-site or
object-sensitive analysis, and that too in a flow-insensitive manner.
We were unable to use PADDLE with our framework directly be-
cause at the moment it not clear to us how the k-suffix contexts of
PADDLE would map to our value-contexts.

Call Graph Construction using Points-To Analysis
We have implemented a flow and context-sensitive points-to analy-
sis using our interprocedural framework to build a call graph on-
the-fly. This analysis is both a demonstration of the use of our
framework as well as a proposed solution for better call graphs
intended for use by other interprocedural analyses.



Benchmark Time Methods (M ) Contexts (X) X/M Clean
Total App. Total App. Total App. Total App.

SPEC JVM98

compress 1.15s 367 54 1,550 70 4.22 1.30 50 47
jess 140.8s 690 328 17,280 9,397 25.04 28.65 34 30
db 2.19s 420 56 2,456 159 5.85 2.84 62 46
mpegaudio 4.51s 565 245 2,397 705 4.24 2.88 50 47
jack 89.33s 721 288 7,534 2,548 10.45 8.85 273 270

DaCapo 2006 antlr 697.4s 1,406 798 30,043 21,599 21.37 27.07 769 727
chart 242.3s 1,799 598 16,880 4,326 9.38 7.23 458 423

Table 1. Results of points-to analysis using our framework. “App.” refers to data for application classes only.

The data flow value used in our analysis is a points-to graph
in which nodes are allocation sites of objects. We maintain two
types of edges: x → m indicates that the root variable x may
point to objects allocated at site m, and m.f → n indicates that
objects allocated at site m may reference objects allocated at site
n along the field f . Flow functions add or remove edges when
processing assignment statements involving reference variables.
Nodes that become unreachable from root variables are removed.
Type consistency is maintained by propagating only valid casts.

The points-to graphs at each statement only maintain objects
reachable from variables that are local to the method containing the
statement. At call statements, we simulate assignment of arguments
to locals of the called method, as well as the assignment of returned
values to a local of the caller method. For static fields (and objects
reachable from them) we maintain a global flow-insensitive points-
to graph. For statements involving static loads/stores we operate
on a temporary union of local and global graphs. The call graph
is constructed on-the-fly by resolving virtual method targets using
type information of receiver objects.

Points-to information cannot be precise for objects returned by
native methods, and for objects shared between multiple threads (as
our analysis is flow-sensitive). Thus, we introduce the concept of a
summary node, which represents statically unpredictable points-to
information and is denoted by the symbol ⊥. For soundness, we
must conservatively propagate this effect to variables and fields that
involve assignments to summary nodes. The rules for summariza-
tion along different types of assignment statements are as follows:

Statement Rule used in the flow function
x = y If y → ⊥, then set x→ ⊥
x.f = y If y → ⊥, then ∀o : x→ o, set o.f → ⊥
x = y.f If y → ⊥ or ∃o : y → o and o.f → ⊥,

then set x→ ⊥
x = p(a1, a2, ...) If p is unknown, then set x→ ⊥, and

∀o : ai → o, ∀f ∈ fields(o) set o.f → ⊥

The last rule is drastically conservative; for soundness we must
assume that a call to an unknown procedure may modify the fields
of arguments in any manner, and return any object. An important
discussion would be on what constitutes an unknown procedure.
Native methods primarily fall into this category. In addition, if p is
a virtual method invoked on a reference variable y and if y → ⊥,
then we cannot determine precisely what the target for p will be.
Hence, we consider this call site as a default site, and do not enter
the procedure, assuming worst-case behaviour for its arguments
and returned values. A client analysis using the resulting call graph
with our framework can choose to do one of two things when
encountering a default call site: (1) assume worst case behaviour for
its arguments (eg. in liveness analysis, assume that all arguments
and objects reachable from them are live) and carry on to the next
statement, or (2) fall-back onto Soot’s default call graph and follow
the targets it gives.

A related approach partitions a call graph into calls from appli-
cation classes and library classes [2]. Our call graph is partitioned
into call sites that we can precisely resolve to one or more valid
targets, and those that cannot due to statically unpredictable factors.

Experimental Results
Table 1 lists the results of points-to analysis performed on seven
benchmarks. The experiments were carried out on an Intel Core i7-
960 with 19.6 GB of RAM running Ubuntu 12.04 (64-bit) and JDK
version 1.6.0 27. Our single-threaded analysis used only one core.

The first two columns contain the names of the benchmarks;
five of which are the single-threaded programs from the SPEC
JVM98 suite [1], while the last two are from the DaCapo suite [3]
version 2006-10-MR2. The third column contains the time required
to perform our analysis, which ranged from a few seconds to a
few minutes. The fourth and fifth columns contain the number of
methods analyzed (total and application methods respectively). The
next two columns contain the number of value-contexts created,
with the average number of contexts per method in the subsequent
two columns. It can be seen that the number of distinct data flow
values reaching a method is not very large in practice. As our
analysis ignores paths with method invocations on null pointers, it
was inappropriate for other benchmarks in the DaCapo suite when
using stub classes to simulate the suite’s reflective boot process.

The use of default sites in our call graph has two consequences:
(1) the total number of analyzed methods may be less than the
total number of reachable methods and (2) methods reachable from
default call sites (computed using SPARK’s call graph) cannot be
soundly optimized by a client analysis that jumps over these sites.
The last column lists the number of clean methods which are not
reachable from default sites and hence can be soundly optimized.
In all but two cases, the majority of application methods are clean.

In order to highlight the benefits of using the resulting call
graph, just listing the number of edges or call-sites alone is not
appropriate, as our call graph is context-sensitive. We have thus
computed the number distinct paths in the call graph, starting from
the entry point, which are listed in Table 2. As the total number
of call graph paths is possibly infinite (due to recursion), we have
counted paths of a fixed length length k, for 1 ≤ k ≤ 10. For
each benchmark, we have counted these paths using call graphs
constructed by our Flow and Context-sensitive Pointer Analysis
(FCPA) as well as SPARK, and noted the difference as percentage
savings (∆%) from using our context-sensitive call graph. The
option implicit-entry was set to false for SPARK.

The savings can be clearly observed for k > 5. For k = 10,
SPARK’s call graph contains more than 96% spurious paths for three
of the benchmarks, and 62-92% for the remaining. The gap only
widens for larger values of k (for which the number of paths was
too large to compute in some cases).

Client analyses using our interprocedural framework can be
configured to use our context-sensitive call graphs which avoid
these spurious paths, hence enabling efficient and precise solutions.



Depth k = 1 2 3 4 5 6 7 8 9 10

compress
FCPA 2 5 7 20 55 263 614 2,225 21,138 202,071

SPARK 2 5 9 22 57 273 1,237 23,426 545,836 12,052,089
∆% 0 0 22.2 9.09 3.51 3.66 50.36 90.50 96.13 98.32

jess
FCPA 2 5 7 30 127 470 4,932 75,112 970,044 15,052,927

SPARK 2 5 9 32 149 924 24,224 367,690 8,591,000 196,801,775
∆% 0 0 22.2 6.25 14.77 49.13 79.64 79.57 88.71 92.35

db
FCPA 2 5 11 46 258 1,791 21,426 215,465 2,687,625 42,842,761

SPARK 2 5 13 48 443 4,726 71,907 860,851 13,231,026 245,964,733
∆% 0 0 15.4 4.17 41.76 62.10 70.20 74.97 79.69 82.58

mpegaudio
FCPA 2 14 42 113 804 11,286 129,807 1,772,945 27,959,747 496,420,128

SPARK 2 16 46 118 834 15,844 250,096 4,453,608 87,096,135 1,811,902,298
∆% 0 12 8.7 4.24 3.60 28.77 48.10 60.19 67.90 72.60

jack
FCPA 2 18 106 1,560 22,652 235,948 2,897,687 45,480,593 835,791,756 17,285,586,592

SPARK 2 18 106 1,577 27,201 356,867 5,583,858 104,211,833 2,136,873,586 46,356,206,503
∆% 0 0 0 1.08 16.72 33.88 48.11 56.36 60.89 62.71

antlr
FCPA 6 24 202 560 1,651 4,669 18,953 110,228 975,090 11,935,918

SPARK 6 24 206 569 1,669 9,337 107,012 1,669,247 27,670,645 468,973,725
∆% 0 0 1.9 1.58 1.08 49.99 82.29 93.40 96.48 97.45

chart
FCPA 6 24 217 696 2,109 9,778 45,010 517,682 7,796,424 164,476,462

SPARK 6 24 219 714 2,199 20,171 306,396 7,676,266 192,839,216 4,996,310,985
∆% 0 0 0.9 2.52 4.09 51.52 85.31 93.26 95.96 96.71

Table 2. Number of k-length call graph paths for various benchmarks using SPARK and FCPA (Flow and Context-sensitive Pointer Analysis).

5. Conclusion and Future Work
We have presented a framework for performing value-based context-
sensitive inter-procedural analysis in Soot. This framework does
not require distributivity of flow functions and is thus applicable
to a large class of analyses including those that cannot be encoded
as IFDS/IDE problems. Another advantage of our method is the
context-sensitive nature of the resulting data flow solution, which
can be useful in dynamic optimizations.

In order to deal with the difficulties in whole-program analysis
performed over an imprecise call graph, we constructed call graphs
on-the-fly while performing a flow and context-sensitive points-
to analysis. This analysis also demonstrated a sample use of our
framework and showed that it was practical to use data flow values
as contexts because the number of distinct data flow values reaching
each method is often very small.

The interprocedural framework has been released and is avail-
able at https://github.com/rohanpadhye/vasco. However,
our points-to analysis implementation is experimental and makes
heavy use of HashMaps and HashSets, thus running out of memory
for very large programs. We would like to improve this imple-
mentation by using bit-vectors or maybe even BDDs for compact
representation of points-to sets.

The precision of our call graphs is still limited in the presence of
default sites, which are prominent due to the liberal use of summary
nodes in the points-to graphs. We would like to reduce the num-
ber of summary nodes by simulating some commonly used native
methods in the Java library, and also by preparing a summary of
initialized static fields of library classes. Our hope is that these ex-
tensions would enable our call graph to be fully complete, thereby
enabling users to precisely perform whole-program analysis and
optimization for all application methods in an efficient manner. We
believe that improving the precision of program analysis actually
helps to improve its efficiency, rather than hamper it.
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