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ABSTRACT
Crowdsourcing is an effective method for collecting labeled
data for various data mining tasks. It is critical to ensure the
veracity of the produced data because responses collected
from different users may be noisy and unreliable. Previous
works solve this veracity problem by estimating both the
user ability and question difficulty based on the knowledge
in each task individually. In this case, each single task needs
large amounts of data to provide accurate estimations. How-
ever, in practice, budgets provided by customers for a given
target task may be limited, and hence each question can be
presented to only a few users where each user can answer
only a few questions. This data sparsity problem can cause
previous approaches to perform poorly due to the overfit-
ting problem on rare data and eventually damage the data
veracity. Fortunately, in real-world applications, users can
answer questions from multiple historical tasks. For exam-
ple, one can annotate images as well as label the sentiment
of a given title. In this paper, we employ transfer learning,
which borrows knowledge from auxiliary historical tasks to
improve the data veracity in a given target task. The moti-
vation is that users have stable characteristics across differ-
ent crowdsourcing tasks and thus data from different tasks
can be exploited collectively to estimate users’ abilities in
the target task. We propose a hierarchical Bayesian model,
TLC (Transfer Learning for Crowdsourcing), to implement
this idea by considering the overlapping users as a bridge. In
addition, to avoid possible negative impact, TLC introduces
task-specific factors to model task differences. The exper-
imental results show that TLC significantly improves the
accuracy over several state-of-the-art non-transfer-learning
approaches under very limited budget in various labeling
tasks.
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1. INTRODUCTION
Producing large-scale training, validation and test sets is

vital for many machine learning and data mining applica-
tions. Most often this task has to be carried out “by hand”
and thus it is delicate, expensive, and tedious. Crowd-
sourcing systems such as Amazon Mechanical Turk 1, re-
CAPTCHA 2 and the ESP game 3 have made it easy to dis-
tribute simple labeling tasks to hundreds of workers. Crowd-
sourcing is widely used in tasks such as sentiment classifi-
cation [12], object recognition [7], ranking [13] and cluster-
ing [6], etc.

A typical crowdsourcing pipeline can be divided into three
main steps: 1: Task design, 2: Data distribution and 3: An-
swer aggregation. In the answer aggregation step, one needs
to aggregate these noisy and unreliable responses into a true
answer. Answer aggregation is most important step because
it is closely related to the veracity of the produced answers
and the final performance of machine learning algorithms.

An intuitive way to aggregate the responses is via “Major-
ity Voting”, in which one always selects the answer chosen by
most users. However, this method is ineffective in practice.
First, some users are more skilled and consistent in one spe-
cific task, as they may master more background knowledge,
or may be more patient. This implies that when dealing with
the same task, different users may have different abilities to
annotate instances/answer questions. Second, different in-
stances may have different levels of difficulty. Third, since
typical crowdsourcing tasks are tedious and the reward is
small, errors are common even among workers who made an
effort. Thus, in order to achieve higher veracity for answer
aggregation, one needs to take both user ability and question
difficulty into account.

Several approaches have been proposed based on the above
motivation [14, 6, 7, 15, 10]. These works model the user
ability and question difficulty as two latent attributes, which
affect the probability that one user provides the correct an-
swer to a question. These approaches require the collecting
of large amounts of data to guarantee the veracity of the
final answers. However, in practice, due to the limited bud-
get of each task provided by customers, each question may
be presented to a few users and each user may answer only

1https://www.mturk.com/mturk/welcome
2http://www.google.com/recaptcha
3http://www.gwap.com/gwap/gamesPreview/espgame/



Table 1: Related Works in Transfer Learning and Crowdsourcing
Gold Truth Crowdsourced Labels

Single-task Traditional Machine Learning Traditional Crowdsourcing [14, 6, 7, 15, 10]
Cross-task Traditional Transfer Learning [8, 4, 9, 17, 3, 18] Cross-task Crowdsourcing (CTC)

Figure 1: Cross Task Crowdsourcing

a few questions. We define this problem as data sparisity.
This data sparseness may make existing learning algorithms
overfit the few responses. For example, a highly reliable
user who only answers two questions in a new task may ac-
cidentally make an obvious mistake in one question. This
may cause the other answer from this user to be considered
as useless due to overfitting, despite the fact that this user
is an expert at doing similar tasks. Under this situation,
previous approaches may fail to infer the user ability and
question difficulty accurately and hence may provide incor-
rect aggregated answers.

Fortunately, in most crowdsourcing services, many users
have answered questions in multiple historical tasks. Ac-
cording to a survey by Ross [11], 31% Mechanical Turk users
have worked for more than half a year and 43% of users
work more than 5 hours a week. The survey also stated
that people often participate in various types of task such
as image labeling and item comparison. In addition, the
normal time span of a task is about 2 weeks, so we can in-
fer that active users who have worked for more than half a
year have answered questions in many different tasks with
high probability. This phenomenon sheds light on solving
the data sparsity problem: by considering the same users
as a bridge, data from previous tasks can be borrowed to
benefit the current task as most users may have relatively
stable characteristics in completing related tasks.

However, due to the differences among tasks, merging the
data from multiple tasks naively does not work well. For
example, different tasks may require different background
knowledge, such as the differences between image annota-
tion and sentiment analysis tasks. There are also differences
between different kinds of labels, e.g., binary vs. multi-class
labels. Finally, we may have different display styles, e.g.,
texts vs. images. These differences may influence users’
performance and misguide the estimation process on user
ability and question difficulty. Can we utilize the data from
multiple previously labeled tasks for labeling the data in the
current task, while avoiding the negative effects stemming
from task differences?

In this paper, we consider the problem of making the max-
imum use of the knowledge gained from previously solved
crowdsourcing tasks to benefit the current crowdsourcing
task. We propose a novel transfer-learning basd solution
known as Cross-Task Crowdsourcing (CTC) for the prob-
lem. In particular, we exploit transfer learning to extract
knowledge from auxiliary domains to help learning in a tar-
get domain [8]. As an example, in Figure 1, some new users
in MTurk first answer many questions about images on ra-

zors and then accept a task to annotate a set of new images
related to the topic of ‘makeups’. By observing users’ perfor-
mance in the razor-recognition task, users’ characteristics,
such as gender, can be inferred automatically. In addition,
these characteristics are closely related to users’ abilities to
answer questions in other tasks. For example, female users
generally know about makeup products better than male
users. Thus, in the target makeup task, users’ abilities can
be estimated more accurately, which can be used to improve
the data veracity of answer aggregation. Knowledge transfer
seems particularly useful for crowdsourcing service providers
such as Mechanical Turk because they can identify same
users in different tasks using a unified identification.

To enable the transfer of knowledge between crowdsourc-
ing tasks, we propose a hierarchical Bayesian model known
as Transfer Learning for Crowdsourcing (TLC). We notice
that most users have relatively stable characteristics in com-
pleting related tasks, so the performance of these users in a
target task can be estimated accurately. For each user, we
introduce two shared variables, where one models the aver-
age performance of a user while the other models the users’
variance in task performance in different tasks. For each
task, we use another variable to model task-specific factors.
Knowledge from different tasks is shared via these variables.
To construct the TLC model, we propose a Markov chain
Monte Carlo (MCMC) method to infer the latent variables.
Our experiments confirm that TLC can effectively transfer
knowledge from related auxiliary tasks while avoiding po-
tential negative effects due to task differences.

We summarize the main contributions of this paper as
follows:

1. We study a new transfer learning problem in crowd-
sourcing applications to reduce the cost of crowdsourc-
ing operations. We address the problem of data verac-
ity of crowdsourcing systems. To the best of our knowl-
edge, this is the first work to utilize multiple tasks in
crowdsourcing applications.

2. We propose a novel hierarchical Bayesian model, TLC,
to solve the knowledge-transfer problem. TLC can
solve the data-sparsity problem by exploiting knowl-
edge from related tasks while avoiding the negative
effect caused by task differences. We propose an effec-
tive inference algorithm to infer the model variables.

3. We conduct experiments on various real-world datasets.
The results show that TLC outperforms the previ-
ous approaches significantly and reduces the costs of
crowdsourcing customers. The results also show that
TLC can effectively transfer knowledge from different
but related tasks and avoid potential harm brought
about by task difference.

2. RELATED WORKS
In this section, we review related works on learning in

crowdsourcing context. We summarize the related works in
Table 1.



2.1 Transfer Learning
Transfer learning (TL) solves the lack of class label prob-

lem in the target application by“borrowing”supervised knowl-
edge from related problems [8]. It has been applied on clas-
sification [9], clustering [17], ranking [5], collaborative fil-
tering [3] and social network analysis [18]. For example,
Daume et al. [4] proposed a graphical model by applying
shared priors to the auxiliary and target tasks to represent
common sentiment knowledge. Pan et al. [9] surveyed a
series of algorithms on text classification. In [17], Yang in-
troduced auxiliary knowledge from text to reduce the data
sparsity in the image clustering task by building transla-
tors from vocabulary to image features. Recently, Yahoo’s
learning-to-rank challenge 4 also promotes transfer learn-
ing’s application in the ranking field. In addition, more and
more transfer learning research works have been proposed
to cope with relational data. Cao et al. [17] proposed a
novel generative model based on Gaussian Process, which
introduced a new kernel to describe the task relations. Re-
cently, Zhong et al. [18], incorporated knowledge in multiple
social networks to help infer users’ behaviors by assigning
social regulars in a topic model. However, these algorithms
build models based on gold truths, which means the labeled
data for training models are all reliable. This is not true for
crowdsourcing tasks, where the labels provided by different
users can be noisy and inaccurate. Thus, these previous ap-
proaches cannot be directly applied to solve the cross-task
crowdsourcing problem studied in this paper.

2.2 Crowdsourcing
Crowdsourcing is a process that involves outsourcing tasks

to a distributed group of people. Recently, several real and
flexible systems have been launched, such as Amazon Me-
chanical Turk, which makes related applications practical.
In machine learning and data mining research fields, many
researchers use crowdsourcing services to solve the lack of
labeled-data problem. Related applications range from sen-
timent classification [12], object recognition [7], ranking [13]
to clustering [6]. To obtain labeled data from crowdsourcing
systems, researchers commonly provide a certain budget and
then distribute the data to different users/labelers accord-
ing to certain principals or just randomly. Before utilizing
crowdsourced labels, one needs to clean the data, since la-
bels from the crowd are contaminated by errors and bias.
To achieve this goal, several approaches have been proposed
recently [14, 6, 7, 15, 10]. For example, Welinder et al. [15]
presented a graphical model that discovers and represents
groups of annotators with different sets of skills and knowl-
edge, as well as groups of images that differ qualitatively.
Wauthier et al. [14] focused on modeling users’ bias in a
Bayesian model. Raykar et al. [10] improves the estimation
accuracy by distinguishing spammers and normal users. In
summary, most of these methods infer the true label for a
given instance by estimating both the user ability and the
question difficulty. Then the probability that one user pro-
vides a correct answer to a question is based on these two
factors. However, these methods require a large number of
answers for each user and each question. That makes the
method impractical in many real-world applications, since
the budget for each crowdsourcing task is limited.

4http://learningtorankchallenge.yahoo.com

Table 2: Definition of Notations

Notation Description Number Set Notation
Data

Ti ith Task K T = {Ti|1 ≤ i ≤ K}

Up pth User n U = {Up|1 ≤ p ≤ n}

Qi
q

qth Question
in Ti

ΣK
i mi

Qi = {Qi
q|1 ≤ q ≤ mi}

Q = {Qi|1 ≤ i ≤ K}

Ai
q

True Answer

to Qi
q

ΣK
i mi

Ai = {Ai
q|1 ≤ q ≤ mi}

A = {Ai|1 ≤ i ≤ K}

Li
pq

Answer to
question Qi

q

given by user
Up

Li = {Li
pq|I

i(p, q) > 0,
1 ≤ p ≤ n, 1 ≤ q ≤ mi}

L = {Li|1 ≤ i ≤ K}

Model Latent Variables

Bi
Task-specific
factor for Ti

K B = {Bi|1 ≤ i ≤ K}

Gp

User dependent
characteristic for
Up

n G = {Gp|1 ≤ p ≤ n}

Mp

User averaged
performance
for Up

n M = {Mp|1 ≤ p ≤ n}

Ci
p

Performance of
Up in Ti

K ∗ n

Ci = {Ci
q|1 ≤ p ≤ n}

Cp = {Ci
q|1 ≤ i ≤ K}

C = {Cp|1 ≤ p ≤ n}

Di
q Difficulty of Qi

q ΣK
i mi

Di = {Di
q|1 ≤ q ≤ mi}

D = {Di|1 ≤ i ≤ K}

3. PROBLEM FORMULATION
We describe the problem of cross-task crowdsourcing (CTC)

in this section. The notations can be found in Table 2. There
are n users, K tasks, where the i-th task have mi questions.

• Let Ti be the i-th task, T denote the task set.

• Let Up denote the p-th user, U denote the user set.

• Let Qi
q denote the q-th question in Ti, Q

i denote the
questions in Ti and Q denote the whole question set.

• In a typical crowdsourcing task, each user gives re-
sponses to several questions in Ti. Let Li

pq denote

the answer of question Qi
q given by user Up and then

for each task, we obtain a sparse answer matrix Li =
{Li

pq |I
i(p, q) > 0, 1 ≤ p ≤ n, 1 ≤ q ≤ mi}, where

Ii(p, q) is the indicator function for the i-th task. If Up

has answered Qi
q, I

i(p, q) = 1, otherwise Ii(p, q) = 0.

Let L = {Li|1 ≤ i ≤ K}.

• Finally, denote the true answer for the question Qi
q as

Ai
q. In parallel, we obtain Ai = {Ai

q|1 ≤ q ≤ mi} and

A = {Ai|1 ≤ i ≤ K}.

We first consider single-task crowdsourcing problems. For
the task Ti, we try to infer answers in Ai based only on the
observations Li, which is referred to as (At) = STC(Lt).
However, as we stated in the introduction, as individual
users can answer only a few questions, some Li can be very
sparse, and hence the estimation of Ai can be inaccurate.
To solve this problem, the cross-task crowdsourcing (CTC)
approach aims to exploit the knowledge in different source
tasks T i that has abundant data, where i 6= t to estimate the



Figure 2: The Graphical Model of TLC

Blue: observed variable; Green: prior; Dashed: variable of
interest.

answers Ai in the target task T t collaboratively. Mathemat-
ically, suppose that t-th task is the target task, the problem
can be formulated as (At) = CTC(L). The challenge in
CTC is how to transfer the knowledge effectively given that
each user may have different performance in different tasks
due to certain task-specific factors; for example, different
tasks may require different background knowledge. In this
paper, we focus on the annotation task where each question
is an instance to label, such as a document or an image,
whereas the answer to a question is its correspondent label.
To simplify the discussion, we assume that in the same task,
each question has only limited answers and the number of
answer candidates to each question is a constant. Then, for
each entry in Li, Li

pq ∈ [1, Zi], Zi is the number of labels to
the questions in Ti.

4. PROBABILISTIC MODEL
In this section, we describe our proposed model, TLC

(Transfer Learning for Crowdsourcing). We first present the
main idea of performing knowledge transfer, then state the
generation process of TLC, and finally introduce an effective
inference algorithm to construct TLC models.

4.1 Model Description
Our main idea is that the knowledge from related crowd-

sourcing tasks can be utilized to regularize the estimation
of each user’s performance by considering the overlapping
users’ averaged performance and characteristics, as well as
tasks-specific factors as a bridge. This allows us to better
know which user is more trustworthy and infer true answers
more accurately with fewer user responses.

A graphical representation of TLC can be found in Fig-
ure 2. For each user Up in all tasks, the average performance
of Up over all tasks is defined as Mp, Mp is generated from
a single-dimension Gaussian distribution.

Mp ∼ N (µM , σM ) (1)

µM is the mean of all users’ averaged performance and σM is
the corresponding variance. Mp is decided by task indepen-
dent factors of a user which in practice, could be the user’s
IQ, ability to focus, education level, etc. The characteristics

of a user Up are defined as Gp, which is generated from a
multivariate Gaussian distribution.

Gp ∼ N (µu,Σu) (2)

µu is the mean of all users’ characteristics and Σu is the
corresponding covariance matrix. Gp is decided by a task
dependent factor of Up, so that Gp accounts for the differ-
ences of user performance in different tasks. In practice, Gp

can be multidimensional, each dimension may be related to
the users’ knowledge in a specific domain. We use Bi to
denote the task-specific factors for task Ti, Bi is generated
from a multivariate Gaussian distribution.

Bi ∼ N (µt,Σt) (3)

µt is the mean of all task-specific factors and Σt is the cor-
responding covariance matrix. In reality, Bi can be multi-
dimensional, where each dimension can be considered as a
factor, such as whether some specific knowledge is required.
We use Ci

p to denote the ability of user Up answering ques-

tions in Ti, and let C ∈ Rn×K denote the whole performance
matrix containing the performance of all users in all tasks.
Ci

p is generated from a single-dimension Gaussian distribu-
tion.

Ci
p ∼ N (Gp ∗Bi +Mp, σc) (4)

σc is the corresponding variance, which models how much
the actual user ability will deviate from the expected user
ability. A larger value in Ci

p means that Up is more likely to

give correct answers to questions in Ti, while a negative Ci
p

means that Up is adversary and always gives wrong answers
on purpose. The dot product of Gp and Bi can be viewed
as the interaction of the user’s characteristics and how much
this characteristic is needed to perform well in this specific
task. For example, a male user may have sufficient knowl-
edge about sports but little knowledge about how to apply
makeups to oneself. If a task requires certain knowledge on
sports but requires no knowledge on makeups, the user may
perform very well; otherwise, he may perform badly. On
the question side, we use Di

q to denote the difficulty of the

question Qi
q, where Di

q > 0.

Di
q ∼

1

eN (µd,σd)
(5)

Here Di
q = ∞ means Qi

q is so difficult that even the best

workers can only guess the answers. Di
q = 0 means that Qi

q

is so easy that even the worst worker can always answer it
correctly. Eq.(5) can model the fact that very few questions
are extremely easy or extremely difficult. In addition, we use
Ai

q to denote the true answer for Qi
q. Ai

q is generated from
a discrete distribution, which corresponds to a single-choice
question.

Ai
q ∼ Dis(pa) (6)

pa is a common prior to all questions. Finally, let Li
pq

{∀p, q|Ii(p, q) > 0} denote the response (label) given by Up

to Qi
q. For a question with Zi possible answers, the prob-

ability that a user can provide the correct answer to the
question is computed through a logistic function as follows:

p(Li
pq = Ai

q|C
i
p, D

i
q) =

1

1 + (Zi − 1)e
−

Ci
p

Di
q

(7)



Algorithm 1 Inference of TLC

1: Input:L, K, n,m = {mi}Ki=1, Z = {Zi}Ki=1, Ω, ν, γ, µM ,
σM , µu, Σu, µt, Σt, σc, µd, σd, pa, λu, λt, σMH, PMH

2: Output: A
3: Initialize every Mp ∼ N (µM , σM ) ∗ 0.01, Gp ∼ N (µu,Σu) ∗

0.01, Bi ∼ N (µt,Σt) ∗ 0.01, with a small variance.
4: Initialize every Ai

q ∼ Dis(pa), Ci
p ∼ N (Gp ∗ Bi + Mp, σc),

Di
q ∼ 1

eN(µd,σd) randomly

5: Initialize every Âi
q = 0, Ĉi

p = 0, D̂i
q = 0,M̂p = 0 the current

number of iterations ζ = 1.
6: Calculate W with Eq.(14)
7: for ζ = 1 to ν do
8: Update every true answer Ai

q using Eq.(9)

9: Update every Ci
p using posterior distribution Eq.(11) with

Metropolis Hastings algorithm
10: Update every Di

q using posterior distribution Eq.(10) with
Metropolis Hastings algorithm

11: Update every Mp using posterior distribution Eq.(12)

12: Âi
q =

Âi
q∗(ζ−1)+Ai

q

ζ
, Ĉi

p =
Ĉi

p∗(ζ−1)+Ci
p

ζ
, D̂i

q =

D̂i
q∗(ζ−1)+Di

q

ζ
, M̂p =

M̂p∗(ζ−1)+Mp

ζ
.

13: IF ζ mod Ω = 0, Update Gp, Bi for Ω times as
14: for ω = 1 to Ω do

15: Gp = Gp − ∂ J (G,B)
∂Gp

∗ γ with Eq.(15)

16: Bi = Bi −
∂ J (G,B)

∂Bi
∗ γ with Eq.(16)

17: end for

18: ENDIF

19: end for

20: Return A

When a user has a larger Ci
p, the answer he/she provides has

a higher probability to be the same as the true answer to the
question. If a user is adversarial, he may have a negative Ci

p,
so that the answer that he gives is more likely to disagree
with the true answer. When the Ci

p is near 0, the user
has around 1

Zi probability to answer the questions correctly.
After inferring the latent variables, the true answer to each
question can be calculated by Bayesian theorem:

p(Ai
q|L

i
pq , D

i
q , C

i
p) ∝ p(Li

pq|A
i
q , D

i
q , C

i
p)p(A

i
q, D

i
q , C

i
p) (8)

4.2 Inference
We need to infer a total number of six variables Gi

p, Mp,

Ci
p, Bi, D

i
q , A

i
q. To construct the model, TLC, we propose

a mixture method of Markov Chain Monte Carlo (MCMC)
and Gradient Descent (GD), where the MCMC is utilized
to infer the low-level variables, user specific ability Ci

p, user

averaged performance Mp, problem difficulty Di
q and true

answer Ai
q, while the GD is to find the optimal Gp and Bi,

user characteristics and task-specific factors respectively. In
order to infer the latent variables from the observed vari-
able Li

pq, we first calculate the posterior distribution of each
variable as follows:

p(Ai
q|L

i
pq , D

i
q, C

i
p) =

p(Li
pq|A

i
q , D

i
q , C

i
p) ∗ p(A

i
q)

ΣÂi
q={T,F}p(L

i
pq|Âi

q , Di
q, Ci

p) ∗ p(Âi
q)

(9)

p(Di
q|L

i
pq , A

i
q, C

i
p) =

p(Li
pq|A

i
q , D

i
q , C

i
p) ∗ p(D

i
q)

∫

p(Li
pq|Ai

q, D̂i
q , Ci

p) dp(D̂i
q)

(10)

p(Ci
p|L

i
pq , A

i
q, D

i
q) =

p(Li
pq|A

i
q, D

i
q , C

i
p) ∗ p(C

i
p)

∫

p(Li
pq|Ai

q, Di
q, Ĉi

p) dp(Ĉi
p)

(11)

p(Mp|Cp) =
p(Cp|Mp, σc) ∗ p(Mp)
∫

p(Cp|M̂p, σc) dp(M̂p)
(12)

= N
(

(
µm

σ2
m

+
ΣK

i=1C
i
p

σ2
c

)/(
1

σ2
m

+
K

σ2
c

), (
1

σ2
m

+
K

σ2
c

)−1
)

(13)

Given the observed variable Li
pq , we iteratively sample Ai

q

using Eq.(9), sample Di
q using Eq.(10), sample Ci

p using
Eq.(11) and sample Mp using Eq.(12). Since the prior dis-
tribution of Ci

p and Di
q are not conjugate with the likelihood

function p(Li
pq|A

i
q, D

i
q , C

i
p), we utilize a Metropolis Hastings

algorithm when sampling Ci
p and Di

q. Take the sampling

process of Ci
p as an example. We firstly randomly initialize

Ci
p and then generate a new sample C̄i

p near the previous

sample, C̄i
p ∼ N (Ci

p, σMH), we use Gaussian distribution as
the jumping distribution, σMH is the variance of the jumping
distribution. Consequently, we compare the posterior prob-
ability density of the new sample with the previous sample.
If p(C̄i

p|L
i
pq , A

i
q, D

i
q) > p(Ci

p|L
i
pq , A

i
q, D

i
q), the new sample

obtains a higher posterior probability density, we accept the
new sample and perform update: Ci

p = C̄i
p. Otherwise, we

accept the new sample randomly with probability PMH. The
above process is repeated until convergence when Ci

p does

not change too much. The sampling process of Di
q is similar

to Ci
p, which firstly randomly initialize Di

q , and then draw

a new sample D̄i
q near Di

q . Then, we compare the poste-

rior probability density of D̄i
q and Di

q and decide whether to
accept the new sample or not.

For the user characteristic Gp and task-specific factor Bi,
we exploit gradient descent to find the optimal solution via
Ci

p. Since each user may give different numbers of answers in

each task, we assign a weight to each Ci
p during the inference

process. We denote the weight of Ci
p as Wip, W = {Wip|1 ≤

i ≤ K, 1 ≤ p ≤ n}. The weight matrix can model our
confidence on users’ performance Ci

p in each task: the more
answers one user gives in a task, the higher confidence we
can obtain from the estimation of user’s performance in this
particular task. If Wip is small, we can predict Ci

p with the
knowledge learned from related auxiliary task, which may
have sufficient data.

The relation between the weight Wip and the number of
answers in Ti may not be linear. After a user answered a
number of questions in a task, we gain high confidence in
our performance estimation. That is, Ci

p can be trusted and
Wip should be high. Thus, we make Wip ∝ log(ri,p) where
ri,p is the number of responses given by Up to all questions in
Ti. We also normalize all Wip to make the maximum weight
1 and minimum weight 0. Let MAX = MAX(log(ri,p)) and
MIN = MIN(log(ri,p)),

Wip =
log(ri,p)−MIN

MAX−MIN
(14)

The objective function is defined as follows: we minimize
the following quantity

J (G,B) = ΣK
i=1Σ

n
p=1(Wip ∗ (Gp ∗Bi +Mp − Ci

p)
2)

+λtΣ
K
i=1 ‖ Bi ‖f +λuΣ

n
p=1 ‖ Gp ‖f

where ‖ ‖̇ is the Frobenius norm, λt and λu are two trade-
off parameters, and µc is the mean of all Ci

p. The partial
derivative of the objective function with respect to Gp and



Table 3: Summary of Data Characteristics
Collections # of Users # of Tasks # of Questions # of Responses

Synthetic 40 2 100 3040
Affective Text Analysis 38 6 100 6000

Gender Hobby 42 2 204 3252

Bi are

∂ J (G,B)

∂Gp

= Σ1≤i≤K2(Gp ∗Bi +Mp − Ci
p)BiWip + 2λuGp

(15)

∂ J (G,B)

∂Bi

= Σ1≤p≤n2(Gp ∗Bi +Mp − Ci
p)GpWip + 2λtBi

(16)
Then, these two equations are used to iteratively optimize
Gp and Bi until convergence.

Framework The whole inference process can be found in
Algorithm 1. Overall, it is an iterative process. In each itera-
tion, MCMC is utilized to infer the low-level variables, user-
specific ability Ci

p, user-averaged performance Mp, problem

difficulty Di
q and true answer Ai

q, while the GD is to find
the optimal user characteristics Gp and task-specific factors
Bi, respectively. ν is the number of iterations, Ω controls
how often to update hyper parameters, and γ is the learning
rate. Our algorithm is a kind of MCMC algorithm, which
convergence guarantee is proved in [1].

Time Complexity We analyze the time complexity of
TLC. In the algorithm, the part for updating A and D
takes O(ΣK

i mi) time, and for updating C takes O(K ∗ n)
time. Furthermore, the part for updating G and M takes
O(n ∗ Ω) time, and for updating B takes O(K ∗ Ω) time.
In addition, we update the parameters with ν iterations.
Thus the overall time complexity is O(ν ∗ [(ΣK

i mi +n ∗k)+
(n + K) ∗ Ω]). The baseline model GLAD has a complex-
ity of O(ν ∗ (ΣK

i mi + n ∗ k)). TLC has a slightly higher
complexity than the traditional aggregation model because
TLC uses another two variables to model the relationship of
user abilities in different tasks. However, the running time
of the aggregation algorithm is not our major concern in
the whole crowdsourcing process, since most of the time is
spent on collecting responses from the crowdsourcing work-
ers. This process takes weeks or even months to complete.
By exploiting knowledge from related tasks, we can reduce
the number of responses needed, which can also reduce the
time of the whole process.

5. EXPERIMENTS
In this section, we experimentally verify that our TLC

algorithm performs well. We first present some observa-
tions and findings in our preliminary empirical study, which
motivates us to design the proposed TLC algorithm. Con-
sequently, we give a synthetic example to illustrate the in-
trinsic properties of TLC. In addition, we compare TLC
with several state-of-the-art methods on two realworld data
collections, where the proposed method TLC improves the
baselines significantly.

For evaluation metrics, we introduce two evaluation met-
rics Root Mean Square Error (RMSE) and accuracy to mea-
sure how accurate the inferred results match the ground
truths. RMSE is used in the synthetic dataset as the task is
regression, and the smaller the RMSE the better. Accuracy
is used in two realworld data collections as our task is classi-
fication where higher accuracy is better. We compare TLC
with three baselines: (1) Majority Vote: A popular heuris-

tic which does not model user ability and question diffi-
culty(denoted as“Majority” or “MV”). (2) GLAD [16] model
considers user ability and question difficulty. (3) DARE [2]
model considers user ability, question difficulty and user’s
advantage to a question. For GLAD and DARE, we imple-
ment them in two different ways. One is to build models
on only the target task(denoted as “GLAD” and “DARE”),
and the other is a naive transfer model where we put ques-
tions from different tasks together directly and do not model
task differences (denoted as“NaiveTL GLAD”and“NaiveTL
DARE”).

5.1 Dataset Description
We evaluate the effectiveness of TLC on three data col-

lections. The first one is synthetic. The second one is about
affective text analysis [12]. The third is Gender Hobby
Dataset, which is collected by ourselves from Amazon Me-
chanical Turk. The characteristics of the datasets are sum-
marized in Table 3. The datasets are public 5.

We describe the data-generation process of the synthetic
datasets as follows. We build two tasks, where each task
has 100 questions and each question has 2 possible answers.
There are 40 users who have rated both tasks. The moti-
vation to generate such a dataset is that we can control the
performance of each user and hence we can test whether the
proposed method TLC can recover these latent variables or
not. In addition, we can adjust users’ performance in differ-
ent tasks such that the task differences can be simulated.

1. In order to simulate two related tasks whose task-
specific factors are completely different, we set B0 =
−1, B1 = 1. We randomly generate Gp ∼ N (µu =
0,Σu = 1) for each user Up.

2. We generate Ci
p ∼ N (Gp ∗ Bi +Mp, σc) and generate

Di
q ∼ 1

eN(µd,σd) randomly, where all Mp = 1, µd =

1,σd = 1. We also randomly generate gold answer
Ai

q ∈ {0, 1} for each question Qi
q in each tasks.

3. We sample aLL possible responses Li
pq by Up to Qi

q,

using Eq.(7). A part of all generated Li
pq is used to

make up L.

The affective text analysis datasets [12] are related to sen-
timent analysis. After reading a news headline, users are
asked to give an integer rating in [0,100] for each of six
emotions to indicate how strong the emotion is. The six
emotions are anger, disgust, fear, joy, sadness and surprise.
Each emotion corresponds to one task. In total, there are 38
users and 100 headlines, where each user has given emotion
ratings to all 6 tasks. Each emotion of each headline is rated
by 10 users. A ground truth rating for each headline of each
emotion is provided by expert labelers. Our goal is to infer
the ground truth ratings with the possibly noisy and biased
ratings provided by the users.

The Gender Hobby dataset is collected by us; this dataset
is about different hobby of different genders. When a user

5http://www.cse.ust.hk/~kxmo/materials/
GenderHobbyDataSet.rar
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Figure 3: Preliminary Study

accepted one of our tasks in Mechanical Turk, he/she is
asked to answer 10 questions on 2 topics, half are about
sports and half are about makeup and cooking. No user
can answer the same question more than once. The user
can choose from 2 answers if he knows the answer, or he
can choose “I don’t know”. 57 users gave 1400 responses to
our 112 different questions. We choose a set of users with
distinct gender related actions to conduct our experiment,
these users are either male sports fans, or female housewives.
Our goal is to infer the correct answer with the noisy answers
provided by the users.

5.2 Preliminary Study
As we stated in the introduction, users’ responses to a

single task can be very sparse. Our solution is to exploit
the knowledge from related auxiliary tasks. We designed
a simple strategy to show knowledge transfer based on the
affective text analysis datasets. We compare two methods
based on voting. The first one is majority voting that al-
ways chooses the option chosen by most users as the ground
truth. The second one is called Naive Transfer, which ex-
ploits knowledge from other tasks. It first estimates the user
ability based on users’ responses in other tasks. Specifically,
it uses majority voting on other tasks to produce “pseudo”
truths. Then, each user’s common ability in all auxiliary
tasks is calculated according to the distance between their
responses to these “pseudo” truths. Finally, the normalized
common ability of each user is utilized as the weights to
combine users’ responses in the target task. The result is
shown in Figure 3(a). The experiment is repeated 10 times
and we show the average performance on all tasks. We can
observe that, using the same number of answers per ques-
tion, the Naive Transfer method can achieve significantly
lower RMSE than the non-weighted version. Alternatively,
in order to achieve the same RMSE, the weighted majority
voting saves up to 50% of user responses per headline. For
example, the RMSE of majority voting is 16 when there are
10 ratings. On the other hand, weighted majority voting
achieves the same RMSE with only 5 ratings! That means
that if tasks are related, knowledge can be transferred across
these tasks. However, we also observe that users’ perfor-
mance levels are also different in different tasks, as shown
in Figure 3(b). If the difference is too large, directly using
users’ common ability may harm the final result. However,
if we can predict the users’ performance in the target task
more accurately, we may achieve better results.

5.3 Performance on Synthetic Dataset
We first describe a synthetic experiment to answer two

questions: (1) Can TLC improve the performance of a tar-
get task even when the source task and the target task are
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completely different? (2) Can TLC accurately recover hid-
den parameters, e.g., users’ abilities?

We divided the T1 and T2 tasks into 4 tasks. Q2
t and Q2

s

are two disjoint sets of questions in tasks T2 and Q1 is the
set of questions in T1. L2

t , L
2
s, L

1
t and L1

s are the sets of
responses given by Ut to Q2

t , Us to Q2
s, Ut to Q1 and Us to

Q1 respectively. L2
t is the set of responses for target task,

the other L2
s, L

1
t and L1

s are the set of responses for aux-
iliary tasks. L2

s and L1
s are dense and contain information

about how the user’s performance in source task and in tar-
get tasks are related. Specifically for our experiment, all
users in three auxiliary source tasks L2

s, L
1
s and L1

t have an-
swered 50 questions and each question in Q2

t have received
2 ratings from users in Ut. Our goal is to infer the true an-
swer for each question in Q2

t . We introduced three baselines:
majority voting, single-task model, e.g., GLAD on L2

t ; naive
transfer model: using GLAD on Lt = {L1

t ,L
2
t}. The result

is shown in Fig.(4). The majority voting has about 75%
accuracy and the single-task model, GLAD, achieves about
85% accuracy. Due to large task differences, the naive trans-
fer model that combines data from different tasks simply
does not work. However, by modeling users’ characteristics
across tasks and tasks’ specific factors, TLC improves them
to about 90%. The experiment result shows TLC can trans-
fer knowledge from related but different auxiliary tasks and
avoid potentially harm from task differences.

To answer the second question on how well TLC can re-
cover user ability Ci

p in the sparse target task, we compare
TLC with baselines. For evaluation, we compute the simi-
larity between the predicted user ability Ci

p and the ground

truth C̄i
p, with a normalized cosine similarity which is de-

fined as in Eq.(17). The results are shown in Fig.(4). Note
that the majority vote does not model user ability, so we do
not take it into consideration.

S = Cosine(
X − X̄

std(X)
,
Y − Ȳ

std(Y )
) (17)

We observe that, as the number of iterations increases, the
similarity of TLC goes steadily towards 1. That means TLC
recovers user ability very well. On the other hand, the sim-
ilarity of GLAD goes up before the 25-th iteration, but falls
quickly and stays around 0 due to severe over-fitting. In
addition, the similarity of naive transfer method goes down
directly and stays close to −1. This is because the naive
transfer method does not model task differences, thus it re-
lates users’ abilities in the source tasks to that in the target
task in the opposite way. This means the naive transfer
method trusts the users with the lowest ability in the tar-
get task. This analysis again shows that our proposed TLC
model can effectively transfer knowledge from completely
different yet related tasks, and the TLC model can recover
users’ abilities very accurately.
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Figure 5: Real-world Experiments

(a)-(b)Result of Affective Text Dataset, (c)-(d) Result of
Gender Hobby Dataset

5.4 Performance on Real-world Applications
Here we present the performance of TLC in two real-world

applications. Our experiment is divided into two parts. The
first part is on the Affective Text Analysis dataset, which
shows the effectiveness of TLC on similar tasks. The sec-
ond part is on the Gender Hobby dataset, which shows that
when users show a strong performance correlation in differ-
ent tasks, we can use the auxiliary data from related tasks
to improve performance in target task.

Firstly, we focus on the situation when source tasks and
target tasks are very similar. We first convert the emotion
score in the original Affection dataset to a true/false ques-
tion. Emotion score in [0, 50) is converted to false while
score in [50, 100] is converted to true. Let Ti denote the i
task. For each experiment, we pick a part of the questions
Qi

t in task Ti to be the target task, while the other questions
Qi

s in Ti and all questions Qj in Tj where j 6= i are used as
source tasks. We left 2 answers to each question in the target
task and stimulated more responses from each user in source
tasks, while keeping the accuracy of each user unchanged.
Specifically, users in target task Ut answered 5 questions in
target task Qi

t and answered 50 questions in source task Qj
s

where j 6= i; other users Us answer 50 questions both in Qi
s

and in each of Qj where j 6= i. The performance of TLC and
all other baselines are presented in Table 4 and Figure 5. We
ran each model 10 times and took the average performance.
Due to the difference between tasks, the performances of the
compared methods are different, but on the whole, Trans-
fer Models have higher accuracy than Non-Transfer Models.
Specifically when using Joy as the target task, the proposed
model TLC achieves 82.5% accuracy, which improved the
best non-transfer model by 6%. The results show that the
information in auxiliary tasks can actually help the target
task. TLC has comparable accuracy with Naive Transfer
Models, which shows that the TLC model can effectively
transfer knowledge from auxiliary tasks when source tasks
and target tasks are very similar.

Secondly, we focus on the situation where users show strong
performance correlation in different tasks using Gender Hobby
datasets. The original dataset contains 400 responses given
by 21 users related to 102 questions, where each task has

Table 4: Accuracy on Affective Text Collections

Algorithm
Single-Task Naive-Transfer TLC

MV GLAD DARE GLAD DARE
Anger 0.7660 0.8250 0.8250 0.8400 0.8000 0.8375
Disgust 0.7635 0.6550 0.7750 0.8550 0.8250 0.8100
Fear 0.7562 0.9300 0.9250 0.9350 0.9500 0.9475
Joy 0.7655 0.7275 0.7500 0.8300 0.8250 0.8250

Sadness 0.7500 0.7200 0.7750 0.8650 0.8750 0.8300
Surprise 0.7687 0.7425 0.8250 0.7475 0.7500 0.8075

Table 5: Accuracy on Gender Hobby Collections

Algorithm
Single-Task Naive-Transfer TLC

MV GLAD DARE GLAD DARE
Sports 0.5686 0.8069 0.8235 0.6196 0.7255 0.8373

Makeup/ 0.6765 0.6912 0.5882 0.4961 0.4706 0.7098

51 questions. We enlarged the dataset by up-sampling: we
sampled and added another 21 users with the same accuracy
distribution as well as 51 questions with the same difficulty
distribution to each task. We left 4 answers to each ques-
tion in target task and stimulated more responses from each
user in the source tasks, while keeping the accuracy of each
user unchanged. Denote T1 to be the sports task, T2 to be
the makeup and cooking task, respectively. We used both
tasks as source and target. When we pick a part of the ques-
tions Qi

t in task Ti as the target task, the other questions
Qi

s in Ti along with all questions Q2−i in T2−i are used in
source tasks. A part of the users, Ut answer 50 questions
in Q2−i and about 5 questions in Qi

t, and the other users
Us answer 50 questions in both Q2−i and Qi

s. Finally, we
got 3,252 responses, 204 questions in 2 tasks, 42 users in
total. Our goal is to infer the true answer for each ques-
tion in target task Qi

t. The result is shown in Fig.(5) and
Table 5. We ran each model 10 times and took the average
performance. Due to large differences between tasks, the two
naive transfer models that do not model task differences do
not work well. When using Sports as the target task, the
proposed TLC model achieves 83.7% accuracy and outper-
formed all the baseline models by at least 1.5%. When using
Makeup and Cooking tasks as target tasks, the TLC model
achieves 70.9% accuracy, improves the best baseline model
by about 2%. This experiment demonstrates that the pro-
posed TLC model can transfer knowledge from related but
different tasks, and avoid possible negative affects brought
about by task differences.

5.5 Parameter Analysis
We answer three questions in the subsection to analyze

the robustness of TLC: 1. Does TLC converge? 2. How
does the data sparsity level affect the TLC performance? 3.
Is TLC sensitive to model parameters? We answer these
questions via an empirical test, where the results are the
average from 10 repeated tests (see Fig.6).

We first plot the likelihood of the model in a target do-
main. As the model iterates, the log-likelihood of the model
becomes larger and larger, until it becomes stable. This
shows that our model is able to converge. We then study
the impact of target domain sparsity. We use different num-
bers of responses to each question in the target domain,
while keeping the source domain the same. In this exper-
iment, TLC performs better than the non-transfer model
in situations where there are fewer responses in the target
task. This experiment shows that TLC can effectively trans-
fer knowledge when the target task data is sparse.

We also experiment on the parameters of the model. A
smaller σc makes prediction more accurate, because a smaller
σc better regularizes the difference between the inferred user
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Figure 6: Impact of parameters

ability Ci
p in the target task and the predicted user ability

from the auxiliary task. This shows that the model’s predic-
tive ability is accurate. σM and σd do not affect the result
very much, the result is omitted due to page limitations. In
reality, we can select the most appropriate parameters by
testing the model performance on a validation set. We can
keep a small set with gold labels as validation set and then
select the parameters which achieve the best performance
on it.

5.6 Discussion
In this section, we briefly discuss situations where the TLC

model is most suitable. We list a number of situations. First,
some of the users in the target tasks have finished plenty of
questions in source tasks in the history. Second, users in
source and target tasks show strong performance correla-
tion. TLC model is particularly suitable for crowdsourcing
service-provider websites such as Mechanical Turk, as well as
big crowdsourcing requesters who post many related tasks to
a group of stable workers. When most of the users in target
tasks are new or when the target tasks have no correlation
with source tasks, TLC still performs as well as single-task
baseline models.

6. CONCLUSION
In this paper, we studied a new problem on how to trans-

fer knowledge under the context of crowdsourcing, where the
labels on data instances provided by various crowdsourc-
ing workers can be sparse, noisy and unreliable. We con-
sider this problem as cross-task crowdsourcing (CTC), where
we exploit transfer learning to learn from related auxiliary
tasks. Although the shared user may perform relatively sta-
bly in similar tasks, the task-specific differences may degrade
the performance. In response, we proposed a hierarchical
Bayesian model to transfer the knowledge from related tasks
adaptively. To the best of our knowledge, this is the first
work to utilize multiple tasks in crowdsourcing applications
via transfer learning. The proposed model is flexible in that
it can be extended to any number of tasks. We conducted
empirical studies on two real datasets: Affective Text Analy-
sis dataset and Gender Hobby dataset collected from Ama-
zon Mechanical Turk, where the proposed algorithm TLC
outperforms several state-of-the-art non-transfer models by
as high as 6% on accuracy.
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