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ABSTRACT
Social networks continue to grow in size and the type of infor-
mation hosted. We witness a growing interest in clustering a so-
cial network of people based on both their social relationships and
their participations in activity based information networks. In this
paper, we present a social influence based clustering framework
for analyzing heterogeneous information networks with three u-
nique features. First, we introduce a novel social influence based
vertex similarity metric in terms of both self-influence similarity
and co-influence similarity. We compute self-influence and co-
influence based similarity based on social graph and its associat-
ed activity graphs and influence graphs respectively. Second, we
compute the combined social influence based similarity between
each pair of vertices by unifying the self-similarity and multiple
co-influence similarity scores through a weight function with an
iterative update method. Third, we design an iterative learning al-
gorithm, SI-Cluster, to dynamically refine the K clusters by con-
tinuously quantifying and adjusting the weights on self-influence
similarity and on multiple co-influence similarity scores toward-
s the clustering convergence. To make SI-Cluster converge fast,
we transformed a sophisticated nonlinear fractional programming
problem of multiple weights into a straightforward nonlinear para-
metric programming problem of single variable. Our experiment
results show that SI-Cluster not only achieves a better balance be-
tween self-influence and co-influence similarities but also scales
extremely well for large graph clustering.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Graph Clustering, Heterogeneous Network, Social Influence

1. INTRODUCTION
Social influence studies the impact of a group of people on an in-

dividual member of the group by their opinions or actions. Social
influence analysis has great potential for understanding the ways in
which information, ideas, experiences and innovations are spread
across social networks. As more and more people are engaged in
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social networks, we witness many forms of heterogeneous social
networks in which entities are of different types and are intercon-
nected through heterogeneous types of links, representing different
kinds of semantic relations. Analyzing and mining heterogeneous
social networks can provide new insights about how people inter-
act with and influence each other and why ideas and opinions on
different subjects propagate differently on social networks.

Clustering a heterogeneous social network with multiple types of
links, entities, static attributes and dynamic and inter-connected ac-
tivities demands for new clustering models and distance functions
to address the following new challenges.
• The large scale heterogeneous social network analysis often dis-

plays features of social complexity and involves substantial non-
trivial computational cost. For example, a full version of the D-
BLP bibliography data contains 964, 166 authors, 6, 992 confer-
ences, 363, 352 keywords and 31, 962, 786 heterogeneous links.

• Each type of entities usually associates to one primary social
world but participates in many other social worlds, each with
domain-specific semantics. How to make good use of the infor-
mation from various social worlds to provide more informative
views of how people influence one another in a given social net-
work? For instance, we may want to utilize the original facebook
people network as well as the associated activity networks in the
facebook dataset to generate a better clustering of people based
on their social influence in terms of both their circle of friends
(i.e., self-influence) and their participations in multiple domain
specific activity networks (i.e., multiple types of co-influence).

• The information flow between two social worlds may be bidirec-
tional so that we should be careful in differentiating them when
we integrate the results from different information networks. For
example, Bob may influence his circle of friends (direct or indi-
rect) by his blogs on certain subject and his participation in some
tennis tournaments. On the other hand, direct links from a blog
(or a tournament) to other blogs (or tournaments) can serve as a
recommendation by Bob to its circle of friends.

• As multiple social networks may be from arbitrary domains, it
is challenging to efficiently integrate the multiple types of influ-
ences from multiple information networks into a unified distance
space simultaneously. Moreover, social network clustering can
be more meaningful if it is context aware and only the activity
networks that are relevant to the context of interest will be uti-
lized to perform the social influence based clustering analysis.
With these new challenges in mind, in this paper we develop an

innovative social influence based graph clustering approach for het-
erogeneous information networks, SI-Cluster. It captures not only
the complex attributes of people (vertices) in the social collabora-
tion network but also the nested and complex relationships between
people and other types of entities in different information network-
s in terms of their participations in different activities of interest.
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(d) Influence Flow
Figure 1: A Heterogeneous Network Example from DBLP

Concretely, we categorize the social influence based graph model
into three categories: (1) the topological structure of the social net-
work or the activity networks, (2) the single-valued or multi-valued
vertex properties that represent relatively stable and static states of
vertices in the social network (such as name, sex, age, and multiple
education degrees a person may achieve), (3) the nested and com-
plex relationships between the social network and the activity net-
works (such as multiple activities one may have participated). We
show that the social influence based graph clustering for heteroge-
neous networks demands for a dynamic graph clustering method in
contrast to conventional graph clustering algorithms. SI-Cluster
is designed to cluster large social network with two new criteri-
a: (1) it takes into account both the complex vertex properties and
the topological structure to define the initial influence of a vertex
and the weights of its influence propagation to its circle of friends;
(2) it computes pairwise vertex closeness by considering not only
the social influence patterns (influence-based similarities) based on
both direct and indirect social connections existing in the relevant
social and activity networks but also the potentially new interac-
tions that have high propagation probabilities based on the existing
interactions. A unique characteristics of SI-Cluster is its ability
of integrating the self-influence and multiple types of co-influences
into a unified influence-based similarity measure through iterative-
ly clustering and dynamic weight tuning mechanism.

This paper makes the following original contributions.
• We integrate different types of links, entities, static attributes

and dynamic activities from different networks into a unified
influence-based model through the intra-network or inter-network
social influences.
• We compute influence-based vertex similarity in terms of heat

diffusion based influence propagation on both social graph (self-
influence) and each of activity graphs (co-influence).
• A dynamic weight tuning method is provided to combine vari-

ous influence-based similarities through an iterative learning al-
gorithm, SI-Cluster, for social influence based graph cluster-
ing. To make the clustering process converge fast, a sophisti-
cated nonlinear fractional programming problem with multiple
weights is transformed to a straightforward parametric program-
ming problem of a single variable.
• We perform extensive evaluation on real datasets to demonstrate

that SI-Cluster can partition the graph into high-quality clusters
with cohesive structures and homogeneous social influences.

2. RELATED WORK
The most closely related work to this research falls into three ar-

eas: social influence analysis, heterogeneous social network anal-
ysis and graph clustering. Social influence analysis is gaining at-
tention in recent years. [1] proposed the first provable approxima-
tion algorithm for maximizing the spread of influence in a social
network. [2] proposed a cascading viral marketing algorithm. [3]
proposed a heat-diffusion based viral marketing model with top K
most influential nodes. [4] used a user’s implicit social graph to
generate a friend cluster, given a small seed set of contacts. [5] pre-
sented a model in which information can reach a node via the links
of the social network or through the influence of external sources.

Recent works on heterogeneous social network analysis [6–10]
combine links and content into heterogeneous information network-
s to improve the quality of querying, ranking and clustering. [6]
proposed a method to model a relational database containing both
attributes and links. [7] proposed to learn an optimal linear com-
bination of different relations on heterogeneous social networks in
terms of their importance on a certain query. [9] groups objects into
pre-specified classes, while generating the ranking information for
each type of object in a heterogeneous information network. [10]
presented a query-driven discovery system for finding semantically
similar substructures in heterogeneous networks.

Graph clustering has attracted active research in the last decade.
Most of existing graph clustering techniques have focused on the
topological structure based on various criteria, including normal-
ized cuts [11], modularity [12], structural density [13], stochastic
flows [14] or clique [15]. K-SNAP [16] and CANAL [17] present-
ed OLAP-style aggregation approaches to summarize large graphs
by grouping nodes based on the user-selected attributes. [18] ex-
ploited an information-theoretic model for clustering by growing
a random seed in a manner that minimizes graph entropy. [19] p-
resented a clustering method which integrates numerical vectors
with modularity into a spectral relaxation problem. SA-Cluster [20]
and BAGC [21] perform clustering based on both structural and at-
tribute similarities by incorporating attributes as augmented edges
to its vertices, transforming attribute similarity to vertex closeness.
PathSelClus [22] utilizes limited guidance from users in the form
of seeds in some of the clusters and automatically learn the best
weights for each meta-path in the clustering process. GenClus [23]
proposed a model-based method for clustering heterogeneous net-
works with different link types and different attribute types.

To our knowledge, this work is the first one to address the prob-
lem of social influence based clustering over heterogeneous net-
works by dynamically combining self-influence from social graph
and multiple types of co-influence from activity graphs.

3. PROBLEM STATEMENT
We consider three types of information networks in defining a so-

cial influence based graph clustering method: (1) the social collab-
oration network, which is the target of graph clustering and typical-
ly a social network of people, such as friend network, co-author net-
work, to name a few; (2) the associated activity networks, such as
product purchasing activity network, sport activity network or con-
ference activity network; (3) the influence networks representing
bipartite graphs connecting social network and activity networks.
We formally define the three types of networks as follows.

A social graph is denoted as S G = (U, E), where U is the set
of vertices representing the members of the collaboration network,
such as customers or authors, and E is the set of edges denoting the
collaborative relationships between members of the collaboration
network. We use NS G to represent the size of U, i.e., NS G = |U |.

An activity graph is defined by AGi = (Vi, S i), where v ∈ Vi

denotes an activity vertex in the ith associated activity network AGi,
and s ∈ S i is a weighted edge representing the similarity between
two activity vertices, such as functional or manufacture similarity.
We denote the size of each activity vertex set as NAGi = |Vi|.
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Figure 2: An Illustrating Example of Influence Graphs

An influence graph is denoted as IGi = (U,Vi, S i,Ti), where U,
Vi and S i have the same definitions in the social graph S G and
the activity graph AGi respectively. Every edge t ∈ Ti, denoted
by (u, v), connecting a member vertex u ∈ U to an activity vertex
v ∈ Vi, representing an influence flow between S G and AGi, such as
a purchasing or publishing activity. Thus, IGi is a bipartite graph.

Given a social graph S G, multiple activity graphs AGi and var-
ious influence graphs IGi (1 ≤ i ≤ N), the problem of Social
Influence-based graph Clustering (SI-Cluster) is to partition the
member vertices U into K disjoint clusters Ui, where U =

⋃K
i=1 Ui

and Ui
⋂

U j = φ for ∀1 ≤ i, j ≤ K, i � j, to ensure the clustering
results in densely connected groups and each has vertices with sim-
ilar activity behaviors. A desired clustering result should achieve
a good balance between the following two properties: (1) vertices
within one cluster should have similar collaborative patterns among
themselves and similar interaction patterns with activity networks;
(2) vertices in different clusters should have dissimilar collabora-
tive patterns and dissimilar interaction patterns with activities.

Figure 1 (a) provides an illustrating example of a heterogeneous
information network extracted from the DBLP dataset. It consists
of two types of entities: authors and conferences and three types
of links: co-authorship, author-conference, conference similarity.
In our SI-Cluster framework, we reorganize a heterogeneous in-
formation network into a social graph, multiple activity graphs and
multiple influence graphs without loss of information. The hetero-
geneous network in Figure 1 (a) is divided into three subgraphs: a
social collaboration graph of authors, a conference activity graph,
and an influence graph about author’s publishing activity in confer-
ences, as shown in Figures 1 (b), (c) and (d), respectively. A red
number associated with a red dashed edge quantifies the number
of publications that an author published in a conference. A green
number on a green edge measures the similarity score between con-
ferences. For ease of presentation, we removed the conference sim-
ilarities with less than 0.005. A number of mechanisms can be used
to compute similarity of conferences. We use RankClus [24] to par-
tition activities into clusters. According to activity’s clustering dis-
tribution and ranking in each cluster, we calculate the similarities
between activities in activity graph. Black numbers in the bracket
represent the total amount of publications of an author. Other black
numbers on co-author edges denote the number of co-authored pa-
pers. A more complex example of influence graph with 12 authors
and 12 conferences (or keywords) is presented in Figure 2.

4. INFLUENCE-BASED SIMILARITY
This section describes how to measure the vertex closeness in

terms of self-influence and co-influence models. We first utilize
heat diffusion model to capture self-influence based similarity be-
tween member vertices in the social graph. Then we use heat d-
iffusion model to construct one co-influence model for each influ-
ence graph using a probabilistic classification method to compute
co-influence similarities of two vertices in the social graph. Final-
ly, we compute pairwise vertex similarities based on the influence
similarity matrix and generate an influence-based pairwise similar-
ity matrix on the social graph for each of its N influence graphs.

4.1 Heat Diffusion on Social Graph
Heat diffusion is a physical phenomenon that heat always flows

from an object with high temperature to an object with low tem-
perature. In a large social graph S G, experts with many publi-
cations often influence other late authors. Consumers purchasing
many products may influence other consumers with little purchas-
ing. Thus the spread of influence resembles the heat diffusion phe-
nomenon. Early adopters of a product with many friends or experts
on a subject with many coauthors may act as heat sources, transfer
their heat to others and diffuse their influence to other majority.

To effectively measure vertex closeness in the social graph in
terms of heat diffusion model, we first define the non-propagating
heat diffusion kernel on social graph.

Definition 1. [Non-propagating Heat Diffusion Kernel on Social
Graph] Let S G = (U, E) denote a social graph where U is the set
of member vertices and E is the edge set denoting the collaborative
relationships between members. Let α be the thermal conductivity
(the heat diffusion coefficient) of S G. The heat change at vertex
ui ∈ U between time t + Δt and time t is defined by the sum of
the heat that it receives from all its neighbors, deducted by what it
diffuses.

fi(t + Δt) − fi(t)
Δt

= α
∑

j:(ui ,u j)∈E
pi j( f j(t) − fi(t)), pi j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ni j√nin j
, (ui, u j) ∈ E0,

0, otherwise.
(1)

where fi(t) is the vertex ui’s temperature at time t. pi j denotes the
probability of heat diffusion from ui to uj. ni j denotes the weight
on edge (ui, uj), e.g., the number of co-authored publications, and
ni (or nj) denotes the amount of heat/influence that ui (or uj) has
within the social graph, e.g., the number of authored publication-
s.We express the above heat diffusion formulation in a matrix form.

f(t + Δt) − f(t)
Δt

= αHf(t) (2)

where H is a NS G × NS G matrix, called a non-propagating heat d-
iffusion kernel on S G, as the heat diffusion process is defined in
terms of one-hop neighbors of heat source.

Hi j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi j, (ui, u j) ∈ E, i � j,

−τi, i = j, (3)

0, otherwise.
where τi =

∑
(ui ,u j)∈E, j�i pi j. τi denotes the amount of heat diffused

from ui to all its neighbors.
If we use H to define self-influence similarity between vertices,

then the similarity is based on one-hop or direct influence. For
those authors who have no joint publications, they are considered
to have zero influence on one another, which is unrealistic.

This motivates us to utilize both direct and indirect influence
paths between two vertices in computing their vertex similarity.
Thus, we define the self-influence similarity using the propagating
heat diffusion kernel, where the heat diffusion process continues
until vertices’ temperatures converge or the system-defined conver-
gence condition is met. Concretely, by Eq.(2), we have the follow-
ing differential equation when Δt → 0.

df(t)
dt
= αHf(t) (4)

Solving this differential equation, we obtain the following Eq.(5).
Definition 2. [Propagating Heat Diffusion Kernel on Social Graph]

Let α denote the thermal conductivity, H be the non-propagating
diffusion kernel of S G and f(0) denote an initial heat (influence)
column vector at time 0, which defines the initial heat distribution
on S G. The vertex’s thermal capacity at time t, denoted by f(t), is
an exponential function with variable t for constant f(0).

f(t) = eαtHf(0) (5)
We call eαtH as the propagating heat diffusion kernel. It can be

expanded as a Taylor series, where I is an identity matrix:

eαtH = I + αtH +
α2t2

2!
H2 +

α3t3

3!
H3 + · · · (6)



where the heat diffusion reaches convergence, i.e., thermal equilib-
rium, at time t. Since eαtH captures both direct and indirect rela-
tionships between objects, it reflects the vertex closeness on social
graph. We treat it as the self-similarity matrix W0, i.e., W0 = eαtH.
Here, the thermal conductivity α is a user specific parameter. We
use it as a weight factor for the self-influence similarity in the uni-
fied similarity. Figure 3 follows the example of Figure 1. In Fig-
ure 3 (a), ochre dashed lines and associated blue numbers represent
the self-influence similarity by setting α and t equal to 1.

4.2 Heat Diffusion on Influence Graphs
We have presented the use of propagating heat diffusion kernel to

measure the self-influence vertex closeness on social graph. In this
section we describe how to compute pairwise co-influence similari-
ty for vertices in S G based on one of N associated influence graphs.

Similarly, we first need to define the non-propagating heat kernel
on an influence graph. By the definition of influence graph in Sec-
tion 3, we should consider four types of one-hop influence diffusion
path in defining the non-propagating heat kernel Hi.

Definition 3. [Non-propagating Heat Diffusion Kernel on Influ-
ence Graphs] We formulate Hi on the influence graph IGi associat-
ed to the social graph S G and the activity graph AGi by splitting it
into four blocks.

Hi =

[
A B
C D

]
(7)

where B = [B1, · · · ,BNAGi
]T is a NAGi × NS G matrix representing

the social influence of vertices in AGi on members in S G, defined
by Eq.(8); C = [C1, · · · ,CNSG

]T is a NS G × NAGi matrix denoting
the social influence of members in S G on vertices in AGi, defined
by Eq.(9); A is an NAGi ×NAGi matrix representing the activity sim-
ilarities, defined by Eq.(10); and D is a NS G ×NS G diagonal matrix.

Bjk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n jk∑NAGi
l=1

nlk

, (uk , v j) ∈ Ti,

0, otherwise.

(8)

where njk is the weight on edge (uk, v j) and Bjk computes the influ-
ence of v j on S G through uk and is defined by njk normalized by
the sum of weights on (uk, vl) for any vl in AGi. For example, the
influence of a conference v j on the social graph through an author,
say Philip S. Yu, is defined by the number of papers he published in
v j normalized by the total number of papers authored by him and
published in any conference of the conference graph.

C jk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n jk∑NS G

l=1
nlk
, (u j, vk) ∈ Ti,

0, otherwise.
(9)

where njk denotes the weight on edge (uj, vk) and C jk computes the
influence of uj on AGi through vk and is defined by njk (the amount
of papers uj published in vk) normalized by the sum of the weights
on (ul, vk) for any ul.

A jk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n jk, (v j, vk) ∈ S i,

−τ j, j = k, (10)

0, otherwise.
where njk represents the similarity between two activity vertices v j

and vk in the activity graph. τ j =
∑

(v j ,vl)∈S i ,l� j A jl +
∑

(ul ,v j)∈Ti
Bjl

where τ j summarizes the influence of activity vertex v j on other
activity vertices and associated member vertices.

In the diagonal matrix D, the diagonal entry Dj j in each row is
equal to −τ j where τ j =

∑
(u j ,vl)∈Ti

C jl. τ j summarizes the influence
of member vertex uj on all activity vertices.

Definition 4. [Propagating Heat Diffusion Kernel on Influence
Graphs] Let IGi denote the ith influence graph associated to S G
and AGi, α denote the thermal conductivity, Hi denote the non-
propagating diffusion kernel of IGi and f(0) be an initial heat dis-
tribution on IGi. The vertex’s thermal capacity at time t is defined
by an exponential function f(t) with variable t for constant f(0).

fi(t) = eαtHi fi(0) (11)

where i represents the ith influence graph. eαtHi can be expanded as
a Taylor series.

eαtHi = I + αtHi +
α2t2

2!
H2

i +
α3t3

3!
H3

i + · · · (12)

where I is a (NAGi + NS G) × (NAGi + NS G) identity matrix.

Figure 3 (b) shows the propagating heat diffusion kernel eαtHconf

for the conference influence graph in our running example, where
both α and t are set to 1. For presentation clarity, we only show the
bidirectional influence flow between authors and conferences with
value less than 0.02 in eαtHconf . Associated blue numbers and green
numbers quantify the influence flows from author to conference and
the influence flows from conference to author respectively.

4.3 Co-influence Model
We have defined the propagating heat diffusion kernel eαtHi for

the influence graph IGi (1 ≤ i ≤ N). According to Eq.11, in order to
conduct heat diffusion on an influence graph and compute pairwise
co-influence similarity, we need both eαtHi and fi(0) on IGi. fi(0)
defines the heat sources from which the propagating heat kernel
starts its diffusion process.

We observe that the co-influence between a pair of member ver-
tices in the social graph can only be established through their in-
teractions with activity vertices in one of the activity graphs. To
make good use of the topological information of AGi, find good
heat sources from AGi and reduce the commotional cost for large-
scale activity graph, we propose to start by partitioning AGi into
Mi disjoint activity clusters, denoted by ci1, ci2, . . . , ciMi . Based
on these activity clusters, the initial heat distribution column vector
with the size of (NAGi + NS G) × 1 is defined as follow.

fij(0) = (pi j1, pi j2, · · · , pi jNAGi
, 0, 0, · · · , 0)T (13)

where pi jk is the probability of activity vertex vk belonging to clus-
ter ci j (1 ≤ k ≤ NAGi , 1 ≤ j ≤ Mi). If pi jk > 0, then the activity
vertex vk in cluster ci j is chosen as an initial heat source. Note
that for each activity vertex vk, there exists one and only one ci j

cluster among the Mi disjoint activity clusters, to which vertex vk

belongs. Thus we have pi jk = 1 in fij(0). The last NS G entries in
fij(0) represent the initial heats of member vertices in S G with al-
l 0s. Thus, the initial heat distribution matrix fi(0) is defined as
[fi(0) = [fi1(0), fi2(0), · · · , fiMi

(0)].
We argue that two members are similar if both of them partici-

pate in many activities in the same clusters. We propose a proba-
bility based co-influence classification method to classify members
into the activity-based clusters and generate the co-influence simi-
larity between members based on the member distribution in each
class. We first use fij(0) (1 ≤ j ≤ Mi) as the training data and
the eαtHi as the classifier to execute influence propagation to gen-
erate member’s probability in each activity-based class. The heat
distribution fi(t) at time t is then given as follow.

fi(t) = [fi1(t), fi2(t), · · · , fiMi
(t)] = eαtHi [fi1(0), fi2(0), · · · , fiMi

(0)] (14)

Consider conference classes DM and DB in Figure 3 (c), we have
the initial conference influence distribution matrix fconf(0) below.

fconf(0) = [fDM(0), fDB(0)] =

(
1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0

)T
(15)

where 2 columns represent the conference classes DM and DB and
11 rows represent six conference vertices (ICDM, KDD, SDM, SIG-
MOD, VLDB and ICDE), and five author vertices (Philip S. Yu, Ji-
awei Han, Charu C. Aggarwal, Kun-Lung Wu and Haixun Wang).
By Eq.(14) with α and time t set to 1, we can generate the final heat
distribution vectors fconf(t) for them, which serve as their influence-
based probabilities of belonging to each of DM and DB.

We can further reduce the influence propagation matrix fi(t) with
the size of (NAGi +NS G)×Mi to a NS G×Mi matrix f′i (t) by removing
the activity rows without loss of quality. Figure 3 (d) shows the
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Figure 3: Co-influence Model

influence distribution f′conf(t) represented by blue numbers in the
two different conference classes. The larger the number is, the more
influence author has on the conference class.

The pairwise vertex closeness is an important measure of cluster-
ing quality. Let Wi denote the co-influence vertex similarity matrix
for influence graph IGi, Mi be the number of activity classes in IGi,
and f′im(t)( j) denote the row-wise normalized influence distribution
of member uj ∈ U on IGi at time t, i.e., the probability of uj in the
mth class of AGi. Wi( j, k) representing the co-influence similarity
between members uj and uk is defined below.

Wi( j, k) = Wi(k, j) = 1 −
√∑M

mi=1(f′im(t)( j) − f′im(t)(k))2

∑M
mi=1 f′im(t)( j) + f′im(t)(k)

= 1 −
√∑M

mi=1(pim(NAGi+ j) − pim(NAGi+k))2

∑M
mi=1 pim(NAGi+ j) + pim(NAGi+k)

(16)

The green numbers in Figure 3 (e) represents the co-influence
based similarity from the conference influence graph.

4.4 Unified Influence-based Similarity Measure
The problem of integrating the influence-based similarities on

both social graph and multiple influence graphs into a cohesive and
unified similarity measure is quite challenging. In this paper, we
propose to use a unified influence-based similarity measure togeth-
er with an iterative learning algorithm to address this problem.

Let W0 denote the self-influence similarity from the social graph
S G with the weight factor α, Wi denote the co-influence similarity
from the influence graph IGi (1 ≤ i ≤ N) with the weight ωi. The
unified similarity function W is defined as follow.

W =W0 + ω1W1 + · · · + ωNWN (17)
where W0 = eαtH, α+

∑N
i=1 ωi = N + 1, α � 0, ωi � 0, i = 1, · · · ,N.

The unified similarity between any pair of member vertices in
S G is defined based on the set of N+1 influence-based similarities.

d(ui, u j) = W(i, j) = eαtH(i, j) + ω1W1(i, j) + · · · + ωNWN (i, j)

=

∞∑
k=0

αktk

k!
Hk(i, j) +

N∑
k=1

ωkWk(i, j)
(18)

5. CLUSTERING ALGORITHM
This section presents our clustering framework, SI-Cluster, that

partitions a social graph S G based on both self-influence and co-
influence similarities through a unified similarity model among S G,
the activity graphs AGi, and the influence graphs IGi. SI-Cluster
follows the K-Medoids clustering method [25] by using the unified
influence-based similarity with the initial weights as an input. At
each iteration, we select the most centrally located point in a cluster
as a centroid, and assign the rest of points to their closest centroids.
The weight update method computes the weighted contributions of
each influence-based similarity to both clustering convergence and
clustering objective, and updates N + 1 weights accordingly after
each iteration. This process is repeated until convergence.

5.1 Initialization
We will address two main issues in the initialization step: (1)

initial weight setup and (2) cluster centroid initialization.
Choosing a weight assignment randomly often results in incor-

rect clustering results. In fact, we will prove that there exists one

and only one optimal weight assignment to maximize the clus-
tering objective. According to Definition 7 and Theorems 4-7 in
Section 5.4, we choose parameter β = 0 and weights α = ω1 =

. . . = ωN = 1 as an initial input. Thus, the dynamic weight up-
date scheme continuously increases weights to important influence-
based similarities and decreases weights or assign zero weights to
trivial influence-based similarities at each iteration.

Good initial centroids are essential for the success of partition-
ing clustering algorithms. A member vertex which has a local
maximum of the number of neighbors often can diffuse its heat
to many vertices along multiple paths. A centroid-based cluster is
thus formed when heat is diffused to the margin of the social graph.
Thus, we select such K members as the initial centroids {c0

1
, ..., c0

K}.
5.2 Vertex Assignment and Centroid Update

With K centroids in the tth iteration, we assign each vertex ui ∈
U to its closest centroid c∗ = argmaxct

j
d(ui, ct

j), i.e., a centroid

c∗ ∈ {ct
1, ..., c

t
K} with the largest unified similarity from ui. When all

vertices are assigned to some cluster, the centroid will be updated
with the most centrally located vertex in each cluster. To find such
a vertex, we first compute the “average point" ui of a cluster Ui in
terms of the unified similarity matrix as

d(ui, u j) =
1

|Ui |
∑

uk∈Ui

d(uk, u j),∀u j ∈ Ui (19)

Thus, d(ui, :) is the average unified similarity vector for cluster
Ui. Then we find the new centroid ct+1

i in cluster Ui as

ct+1
i = argminu j∈Ui ‖d(u j, :) − d(ui, :)‖ (20)

Therefore, we find the new centroid ct+1
i in the (t + 1)th iteration

whose unified similarity vector is the closest to the cluster average.

5.3 Clustering Objective Function
The objective of clustering is to maximize intra-cluster similar-

ity and minimize inter-cluster similarity. We first define the inter-
cluster similarity.

Definition 5. [Inter-cluster Similarity] Let S G = (U, E) be the
social graph, W(i, j) denote the unified influence-based similarity
between ui and uj, and Up and Uq be two clusters of U. The inter-
cluster similarity between Up and Uq is defined as follow.

d(Up,Uq) =
∑

ui∈Up ,u j∈Uq

d(ui, u j) =
∑

ui∈Up ,u j∈Uq

W(i, j) (21)

This inter-cluster similarity measure is designed to quantitatively
measure the extent of similarity between two clusters of U.

Definition 6. [Graph Clustering Objective Function] Let S G =
(U, E) denote a social graph with the weight α and IG1, IG2, . . . , IGN

denote N influence graphs with the weights ω1, . . . , ωN where ωi is
the weight for IGi, and K be a number of clusters. The goal of SI-
Cluster is to find K partitions {Ui}Ki=1 such that U =

⋃K
i=1 Ui and

Ui
⋂

U j = φ for ∀1 ≤ i, j ≤ K, i � j, and the following objective
function O({Ul}Kl=1, α, ω1, . . . , ωN) is maximized.

O({Ul}Kl=1, α, ω1, . . . , ωN ) =

∑K
p=q=1 d(Up,Uq)∑K

p=1

∑K
q=1,q�p d(Up,Uq)

=

∑K
p=q=1

∑
ui∈Up ,u j∈Uq (

∑∞
k=0

αk tk
k! Hk(i, j) +

∑N
k=1 ωkWk(i, j))

∑K
p=1

∑K
q=1,q�p

∑
ui∈Up ,u j∈Uq (

∑∞
k=0

αk tk
k! Hk(i, j) +

∑N
k=1 ωkWk(i, j))

(22)subject to α +
∑N

i=1 ωi = N + 1, α � 0, ωi � 0, i = 1, · · · ,N.



Thus the graph clustering problem can be reduced to three sub-
problems: (1) cluster assignment, (2) centroid update and (3) weight
adjustment, each with the goal of maximizing the objective func-
tion. The first two problems are common to all partitioning clus-
tering algorithms. Thus we focus on the third subproblem, weight
adjustment, in the next subsection.

5.4 Parameter-based Optimization
The objective function of our clustering algorithm is to maxi-

mize intra-cluster similarity and minimize inter-cluster similarity.
Theorems 1 and 2 prove that our clustering objective is equivalent
to maximize a quotient of two convex functions of multiple vari-
ables. It is very hard to perform function trend identification and
estimation to determine the existence and uniqueness of solution-
s. Therefore, we can not directly solve this sophisticated nonlinear
fractional programming problem.

Definition 7. Suppose that f (α,ω1, . . . , ωN) =∑K
p=q=1

∑
ui∈Up ,u j∈Uq (

∑∞
k=0

αk tk
k!

Hk(i, j) +
∑N

k=1 ωkWk(i, j)) and

g(α,ω1, . . . , ωN) =
∑K

p=1

∑K
q=1,q�p

∑
ui∈Up ,u j∈Uq (

∑∞
k=0

αk tk
k!

Hk(i, j) +∑N
k=1 ωkWk(i, j)), the original clustering goal is rewritten as the fol-

lowing optimization problem (NFPP).

Max O({Ul}Kl=1, α, ω1, . . . , ωN ) =
f (α,ω1, . . . , ωN )

g(α, ω1, . . . , ωN )
(23)

subject to α +
∑N

i=1 ωi = N + 1, α � 0, ωi � 0, i = 1, · · · ,N.

Lemma 1. Let f be a function of a single variable on R. Then
(1) f is concave iff for ∀x1, x2 ∈ R and ∀λ ∈ (0, 1) we have

f ((1 − λ)x1 + λx2) � (1 − λ) f (x1) + λ f (x2).
(2) f is convex iff for ∀x1, x2 ∈ R and ∀λ ∈ (0, 1) we have f ((1 −
λ)x1 + λx2) � (1 − λ) f (x1) + λ f (x2).

Definition 8. A set S of n-vectors is convex if (1−λ)x+λx′ ∈ S
whenever x, x′ ∈ S , and λ ∈ [0, 1].

Lemma 2. Let f be a function of multiple variables with contin-
uous partial derivatives of first and second order on the convex set
S and denote the Hessian of f at the point x by Π(x). Then

(1) f is concave iff Π(x) is negative semidefinite for ∀x ∈ S .
(2) if Π(x) is negative definite for ∀x ∈ S , f is strictly concave.
(3) f is convex iff Π(x) is positive semidefinite for ∀x ∈ S .
(4) if Π(x) is positive definite for ∀x ∈ S , f is strictly convex.
Lemmas 1, 2 and the detailed proof can be found in [26].
Theorem 1. f (α,ω1, . . . , ωN) is convex on the set S =

{(α,ω1, . . . , ωN)|α +∑N
i=1 ωi = N + 1, α � 0, ωi � 0, i = 1, · · · ,N}.

Proof. We first prove that the set S is a convex set. Suppose
that two arbitrary (n + 1)-vectors x = (μ1, μ2, . . . , μN+1) and x′ =
(ν1, ν2, . . . , νN+1) satisfy the following two constraints:

∑N+1
i=1 μi =

N + 1, μi � 0,
∑N+1

i=1 νi = N + 1, νi � 0, i = 1, · · · ,N + 1.
For an arbitrary λ ∈ [0, 1], the (n + 1)-vector (1 − λ)x + λx′ =

((1−λ)μ1 +λν1, (1−λ)μ2 +λν2, · · · , (1−λ)μN+1 +λνN+1). The sum
of each dimension for this (n+1)-vector is equal to (1−λ)∑N+1

i=1 μi+

λ
∑N+1

i=1 νi = (1− λ)(N + 1)+ λ(N + 1) = N + 1. Thus, (1− λ)x+ λx′

is still in S and S is a convex set.
We then calculate the Hessian matrix of f as follows.

Π( f )i j(α,ω1, . . . , ωN ) = DiD j f (α,ω1, . . . , ωN ) (24)

where Di is the differentiation operator with respect to the ith argu-
ment.

The Hessian becomesΠ( f ) = [
∂2 f
∂α2

∂2 f
∂α∂ω1

. . . ∂2 f
∂α∂ωN

;
∂2 f
∂ω1∂α

∂2 f
∂ω2

1

. . .

∂2 f
∂ω1∂ωN

; . . . ; ∂2 f
∂ωN∂α

∂2 f
∂ωN∂ω1

. . . ∂
2 f
∂ω2

N
]. Since f (α,ω1, . . . , ωN) has

only one non-linear term
∑K

p=q=1

∑
ui∈Up ,u j∈Uq

∑∞
k=0

αk tk
k!

Hk(i, j), there

is one non-zero term ∂2 f
∂α2 =

∑K
p=q=1

∑
ui∈Up ,u j∈Uq

∑∞
k=1 k(k−1) α

k−2 tk
k!

Hk(i, j)
in the Hessian matrix. We can easily prove that all of its eigenval-
ues are non-negative. Thus, it is positive-semidefinite for ∀α, ω1,
. . ., ωN ∈ S , and f (α,ω1, . . . , ωN) is convex on the set S .

Theorem 2. g(α,ω1, . . . , ωN) is convex on S since its Hessian
matrix Π(g) is positive-semidefinite for ∀α, ω1, . . ., ωN ∈ S .

The detailed proof is omitted due to space limit. This theorem
can be testified by using the above-mentioned similar method.

Theorem 3. The NFPP problem is equivalent to a polynomial
programming problem with polynomial constraints (PPPPC).

Max γ f (α,ω1, . . . , ωN) (25)
subject to 0 � γ � 1/g(α, ω1, . . . , ωN), α +

∑N
i=1 ωi = N + 1,

α � 0, ωi � 0, i = 1, · · · ,N.
Proof. If (α, ω1, . . . , ωN , γ) is a possible solution of PPPPC, then

γ = 1/g(α, ω1, . . . , ωN). Thus γ f (α, ω1, . . . , ωN) = f (α,ω1, . . . , ωN)
/g(α,ω1, . . . , ωN). For any feasible solution (α,ω1, . . . , ωN) of NF-
PP, the constraints of PPPPC are satisfied by setting γ = 1/
g(α,ω1, . . . , ωN), so γ f (α,ω1, . . . , ωN) � γ f (α,ω1, . . . , ωN), i.e.
f (α, ω1, . . . , ωN)/g(α,ω1, . . . , ωN) � f (α,ω1, . . . , ωN)/g(α,ω1, . . . , ωN).

Conversely, if (α,ω1, . . . , ωN) solves NFPP, then for any feasible
solution (α,ω1, . . . , ωN , γ) of PPPPC we have γ f (α,ω1, . . . , ωN) �
f (α, ω1, . . . , ωN)/g(α,ω1, . . . , ωN) � f (α,ω1, . . . , ωN)/g(α,ω1, . . . , ωN)
= γ f (α,ω1, . . . , ωN) with γ = 1/g(α, ω1, . . . , ωN).

Although PPPPC is a polynomial programming problem, the
polynomial constraints make it very hard to solve. We further sim-
plify it as an nonlinear parametric programming problem (NPPP).

Theorem 4. A nonlinear parametric programming problem (NPP-
P) is defined as �(β) = Max { f (α,ω1, . . . , ωN)−βg(α, ω1, . . . , ωN)}
subject to α +

∑N
i=1 ωi = N + 1, α � 0, ωi � 0, i = 1, · · · ,N. The

NFPP problem of Eq.(23) is equivalent to this NPPP, i.e., β is a
maximum value of NFPP iff �(β) = 0.

Proof. If (α,ω1, . . . , ωN) is a possible solution of �(β) = 0, then
f (α, ω1, . . . , ωN)− βg(α,ω1, . . . , ωN) = 0. Thus f (α,ω1, . . . , ωN)−
βg(α,ω1, . . . , ωN) � f (α, ω1, . . . , ωN) − βg(α,ω1, . . . , ωN) = 0. We
have β = f (α, ω1, . . . , ωN)/g(α,ω1, . . . , ωN) � f (α, ω1, . . . , ωN)/
g(α,ω1, . . . , ωN). Therefore, β is a maximum value of NFPP and
(α,ω1, . . . , ωN) is a feasible solution of NFPP.

Conversely, if (α,ω1, . . . , ωN) solves NFPP, then we have β =
f (α, ω1, . . . , ωN)/g(α,ω1, . . . , ωN) � f (α,ω1, . . . , ωN)/g(α,ω1, . . . , ωN).
Thus f (α, ω1, . . . , ωN) − βg(α,ω1, . . . , ωN) � f (α, ω1, . . . , ωN) −
βg(α,ω1, . . . , ωN) = 0. We have �(β) = 0 and the maximum is
taken at (α,ω1, . . . , ωN).

Now we have successfully transformed the original NFPP in
Eq.(23) into the straightforward NPPP. This transformation can help
the algorithm converge in a finite number of iterations. Although it
is not clear whether the original objective is concave or convex, the
objective �(β) of NPPP has the following properties.

Theorem 5. �(β) is a convex function.
Proof: Suppose that (α, ω1, . . . , ωN) is a possible solution of

�((1 − λ)β1 + λβ2) with β1 � β2 and 0 � λ � 1. �((1 − λ)β1 +

λβ2) = f (α,ω1, . . . , ωN) − ((1 − λ)β1 + λβ2)g(α,ω1, . . . , ωN) =
λ( f (α, ω1, . . . , ωN)−β2g(α, ω1, . . . , ωN))+(1−λ)( f (α, ω1, . . . , ωN)−
β1g(α, ω1, . . . , ωN)) � λ·max( f (α,ω1, . . . , ωN)−β2g(α, ω1, . . . , ωN))
+ (1 − λ) · max( f (α,ω1, . . . , ωN) − β1g(α,ω1, . . . , ωN)) = λ�(β2) +
(1 − λ)�(β1). According to Lemma 1, we know that �(β) is convex.

Theorem 6. �(β) is a monotonic decreasing function.
Proof: Suppose that β1 > β2 and (α,ω1, . . . , ωN) is a possible so-

lution of �(β1). Thus, �(β1) = f (α, ω1, . . . , ωN)−β1g(α,ω1, . . . , ωN)
< f (α,ω1, . . . , ωN) − β2g(α,ω1, . . . , ωN) � �(β2).

Theorem 7. �(β) = 0 has a unique solution.
Proof: Based on the above-mentioned theorems, we know �(β) is

continuous as well as decreasing. In addition, limβ→+∞�(β) = −∞
and limβ→−∞�(β) = +∞.

5.5 Adaptive Weight Adjustment
The procedure of solving this NPPP optimization problem in-

cludes two parts: (1) find such a reasonable parameter β (�(β) = 0),
making NPPP equivalent to NFPP; (2) given the parameter β, solve



Algorithm 1 Social Influence-based Graph Clustering
Input: a social graph S G, multiple influence graphs IGi, a cluster number

K, initial weights α = ω1 = . . . = ωN = 1 and a parameter β = 0.

Output: K clusters U1, ...,UK .

1: Calculate W0,W1,W2, · · · ,WN, and W;
2: Select K initial centroids with a local maximum of #neighbors;
3: Repeat until the objective function �(β) converges:
4: Assign each vertex ui to a cluster C∗ with a centroid c∗ where

c∗ = argmaxc j d(ui, c j);

5: Update the cluster centroids with the most centrally located point
in each cluster;

6: Solve the NPPP of �(β);
7: Update α, ω1, ..., ωN ;
8: Refine β = f (α,ω1, . . . , ωN )/g(α, ω1, . . . , ωN );
9: Update W;

10: Return K clusters U1, ...,UK .

a polynomial programming problem about the original variables.
Our weight adjustment mechanism is an iterative procedure to find
the solution of �(β) = 0 and the corresponding weights α, ω1, . . . ,
ωN after each iteration of the clustering process. We first generate
an initial unified similarity matrix W with equal weights to initial-
ize cluster centroids and partition the social graph. Since �(β) is a
monotonic decreasing function and �(0) = Max { f (α,ω1, . . . , ωN)}
is obviously non-negative, we start with an initial β = 0 and solve
the subproblem �(0) by using existing fast polynomial program-
ming model to update the weights α, ω1, . . . , ωN . The updated
parameter by β = f (α,ω1, . . . , ωN)/g(α,ω1, . . . , ωN) helps the al-
gorithm enter the next round. The algorithm repeats the above-
mentioned iterative procedure until �(β) converges to 0.

5.6 Clustering Algorithm
By assembling different pieces together, we provide the pseudo

code of our clustering algorithm - SI-Cluster in Algorithm 1.

Theorem 8. The objective function in Algorithm 1 converges to
a local maximum in a finite number of iterations.

Proof. Existing work has studied the convergence properties of
the partitioning approach to clustering, such as K-Means [27]. Our
clustering follows a similar approach. So the cluster assignment
and centroid update steps improve the objective function. In ad-
dition, we have explained that nonlinear parametric programming
optimization also fast converges a local maximum value. Therefore,
the objective function keeps increasing (but �(β) keeps decreasing)
and converges to a local maximum in a finite number of iterations.

6. EXPERIMENTAL EVALUATION
We have performed extensive experiments to evaluate the perfor-

mance of SI-Cluster on real graph datasets.

6.1 Experimental Datasets
We use a full version of the DBLP bibliography data with 964, 166

authors (dblp.xml, 836MB, 05/21/2011). We build a social graph
where vertices represent authors and edges represent their collabo-
ration relationships, and two associated activity graphs: conference
graph and keyword graph. We make use of a multityped cluster-
ing framework, RankClus [24], to partition both conferences and
keywords into clusters respectively. According to the conference’s
or keyword’s clustering distribution and ranking in each cluster, we
calculate the similarities between conferences or keywords. The
two associated influence graphs capture how authors in the social
graph interact with the activity networks. We also use a smaller
DBLP collaboration network with 100, 000 highly prolific authors.
The third dataset is the Amazon product co-purchasing network
with 20, 000 products. The two activity networks are product cate-
gory graph and customer review graph.
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Figure 4: Cluster Quality on Amazon 20,000 Products

6.2 Comparison Methods and Evaluation
We compare SI-Cluster with three recently developed represen-

tative graph clustering algorithms, BAGC [21], SA-Cluster [20]
and Inc-Cluster [28], and one baseline clustering algorithm, W-
Cluster. The last three algorithms integrate entity, link and static
attribute information into a unified model. SI-Cluster is our pro-
posed algorithm which incorporates not only links, entities, static
attributes but also multiple types of dynamic and inter-connected
activities into a unified influence-based model. BAGC constructs
a Bayesian probabilistic model to capture both structural and at-
tribute aspects. Both SA-Cluster and Inc-Cluster combine both
structural and attribute similarities in the clustering decisions by
estimating the importance of attributes. W-Cluster combines struc-
tural and attribute similarities using the equal weighting factors.

Evaluation Measures We use three measures of to evaluate the
quality of clusters {Ul}Kl=1 generated by different methods. The def-
initions of the metrics are given as follows.

density({Ul}Kl=1) =

K∑
i=1

|{(up, uq)|up, uq ∈ Ui, (up, uq) ∈ E}|
|E| (26)

entropy({Ul}Kl=1) =

N∑
i=1

ωi∑N
p=1 ωp

K∑
j=1

|U j|
|U | entropy(ai,U j) (27)

where ωi is the weight of influence graph IGi, entropy(ai,U j) =
−∑ni

n=1
pi jnlog2 pi jn, ni (or attribute ai) is the number of IGi’s ac-

tivities (or the number of ai’s values) and pi jn is the percentage of
vertices in cluster U j which participate in the nth activity in IGi

(or have value ain on ai). entropy({Ul}Kl=1) measures the weighted
entropy from all influence graphs (or attributes) over K clusters.

Davies-Bouldin Index (DBI) measures the uniqueness of clusters
with respect to the unified similarity measure.

DBI({Ul}Kl=1) =
1

K

K∑
i=1

max j�i
d(ci, c j)

σi + σ j
(28)

where cx is the centroid of Ux, d(ci, c j) is the similarity between ci

and c j, σx is the average similarity of vertices in Ux to cx.

6.3 Cluster Quality Evaluation
Figure 4 (a) shows the density comparison on Amazon 20, 000

Products by varying the number of clusters K = 40, 60, 80, 100.
The density values by SI-Cluster, BAGC, Inc-Cluster and SA-Cluster
remains 0.89 or higher even when k is increasing. This demon-
strates that these methods can find densely connected components.
The density values of W-Cluster is relatively lower, in the range
of 0.72-0.85 with increasing K, showing that the generated clus-
ters have a very loose intra-cluster structure. Figure 4 (b) shows
the entropy comparison on Amazon 20, 000 Products with K =
40, 60, 80, 100. SI-Cluster has the lowest entropy, while other four
algorithms have a much higher entropy than SI-Cluster, since SI-
Cluster considers not only static attributes but also multiple type-
s of dynamic and inter-connected activities during the clustering
process. Other methods can not handle dynamic activities and on-
ly treat them as static and isolated attributes. Figures 4 (c) shows
the DBI comparison on Amazon 20, 000 Products with differen-
t K values. SI-Cluster has the lowest DBI of around 0.000008 −
0.000023, while other methods have a much higher DBI than SI-
Cluster. This demonstrates that SI-Cluster can achieve both high
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intra-cluster similarity and low inter-cluster similarity. This is be-
cause SI-Cluster integrates self-influence similarity as well as co-
influence similarity with the optimal weights assignment by parameter-
based optimization. It fully utilizes the connections between activi-
ties and the interactions between members and activities so that the
generated clusters have not only similar collaborative patterns but
also similar interaction patterns with activities.

Figures 5 (a), (b) and (c) show density, entropy and DBI on D-
BLP with 100, 000 authors when we set K = 400, 600, 800, 1000.
These three figures have similar trends with Figures 4 (a), (b) and
(c) respectively. As shown in the figures, SI-Cluster achieves high
density values (> 0.63), which is slightly lower than that of BAGC
since the probabilistic clustering method partitions vertices into
each possible cluster so that the density value by it often increases
with K. SI-Cluster achieves a very low entropy around 2.86-3.04,
which is obviously better than the other methods (> 6.35). As K in-
creases, the entropy by SI-Cluster remains stable, while the density
of SI-Cluster decreases. In addition, SI-Cluster achieves the lowest
DBI (< 0.000005) among different methods, while the DBI values
by other methods are obviously larger than > 0.000005.

Figures 6 (a), (b) and (c) show density, entropy and DBI compar-
isons on DBLP with 964, 166 authors by varying K = 4000, 6000,
8000, 10000. Other four methods except SI-Cluster do not work
on this large dataset due to the “out of memory" problem with our
8G main memory machine. However, SI-Cluster still shows good
performance with varying K. It achieves similar high density val-
ues (> 0.55), much lower entropy of about 2.45, and very low DBI
(≈ 0) for different K.

6.4 Clustering Efficiency Evaluation
Figures 7 (a), (b) and (c) show the clustering time on Amazon

20,000 Products, DBLP 100, 000 and 964, 166 authors respective-
ly. SI-Cluster outperforms all other algorithms in all experiments.
When facing with an extremely large dataset, such as DBLP964, 166,
other algorithms cannot work due to the “out of memory" error,
while SI-Cluster scales well with large graphs and shows good per-
formance with varying K. We make the following observations on
the runtime costs of different methods. First, SA-Cluster is obvi-
ously worst than other methods since it needs to perform the repeat-
ing random walk distance calculation during each iteration of the
clustering process and the distance computation takes more than
80% of the total clustering time. Second, Inc-Cluster, an optimized
version of SA-Cluster, is much slower than SI-Cluster, BAGC and
W-Cluster since it still needs to incrementally calculate the ran-
dom walk distance. Third, although W-Cluster compute the ran-
dom walk distance only once, it still runs on a large scale matrix.
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Fourth, the performance by BAGC is better than other approaches
except SI-Cluster. Although it does not need to repeatedly compute
the distance matrix, it needs to iteratively update lots of temporary
matrices or interim variables and its computational cost is propor-
tional to K2 so that it may not work well when facing large K value.
In comparison, SI-Cluster reorganizes a large scale heterogeneous
network into multiple small scale subgraphs. It reduces the cost
by partitioning activities with the topological information of the
activity graph. Furthermore, SI-Cluster calculates influence-based
similarity matrices only once. According to Theorems 4-7, solving
�(β) for a given β is a polynomial programming problem which can
be sped up by existing fast polynomial programming model.

6.5 Clustering Convergence
Figure 8 (a) shows the trend of clustering convergence in terms

of the �(β) value on DBLP 964, 166 Authors. The �(β) value keeps
decreasing and has a convex curve when we iteratively perform the
tasks of vertex assignment, centroid update and weight adjustment
during the clustering process. �(β) converges very quickly, usually
in three iterations. These are consistent with Theorems 4-7.

Figure 8 (b) shows the trend of weight updates on DBLP 964, 166
Authors with different K values: the social graph (red curve), the
conference influence graph (green curve) and the keyword influence
graph (blue curve). We observe that the graph weights converge as
the clustering process converges. An interesting phenomenon is
that both the social weight and the keyword weight are increas-
ing but the conference weight is decreasing with more iterations.
A reasonable explanation is that people who have many publica-
tions in the same conferences may have different research topics
but people who have many papers with the same keywords usually
have the same research topics, and thus have a higher collaboration
probability as co-authors.

6.6 Case Study
We examine some details of the experiment results on DBLP

964, 166 Authors when we set k = 100 for both conferences and
keywords. Table 1 (a) shows author’s influence score based on the
social influence propagation between authors and keyword parti-
tions. We only present most prolific DBLP experts in the area of
data mining or database. When social influence propagation con-
verges, each row represents the influence distribution of an author
in each keyword category. We can look upon this influence distri-
bution as a probability based clustering result. On the other hand,
each column specifies the influence distribution of different authors
in the same keyword category. This influence distribution is con-
sidered as a local ranking result.



(a) Influence Scores Based on All Keywords

Author Cluster 1 (DB) Cluster 2 (DM)
Elisa Bertino 0.0568 0.0249

Christos Faloutsos 0.0465 0.0746

Jiawei Han 0.0585 0.0960

Vipin Kumar 0.0146 0.0545

Bing Liu 0.0153 0.0511

David Maier 0.0474 0.0079

Hector Garcia-Molina 0.0603 0.0047

M. Tamer Özsu 0.0408 0.0111

Jian Pei 0.0386 0.0653

Philip S. Yu 0.0606 0.0991

(b) Influence Scores Based on Selected Top Conferences

Author AI Cluster DB Cluster DM Cluster IR Cluster
Elisa Bertino 0.0047 0.7135 0.0055 0.2763

Christos Faloutsos 0.0012 0.4267 0.3950 0.1771

Jiawei Han 0.0883 0.3724 0.3766 0.1628

Vipin Kumar 0.2511 0.1342 0.5198 0.0949

Bing Liu 0.2648 0.1001 0.4004 0.2347

David Maier 0.1570 0.8290 0.0117 0.0023

Hector Garcia-Molina 0.0031 0.8217 0.0075 0.1677

M. Tamer Özsu 0.0017 0.5506 0.1080 0.3397

Jian Pei 0.0876 0.3768 0.3717 0.1639

Philip S. Yu 0.0972 0.3504 0.3763 0.1761

Table 1: Influence Scores of Authors Based on Conference and Keyword Partitions
Table 1 (a) actually presents an unbalanced result since the in-

fluence propagation process is based on the full DBLP dataset. We
know that academic research in the area of database has a longer
history and there are more academic conferences or forums focus-
ing on database research. Thus, we choose the same number of
top conferences for each research area to better evaluate the quality
of our co-influence model. Here, we choose three top conferences
from four research areas of database, data mining, information re-
trieval and artificial intelligence, respectively. The detailed confer-
ence list is, DB: VLDB, SIGMOD, ICDE; DM: KDD, ICDM, SD-
M; IR: SIGIR, CIKM, ECIR; AI: IJCAI, AAAI, ECAI. Table 1 (b)
shows author’s influence score normalized by conference partitions
for each author, i.e., a better probability based clustering result.

7. CONCLUSIONS
In this paper, we present a social influence based clustering frame-

work for heterogeneous information networks. First, we integrate
different types of links, entities, static attributes and dynamic activ-
ities from different networks into a unifying influence-based model.
Second, an iterative learning algorithm is proposed to dynamical-
ly refine the K clusters by continuously quantifying and adjusting
the weights on multiple influence-based similarity scores toward-
s the clustering convergence. Third, we transform a sophisticated
nonlinear fractional programming problem of multiple weights in-
to a straightforward nonlinear parametric programming problem of
single variable to speed up the clustering process.
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