arXiv:1306.1153v1 [cs.DB] 5 Jun 2013

Efficient Single-Source Shortest Path and Distance
Queries on Large Graphs

Andy Diwen Zhu Xiaokui Xiao

Sibo Wang Wengqing Lin

School of Computer Engineering
Nanyang Technological University
Singapore
{dwzhu, xkxiao, swang, wlin}@ntu.edu.sg

ABSTRACT

This paper investigates two types of graph querig@sgle source
distance (SSDRueries andsingle source shortest path (SSSP)
queries. Given a node in a graphG, an SSD query fromy asks
for the distance fromy to any other node iz, while an SSSP
query retrieves the shortest path franto any other node. These
two types of queries are fundamental building blocks of nume
ous graph algorithms, and they find important applicatiorgraph
analysis, especially in the computation of graph measukésst
of the existing solutions for SSD and SSSP queries, howeger,
quire that the input graph fits in the main memory, which resde
them inapplicable for the massive disk-resident graphsnconty
used in web and social applications. The only exceptions &/
techniques that are designed to be I/O efficient, but thefoalls
on undirected and/or unweighted graphs, and they only efibr
optimal query efficiency.

To address the deficiency of existing work, this paper prssen
Highways-on-Disk (HoD)a disk-based index that supports both

gorithm [10]. Given a SSD or SSSP query from a negBijkstra’s
algorithm traverses the graph starting fremsuch that the nodes
in G are visited in ascending order of their distances fror®nce
a nodew is visited, the algorithm returns the distance frerto v
based on the information maintained during the traversalshort-
est path froms to v can also be efficiently derived if required.

A plethora of techniques have been proposed to improve over
Dijkstra’s algorithm for higher query efficiency (séel[9] 28 sur-
veys). Although those techniques all require pre-proogstie
given graph (which incurs extra overhead compared with -Dijk
stra’s algorithm), the pre-computation pays off when thenber
of queries to be processed is large, as is often the case jim gra
analysis. Nevertheless, most of the existing techniquesnas
that the given graph fits in the main memory (for pre-compoitat
and/or query processing), which renders them inapplictléhe
massive disk-resident graphs commonly used in web andl speia
plications. There are a few methods[15],[17-20] that addféss
issue by incorporating Dijkstra’s algorithm with 1/0-eféént data

SSD and SSSP queries on directed and weighted graphs. The ke?tructures, but the performance of those methods are shoWwe t

idea of HoD is to augment the input graph with a set of auxiliar
edges, and exploit them during query processing to red@and
computation costs. We experimentally evaluate HoD on béth d
rected and undirected real-world graphs with up to billiohsodes
and edges, and we demonstrate that HoD significantly owtpesf
alternative solutions in terms of query efficiency.

1. INTRODUCTION

Given a graph@, asingle source distance (SSByery from a
nodev € G asks for the distance fromto any other node ii.
Meanwhile, asingle source shortest path (SSSPRiery retrieves
the shortest path from to any other node. These two types of
queries find important applications in graph analysis [8pezially
in the computation of graph measure& 5, 7/ 11, 24]. For el@mp
the estimation oflosenessneasures [11] on a graph requires
performing SSD queries from a large number of nodeS imvhile
the approximation obetweennesseasures [7] requires executing
numerous SSSP queries.

The classic solution for SSD and SSSP queries is Dijkstta’s a

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

insufficient for practical applications1[8]. The main reass that,
when Dijkstra’s algorithm traverses the graph, the ordevtirch it
visits nodes can be drastically different from the order Irich the
nodes are arranged on the disk. This leads to a significanbeum
of random disk accesses, which results in poor query petnce

In contrast to the aforementioned techniques, Cheng eBpl. [
propose the first practically efficient index (name@-Indey for
SSD and SSSP queries on disk-resident graphs. The basiofidea
VC-Index is to pre-compute a number @ducedversions of the
input graphG. Each reduced graph contains some relatively im-
portant nodes iid7, as well as the distances between some pairs of
those nodes. During query processing, VC-Index scans atedle
subset of reduced graphs, and then derives query resuld loas
the pre-computed distances. Compared with those methagsl ba
on Dijkstra’s algorithm[[15, 17-20], VC-Index is more eféait as
it only performs sequential reads on disk-resident data.

Motivation and Contribution. All existing disk-based solutions
for SSD and SSSP queriés [[15] 17-20] require that the inpythgr
is undirected, which renders them inapplicable for anyiapfibn
built upon directed graphs. This is rather restrictive amerous
important types of graphs (e.g., road networks, web gragial
graphs) are directed in nature. Furthermore, even whemthe i
graph is undirected, the query efficiency of the existingisohs is
less than satisfactory. In particular, our experimentsSgstior[7)
show that VC-Index, albeit being the state of the art, rezitens
of seconds to answer a single SSD query on a graph with less tha
100 million edges, and needs more than two days to estimate the
closeness measures on the same graph.

To address the deficiency of existing work, this paper prepos

http://arxiv.org/abs/1306.1153v1

Highways-on-Disk (HoD)a disk-based index that supports both

larger than the number of nodes, due to whigltan be enormous

SSD and SSSP queries on directed and weighted graphs. The keyn size and does not fit in the main memory.

idea of HoD is to augment the input graph with a set of auxil-
iary edges (referred to ahortcuts]22])), and exploit them during
query processing to reduce /O and computation costs. Fonex
ple, Figurdla illustrates a grah, and FiguréIle shows an aug-
mented grapld’™ constructed frondz. G* contains three shortcuts:
(vs, ve), (vg,v7), and(ve, v10). Each shortcut has the same length
with the shortest path connecting the endpoints of the shiorFor
example, the length ofvs, vg) equals2, which is identical to the
length of the shortest path from to ve. Intuitively, the shortcuts

in G* enable HoD to efficiently traverse from one node to another
(in a manner similar to how highways facilitate traversaineen
distant locations). For instance, if we are to traverse franio

v10 in G*, we may follow the patlv1, vo, vi0), which consists of
only three nodes; in contrast, a traversal froyto v1o in G would
require visiting five nodesu1, vy, v, v7, andvig.

In general, when HoD answers an SSD or SSSP query, it often
traverses the augmented graph via shortcuts (instead ofitiral
edges inG). We show that, with proper shortcut construction an
index organization, the query algorithm of HoD always traes
nodes in the same order as they are arranged in the index dite. C
sequently, HoD can answer any SSD or SSSP query with a linear
scan of the index file, and its CPU cost is linear to the numlber o
edges in the augmented graph. We experimentally evaluai®® Ho
on a variety of real-world graphs with up t00 million nodes and
3 billion edges, and we demonstrate that HoD significantly out
performs VC-Index in terms of query efficiency. In partiquldne
query time of HoD is smaller than that of VC-Index by up to two
orders of magnitude. Furthermore, HoD requires a smallacesp
and pre-computation time than VC-Index in most cases.

d

2. PROBLEM DEFINITION

Let G be a weighted and directed graph with a Bebf nodes
and a sef of edges. Each edgen FE is associated with a positive
weighti(e), which is referred to as thengthof e. A pathP in G
is a sequence of nodés;, vz, ..., vx), such that(v;, vit1) (i €
[1,k — 1)) is a directed edge if". The length ofP is defined as
the sum of the length of each edge Bn We usel(e) andi(P) to
denote the length of an edgeand a pathP, respectively.

For any two nodes andt in G, we define thelistancefrom s to
t, denoted adist(s, t), as the length of the shortest path frerto
t. Given asource node in G, asingle-source distance (SSfjery
asks for the distance fromto any other node id/. Meanwhile, a
single-source shortest path (SS$REry froms retrieves not only
the distance frony to any other node, but also thepredecessor
of v, i.e., the node that immediately precedss the shortest path
from s to v. Note that, given the predecessor of each node, we can
easily reconstruct the shortest path frerto any nodev by back-
tracking fromo following the predecessors. One may also consider
an alternative formulation of SSD (resp. SSSP) query thagng
only adestination node, asks for the distance (resp. shortest path)
from any other node to. For simplicity, we will focus on SSD and
SSSP queries from a source nagéout our solution can be easily
extended to handle queries under the alternative fornomati

Let M be the size of the main memory available, ade the
size of a disk block, both measured in the number of words. We
assume thaB < |V| < M < |E|, i.e., the main memory can
accommodate all nodes but not all edge&inThis is a realistic as-
sumption since modern machines (even the commodity ones) ha
gigabytes of main memory, which is sufficient to store theensett
of a graph with up to a few billion nodes. On the other hand, the
number of edges in a real graph is often over an order of madgmit

Our objective is to devise an index structure@rthat answers
any SSD or SSSP query with small I/O and CPU costs, such that
the index requires at most/ main memory in pre-computation
and query processing. In what follows, we will first focus dBC5
queries in SectionEl[3-5, and will extend our solution for BSS
queries in Sectionl6.

3. SOLUTION OVERVIEW

As mentioned in Sectidd 1, the main structure of HoD is a graph
G™ that augments the input graghwith shortcuts. In this section,
we present the overall idea of how the shortcutg3inh are con-
structed and how they can be utilized for query processimgsso
form a basis for the detailed discussions in subsequeribesct

3.1 Shortcut Construction

In a nut shell, HoD constructs shortcuts with an iterativecpr
dure, which takes as input a copy of the graplidenoted agxo).
In thei-th (i > 1) iteration of the procedure, HoD firs¢éduces
G,i—1 by removing a selected set lefss importannodes inG;_1,
and then, it constructs shortcuts in the reduced graph toremisat
the distance between any two remaining nodes is not affdmted
the node removal. The resulting graph (with shortcuts adaed
denoted a&7;, and it is fed as the input of the1)-th iteration of
procedure. This procedure terminates only when the redyiegzh
G, is sufficiently small All shortcuts created during the procedure
are inserted into the original grapgH, leading to an augmented
graphG* that would be used by HoD for query processing. We
illustrate the iterative procedure with an example as fadlo

EXAMPLE 1. Assume that the input to the iterative procedure is
the graphsy in Figure1a. Further assume that the reduced graph is
sufficiently small if it contains at most two nodes and twoesign
the first iteration of the procedure, HoD inspe€is and identifies
v1, v2, andvs as less important nodes. To explain, observe that the
nodev; in Gy does not have any incoming edge, whileandvs
have no outgoing edges. As a consequeng¢gyz, andvs do not
lie on the shortest path between any two other nodes. Thates,
if we removev, v2, andvs from Gy, the distance between any two
remaining nodes is not affected. Intuitively, this indesthatv,,
ve, vz are of little importance for SSD queries. Therefore, HoD
eliminatesv:, v2, andvs from Go, which results in the reduced
graphG} in Figure[lb.

In the second iteration, HoD seleats, vs, andvg as the less
important nodes irf71, and removes them frorf¥;. The removal
of v4 changes the distance fromg to vg to +00, since(vs, v4, vy)
is the only path (in71) that starts ats and ends aty. To mitigate
this change, HoD inserts int@: a shortcut(vs, ve) that has the
same length witHvs, v4, v9), as illustrated in Figurgl1c. As such,
the distance between any two nodesiinremains unchanged after
vy IS removed. Similarly, when HoD eliminates, it constructs a
shortcut({vy, v7) with a length2 to reconnect the two neighbors of
ve. Meanwhile,vs is removed without creating any shortcut, since
deletingus does not change the distance between its two neighbors.
Figureldc illustrates the resulting reduced gréph

To explain why HoD chooses to removeg, vs, andvs from G,
observe that each of those nodes has only two neighbors.nljor a
of such nodes, even if the removal of the node changes thandist
between its neighbors, HoD only needs to construct one @ltort
to reconnect its neighbors. In other words, the number aftshis
required is minimum, which helps reduce the space consompti
of HoD. In contrast, if HoD chooses to removgfrom G (which

— length=1 --+ length=2
V7 V7

i V1o s V1o

Vg Vo
Vi V3
V2

V4 Vg V4 Vg
(a) GraphG. (b) Reduced grapti¥;. (c) Reduced graptvs.

(equivalently,Go)

=-» length=3

Vio

V4 Vg
(e) Augmented Graptr*.

(d) Reduced grapﬁ?é
(i.e., the core graphy.).

Figure 1: Graph reduction and shortcut construction.

has a larger number of neighbors than vs, andwvs), then much
more shortcuts would need to be constructed.

Finally, in the third iteration, HoD removas andwvs from G-
as they are considered unimportant. The removat-ofeads to
a new shortcutvg, v1g) With a length3, since(vy, vz, v10) is the
only path connectingy to v10, and the length of the path equals
3. On the other handys is directly eliminated as it is not on the
shortest path between its only two neighbaysandwvio. Figurd1d
shows the reduced gragky after the removal o7 anduvs.

Assume that the reduced gragh; is considered sufficiently
small by HoD. Then, the iterative procedure of HoD would ter-
minate. The three shortcuts created during the procedwee (i
(vs, ve), (v, v7), and{vg, v10)) are added into the original graph
G, which leads to the augmented gra@h in Figure[dd. O

The above discussion leaves several issues open, i.&e @pe-
cific criterion for identifying less important nodes in theduced
graph, (ii) the detailed algorithm for generating shors@fter node
removal, and (i) the exact termination condition of theluetion
procedure. We will clarify these issues in Secfidn 4 by présg
the detailed preprocessing algorithm of HoD. For the disicus
in the rest of this section, it suffices to know that when Hob te
minates the reduction procedure, the reduced graph musttfiei
main memory. We usé'. to denote this memory-resident reduced
graph, and we refer to it as tlere graph (Note thatG. is a sub-
graph of the augmented grapti.) In addition, we define theank
r(v) of each node in G as follows:

1. If v is removed in the-th iteration of the iterative procedure,
thenr(v) = 14;

2. If v is not removed in any iteration (i.eu,is retained in the
core graphG.), thenr(v) = 1 4+ max,¢q, r(v), i.e.,7(v)
is larger than the maximum rank of any node noGin

For instance, in Examplé 1, the ranksaf, v2, andvs equall,
since they are removed froGiin the first iteration of the reduction
procedure. Similarlyr(vs) = r(vs) = r(ve) = 2, andr(vy) =
r(vg) = 3. The ranks ofvg andwvio equal4, since they are in the
core graphG.. The ranks of the nodes are utilized in the query
processing algorithms of HoD, as will be illustrated shortinless
otherwise specified, we use the teeageto refer to both a shortcut
and an original edge i6'*.

3.2 Query Processing

Given an SSD query from a node HoD answers the query
with two traversals of the augmented graph. The first traver-
sal starts froms, and it follows only theoutgoingedges of each
node, ignoring any edgehose starting point ranks higher than
the ending point For instance, if HoD traverses from the node
vy in Figure[le, it would ignore the outgoing ed¢®, v7), since
r(vg) =4 > r(vr) = 3. As such, the first traversal of HoD never
moves from a high-rank node to a low-rank node, and it tertama

only when no higher-rank nodes can be reached. For eachmnode
visited, HoD maintains the distance fronto v along the paths that
have been seen during the traversal, denotetl d$s, v).

Let V' be the set of nodes that are not in the core grapfi“of
The second traversal of HoD is performed as a linear scaneof th
nodes inV’, in descending order of their ranksFor each node
v € V' scanned, HoD inspects eatttomingedgee of v', and
then checks the starting pointof the edge. For any suah HoD
calculateslist(s, u) + I(e) as an upperbound of the distance from
stov’. (Our solution guarantees thashould have been visited by
HoD beforev’.) Once all incoming edges of are inspected, HoD
derives the distance fromto v’ based on the upperbounds, and
then it moves on to the next node V. This process terminates
when all nodes iV’ are examined.

We illustrate the above query algorithm of HoD with an exaenpl

ExaMPLE 2. Consider an SSD query from node in Fig-
ure[da. Given the augmented gra@ti in Figure[dle, HoD first
traverse<7* starting fromw:, following the outgoing edges whose
ending points rank higher than the starting points. Sincéas
only one outgoing edgé:, vg), and sinceyy ranks higher tham;,
HoD moves fromw; to vg. vg has three outgoing edge&uo, vs),

(ve, v7), and(vg, v1i0). Among them, only(vy,v10) has an end-
ing point that ranks higher than the starting point. TheweféloD
moves fromwg to v19. v10 has outgoing edges to three unvisited
nodes, i.e.p3, vs, andvs. Nevertheless, all of those nodes rank
lower thanvio, and hence, they are ignored. As none of the re-
maining nodes can be reached without violating the comgtain
node ranks, the first traversal of HoD ends. Based on the edges
visited, HoD calculatedist(vi,v9) = 1 anddist(vi, vio) = 4.

The second traversal of HoD examines the nodesin the
core graph in descending order of their ranks, i.e., it firsne
inesv; andvs (whose ranks equa), followed by v4, vs, and
ve (Whose ranks equat), and finally v, and vs (whose ranks
equall), ignoringv; (as it is the source node of the query);
has two incoming edgesws, v7) and (ve,v7). Amongvs and
vg, ONnly vg has been visited by HoD. Therefore, HoD calculates
dist(vi,v7) = dist(vi,ve) + l({ve,v7)) = 3. Similarly, af-
ter inspectingus’s only incoming edggvio, vs), HoD computes
dist(vi,vs) = dist(vi,v10) + I({v1i0,vs8)) = 5. The remaining
nodes are processed in the same manner, resulting in

dist(vi,vs) = dist(vi,vs) + [({vs,v4)) =6
dist(vi,vs) = dist(vi,vi0) + I((vi0,v5)) = 5
dist(vi,ve) = dist(vi,ve) + I({vg,v6)) = 2
dist(vi,v2) = dist(vi,va) + l({va,v1)) = T.
Observe that all the above distances computed f&5nare identi-
cal with those from the original graph in Figlirke 1a. O

The query algorithm of HoD has an interesting property: tre fi
traversal of the algorithm always visits nodes in ascendiragr

of their ranks (as it never follows an edge that connects h-hig
rank node to low-rank node), while the second phase alwajts vi
nodes in descending rank order. Intuitively, if we maintbiro

copies of the augmented graph, such that the first (respndgco
copy stores nodes in ascending (resp. descending) ordéeif t

edge tovs, and (ii) the edg€wv:, v3) is even shorter than the path
from vy to vs via v2. As another example, assume thatin Fig-
ure[2a is also to be removed; has an incoming neighber; and
an outgoing neighbars, but the pathvi, v4, vs) is no shorter than
another path from; to vs, i.e., (v1,v3,vs), which does not go

ranks, then HoD can answer any SSD query with a linear scan of throughv,. As a consequence, even if we remavefrom G;, the

the two copies. This leads to high query efficiency as it avoid

distance fromv; to vs is still retained, and hence, it is unnecessary

random disk accesses. In Sectidn 4, we will elaborate hol suc to insert a shortcut from; to vs.

two copies of the augmented graph can be constructed.

4. INDEX CONSTRUCTION

As discussed in Sectidn 3.1, the preprocessing algorithirotf
takes as input a cop§o of the graphG, and it iteratively reduces
G into smaller graphg?1, Ga, . . ., during which it creates short-
cuts to augments. More specifically, theid-1)-th (i > 0) iteration
of the algorithm has four steps:

1. Select a seR; of nodes to be removed frod;.

2. For each node € R;, construct shortcuts ifi¥; to ensure
that the removal of) does not change the distance between
any two remaining nodes.

3. Remove the nodes iR; from G; to obtain a further reduced
graphG,1. Store information about the removed nodes in
the index file of HoD.

4. Pass thé&7; ;1 to the ¢+2)-th iteration as input.

In the following, we first elaborate Stegsand3, and then clarify
Stepl. After that, we will discuss the termination condition oéth
preprocessing algorithm, as well as its space and time @xitigls.

For ease of exposition, we represent each edge (u,v) as a
triplet (u,v,l(e)) or (v,u,—l(e)), wherel(e) is the length ofe.
For example, the edg@, v7) in Figure[la can be represented as
either (vg, v7,2) or (v7,ve, —2). That is, a negative length in the
triplet indicates that the second node in the triplet is ttagting
point of the edge. In addition, we assume that the input g€z
stored on the disk as adjacency lists, such that (i) for aoyrtades
v; andv;, the adjacency list ob; precedes that ob; if ¢ < j,
and (ii) each edgév;,v;) with lengthl is stored twice: once in
the adjacency list of; (as a triplet(v;, v;,1)), and another in the
adjacency list ob; (as a triplet{v;, vi, —1)).

4.1 Node Removal and Shortcut Generation

Letv™ be a node to be removed frofy. We define amutgoing
neighborof v* as a nodeu to which v* has an outgoing edge.
Similarly, anincoming neighboof v* is a nodew from whichv*
has an incoming edge. We have the following observation:

OBSERVATION 1. For any two nodes; andvy in G;, the dis-
tance fromw; to v, changes after” is removed, if and only if the
shortest path from; to v;, contains a sub-patfu, v*, w), such that
u (resp.w) is an incoming (resp. outgoing) neighbor:of. O

In general, for any incoming neighbarand outgoing neighbor
w of v*, a shortcut fromu to w is unnecessary if there is a path
P from wu to v, such that (i)P does not go through™, and (ii)
P is no longer thanu, v*,w). To check whether such a path
exists, one may apply Dijkstra’s algorithm to traverse from
(or w), ignoringv™ during the traversal. However, whép; does
not fit in main memory (as is often the case in the pre-comymutat
process of HoD), this approach incurs significant overhdad,to
the inefficiency of Dijkstra’s algorithm for disk-residegitaphs (as
discussed in Sectidd 1). To address this issue, we adoptastieu
approach that is not as effective (in avoiding redundanttshts)
but much more efficient. Specifically, for eachin the node seR;
to be removed frond7;, we generate eandidate edge. = (u, w)
from each incoming neighbar of v* to each outgoing neighbas
of v*, setting the length of the shortcut t(u, v*,w)). For any
such candidate edge, we insert it into a temporary fil& as two
triplets: (u, w, l(e.)) and(w, u, —l(ec)).

In addition to the candidate edges, we also insert two awiditi
groups of edges (referred to baseline edggsnto the temporary
file T as triplets. The first group consists of any edge G; con-
necting two nodes not i®;, i.e., the two endpoints af are not to
be removed. The second group is generated as follows: fér eac
nodev not in R;, we selecty’s certain incoming neighbow’ and
outgoing neighbor’, and we construct a baseline edgé, w'),
setting its length té((u’, v, w")).

The purpose of inserting a baseline edgeto the temporary file
T is to help eliminate any redundant candidate edge that éiesh
the same endpoints withbut (i) is not shorter thaa. Towards this
end, once all baseline edges are added Thtave sort the triplets
in T using a standard algorithm for external sort, such thapéetri
t1 = (va, s, l1) precedes another triplet = (va, vg, l2), if any
of the following conditions hold:

1. a<a,0ra=cabuth < .

2. a=a,b=4,andl; > 0 > l. Thatis, any outgoing edge
of a node precedes its incoming edges.

3.a=a,b= 3,11 -l > 0 (i.e.,t; andt, are both incoming
edges or both outgoing edges), diid < |l2|. That is,t;
andt. share the same starting and ending points,tbus
shorter thart,.

4. a=0a,b= 4112 >0, 1] =|l2|, andt; is a baseline
edge whilet, is a candidate edge.

By Observatiofill, we can preserve the distance between any tw OnceT is sorted, the outgoing (resp. incoming) edges with the

nodes inG; after removingv™, as long as we ensure that the dis-
tance between any incoming neighbor and any outgoing neighb

same endpoints are grouped together, and the first edge lin eac
group should have the smallest length within the group. dffitst

of v* remains unchanged. This can be achieved by connecting theedgee in a group is a candidate edge, then we retas it is shorter

incoming and outgoing neighbors of with shortcuts, as demon-
strated in Section_ 3.1. Towards this end, a straightforwamtoach

is to generate a shortcit,, w) for any incoming neighbor. and
any outgoing neighbow. The shortcuts thus generated, however,
are oftenredundant For example, consider the gragh in Fig-
ure[2a. Suppose that we are to remeyewhich has an incoming
neighborv; and an outgoing neighbes. If we construct a short-
cut fromw; to vs, it is useless since (i); already has an outgoing

than any other baseline or candidate edges that we haveageter
On the other hand, i is a baseline edge, then the distance between
the endpoints of must not be affected by the removal of any nodes
in R;. Inthat case, all candidate edges in the group can be omitted
With one linear scan of the sortdand the adjacency lists ¢¥;,

we can remove the information of any nodeRyn, and merge the
retained candidate edges into the adjacency lists of thairgng
nodes. We illustrate the above algorithm with an example.

EXAMPLE 3. Suppose that, given the graph in Figure[2a,
we are to remove a node s&; = {v2,vs} from G;. vz has
only one incoming neighbor; and one outgoing neighbars,
and!({v1,v2,v3)) = 2. Accordingly, HoD generates a candidate
edge (v1, v3) by inserting into the temporary fil& two triplets,
(v1,vs,2) and(vs, v1, —2). Similarly, forvs, HoD creates a can-
didate edge(v1,vs), which is represented as two triplets i
<1)17 Vs, 2> and <U5, V1, —2>

Meanwhile, the edgév1, vs) in G; is selected as a baseline edge
and is inserted int@’, since neithep; norws is in R;. In addition,
HoD also generates a baseline edge, vs) from the neighbors
of vs. This is because that (i), vs, vs are not inR;, (i) v1 is
an incoming neighbor obfs, and (iii) vs is an outgoing neighbor
of v3. Figure[2c illustrates the temporary file after all candi-
date and baseline edges are inserted, with some tripletteoimor
simplicity. Figure[2d shows the fil€ after it is sorted. The base-
line edge(v1, vs, 1) precedes the candidate edge, vs, 2), which
indicates that we do not need to add a shortcut frerto v3. Sim-
ilarly, the baseline edgévs, vi, —1) precedes the candidate edge
(vs,v1, —2), in which case the latter is omitted. Overall, each of
the candidate edgesinis preceded by a baseline edge, and hence,
no shortcut will be created. Consequently, HoD removes ftgm
the adjacency lists of2 andwvs, as well as all edges to and from
ve andwy in any other adjacency lists. This results in the reduced
graph illustrated in Figuril 2b. O

In summary, HoD decides whether a candidate edgéould
be retained, by comparing it with all edgesah as well as some
two-hop paths inG;. This heuristic approach may retain unnec-
essary candidate edges, but it does not affect the corsscife
SSD queries. To understand this, recall that each candathge
e = (u,w) has the same length with a certain péihv*, w) that
existsin G;, wherev™ is the node whose removal leads to the cre-
ation ofe. In other words, the length efis at least larger than or
equal to the distance from to w. Adding such an edge int&';
would not decrease the distance between any two nod&s, iand
hence, retaining does not change the results of any SSD queries.

The above discussions assume that HoD has selected set
of nodes to be removed frod;, and has decided which baseline
edges are to be generated from the neighbors of the nodea not i
R;. We will clarify these two issues in Sectibn .2 4.3.

4.2 Selecting Nodes for Removal

Consider any node in G;. Intuitively, if the removal ofv re-
quires us to insert a large number of shortcuts @tpthenv may
lie on the shortest paths between many pair of nodes, in vdaish
v should be considered important. LBt,, and B,.: be the set of
incoming and outgoing neighborsefrespectively. The maximum
number of shortcuts induced s removal is:

S(U) = |Bin‘ : |Bout \ an| + |Bout| . ‘an \ Bout|~ (1)

We refer tos(v) as thescoreof v in G;, and we consides unim-
portantif s(v) is no more than the median scoreGf. (For prac-
tical efficiency, we use an approximated value of the medianes
computed from a sample set of the nodes.)

Ideally, we would like to remove all unimportant nodes frain
but this is not always feasible. To explain, consider thatane
given the reduced grapt¥, in Figure[1b, and we aim to elimi-
nate bothvs andwvz. vs has only one incoming neighbes and
one outgoing neighbow;, and hence, HoD creates one candidate
edge(vg, v7), setting its length t® (i.e., the length of the path
(ve, ve,v7)). Similarly, for vz, HoD generates a candidate edge

— length=1 [Jcandidate edge L _1 baseline edge
Vi V) s, LY,
T (3, V1, -2) (vi,v3, 2)
vy s vs, 2
Vs : vi,vs, 2)
(a) GraphG;. .
' V3, Vi, = 1))
v {3, vi, 2)
s K0 2,
s

Vs :
(b) v2, v4 removed. (c) Before sorting. (d) After sorting.

Figure2: Noderemoval and shortcut generation.

distance between any two nodesih aftervs andv; are removed.
However, none of the two candidate edges is valid if hettand

v7 are eliminated. In particulatyy, v7) points fromuvg to v7, i.e.,

it connectsvg to a node that no longer exists. To avoid the above
error, whenever HoD chooses to delete a nodeom G, it will
retain all neighbors ob in G;, even if some neighbor might be
unimportant. For example, in Figure 1b, if HoD decides tooeen
vg, then it will preventvr from being removed at the same time,
and vice versa.

4.3 Generation of Baseline Edges

As mentioned in Section 4.1, a baseline edge generated by the
preprocessing algorithm of HoD is either (i) an edge&sinwhose
endpoints are not to be removed, or (ii) an artificial efigev) that
corresponds to certain two-hop pdih v, w) in G;, such that none
of u,v,w is to be removed. The construction of baseline edges
from two-hop paths is worth discussing. First, given tharéhex-
ists an enormous number of two-hop path&init is prohibitive to
convert each two-hop path into a baseline edge. Therefaenly
select a subset of the two-hop path&infor baseline edge genera-
tion. In particular, the total number of two-hop paths s&ldds set
toc- 3>, cr, s(v), wherecis a small constang(v) is as defined in
Equatioril, and_, _ . s(v) is the total number of candidate edges
induced by the removal of nodes R. In other words, we require
that the number of baseline edges generated from two-hdis st
at mostc times the number of candidate edges. In our implementa-
tion of HoD, we set = 5.

Thosec -}, . s(v) baseline edges are generated as follows.
First, we randomly choose an edgeGh, and arbitrarily select an
endpointv of the edge that is not if®;. (Note that such an end-
point always exists.) After that, from the incoming (resptgming)
neighbors ofy, we randomly select a node(resp.w), and we gen-
erate a baseline edde, w), setting its length td((u, v, w)). As
such, ifanode is adjacent to a large number of edges, thenithas a
high chance of being selected to produce baseline edgesisTiht
tuitive since such a nodetends to lie on the shortest paths between
many pairs of nodes, and hence, the baseline edges genieceied
v may be more effective in eliminating redundant shortcuts.

4.4 Termination Condition

As mentioned in Sectidn 3, HoD requires that the core gr@ph
fits in the main memory, wher@. is the reduced graph obtained in
the last iteration of HoD’s preprocessing algorithm. Actiogly,
we do not allow the pre-computation procedure of HoD to termi
nate before the reduced graph has a size no more thaif. In
addition, even afte€; fits in the main memory, we will still con-

(vs,v10). These two candidate edges are intended to preserve thetinue the preprocessing procedure, until the sizé/pfs reduced

— length=1

V.f,/vo\ovlo --+ length=2
=-» length=3
v e v; @ rank=1
N Vs . © rank=2
v AN O rank=3
¢ V4 -"ng QO rank=4 vy Vg
(a) Gf. (b) Gy.

Figure3: Forward graph Gy and backward graph G,.

by less thars% in an iteration of the processing algorithm. This is
intended to reduce the size of the core graphto improve query
efficiency, as will be explained in Sectibh 5.

45 Index File Organization

Once the preprocessing procedure completes, the core gtaph
is written to the disk in the form of adjacency lists. Meanlwhihe
adjacency list of each node not (#. is separated into two parts
that are stored in two different fileg;; and F,. These two files
are created at the beginning of HoD’s preprocessing algariaind
they are initially empty. Whenever a noddas removed from the
reduced grapltz;, we inspect the adjacency list ofin G;, and
we append all ob’s outgoing (resp. incoming) edges i (resp.
Fy). Upon termination of the preprocessing procedure, werseve
the order of nodes i, but retain the order of nodes ;. We
refer to the graph represented By as theforward graph denoted
as Gy. Meanwhile, we refer to the graph representedHayas
the backward graph denoted as¥,. When combinedG., Gy,
and G, form the augmented graph that is used by HoD for query
processing. For example, for the augmented graph in Flgaye 1
its core graph is as illustrated in Figlite 1e, while its famvand
backward graphs are as shown in Fidure 3. For ease of expusiti
we will abuse notation and us&; (resp.G) to refer to bothG ¢
(resp.Gy) and its underlying file structurgy (resp.£3).

Gy and G} have two interesting properties. First, all nodes in
Gy (resp.Gy) are stored in ascending (resp. descending) order of
their ranks. To explain this, recall that any nadeemoved in the
i-th iteration of the preprocessing algorithm has a raflk) = 1.
Consequently, if a node is stored inGy before another node,
thenr(u) < r(w). As for Gy, since we reverse the order of all
edges inG, upon termination of the preprocessing produce, we
haver(u) > r(w) for any nodeu that precedes another nodein
Gy. Second, for any node, its edges inG¢ andG, only connect
it to the nodes whose ranks are strictly higher tharrhis is be-
cause, by the time is removed from the reduced graph, all nodes
that rank lower tham must have been eliminated from the reduced
graph, and hence, any edgeuis adjacency list only links to the
nodes whose rank is at leag). Meanwhile, any neighbat of v
in the reduced graph should have a rank higher tt{a. Other-
wise, we have(u) = r(v), which, by the definition of node ranks,
indicates that: andv are removed in the same iteration of the pre-
processing algorithm. This is impossible as the pre-coatjmurt
procedure of HoD never eliminates two adjacent nodes indhees
iteration, as explained in Sectibn ¥.1. In Secfidn 5, we shibw
how HoD exploits the above two properties@} and G, to effi-
ciently process SSD queries.

46 Cost Analysis

The preprocessing algorithm of HoD requi@$n) main mem-
ory, wheren is the number of nodes i&. This is because (i) when
removing a node from the reduced graph, HoD needs to record the
neighbors ofv and exclude them from the node removal process,
and (ii) v may haveO(n) neighbors. Other parts of the preprocess-
ing algorithm do not have a significant memory requirement.

The major I/O and CPU costs of the preprocessing algorittam ar
incurred by sorting the edge triplets in each iteration.hie worst
case when the input gragh is a complete graph, there aB&n?)
triplets generated in each iteration, leading to a prohibifO and
CPU overhead. Fortunately, real-world graphs are seldom- co
plete graphs, and they tend to contain a large number of neitles
small degrees. In that case, each iteration of HoD’s prez®c
ing procedure would only generates a moderate number of edge
triplets, leading to a relatively small overhead.

Lastly, the space consumption of HoD’s indexQ$n?) since,
in the worst case, HoD may construct a shortcut from each node
v to every node that ranks higher than This space complex-
ity is unfavorable, but it is comparable to the space comiplex
of VC-Index [8]. In addition, as shown in our experimentse th
space requirement of HoD in practice is significantly srmaten
the worst-case bound.

5. ALGORITHM FOR SSD QUERIES

Given an SSD query from a nodethat is not in the core graph
G., HoD processes the query in three steps:

1. Forward Search: HoD traverses the forward gragy start-
ing from s, and for each node visited, computes the dis-
tance froms tov in Gy.

. Core Search: HoD reads the core grapf. into the main
memory, and continues the forward search by following the
outgoing edges of each nodedh .

. Backward Search: HoD linearly scans the backward graph
G’ to derive the exact distance fraosto any node not ift7...

On the other hand, i is in G, then HoD would answer the query
with a core search followed by a backward search, skippirg th
forward search. In what follows, we will present the deteflthree
searches performed by HoD. For convenience, we defiriedax
valued(v) for each nodeotin the core grapld., such that (v) =

1 only if thei-th adjacency listirG s belongs taw. By the wayG's

is constructed (see Sectibn 1.5), for any two nodemndv with
6(u) < 6(v), the rank ofu is no larger than the rank of

5.1 Forward Search

The forward search of HoD maintains a hash taHle and a
min-heapQ ;. In particular,H ; maps each nodeto a keyx ¢ (v),
which equals the length of the shortest path frerto v that is
seen so far. Initiallyss(s) = 0, andrs¢(v) = 400 for any node
v # s. On the other hand, each entry@y corresponds to a node
v, and the key of the entry equdév), i.e., the index ob. As will
become evident shortly) ; ensures that the forward search visits
nodes in ascending order of their indices, and hence, itssttan
file structure ofGy only once, without the need to backtrack to any
disk block that it has visited before.

HoD starts the forward search by inspecting each edg€(s, v)
adjacent ta in G, and then inserting into H ¢ with a keyx(v) =
l(e). (Note thatG; contains only outgoing edges.) In addition,
HoD also inserts into Q. After that, HoD iteratively removes
the top entryu in Qy, and processes as follows: for each edge
e = (u,v) adjacent tou, if Ky(v) = 4oc in the hash tabléd,
HoD setss¢(v) = k¢ (u) + I(e) and inserts into Q) ¢; otherwise,
HoD sets<f(v) = min{ky(v), ks (u)+1(e)}. WhenQ ; becomes
empty, HoD terminates the forward search, and retains tkd ha
table H s for the second step of the algorithm, i.e., the core search.

5.2 CoreSearch

The core search of HoD is a continuation of the forward search
and it inherits the hash tablé; created during the forward search.
In addition toH ¢, HoD creates a min-heap.., such that). stores
entries of the form(v, kf(v)), wherev is a node and: s (v) is the
key of v in Hy. For any nodeu with ks(u) # +oo (i.e., u is
visited by the forward search), HoD insettsnto Q..

Given Hy and@., HoD performs the core search in iterations.
In each iteration, HoD extracts the top entrfrom Q., and exam-
ines each outgoing edgeof v. For every such edge, HoD inspects
its ending pointw, and sets: ; (w) = min{x(w), k5 (v) + l(e)}.
Then, HoD addsw into Q. if w is currently not inQ.. This itera-
tive procedure is repeated unfl. becomes empty. After that, the

Table 1: Datasets.

Name V] |E| Weighted? | Directed?| Size
USRN 24.9M 28.9M yes no 0.86GB
FB 58.8M 92.2M no no 2.42GB
u-BTC 16.3M | 95.7M no no 1.79GB
u-UKWeb | 6.9M 56.5M yes no 1.02GB
BTC 16.3M 99.4M no yes 1.98GB
Meme 53.6M | 117.9M no yes 3.17GB
UKWeb 104M 3708M no yes 61.8GB

G™ with a nodev, such thav immediately precedes on the short-
est path from: to w in G. For example, given the augmented graph

hash tablef ; is sent to the last step (i.e., the backward search) for in Figure[le, we would associate the edgg, v7) with vg, since

further processing.

5.3 Backward Search

Given the hash tablél; obtained from the core search, the re-
versed search of HoD is performed as a sequential scan ohte b
ward graphG, which stores nodes in descending order of their in-
dex values. For each nodevisited during the sequential scan, HoD
checks each edge= (u,v) adjacent ta. (Note thatG, contains
only incoming edges). ik (u) # 4+ooandky(u)+1(e) < ryr(v),
then HoD sets:;(v) = xs(u) + I(e). Once all nodes i@, are
scanned, HoD terminates the backward search and, for eafgh no
v, returnsk s (v) as the distance fromto v.

One interesting fact about the backward search is that & doe
require a heap to decide the order in which the nodes aredisit
This leads to a much smaller CPU cost compared with Dijkstra’
algorithm, as it avoids all expensive heap operations.

5.4 Correctness and Complexities

Compared with Dijkstra’s algorithm, the main difference of
HoD's query algorithm is that it visits nodes in a pre-defioeder
based on their ranks. The correctness of this approachusezhby
the shortcuts constructed by the preprocessing algorithHo®.

In particular, for any two nodesandt in G, it can be proved that
the augmented grapgh* always contains a patfR from s to ¢, such
that (i) P’s length equals the distance frasnto ¢ in G, and (ii) P
can be identified by HoD with a forward search framfollowed

by a core search and a backward search. More formally, we have

the following theorem.

THEOREM 1. Given a source node, the SSD query algorithm
of HoD returnsdist(s, v) for each node € G.

The proof of Theorerl1 in included in AppendiX A.

The query algorithm of HoD requiré3(n + m.) main memory,
wherem,. is the size of the core graph. This is due to the fact
that (i) the forward, core, and back searches of HoD all nagira
hash table that take3(n) space, and (ii) the core search requires
reading the core grapfi. into the memory. The time complexity
of the algorithm isO(n logn + m’), wherem' is the total number
of edges inG., G¢, andGy. The reason is that, when processing
an SSD query, HoD may need to sadnp, G., andG, once, and it
may need to puD(n) nodes into a min-heap. Finally, the I/O costs
of the algorithm isO((n + m')/B), since it requires at most one
scan ofGy, G, andGl.

6. EXTENSION FOR SSSP QUERIES

Given a source nodg an SSSP query differs from an SSD query
only in that it asks for not only (i) the distance frosrto any other
nodev, but also (ii) the predecessorafi.e., the node that immedi-
ately precedes on the shortest path frosto v. To extend HoD for
SSSP queries, we associate each €dge) in the augment graph

(i) the shortest path fromg to v7 in G is (vg, ve, v7), and (ii) ve
immediately precedes; in the path.

With the above extension, HoD processes any SSSP query from
a nodes using the algorithm for SSD query with one modification:
Whenever HoD traverses an edge w) and finds thatlist(s, u)+
I({(u,w)) < dist(s,w), HoD would not only updateist(s,w)
but also record the node associated withw). That is, for each
nodew visited, HoD keeps track of the predecessorofn the
shortest path from to w that have been seen so far. As such, when
the SSD query algorithm terminates, HoD can immediatelyrret
dist(s,w) as well as the predecessorwof

Finally, we clarify how the preprocessing algorithm of Honc
be extended to derive the node associated with each edgst, Fir
for each edge: in the original graph, HoD associateswith the
starting point of. After that, whenever HoD generates a candidate
edge(u, w) during the removal of a node HoD would associate
(u, w) with the node that is associated with the edgew). For
example, in Figur&llc, when HoD removesand creates a can-
didate edg€vy, v10), it associates the edge with, which is the
node associated witfvr, v10).

7. EXPERIMENTS

This section experimentally compares HoD with three meth-
ods: (i) VC-Index [[8], the state-of-the-art approach foros&d
SSSP queries on disk-resident graphs; (ii) EM-BES [6], énelf-
ficient method for breadth first search; and (iii) EM-Dijk |18&n
1/0 efficient version of Dijkstra’s algorithm. We include EBFS
since, on unweighted graphs, any SSD query can be answered us
ing breadth first search, which is generally more efficieantbijk-
stra’s algorithm. We obtain the C++ implementations of \f@éx,
EM-BFS, and EM-Dijk from their inventors, and we implement
HoD with C++. As the implementation of VC-Index only sup-
ports SSD queries, we will focus on SSD queries instead oPSSS
queries. All of our experiments are conducted on a machitie avi
2.4GHz CPU anB2GB memory.

7.1 Datasets

We use five real graph datasets as follows: (i) USRN [1], which
represents the road network in the US; (ii) FBI[14], a sublgraip
the Facebook friendship graph; (iii) BTC [2], a semantiqura(iv)
Meme [16] and UKWeb([3], which are two web graphs. Among
them, only USRN and FB are undirected. Since VC-Index, EM-
BFS, and EM-Dijk are all designed for undirected graphs ,onky
are indeed of more undirected datasets for experiments.thior
purpose, we transform BTC and UKWeb into undirected graphs,
using the same approach as in previous work (ske [8] forldptai
After that, for each undirected (resp. directed) gréphwe com-
pute its largest connected component (resp. weakly coadecim-
ponent)C, and we use for experiments. Tablel 1 illustrates the
details of the largest component obtained from each grappait-

Table 2: Preprocessing time (in minutes).

Method USRN FB u-BTC | u-UKWeb
HoD 4.0 22.4 34.4 105.5
VC-Index | 20.3 | 281.8| 78.1 768.2

Table 3: Space Consumption (in GB).

Method USRN | FB | u-BTC | u-UKWeb
HoD 25 51 3.8 3.3
VC-Index 4.3 8.3 1.2 14.0

Table4: Averagerunningtimefor SSD queries (in seconds).

Method USRN FB u-BTC | u-UKWeb
HoD 1.8 3.2 1.6 1.4
VC-Index 27.2 94.9 10.1 70.0
EM-BFS — 465.3 | 395.4 —
EM-Dijk 430.7 | 1597.4| 844.1 553.8

ticular, u-BTC and u-UKWeb are obtained from the undirected
sions of BTC and UKWeb, respectively.

Remark. The previous experimental study on VC-Index [8] uses
USRN, u-BTC, and u-UKWeb instead of their largest connected
components (CC) for experiments. We do not follow this appho

as itleads to less meaningful results. To explain, consideassive
undirected grapliz where each CC is small enough to fit in the

Table5: Estimated time for closeness computation (in hours).

Method USRN FB u-BTC | u-UKWeb
HoD 0.9 2.0 1.3 2.4
VC-Index 13.2 51.8 6.1 43.1
EM-BFS — 231.1| 1822 —
EM-Dijk 203.2 | 793.3| 389.0 240.0

Table 6: Performance of HoD on directed graphs.

Dataset | Preprocessing | Index Size | SSD Query Time
BTC 11.4 minutes 2.1GB 2.6 sec
Meme 1.2 minutes 2.3GB 1.8 sec

UKWeb 9.2 hours 72.6 GB 53.7 sec

approximating theclosenesgor all nodes in a grapli7, using the
algorithm by Eppstein and Wang [11]. The algorithm requexs
ecutingk = Inn/e? SSD queries from randomly selected source
nodes, where: is the number of nodes i ande is a parameter
that controls the approximation error. Following previowsk [8],

we sete = 0.1.

Tableg® shows an estimation of the time required by each rdetho
to complete the approximation task. Specifically, we edéntie
total processing time of each method as (i) its query timeaioid4
multiplied by &, plus (ii) its preprocessing time (if any). Observe
that both EM-BFS and EM-Dijk incur prohibitive overheadsey
require more than a week to finish the approximation taskoh: ¢

main-memory. On such a graph, even if a disk-based method cantrast, HoD takes at mo&t4 hours to complete the task, despite that

efficiently answer SSD queries, it does not necessarily ntiezin

it is more scalable than a main-memory algorithm. In paldicu
one can easily answer an SSD query from any nede G, by
first reading into memory the CC that contaiysand then running

a main-memory SSD algorithm on the CC. In general, given any
graphG, one can use an I/O efficient algorithm [21] to pre-compute
the (weakly) connected components@h and then handle SSD
queries on each component separately.

7.2 Resultson Undirected Graphs

In the first sets of experiments, we evaluate the performafce
each method on four undirected graphs: USRN, FB, u-BTC, and u
UKWeb. For HoD, EM-BFS, and EM-Dijk, we limit the amount of
memory available to them t6GB, which is smaller than the sizes
of all datasets. For VC-Index, we test it wilGB memory as it
cannot handle any of our datasets under a smaller memory size

Table[2 shows the preprocessing time of HoD and VC-Index on
the four graphs. (EM-BFS and EM-Dijk are omitted as they do
not require any pre-computation.) In all cases, HoD incusigga
nificantly smaller overhead than VC-Index does. In particubn
FB, the preprocessing time of HoD is more than ten times small
than that of VC-Index. Tablgl 3 compares the space consungptio
of HoD and VC-Index. Except for the case of u-BTC, the space
required by VC-Index is consistently larger than that by HoD

it pays an initial cost for pre-computation. Meanwhile, W@lex is
significantly outperformed by HoD, and it needs around twgsda
to accomplish the task on FB and u-UKWeb.

7.3 Resultson Directed Graphs

Our last experiments focus on the three directed graphs:,BTC
Meme, and UKWeb. We run HoD on BTC and Meme with 1GB
memory, and on UKWeb with 16GB memaory, as the enormous size
of UKWeb leads to a higher memory requirement. Table 6 shows
the preprocessing and space overheads of HoD, as well aits a
age query time in answerind)0 randomly generated SSD queries
on each dataset. (We omit VC-Index, EM-BFS, and EM-Dijk as
they do not support directed graphs.) On BTC and Meme, HoD
only incurs small pre-computation costs and moderate space
sumptions. On UKWeb, the preprocessing, space, and query ov
heads of HoD are considerably higher, but are still readergiben
that UKWeb contains0 times more edges than BTC and Meme
do. To our knowledge, this is the first result in the literattinat
demonstrates practical support for SSD queries on a biddge
graph.

8. RELATED WORK

As mentioned in Sectiofl 1, the existing techniques for 1/0-

To evaluate the query efficiency of each method, we generate efficient SSD and SSSP queries include VC-Index [8] and a few
100 SSD queries for each dataset, such that the source node ofmethods that adopt Dijkstra’s algorithin [15] 17+-20]. Alltbbse

each query is randomly selected. Table 4 shows the average ru
ning time of each approach in answering an SSD query. Theyquer
time of HoD is at least an order of magnitude smaller than efat
VC-Index. Meanwhile, VC-Index always outperforms EM-BFS,
which is consistent with the experimental results repoingutevi-
ous work [8]. We omit EM-BFS on USRN and u-UKWeb, since
those two graphs are weighted, for which EM-BFS cannot bd use
to answer SSD queries. Finally, EM-Dijk incurs a larger guer
overhead than all other methods.

In the next experiment, we demonstrate an application of HoD
for efficient graph analysis. In particular, we consider tdwk of

techniques are exclusively designed for undirected grapttsthey
incur significant query overheads, as is shown in our exparim
In contrast, HoD supports both directed and undirected hgrap
and it offers high query efficiency along with small costs ofp
computation and space.

Other than the aforementioned work, there exists large tobdy
literature on in-memory algorithms for shortest path arstagice
queries (see [9. 28, 25,126] for surveys). The majority okthal-
gorithms focus on two types of queries: igint-to-point shortest
path (PPSPyueries, which ask for the shortest path from one node
to another, and (iipoint-to-point distance (PPDgueries, which

ask for the length of the shortest path between two given si1ode

These two types of queries are closely related to SSD and SSSP
queries, in the sense that any SSD (resp. SSSP) query can be an

swered using the results af PPD (resp. PPSP) queries, where
is the number of nodes in the graph. Therefore, it is posdible
adopt a solution for PPD (resp. PPSP) queries to handle SSP.(r
SSSP) queries. Such an adoption, however, incurs sigrifiwain-
heads, especially whem is large. For example, the state-of-the-
art solution [4] for PPD queries requir@g6ns to answer a PPD

[5] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast
estimation of diameter and shortest paths (without matrix
multiplication).SIAM J. Comput.28(4):1167-1181, 1999.
D. Ajwani, R. Dementiev, and U. Meyer. A computational
study of external-memory bfs algorithms. 3©ODA pages
601-610, 2006.

D. A. Bader, S. Kintali, K. Madduri, and M. Mihail.
Approximating betweenness centrality. WAW pages
124-137, 2007.

(6]

(7]

query on the USRN dataset in Sect[dn 7. (Note: the solution is [8] J.Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing

not I/O efficient and it require25.4GB memory to handle USRN.)

If we use this solution to answer an SSD query on USRN, then
we need to executt.5 million PPD queries, which takes roughly
266ns x 24.5 x 10° = 6.52s. In contrast, HoD requires only8s

to process an SSD query on USRN, using ar8B memory.

Furthermore, almost all existing solutions for PPD and PPSP

queries require that the dataset fits in the main memory gymie-
computation and/or query processing. This renders thepplha
cable for the massive disk-resident graphs consideredspéper.
The only exception that we are aware of is a concurrent workiby
et al. [12], who propose an 1/O-efficient method call&dLabel
HoD and IS-Label’s preprocessing algorithms are similaspiimit,

but their index structures and query algorithms are dral$fidlif-
ferent, as they are designed for different types of quetiesar-
ticular, IS-Label focuses on PPD and PPSP queries, and ddes n
efficiently support SSD or SSSP queries.

Finally, we note that previous workl[9.11.3,]22] has exploitike
idea of augmenting graphs with shortcuts to accelerate RRD a
PPSP queries. Our adoption of shortcuts is inspired by puevi
work [9,[13]22], but it is rather non-trivial due to the fadtst
(i) we address 1/O efficiency under memory-constrained renvi
ments, while previous work [9, 13, 22] focuses on main memory
algorithms; (ii) we tackle SSD and SSSP queries instead &f PP
and PPSP queries; (iii) we focus on general graphs, whil€gqes
work [9,[13[22] considers only road networks (where eacteried
degree-bounded).

9. CONCLUSIONS

This paper presents HoD, a practically efficient index stme
for distance queries on massive disk-resident graphs. ficpa
lar, HoD supports both directed and undirected graphs, aefi i
ficiently handlessingle-source shortest path (SSSP) quedad
single-source distance (SSD) queri@sder memory-constrained
environments. This contrasts the existing methods, whittere
(i) require that the dataset fits in the main memory during pre
computation and/or query processing, or (i) support onigiu
rected graphs. With extensive experiments on a variety aif re
world graphs, we demonstrate that HoD significantly outprens
the state of the art in terms of query efficiency, space coptom
and pre-computation costs. For future work, we plan to itigate
how HoD can be extended to (i) support point-to-point stebqath
and distance queries and (ii) handle dynamic graphs thatgeha
with time.

1[(1)] REFERENCES

of distance queries in large graphs: a vertex cover approach

In SIGMOD pages 457468, 2012.

D. Delling, P. Sanders, D. Schultes, and D. Wagner.

Engineering route planning algorithms. Atgorithmics of

Large and Complex Networksages 117-139, 2009.

E. W. Dijkstra. A note on two problems in connection with

graphs Numerical Mathematicsl:269-271, 1959.

[11] D. Eppstein and J. Wang. Fast approximation of certyrali
Graph Algorithms App].8:39-45, 2004.

[12] A.W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong. Is-label:
an independent-set based labeling scheme for point-t@-poi
distance querying on large grapi3/LDB.

[13] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. IRVEA pages 319-333, 2008.

[14] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou.
Walking in facebook: A case study of unbiased sampling of
osns. INNFOCOM, pages 2498-2506, 2010.

[15] V. Kumar and E. J. Schwabe. Improved algorithms and data

structures for solving graph problems in external memary. |

SPDR pages 169-176, 1996.

J. Leskovec, L. Backstrom, J. M. Kleinberg, and J. M.

Kleinberg. Meme-tracking and the dynamics of the news

cycle. InKDD, pages 497-506, 2009.

U. Meyer. Via detours to i/o-efficient shortest paths. |

Efficient Algorithmspages 219-232, 2009.

U. Meyer and V. Osipov. Design and implementation of a

practical i/o-efficient shortest paths algorithm AhRENEX

pages 85-96, 2009.

U. Meyer and N. Zeh. l/o-efficient undirected shortesths.

In ESA pages 434-445, 2003.

U. Meyer and N. Zeh. l/o-efficient shortest path alduris

for undirected graphs with random or bounded edge lengths.

ACM Transactions on Algorithm8(3):22, 2012.

[21] K. Munagala and A. G. Ranade. l/o-complexity of graph
algorithms. INSODA pages 687—694, 1999.

[22] P. Sanders and D. Schultes. Highway hierarchies hasten
exact shortest path queries.lB$A pages 568-579, 2005.

[23] C. Sommer. Shortest-path queries in static networ@$22
http://www.shortestpaths.org/spg-survey.pdfl

[24] F. W. Takes and W. A. Kosters. Determining the diamefer o
small world networks. IICIKM, pages 1191-1196, 2011.

[25] Y. Tao, C. Sheng, and J. Pei. On k-skip shortest paths. In
SIGMOD, pages 421-432, 2011.

9]

[10]

[16]

[17]

(18]

[19]

[20]

http://www.dis.uniromal. it/challenge9/downloa?&2.sslh’,f\:‘m‘?: Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou.

[2] http://vmlion25.deri.ie/k

(3]

Shortest path and distance queries on road networks:
Towards bridging theory and practice. $\GMOD, 2013.

http://barcelona.research.yahoo.net/webspam/dgtasgts/uk2007/1inks/.
AFPFPENDIA

[4] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F.

Werneck. A hub-based labeling algorithm for shortest paths
in road networks. 'SEA pages 230-241, 2011.

A. PROOF OF THEOREM 1

http://www.dis.uniroma1.it/challenge9/download.shtml
http://vmlion25.deri.ie/
http://barcelona.research.yahoo.net/webspam/datasets/uk2007/links/
http://www.shortestpaths.org/spq-survey.pdf

Our proof of Theorerfill utilizes the conceptsraik sequences
andarch paths defined as follows.

DEFINITION1 (RANK SEQUENCE ANDARCH PATH). Let
P* be a path in the augmented grajgh* of HoD, such thatP*
containsk nodes. Theank sequence of P* is a sequence of
integers(ry,re, ..., rx), such thatr; (¢ € [1, k]) equals the rank
of the:-th node inP*. P* is anarch path, if its rank sequence
can be divided into three subsequen¢es ..., 7z), (T2, ...,7y),
and(ry,...,T), such that

1. rm<re<...<rz and
2.1y =7Tgy1=...=1y,and
3.7y > Typ1 > > Tk O

For instance, consider the pati = (v1,vg, v10,vs, v4) in Fig-
ure[de. The path’s rank sequence(is4,4, 3,2). This rank se-
guence can be divided into three subsequerite$), (4,4), and
(4, 3,2). By Definition[d, P* is an arch path.

Let s andt be any two nodes in the original grapgh and P be
the shortest path fromto ¢ in G. If there exist multiple shortest
paths froms to ¢, we chooseP to be a path where the highest-rank
node ranks no lower than any other node on any other shoe#st p
from s to t. In the following, we will prove three propositions:

e Proposition 1: For any pathP* from s to ¢ in the augmented
graphG™, its length is no shorter thaR'’s.

e Proposition 2: There exists an arch pafP° in G*, such that
I(P°) =1(P),i.e.,P° and P have the same length.

e Proposition 3: When HoD’s answers an SSD query fram
it will traverse a path no longer thai®.

The combination of the above three propositions will essabl he-
orem(1.

Proof of Proposition 1. If all edges inP* appear in the original
graphG, the proposition trivially holds since any path frono ¢ in
G should be no shorter thah. In the following, we consider only
the case wher®’ contains at least one shortcut, and we will prove
that there exists a path’ in G, such thai(P*) = I(P’) > I(P).

Assume without loss of generality thBt consists of a sequence
of k nodes{vi,v2,...,vx), wherevy = s andv, = t. Further
assume thatv;, vi+1) (¢ € [1,k]) is a shortcut. By the prepro-
cessing algorithm of HoD, this shortcut must be construeteen
HoD removes a certain nodefrom the reduced graph, such that
v; andv;41 are incoming and outgoing neighbors @f respec-
tively. This indicates that the augmented gragh must contain
two edges(v;, v) and (v, v;+1), such that their total length equals
I({vi,vi+1)). Given those two edges, we chanBé by replacing
(vi, vi41) with atwo-hop pativ;, v, vi11). This results in a modi-
fied path froms to ¢ in G* that has the same length with the original
P*.

If the modified P* does not contain any shortcut, then it is a
path inG, and hencel(P*) > I(P). On the other hand, if the

Let rmaz be the highest rank of the nodesfh Let v, andv,
be the first and last nodes inwhose ranks equal,,.... We divide
P into three subsequencé}, P, andPs, such that

1. P, is the sequence of nodes ihbeforev, (includingv.,).

2. P, is the sequence of nodes ihbetweerw,, andv, (includ-
ing v, anduvy).

3. Psisthe sequence of nodes ihafterv, (includingv,).

Let us first conside”;. We say that a node in P; is pit, if v
ranks no higher than the node that immediately precedespP; .
Among the pits inP;, let v be one with the lowest rank. Let
(resp.w) be the node that immediately precedes (resp. follaws)
in P;. By the preprocessing algorithm of HoD, when HoD removes
v’ from the reduce graph, it would generate a candidate edge
(u,w), such that the edge has the same length with the two-hop
path (u,v’,w). If e1 is in G* (i.e., it is retained by HoD during
preprocessing), then we transfoia into another path i=*, by
usinge; to replace the two-hop path, v, w) in P;. The resulting
path has the same length with, and it has one less pits thdh.

On the other hand, i is not inG™, there are two possibilities:

1. There already exists an edge = (u,w) in the reduced
graph, such that(e2) = I(e1). (Note thati(es) < I(e1)
is impossible given Proposition 1 and the fact tiratis the
shortest path from to v, in G.) In that caseg. must appear
in G*. Therefore, if we modifyP; by usinge: to replace the
two-hop path{u, v’, w) in P1, we can still obtain a modified
path that retains the length &% but contains one less pits.

2. There exists a two-hop patl, v°, w) in the reduced graph,

such that (i¥(es) = l(e1), and (ii)v°® has a higher rank than
v'. (Note thatl(es) < I(e1) cannot occur due to Proposition
1 and the fact thaP; is the shortest path fromto v, in G.)
In that case, we transforid; by replacingy’ with v°. This
may not decrease the number of pitsfin, but it retains the
length of P; and replaces a node iR; with a higher rank
node.

In summary, the above transformation procedure presetwes t
length of P, and it either (i) reduces the number of pitsin or
(ii) substitute a node i with a higher-rank node. Given that the
ranks of nodes are bounded, if we recursively apply the phaee
on the lowest-rank pit inP;, eventually we should obtain a path
Py in G* without any pit, such that ()(P;") = I(Py), and (i) P{
starts ats and ends at,.. In that case, the rank sequenceRjf
must be an ascending sequence.

Now considerP, and P;. We say that a node i#, is a pit if
its rank is smaller tham,.., and we define a nodein P; as a
pit if v ranks no higher than the node that immediately follaws
in P;. By applying the same transformation procedure as in the
case ofP;, we can converf?; and Ps into two pathsP; and Ps
in G*, such that (i)P; and P; have no pit, (ii)l(Py) = I(FP)
andl(Ps5) = I(Ps), (iii) Py starts at, and ends at,, and (iii)
Py starts atv, and ends at. It can be verified that all nodes in

modified P* contains any shortcut, then we can replace the shortcut P; should have a rank...., and P;’s rank sequence should be a

with a two-hop path inG™, as in the previous case for the shortcut
(vi, vi41). By recursively applying this replacement procedure on
the shortcuts inP*, we can transformP* into a pathP’ that (i)
goes froms to ¢, (ii) contains only edges i+, and (iii) has the
same length wittP*. Given thatP is the shortest path fromto ¢

in G, we havel (P) < I(P') = I(P*), which completes the proof.

Proof of Proposition 2. The proposition trivially holds ifP itself

is an arch path iiz*. In the following, we assume thdt is not an
arch path, and we show th& can be transformed into a arch path

P° in G* with the same length.

descending sequence.
Let P° be a path inG* obtained by concatenating;’, P, and
Py . By Definitiond,P° is an arch path, which completes the proof.

Proof of Proposition 3. Let v., vy, P°, P;', P5, andP; be as
defined in the proof of Proposition 2. Without loss of gerigyal
assume that each @', Py, and P; contains at least two nodes.
We will prove the proposition by showing that, given an SSBrgu
from s, the query processing algorithm of HoD will traverse (i) a

path froms to v, that is no longer tha®;, (ii) a path fromv,, to
vy that is no longer tha®;', and (iii) a path from, to ¢ that is no
longer thanP;'.

Recall that HoD’s query algorithm consists of three phases:
forward search in the forward grahy, followed by a core search
in the core grapli/., and finally a backward search in the backward
graphGy. The forward search is a variant of Dijkstra’s algorithm
that follows only the outgoing edges whose endpoints ragheri
than the starting points. Since the rank sequencg;ofs in as-
cending order,P;" should be in the search space of the forward
search. Furthermore, by Proposition 1 and the constructid?’,

Gy does not contain any path froso v, that is shorter tha;".
Therefore, when the forward search terminates, HoD shatlidre
identify P;" as the shortest path frosto v, in G, or identify an-
other path froms to v, that is no longer tha®;". In either case,
HoD will correctly derivedist(s,v.), i.e., the distance from to
vz ING.

Now considerP5, where each node has the same rank. By the
preprocessing algorithm of HoD, all nodes B must be in the
core graphG., since any node not in the core graph can only have
outgoing edges to higher-rank nodes (see SeElion 4). Mamwh
recall that the core search of HoD is a continuation of thevéod
search inG., using Dijkstra’s algorithm. By the correctness of

Dijkstra’s algorithm and the fact thd®;y is the shortest path from
vz to vy in G, the core search of HoD should traverse a path from
v t0 vy that is no longer thas .

It remains to prove that HoD’s backward search will traverge
Assume without loss of generality th& contains a sequence of
k nodes(vi,v2,...,vr, Wherev; = v, andv, = ¢. Recall
that the backward search of HoD examines nodes in descending
order of their ranks. Sinc®3 has a descending rank sequence, the
backward search of HoD should examinebeforewv; 1, for any
i€l k—1].

We will prove by induction that, for any; (i € [1, k]), the back-
ward search can correctly deridést(s, v;). First, given thatP;
and P; have been traversed by HoD before the backward search,
HoD should be able to compute the precise valuel®t(s, v1)
when after it visitsv;. Now assume that, after examining
(5 € [1,k — 1]), HoD correctly calculatedist(s, v;). Then, when
HoD inspects; 41, it would identifydist(s, v;) +1({vj,vj+1)) as
the length of a path fromto v;1. Given thatP;" is a shortest path
fromstotin G* and thatv; 1 immediately followsv; on Py, we
havedist(s,vjy+1) = dist(s,v;) + I({v;,v;j+1)). This indicates
that HoD will correctly derivelist(s, vj+1), which completes the
proof.

	1 Introduction
	2 Problem Definition
	3 Solution Overview
	3.1 Shortcut Construction
	3.2 Query Processing

	4 Index Construction
	4.1 Node Removal and Shortcut Generation
	4.2 Selecting Nodes for Removal
	4.3 Generation of Baseline Edges
	4.4 Termination Condition
	4.5 Index File Organization
	4.6 Cost Analysis

	5 Algorithm for SSD Queries
	5.1 Forward Search
	5.2 Core Search
	5.3 Backward Search
	5.4 Correctness and Complexities

	6 Extension for SSSP Queries
	7 Experiments
	7.1 Datasets
	7.2 Results on Undirected Graphs
	7.3 Results on Directed Graphs

	8 Related Work
	9 Conclusions
	10 References
	A Proof of Theorem 1

