
ar
X

iv
:1

30
6.

11
53

v1
 [

cs
.D

B
]

5
Ju

n
20

13

Efficient Single-Source Shortest Path and Distance
Queries on Large Graphs

Andy Diwen Zhu Xiaokui Xiao Sibo Wang Wenqing Lin
School of Computer Engineering
Nanyang Technological University

Singapore
{dwzhu, xkxiao, swang, wlin}@ntu.edu.sg

ABSTRACT
This paper investigates two types of graph queries:single source
distance (SSD)queries andsingle source shortest path (SSSP)
queries. Given a nodev in a graphG, an SSD query fromv asks
for the distance fromv to any other node inG, while an SSSP
query retrieves the shortest path fromv to any other node. These
two types of queries are fundamental building blocks of numer-
ous graph algorithms, and they find important applications in graph
analysis, especially in the computation of graph measures.Most
of the existing solutions for SSD and SSSP queries, however,re-
quire that the input graph fits in the main memory, which renders
them inapplicable for the massive disk-resident graphs commonly
used in web and social applications. The only exceptions area few
techniques that are designed to be I/O efficient, but they allfocus
on undirected and/or unweighted graphs, and they only offersub-
optimal query efficiency.

To address the deficiency of existing work, this paper presents
Highways-on-Disk (HoD), a disk-based index that supports both
SSD and SSSP queries on directed and weighted graphs. The key
idea of HoD is to augment the input graph with a set of auxiliary
edges, and exploit them during query processing to reduce I/O and
computation costs. We experimentally evaluate HoD on both di-
rected and undirected real-world graphs with up to billionsof nodes
and edges, and we demonstrate that HoD significantly outperforms
alternative solutions in terms of query efficiency.

1. INTRODUCTION
Given a graphG, a single source distance (SSD)query from a

nodev ∈ G asks for the distance fromv to any other node inG.
Meanwhile, asingle source shortest path (SSSP)query retrieves
the shortest path fromv to any other node. These two types of
queries find important applications in graph analysis [8], especially
in the computation of graph measures [5, 7, 11, 24]. For example,
the estimation ofclosenessmeasures [11] on a graphG requires
performing SSD queries from a large number of nodes inG, while
the approximation ofbetweennessmeasures [7] requires executing
numerous SSSP queries.

The classic solution for SSD and SSSP queries is Dijkstra’s al-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

gorithm [10]. Given a SSD or SSSP query from a nodes, Dijkstra’s
algorithm traverses the graph starting froms, such that the nodes
in G are visited in ascending order of their distances froms. Once
a nodev is visited, the algorithm returns the distance froms to v
based on the information maintained during the traversal; the short-
est path froms to v can also be efficiently derived if required.

A plethora of techniques have been proposed to improve over
Dijkstra’s algorithm for higher query efficiency (see [9,23] for sur-
veys). Although those techniques all require pre-processing the
given graph (which incurs extra overhead compared with Dijk-
stra’s algorithm), the pre-computation pays off when the number
of queries to be processed is large, as is often the case in graph
analysis. Nevertheless, most of the existing techniques assume
that the given graph fits in the main memory (for pre-computation
and/or query processing), which renders them inapplicablefor the
massive disk-resident graphs commonly used in web and social ap-
plications. There are a few methods [15, 17–20] that addressthis
issue by incorporating Dijkstra’s algorithm with I/O-efficient data
structures, but the performance of those methods are shown to be
insufficient for practical applications [8]. The main reason is that,
when Dijkstra’s algorithm traverses the graph, the order inwhich it
visits nodes can be drastically different from the order in which the
nodes are arranged on the disk. This leads to a significant number
of random disk accesses, which results in poor query performance.

In contrast to the aforementioned techniques, Cheng et al. [8]
propose the first practically efficient index (namedVC-Index) for
SSD and SSSP queries on disk-resident graphs. The basic ideaof
VC-Index is to pre-compute a number ofreducedversions of the
input graphG. Each reduced graph contains some relatively im-
portant nodes inG, as well as the distances between some pairs of
those nodes. During query processing, VC-Index scans a selected
subset of reduced graphs, and then derives query results based on
the pre-computed distances. Compared with those methods based
on Dijkstra’s algorithm [15, 17–20], VC-Index is more efficient as
it only performs sequential reads on disk-resident data.

Motivation and Contribution. All existing disk-based solutions
for SSD and SSSP queries [15, 17–20] require that the input graph
is undirected, which renders them inapplicable for any application
built upon directed graphs. This is rather restrictive as numerous
important types of graphs (e.g., road networks, web graphs,social
graphs) are directed in nature. Furthermore, even when the input
graph is undirected, the query efficiency of the existing solutions is
less than satisfactory. In particular, our experiments (inSection 7)
show that VC-Index, albeit being the state of the art, requires tens
of seconds to answer a single SSD query on a graph with less than
100 million edges, and needs more than two days to estimate the
closeness measures on the same graph.

To address the deficiency of existing work, this paper proposes

http://arxiv.org/abs/1306.1153v1

Highways-on-Disk (HoD), a disk-based index that supports both
SSD and SSSP queries on directed and weighted graphs. The key
idea of HoD is to augment the input graph with a set of auxil-
iary edges (referred to asshortcuts[22]), and exploit them during
query processing to reduce I/O and computation costs. For exam-
ple, Figure 1a illustrates a graphG, and Figure 1e shows an aug-
mented graphG∗ constructed fromG. G∗ contains three shortcuts:
〈v8, v9〉, 〈v9, v7〉, and〈v9, v10〉. Each shortcut has the same length
with the shortest path connecting the endpoints of the shortcut. For
example, the length of〈v8, v9〉 equals2, which is identical to the
length of the shortest path fromv8 to v9. Intuitively, the shortcuts
in G∗ enable HoD to efficiently traverse from one node to another
(in a manner similar to how highways facilitate traversal between
distant locations). For instance, if we are to traverse fromv1 to
v10 in G∗, we may follow the path〈v1, v9, v10〉, which consists of
only three nodes; in contrast, a traversal fromv1 to v10 in G would
require visiting five nodes:v1, v9, v6, v7, andv10.

In general, when HoD answers an SSD or SSSP query, it often
traverses the augmented graph via shortcuts (instead of theoriginal
edges inG). We show that, with proper shortcut construction and
index organization, the query algorithm of HoD always traverses
nodes in the same order as they are arranged in the index file. Con-
sequently, HoD can answer any SSD or SSSP query with a linear
scan of the index file, and its CPU cost is linear to the number of
edges in the augmented graph. We experimentally evaluate HoD
on a variety of real-world graphs with up to100 million nodes and
3 billion edges, and we demonstrate that HoD significantly out-
performs VC-Index in terms of query efficiency. In particular, the
query time of HoD is smaller than that of VC-Index by up to two
orders of magnitude. Furthermore, HoD requires a smaller space
and pre-computation time than VC-Index in most cases.

2. PROBLEM DEFINITION
Let G be a weighted and directed graph with a setV of nodes

and a setE of edges. Each edgee in E is associated with a positive
weight l(e), which is referred to as thelengthof e. A pathP in G
is a sequence of nodes〈v1, v2, . . . , vk〉, such that〈vi, vi+1〉 (i ∈
[1, k − 1]) is a directed edge inG. The length ofP is defined as
the sum of the length of each edge onP . We usel(e) andl(P) to
denote the length of an edgee and a pathP , respectively.

For any two nodess andt in G, we define thedistancefrom s to
t, denoted asdist(s, t), as the length of the shortest path froms to
t. Given asource nodes in G, asingle-source distance (SSD)query
asks for the distance froms to any other node inG. Meanwhile, a
single-source shortest path (SSSP)query froms retrieves not only
the distance froms to any other nodev, but also thepredecessor
of v, i.e., the node that immediately precedesv in the shortest path
from s to v. Note that, given the predecessor of each node, we can
easily reconstruct the shortest path froms to any nodev by back-
tracking fromv following the predecessors. One may also consider
an alternative formulation of SSD (resp. SSSP) query that, given
only adestination nodet, asks for the distance (resp. shortest path)
from any other node tot. For simplicity, we will focus on SSD and
SSSP queries from a source nodes, but our solution can be easily
extended to handle queries under the alternative formulation.

Let M be the size of the main memory available, andB be the
size of a disk block, both measured in the number of words. We
assume thatB ≤ |V | ≤ M ≤ |E|, i.e., the main memory can
accommodate all nodes but not all edges inG. This is a realistic as-
sumption since modern machines (even the commodity ones) have
gigabytes of main memory, which is sufficient to store the node set
of a graph with up to a few billion nodes. On the other hand, the
number of edges in a real graph is often over an order of magnitude

larger than the number of nodes, due to whichE can be enormous
in size and does not fit in the main memory.

Our objective is to devise an index structure onG that answers
any SSD or SSSP query with small I/O and CPU costs, such that
the index requires at mostM main memory in pre-computation
and query processing. In what follows, we will first focus on SSD
queries in Sections 3-5, and will extend our solution for SSSP
queries in Section 6.

3. SOLUTION OVERVIEW
As mentioned in Section 1, the main structure of HoD is a graph

G∗ that augments the input graphG with shortcuts. In this section,
we present the overall idea of how the shortcuts inG∗ are con-
structed and how they can be utilized for query processing, so as to
form a basis for the detailed discussions in subsequent sections.

3.1 Shortcut Construction
In a nut shell, HoD constructs shortcuts with an iterative proce-

dure, which takes as input a copy of the graphG (denoted asG0).
In the i-th (i ≥ 1) iteration of the procedure, HoD firstreduces
Gi−1 by removing a selected set ofless importantnodes inGi−1,
and then, it constructs shortcuts in the reduced graph to ensure that
the distance between any two remaining nodes is not affectedby
the node removal. The resulting graph (with shortcuts added) is
denoted asGi, and it is fed as the input of the (i+1)-th iteration of
procedure. This procedure terminates only when the reducedgraph
Gi is sufficiently small. All shortcuts created during the procedure
are inserted into the original graphG, leading to an augmented
graphG∗ that would be used by HoD for query processing. We
illustrate the iterative procedure with an example as follows.

EXAMPLE 1. Assume that the input to the iterative procedure is
the graphG0 in Figure 1a. Further assume that the reduced graph is
sufficiently small if it contains at most two nodes and two edges. In
the first iteration of the procedure, HoD inspectsG0 and identifies
v1, v2, andv3 as less important nodes. To explain, observe that the
nodev1 in G0 does not have any incoming edge, whilev2 andv3
have no outgoing edges. As a consequence,v1, v2, andv3 do not
lie on the shortest path between any two other nodes. That is,even
if we removev1, v2, andv3 fromG0, the distance between any two
remaining nodes is not affected. Intuitively, this indicates thatv1,
v2, v3 are of little importance for SSD queries. Therefore, HoD
eliminatesv1, v2, andv3 from G0, which results in the reduced
graphG1 in Figure 1b.

In the second iteration, HoD selectsv4, v5, andv6 as the less
important nodes inG1, and removes them fromG1. The removal
of v4 changes the distance fromv8 to v9 to+∞, since〈v8, v4, v9〉
is the only path (inG1) that starts atv8 and ends atv9. To mitigate
this change, HoD inserts intoG1 a shortcut〈v8, v9〉 that has the
same length with〈v8, v4, v9〉, as illustrated in Figure 1c. As such,
the distance between any two nodes inG1 remains unchanged after
v4 is removed. Similarly, when HoD eliminatesv6, it constructs a
shortcut〈v9, v7〉 with a length2 to reconnect the two neighbors of
v6. Meanwhile,v5 is removed without creating any shortcut, since
deletingv5 does not change the distance between its two neighbors.
Figure 1c illustrates the resulting reduced graphG2.

To explain why HoD chooses to removev4, v5, andv6 fromG1,
observe that each of those nodes has only two neighbors. For any
of such nodes, even if the removal of the node changes the distance
between its neighbors, HoD only needs to construct one shortcut
to reconnect its neighbors. In other words, the number of shortcuts
required is minimum, which helps reduce the space consumption
of HoD. In contrast, if HoD chooses to removev9 from G1 (which

length = 1 length = 2 length = 3

v5

v1

v2

v3

v4

v7
v6

v8

v10

v9

v5

v4

v7
v6

v8

v10

v9

v7

v8

v10

v9

v10

v10

v9

v5

v1

v2

v3

v4 v8

v10

v7
v6

v9

rank = 1

rank = 2

rank = 3

rank = 4

(a) GraphG. (b) Reduced graphG1. (c) Reduced graphG2. (d) Reduced graphG3 (e) Augmented GraphG∗.
(equivalently,G0) (i.e., the core graphGc).

Figure 1: Graph reduction and shortcut construction.

has a larger number of neighbors thanv4, v5, andv6), then much
more shortcuts would need to be constructed.

Finally, in the third iteration, HoD removesv7 andv8 from G2

as they are considered unimportant. The removal ofv7 leads to
a new shortcut〈v9, v10〉 with a length3, since〈v9, v7, v10〉 is the
only path connectingv9 to v10, and the length of the path equals
3. On the other hand,v8 is directly eliminated as it is not on the
shortest path between its only two neighborsv9 andv10. Figure 1d
shows the reduced graphG3 after the removal ofv7 andv8.

Assume that the reduced graphG3 is considered sufficiently
small by HoD. Then, the iterative procedure of HoD would ter-
minate. The three shortcuts created during the procedure (i.e.,
〈v8, v9〉, 〈v9, v7〉, and〈v9, v10〉) are added into the original graph
G, which leads to the augmented graphG∗ in Figure 1d. �

The above discussion leaves several issues open, i.e., (i) the spe-
cific criterion for identifying less important nodes in the reduced
graph, (ii) the detailed algorithm for generating shortcuts after node
removal, and (iii) the exact termination condition of the reduction
procedure. We will clarify these issues in Section 4 by presenting
the detailed preprocessing algorithm of HoD. For the discussions
in the rest of this section, it suffices to know that when HoD ter-
minates the reduction procedure, the reduced graph must fit in the
main memory. We useGc to denote this memory-resident reduced
graph, and we refer to it as thecore graph. (Note thatGc is a sub-
graph of the augmented graphG∗.) In addition, we define therank
r(v) of each nodev in G as follows:

1. If v is removed in thei-th iteration of the iterative procedure,
thenr(v) = i;

2. If v is not removed in any iteration (i.e.,v is retained in the
core graphGc), thenr(v) = 1 + maxv/∈Gc

r(v), i.e.,r(v)
is larger than the maximum rank of any node not inGc.

For instance, in Example 1, the ranks ofv1, v2, andv3 equal1,
since they are removed fromG in the first iteration of the reduction
procedure. Similarly,r(v4) = r(v5) = r(v6) = 2, andr(v7) =
r(v8) = 3. The ranks ofv9 andv10 equal4, since they are in the
core graphGc. The ranks of the nodes are utilized in the query
processing algorithms of HoD, as will be illustrated shortly. Unless
otherwise specified, we use the termedgeto refer to both a shortcut
and an original edge inG∗.

3.2 Query Processing
Given an SSD query from a nodes, HoD answers the query

with two traversals of the augmented graphG∗. The first traver-
sal starts froms, and it follows only theoutgoingedges of each
node, ignoring any edgewhose starting point ranks higher than
the ending point. For instance, if HoD traverses from the node
v9 in Figure 1e, it would ignore the outgoing edge〈v9, v7〉, since
r(v9) = 4 > r(v7) = 3. As such, the first traversal of HoD never
moves from a high-rank node to a low-rank node, and it terminates

only when no higher-rank nodes can be reached. For each nodev
visited, HoD maintains the distance froms to v along the paths that
have been seen during the traversal, denoted asdist(s, v).

Let V ′ be the set of nodes that are not in the core graph ofG∗.
The second traversal of HoD is performed as a linear scan of the
nodes inV ′, in descending order of their ranks. For each node
v′ ∈ V ′ scanned, HoD inspects eachincomingedgee of v′, and
then checks the starting pointu of the edge. For any suchu, HoD
calculatesdist(s, u) + l(e) as an upperbound of the distance from
s to v′. (Our solution guarantees thatu should have been visited by
HoD beforev′.) Once all incoming edges ofv′ are inspected, HoD
derives the distance froms to v′ based on the upperbounds, and
then it moves on to the next node inV ′. This process terminates
when all nodes inV ′ are examined.

We illustrate the above query algorithm of HoD with an example.

EXAMPLE 2. Consider an SSD query from nodev1 in Fig-
ure 1a. Given the augmented graphG∗ in Figure 1e, HoD first
traversesG∗ starting fromv1, following the outgoing edges whose
ending points rank higher than the starting points. Sincev1 has
only one outgoing edge〈v1, v9〉, and sincev9 ranks higher thanv1,
HoD moves fromv1 to v9. v9 has three outgoing edges:〈v9, v6〉,
〈v9, v7〉, and〈v9, v10〉. Among them, only〈v9, v10〉 has an end-
ing point that ranks higher than the starting point. Therefore, HoD
moves fromv9 to v10. v10 has outgoing edges to three unvisited
nodes, i.e.,v3, v5, andv8. Nevertheless, all of those nodes rank
lower thanv10, and hence, they are ignored. As none of the re-
maining nodes can be reached without violating the constraints on
node ranks, the first traversal of HoD ends. Based on the edges
visited, HoD calculatesdist(v1, v9) = 1 anddist(v1, v10) = 4.

The second traversal of HoD examines the nodesnot in the
core graph in descending order of their ranks, i.e., it first exam-
ines v7 and v8 (whose ranks equal3), followed by v4, v5, and
v6 (whose ranks equal2), and finally v2 and v3 (whose ranks
equal1), ignoring v1 (as it is the source node of the query).v7
has two incoming edges,〈v6, v7〉 and 〈v9, v7〉. Among v6 and
v9, only v9 has been visited by HoD. Therefore, HoD calculates
dist(v1, v7) = dist(v1, v9) + l(〈v9, v7〉) = 3. Similarly, af-
ter inspectingv8’s only incoming edge〈v10, v8〉, HoD computes
dist(v1, v8) = dist(v1, v10) + l(〈v10, v8〉) = 5. The remaining
nodes are processed in the same manner, resulting in

dist(v1, v4) = dist(v1, v8) + l(〈v8, v4〉) = 6

dist(v1, v5) = dist(v1, v10) + l(〈v10, v5〉) = 5

dist(v1, v6) = dist(v1, v9) + l(〈v9, v6〉) = 2

dist(v1, v2) = dist(v1, v4) + l(〈v4, v1〉) = 7.

Observe that all the above distances computed fromG∗ are identi-
cal with those from the original graph in Figure 1a. �

The query algorithm of HoD has an interesting property: the first
traversal of the algorithm always visits nodes in ascendingorder

of their ranks (as it never follows an edge that connects a high-
rank node to low-rank node), while the second phase always visits
nodes in descending rank order. Intuitively, if we maintaintwo
copies of the augmented graph, such that the first (resp. second)
copy stores nodes in ascending (resp. descending) order of their
ranks, then HoD can answer any SSD query with a linear scan of
the two copies. This leads to high query efficiency as it avoids
random disk accesses. In Section 4, we will elaborate how such
two copies of the augmented graph can be constructed.

4. INDEX CONSTRUCTION
As discussed in Section 3.1, the preprocessing algorithm ofHoD

takes as input a copyG0 of the graphG, and it iteratively reduces
G0 into smaller graphsG1, G2, . . ., during which it creates short-
cuts to augmentG. More specifically, the (i+1)-th (i ≥ 0) iteration
of the algorithm has four steps:

1. Select a setRi of nodes to be removed fromGi.

2. For each nodev ∈ Ri, construct shortcuts inGi to ensure
that the removal ofv does not change the distance between
any two remaining nodes.

3. Remove the nodes inRi fromGi to obtain a further reduced
graphGi+1. Store information about the removed nodes in
the index file of HoD.

4. Pass theGi+1 to the (i+2)-th iteration as input.

In the following, we first elaborate Steps2 and3, and then clarify
Step1. After that, we will discuss the termination condition of the
preprocessing algorithm, as well as its space and time complexities.

For ease of exposition, we represent each edgee = 〈u, v〉 as a
triplet 〈u, v, l(e)〉 or 〈v, u,−l(e)〉, wherel(e) is the length ofe.
For example, the edge〈v9, v7〉 in Figure 1a can be represented as
either〈v9, v7, 2〉 or 〈v7, v9,−2〉. That is, a negative length in the
triplet indicates that the second node in the triplet is the starting
point of the edge. In addition, we assume that the input graphG is
stored on the disk as adjacency lists, such that (i) for any two nodes
vi and vj , the adjacency list ofvi precedes that ofvj if i < j,
and (ii) each edge〈vi, vj〉 with length l is stored twice: once in
the adjacency list ofvi (as a triplet〈vi, vj , l〉), and another in the
adjacency list ofvj (as a triplet〈vj , vi,−l〉).

4.1 Node Removal and Shortcut Generation
Let v∗ be a node to be removed fromGi. We define anoutgoing

neighbor of v∗ as a nodeu to which v∗ has an outgoing edge.
Similarly, anincoming neighborof v∗ is a nodew from whichv∗

has an incoming edge. We have the following observation:

OBSERVATION 1. For any two nodesvj andvk in Gi, the dis-
tance fromvj to vk changes afterv∗ is removed, if and only if the
shortest path fromvj to vk contains a sub-path〈u, v∗, w〉, such that
u (resp.w) is an incoming (resp. outgoing) neighbor ofv∗. �

By Observation 1, we can preserve the distance between any two
nodes inGi after removingv∗, as long as we ensure that the dis-
tance between any incoming neighbor and any outgoing neighbor
of v∗ remains unchanged. This can be achieved by connecting the
incoming and outgoing neighbors ofv∗ with shortcuts, as demon-
strated in Section 3.1. Towards this end, a straightforwardapproach
is to generate a shortcut〈u, w〉 for any incoming neighboru and
any outgoing neighborw. The shortcuts thus generated, however,
are oftenredundant. For example, consider the graphGi in Fig-
ure 2a. Suppose that we are to removev2, which has an incoming
neighborv1 and an outgoing neighborv3. If we construct a short-
cut fromv1 to v3, it is useless since (i)v1 already has an outgoing

edge tov3, and (ii) the edge〈v1, v3〉 is even shorter than the path
from v1 to v3 via v2. As another example, assume thatv4 in Fig-
ure 2a is also to be removed.v4 has an incoming neighborv1 and
an outgoing neighborv5, but the path〈v1, v4, v5〉 is no shorter than
another path fromv1 to v5, i.e., 〈v1, v3, v5〉, which does not go
throughv4. As a consequence, even if we removev4 from Gi, the
distance fromv1 to v5 is still retained, and hence, it is unnecessary
to insert a shortcut fromv1 to v5.

In general, for any incoming neighboru and outgoing neighbor
w of v∗, a shortcut fromu to w is unnecessary if there is a path
P from u to v, such that (i)P does not go throughv∗, and (ii)
P is no longer than〈u, v∗, w〉. To check whether such a pathP
exists, one may apply Dijkstra’s algorithm to traverseGi from u
(or w), ignoringv∗ during the traversal. However, whenGi does
not fit in main memory (as is often the case in the pre-computation
process of HoD), this approach incurs significant overhead,due to
the inefficiency of Dijkstra’s algorithm for disk-residentgraphs (as
discussed in Section 1). To address this issue, we adopt a heuristic
approach that is not as effective (in avoiding redundant shortcuts)
but much more efficient. Specifically, for eachv∗ in the node setRi

to be removed fromGi, we generate acandidate edgeec = 〈u,w〉
from each incoming neighboru of v∗ to each outgoing neighborw
of v∗, setting the length of the shortcut tol(〈u, v∗, w〉). For any
such candidate edgeec, we insert it into a temporary fileT as two
triplets: 〈u,w, l(ec)〉 and〈w, u,−l(ec)〉.

In addition to the candidate edges, we also insert two additional
groups of edges (referred to asbaseline edges) into the temporary
file T as triplets. The first group consists of any edgee in Gi con-
necting two nodes not inRi, i.e., the two endpoints ofe are not to
be removed. The second group is generated as follows: for each
nodev not inRi, we selectv’s certain incoming neighboru′ and
outgoing neighborw′, and we construct a baseline edge〈u′, w′〉,
setting its length tol(〈u′, v, w′〉).

The purpose of inserting a baseline edgee into the temporary file
T is to help eliminate any redundant candidate edge that (i) shares
the same endpoints withe but (ii) is not shorter thane. Towards this
end, once all baseline edges are added intoT , we sort the triplets
in T using a standard algorithm for external sort, such that a triplet
t1 = 〈va, vb, l1〉 precedes another triplett2 = 〈vα, vβ , l2〉, if any
of the following conditions hold:

1. a < α, or a = α butb < β.

2. a = α, b = β, andl1 > 0 > l2. That is, any outgoing edge
of a node precedes its incoming edges.

3. a = α, b = β, l1 · l2 > 0 (i.e., t1 andt2 are both incoming
edges or both outgoing edges), and|l1| < |l2|. That is,t1
and t2 share the same starting and ending points, butt1 is
shorter thant2.

4. a = α, b = β, l1 · l2 > 0, |l1| = |l2|, andt1 is a baseline
edge whilet2 is a candidate edge.

OnceT is sorted, the outgoing (resp. incoming) edges with the
same endpoints are grouped together, and the first edge in each
group should have the smallest length within the group. If the first
edgee in a group is a candidate edge, then we retaine as it is shorter
than any other baseline or candidate edges that we have generated.
On the other hand, ife is a baseline edge, then the distance between
the endpoints ofe must not be affected by the removal of any nodes
in Ri. In that case, all candidate edges in the group can be omitted.
With one linear scan of the sortedT and the adjacency lists ofGi,
we can remove the information of any node inRi, and merge the
retained candidate edges into the adjacency lists of the remaining
nodes. We illustrate the above algorithm with an example.

EXAMPLE 3. Suppose that, given the graphGi in Figure 2a,
we are to remove a node setRi = {v2, v4} from Gi. v2 has
only one incoming neighborv1 and one outgoing neighborv3,
and l(〈v1, v2, v3〉) = 2. Accordingly, HoD generates a candidate
edge〈v1, v3〉 by inserting into the temporary fileT two triplets,
〈v1, v3, 2〉 and〈v3, v1,−2〉. Similarly, for v4, HoD creates a can-
didate edge〈v1, v5〉, which is represented as two triplets inT :
〈v1, v5, 2〉 and〈v5, v1,−2〉.

Meanwhile, the edge〈v1, v3〉 in Gi is selected as a baseline edge
and is inserted intoT , since neitherv1 norv3 is inRi. In addition,
HoD also generates a baseline edge〈v1, v5〉 from the neighbors
of v3. This is because that (i)v1, v3, v5 are not inRi, (ii) v1 is
an incoming neighbor ofv3, and (iii) v5 is an outgoing neighbor
of v3. Figure 2c illustrates the temporary fileT after all candi-
date and baseline edges are inserted, with some triplets omitted for
simplicity. Figure 2d shows the fileT after it is sorted. The base-
line edge〈v1, v3, 1〉 precedes the candidate edge〈v1, v3, 2〉, which
indicates that we do not need to add a shortcut fromv1 to v3. Sim-
ilarly, the baseline edge〈v3, v1,−1〉 precedes the candidate edge
〈v3, v1,−2〉, in which case the latter is omitted. Overall, each of
the candidate edges inT is preceded by a baseline edge, and hence,
no shortcut will be created. Consequently, HoD removes fromGi

the adjacency lists ofv2 andv4, as well as all edges to and from
v2 andv4 in any other adjacency lists. This results in the reduced
graph illustrated in Figure 2b. �

In summary, HoD decides whether a candidate edgee should
be retained, by comparing it with all edges inGi as well as some
two-hop paths inGi. This heuristic approach may retain unnec-
essary candidate edges, but it does not affect the correctness of
SSD queries. To understand this, recall that each candidateedge
e = 〈u,w〉 has the same length with a certain path〈u, v∗, w〉 that
existsin Gi, wherev∗ is the node whose removal leads to the cre-
ation ofe. In other words, the length ofe is at least larger than or
equal to the distance fromu to w. Adding such an edge intoGi

would not decrease the distance between any two nodes inGi, and
hence, retaininge does not change the results of any SSD queries.

The above discussions assume that HoD has selected a setRi

of nodes to be removed fromGi, and has decided which baseline
edges are to be generated from the neighbors of the nodes not in
Ri. We will clarify these two issues in Section 4.2 and 4.3.

4.2 Selecting Nodes for Removal
Consider any nodev in Gi. Intuitively, if the removal ofv re-

quires us to insert a large number of shortcuts intoGi, thenv may
lie on the shortest paths between many pair of nodes, in whichcase
v should be considered important. LetBin andBout be the set of
incoming and outgoing neighbors ofv, respectively. The maximum
number of shortcuts induced byv’s removal is:

s(v) =
∣

∣Bin

∣

∣ ·
∣

∣Bout \Bin

∣

∣+
∣

∣Bout

∣

∣ ·
∣

∣Bin \Bout

∣

∣. (1)

We refer tos(v) as thescoreof v in Gi, and we considerv unim-
portant if s(v) is no more than the median score inGi. (For prac-
tical efficiency, we use an approximated value of the median score
computed from a sample set of the nodes.)

Ideally, we would like to remove all unimportant nodes fromGi,
but this is not always feasible. To explain, consider that weare
given the reduced graphG1 in Figure 1b, and we aim to elimi-
nate bothv6 andv7. v6 has only one incoming neighborv9 and
one outgoing neighborv7, and hence, HoD creates one candidate
edge〈v9, v7〉, setting its length to2 (i.e., the length of the path
〈v9, v6, v7〉). Similarly, for v7, HoD generates a candidate edge
〈v6, v10〉. These two candidate edges are intended to preserve the

length = 1 candidate edge baseline edge

v1 v2

v3

v5

v4

v1, v3, ‹ 2 ›

v1, v3, ‹ 1 ›
v3, v1, ‹ ‒1›

v3, v1, ‹ ‒2›
v1, v5, ‹ 2 ›
v5, v1, ‹ ‒2›

⁞

v1, v5, ‹ 2 ›
v5, v1, ‹ ‒2›

⁞

⁞

v1, v3, ‹ 1 ›
v1, v3, ‹ 2 ›

v1, v5, ‹ 2 ›
v1, v5, ‹ 2 ›

v3, v1, ‹ ‒1›
v3, v1, ‹ ‒2›

v5, v1, ‹ ‒2›
v5, v1, ‹ ‒2›

⁞

⁞

⁞

⁞

(a) GraphGi.

v1

v3

v5

(b) v2, v4 removed. (c) Before sorting. (d) After sorting.

Figure 2: Node removal and shortcut generation.

distance between any two nodes inGi afterv6 andv7 are removed.
However, none of the two candidate edges is valid if bothv6 and
v7 are eliminated. In particular,〈v9, v7〉 points fromv9 to v7, i.e.,
it connectsv9 to a node that no longer exists. To avoid the above
error, whenever HoD chooses to delete a nodev from Gi, it will
retain all neighbors ofv in Gi, even if some neighbor might be
unimportant. For example, in Figure 1b, if HoD decides to remove
v6, then it will preventv7 from being removed at the same time,
and vice versa.

4.3 Generation of Baseline Edges
As mentioned in Section 4.1, a baseline edge generated by the

preprocessing algorithm of HoD is either (i) an edge inGi whose
endpoints are not to be removed, or (ii) an artificial edge〈u,w〉 that
corresponds to certain two-hop path〈u, v, w〉 in Gi, such that none
of u, v, w is to be removed. The construction of baseline edges
from two-hop paths is worth discussing. First, given that there ex-
ists an enormous number of two-hop paths inGi, it is prohibitive to
convert each two-hop path into a baseline edge. Therefore, we only
select a subset of the two-hop paths inGi for baseline edge genera-
tion. In particular, the total number of two-hop paths selected is set
to c ·

∑

v∈Ri
s(v), wherec is a small constant,s(v) is as defined in

Equation 1, and
∑

v∈Ri
s(v) is the total number of candidate edges

induced by the removal of nodes inRi. In other words, we require
that the number of baseline edges generated from two-hop paths is
at mostc times the number of candidate edges. In our implementa-
tion of HoD, we setc = 5.

Thosec ·
∑

v∈Ri
s(v) baseline edges are generated as follows.

First, we randomly choose an edge inGi, and arbitrarily select an
endpointv of the edge that is not inRi. (Note that such an end-
point always exists.) After that, from the incoming (resp. outgoing)
neighbors ofv, we randomly select a nodeu (resp.w), and we gen-
erate a baseline edge〈u,w〉, setting its length tol(〈u, v, w〉). As
such, if a nodev is adjacent to a large number of edges, then it has a
high chance of being selected to produce baseline edges. This is in-
tuitive since such a nodev tends to lie on the shortest paths between
many pairs of nodes, and hence, the baseline edges generatedfrom
v may be more effective in eliminating redundant shortcuts.

4.4 Termination Condition
As mentioned in Section 3, HoD requires that the core graphGc

fits in the main memory, whereGc is the reduced graph obtained in
the last iteration of HoD’s preprocessing algorithm. Accordingly,
we do not allow the pre-computation procedure of HoD to termi-
nate before the reduced graphGi has a size no more thanM . In
addition, even afterGi fits in the main memory, we will still con-
tinue the preprocessing procedure, until the size ofGi is reduced

v5

v1

v2

v3

v4 v8

v10

v7
v6

v9

length = 1

length = 2

length = 3

rank = 1

rank = 2

rank = 3

rank = 4

v5

v1

v2

v3

v4 v8

v10

v7
v6

v9

(a)Gf . (b)Gb.

Figure 3: Forward graph Gf and backward graph Gb.

by less than5% in an iteration of the processing algorithm. This is
intended to reduce the size of the core graphGc to improve query
efficiency, as will be explained in Section 5.

4.5 Index File Organization
Once the preprocessing procedure completes, the core graphGc

is written to the disk in the form of adjacency lists. Meanwhile, the
adjacency list of each node not inGc is separated into two parts
that are stored in two different files,Ff andFb. These two files
are created at the beginning of HoD’s preprocessing algorithm, and
they are initially empty. Whenever a nodev is removed from the
reduced graphGi, we inspect the adjacency list ofv in Gi, and
we append all ofv’s outgoing (resp. incoming) edges toFf (resp.
Fb). Upon termination of the preprocessing procedure, we reverse
the order of nodes inFb, but retain the order of nodes inFf . We
refer to the graph represented byFf as theforward graph, denoted
asGf . Meanwhile, we refer to the graph represented byFb as
the backward graph, denoted asGb. When combined,Gc, Gf ,
andGb form the augmented graph that is used by HoD for query
processing. For example, for the augmented graph in Figure 1a,
its core graph is as illustrated in Figure 1e, while its forward and
backward graphs are as shown in Figure 3. For ease of exposition,
we will abuse notation and useGf (resp.Gb) to refer to bothGf

(resp.Gb) and its underlying file structureFf (resp.Fb).
Gf andGb have two interesting properties. First, all nodes in

Gf (resp.Gb) are stored in ascending (resp. descending) order of
their ranks. To explain this, recall that any nodev removed in the
i-th iteration of the preprocessing algorithm has a rankr(v) = i.
Consequently, if a nodeu is stored inGf before another nodew,
thenr(u) ≤ r(w). As for Gb, since we reverse the order of all
edges inGb upon termination of the preprocessing produce, we
haver(u) ≥ r(w) for any nodeu that precedes another nodew in
Gb. Second, for any nodev, its edges inGf andGb only connect
it to the nodes whose ranks are strictly higher thanv. This is be-
cause, by the timev is removed from the reduced graph, all nodes
that rank lower thanv must have been eliminated from the reduced
graph, and hence, any edge inv’s adjacency list only linksv to the
nodes whose rank is at leastr(v). Meanwhile, any neighboru of v
in the reduced graph should have a rank higher thanr(v). Other-
wise, we haver(u) = r(v), which, by the definition of node ranks,
indicates thatu andv are removed in the same iteration of the pre-
processing algorithm. This is impossible as the pre-computation
procedure of HoD never eliminates two adjacent nodes in the same
iteration, as explained in Section 4.1. In Section 5, we willshow
how HoD exploits the above two properties ofGf andGb to effi-
ciently process SSD queries.

4.6 Cost Analysis
The preprocessing algorithm of HoD requiresO(n) main mem-

ory, wheren is the number of nodes inG. This is because (i) when
removing a nodev from the reduced graph, HoD needs to record the
neighbors ofv and exclude them from the node removal process,
and (ii)v may haveO(n) neighbors. Other parts of the preprocess-
ing algorithm do not have a significant memory requirement.

The major I/O and CPU costs of the preprocessing algorithm are
incurred by sorting the edge triplets in each iteration. In the worst
case when the input graphG is a complete graph, there areO(n2)
triplets generated in each iteration, leading to a prohibitive I/O and
CPU overhead. Fortunately, real-world graphs are seldom com-
plete graphs, and they tend to contain a large number of nodeswith
small degrees. In that case, each iteration of HoD’s preprocess-
ing procedure would only generates a moderate number of edge
triplets, leading to a relatively small overhead.

Lastly, the space consumption of HoD’s index isO(n2) since,
in the worst case, HoD may construct a shortcut from each node
v to every node that ranks higher thanv. This space complex-
ity is unfavorable, but it is comparable to the space complexity
of VC-Index [8]. In addition, as shown in our experiments, the
space requirement of HoD in practice is significantly smaller than
the worst-case bound.

5. ALGORITHM FOR SSD QUERIES
Given an SSD query from a nodes that is not in the core graph

Gc, HoD processes the query in three steps:

1. Forward Search: HoD traverses the forward graphGf start-
ing from s, and for each nodev visited, computes the dis-
tance froms to v in Gf .

2. Core Search: HoD reads the core graphGc into the main
memory, and continues the forward search by following the
outgoing edges of each node inGc.

3. Backward Search: HoD linearly scans the backward graph
Gb to derive the exact distance froms to any node not inGc.

On the other hand, ifs is inGc, then HoD would answer the query
with a core search followed by a backward search, skipping the
forward search. In what follows, we will present the detailsof three
searches performed by HoD. For convenience, we define anindex
valueθ(v) for each nodenot in the core graphGc, such thatθ(v) =
i only if the i-th adjacency list inGf belongs tov. By the wayGf

is constructed (see Section 4.5), for any two nodesu andv with
θ(u) < θ(v), the rank ofu is no larger than the rank ofv.

5.1 Forward Search
The forward search of HoD maintains a hash tableHf and a

min-heapQf . In particular,Hf maps each nodev to a keyκf (v),
which equals the length of the shortest path froms to v that is
seen so far. Initially,κf (s) = 0, andκf (v) = +∞ for any node
v 6= s. On the other hand, each entry inQf corresponds to a node
v, and the key of the entry equalsθ(v), i.e., the index ofv. As will
become evident shortly,Qf ensures that the forward search visits
nodes in ascending order of their indices, and hence, it scans the
file structure ofGf only once, without the need to backtrack to any
disk block that it has visited before.

HoD starts the forward search by inspecting each edgee = 〈s, v〉
adjacent tos in Gf , and then insertingv intoHf with a keyκ(v) =
l(e). (Note thatGf contains only outgoing edges.) In addition,
HoD also insertsv into Qf . After that, HoD iteratively removes
the top entryu in Qf , and processesu as follows: for each edge
e = 〈u, v〉 adjacent tou, if κf (v) = +∞ in the hash tableHf ,
HoD setsκf (v) = κf (u) + l(e) and insertsv into Qf ; otherwise,
HoD setsκf (v) = min{κf (v), κf (u)+ l(e)}. WhenQf becomes
empty, HoD terminates the forward search, and retains the hash
tableHf for the second step of the algorithm, i.e., the core search.

5.2 Core Search

The core search of HoD is a continuation of the forward search,
and it inherits the hash tableHf created during the forward search.
In addition toHf , HoD creates a min-heapQc, such thatQc stores
entries of the form〈v, κf (v)〉, wherev is a node andκf (v) is the
key of v in Hf . For any nodeu with κf (u) 6= +∞ (i.e., u is
visited by the forward search), HoD insertsu intoQc.

GivenHf andQc, HoD performs the core search in iterations.
In each iteration, HoD extracts the top entryv from Qc, and exam-
ines each outgoing edgee of v. For every such edge, HoD inspects
its ending pointw, and setsκf (w) = min{κf (w), κf (v) + l(e)}.
Then, HoD addsw into Qc if w is currently not inQc. This itera-
tive procedure is repeated untilQc becomes empty. After that, the
hash tableHf is sent to the last step (i.e., the backward search) for
further processing.

5.3 Backward Search
Given the hash tableHf obtained from the core search, the re-

versed search of HoD is performed as a sequential scan of the back-
ward graphGb, which stores nodes in descending order of their in-
dex values. For each nodev visited during the sequential scan, HoD
checks each edgee = 〈u, v〉 adjacent tov. (Note thatGb contains
only incoming edges). Ifκf (u) 6= +∞ andκf (u)+l(e) < κf (v),
then HoD setsκf (v) = κf (u) + l(e). Once all nodes inGb are
scanned, HoD terminates the backward search and, for each node
v, returnsκf (v) as the distance froms to v.

One interesting fact about the backward search is that it does not
require a heap to decide the order in which the nodes are visited.
This leads to a much smaller CPU cost compared with Dijkstra’s
algorithm, as it avoids all expensive heap operations.

5.4 Correctness and Complexities
Compared with Dijkstra’s algorithm, the main difference of

HoD’s query algorithm is that it visits nodes in a pre-definedorder
based on their ranks. The correctness of this approach is ensured by
the shortcuts constructed by the preprocessing algorithm of HoD.
In particular, for any two nodess andt in G, it can be proved that
the augmented graphG∗ always contains a pathP from s to t, such
that (i)P ’s length equals the distance froms to t in G, and (ii)P
can be identified by HoD with a forward search froms, followed
by a core search and a backward search. More formally, we have
the following theorem.

THEOREM 1. Given a source nodes, the SSD query algorithm
of HoD returnsdist(s, v) for each nodev ∈ G.

The proof of Theorem 1 in included in Appendix A.
The query algorithm of HoD requiresO(n+mc) main memory,

wheremc is the size of the core graph. This is due to the fact
that (i) the forward, core, and back searches of HoD all maintain a
hash table that takesO(n) space, and (ii) the core search requires
reading the core graphGc into the memory. The time complexity
of the algorithm isO(n log n+m′), wherem′ is the total number
of edges inGc, Gf , andGb. The reason is that, when processing
an SSD query, HoD may need to scanGf , Gc, andGb once, and it
may need to putO(n) nodes into a min-heap. Finally, the I/O costs
of the algorithm isO((n + m′)/B), since it requires at most one
scan ofGf , Gc, andGb.

6. EXTENSION FOR SSSP QUERIES
Given a source nodes, an SSSP query differs from an SSD query

only in that it asks for not only (i) the distance froms to any other
nodev, but also (ii) the predecessor ofv, i.e., the node that immedi-
ately precedesv on the shortest path froms tov. To extend HoD for
SSSP queries, we associate each edge〈u,w〉 in the augment graph

Table 1: Datasets.

Name |V| |E| Weighted? Directed? Size
USRN 24.9M 28.9M yes no 0.86GB

FB 58.8M 92.2M no no 2.42GB
u-BTC 16.3M 95.7M no no 1.79GB

u-UKWeb 6.9M 56.5M yes no 1.02GB
BTC 16.3M 99.4M no yes 1.98GB

Meme 53.6M 117.9M no yes 3.17GB
UKWeb 104M 3708M no yes 61.8GB

G∗ with a nodev, such thatv immediately precedesw on the short-
est path fromu tow in G. For example, given the augmented graph
in Figure 1e, we would associate the edge〈v9, v7〉 with v6, since
(i) the shortest path fromv9 to v7 in G is 〈v9, v6, v7〉, and (ii) v6
immediately precedesv7 in the path.

With the above extension, HoD processes any SSSP query from
a nodes using the algorithm for SSD query with one modification:
Whenever HoD traverses an edge〈u,w〉 and finds thatdist(s, u)+
l(〈u,w〉) < dist(s, w), HoD would not only updatedist(s, w)
but also record the node associated with〈u,w〉. That is, for each
nodew visited, HoD keeps track of the predecessor ofw in the
shortest path froms tow that have been seen so far. As such, when
the SSD query algorithm terminates, HoD can immediately return
dist(s,w) as well as the predecessor ofw.

Finally, we clarify how the preprocessing algorithm of HoD can
be extended to derive the node associated with each edge. First,
for each edgee in the original graph, HoD associatese with the
starting point ofe. After that, whenever HoD generates a candidate
edge〈u,w〉 during the removal of a nodev, HoD would associate
〈u,w〉 with the node that is associated with the edge〈v, w〉. For
example, in Figure 1c, when HoD removesv7 and creates a can-
didate edge〈v9, v10〉, it associates the edge withv7, which is the
node associated with〈v7, v10〉.

7. EXPERIMENTS
This section experimentally compares HoD with three meth-

ods: (i) VC-Index [8], the state-of-the-art approach for SSD and
SSSP queries on disk-resident graphs; (ii) EM-BFS [6], an I/O ef-
ficient method for breadth first search; and (iii) EM-Dijk [18], an
I/O efficient version of Dijkstra’s algorithm. We include EM-BFS
since, on unweighted graphs, any SSD query can be answered us-
ing breadth first search, which is generally more efficient than Dijk-
stra’s algorithm. We obtain the C++ implementations of VC-Index,
EM-BFS, and EM-Dijk from their inventors, and we implement
HoD with C++. As the implementation of VC-Index only sup-
ports SSD queries, we will focus on SSD queries instead of SSSP
queries. All of our experiments are conducted on a machine with a
2.4GHz CPU and32GB memory.

7.1 Datasets
We use five real graph datasets as follows: (i) USRN [1], which

represents the road network in the US; (ii) FB [14], a subgraph of
the Facebook friendship graph; (iii) BTC [2], a semantic graph; (iv)
Meme [16] and UKWeb [3], which are two web graphs. Among
them, only USRN and FB are undirected. Since VC-Index, EM-
BFS, and EM-Dijk are all designed for undirected graphs only, we
are indeed of more undirected datasets for experiments. Forthis
purpose, we transform BTC and UKWeb into undirected graphs,
using the same approach as in previous work (see [8] for details).
After that, for each undirected (resp. directed) graphG, we com-
pute its largest connected component (resp. weakly connected com-
ponent)C, and we useC for experiments. Table 1 illustrates the
details of the largest component obtained from each graph. In par-

Table 2: Preprocessing time (in minutes).

Method USRN FB u-BTC u-UKWeb
HoD 4.0 22.4 34.4 105.5

VC-Index 20.3 281.8 78.1 768.2

Table 3: Space Consumption (in GB).

Method USRN FB u-BTC u-UKWeb
HoD 2.5 5.1 3.8 3.3

VC-Index 4.3 8.3 1.2 14.0

Table 4: Average running time for SSD queries (in seconds).

Method USRN FB u-BTC u-UKWeb
HoD 1.8 3.2 1.6 1.4

VC-Index 27.2 94.9 10.1 70.0
EM-BFS − 465.3 395.4 −
EM-Dijk 430.7 1597.4 844.1 553.8

ticular, u-BTC and u-UKWeb are obtained from the undirectedver-
sions of BTC and UKWeb, respectively.

Remark. The previous experimental study on VC-Index [8] uses
USRN, u-BTC, and u-UKWeb instead of their largest connected
components (CC) for experiments. We do not follow this approach
as it leads to less meaningful results. To explain, considera massive
undirected graphG where each CC is small enough to fit in the
main-memory. On such a graph, even if a disk-based method can
efficiently answer SSD queries, it does not necessarily meanthat
it is more scalable than a main-memory algorithm. In particular,
one can easily answer an SSD query from any nodes in G, by
first reading into memory the CC that containss, and then running
a main-memory SSD algorithm on the CC. In general, given any
graphG, one can use an I/O efficient algorithm [21] to pre-compute
the (weakly) connected components inG, and then handle SSD
queries on each component separately.

7.2 Results on Undirected Graphs
In the first sets of experiments, we evaluate the performanceof

each method on four undirected graphs: USRN, FB, u-BTC, and u-
UKWeb. For HoD, EM-BFS, and EM-Dijk, we limit the amount of
memory available to them to1GB, which is smaller than the sizes
of all datasets. For VC-Index, we test it with2GB memory as it
cannot handle any of our datasets under a smaller memory size.

Table 2 shows the preprocessing time of HoD and VC-Index on
the four graphs. (EM-BFS and EM-Dijk are omitted as they do
not require any pre-computation.) In all cases, HoD incurs asig-
nificantly smaller overhead than VC-Index does. In particular, on
FB, the preprocessing time of HoD is more than ten times smaller
than that of VC-Index. Table 3 compares the space consumptions
of HoD and VC-Index. Except for the case of u-BTC, the space
required by VC-Index is consistently larger than that by HoD.

To evaluate the query efficiency of each method, we generate
100 SSD queries for each dataset, such that the source node of
each query is randomly selected. Table 4 shows the average run-
ning time of each approach in answering an SSD query. The query
time of HoD is at least an order of magnitude smaller than thatof
VC-Index. Meanwhile, VC-Index always outperforms EM-BFS,
which is consistent with the experimental results reportedin previ-
ous work [8]. We omit EM-BFS on USRN and u-UKWeb, since
those two graphs are weighted, for which EM-BFS cannot be used
to answer SSD queries. Finally, EM-Dijk incurs a larger query
overhead than all other methods.

In the next experiment, we demonstrate an application of HoD
for efficient graph analysis. In particular, we consider thetask of

Table 5: Estimated time for closeness computation (in hours).

Method USRN FB u-BTC u-UKWeb
HoD 0.9 2.0 1.3 2.4

VC-Index 13.2 51.8 6.1 43.1
EM-BFS − 231.1 182.2 −
EM-Dijk 203.2 793.3 389.0 240.0

Table 6: Performance of HoD on directed graphs.

Dataset Preprocessing Index Size SSD Query Time
BTC 11.4 minutes 2.1 GB 2.6 sec

Meme 1.2 minutes 2.3 GB 1.8 sec
UKWeb 9.2 hours 72.6 GB 53.7 sec

approximating theclosenessfor all nodes in a graphG, using the
algorithm by Eppstein and Wang [11]. The algorithm requiresex-
ecutingk = lnn/ǫ2 SSD queries from randomly selected source
nodes, wheren is the number of nodes inG andǫ is a parameter
that controls the approximation error. Following previouswork [8],
we setǫ = 0.1.

Table 5 shows an estimation of the time required by each method
to complete the approximation task. Specifically, we estimate the
total processing time of each method as (i) its query time in Table 4
multiplied byk, plus (ii) its preprocessing time (if any). Observe
that both EM-BFS and EM-Dijk incur prohibitive overheads – they
require more than a week to finish the approximation task. In con-
trast, HoD takes at most2.4 hours to complete the task, despite that
it pays an initial cost for pre-computation. Meanwhile, VC-Index is
significantly outperformed by HoD, and it needs around two days
to accomplish the task on FB and u-UKWeb.

7.3 Results on Directed Graphs
Our last experiments focus on the three directed graphs: BTC,

Meme, and UKWeb. We run HoD on BTC and Meme with 1GB
memory, and on UKWeb with 16GB memory, as the enormous size
of UKWeb leads to a higher memory requirement. Table 6 shows
the preprocessing and space overheads of HoD, as well as its aver-
age query time in answering100 randomly generated SSD queries
on each dataset. (We omit VC-Index, EM-BFS, and EM-Dijk as
they do not support directed graphs.) On BTC and Meme, HoD
only incurs small pre-computation costs and moderate spacecon-
sumptions. On UKWeb, the preprocessing, space, and query over-
heads of HoD are considerably higher, but are still reasonable given
that UKWeb contains30 times more edges than BTC and Meme
do. To our knowledge, this is the first result in the literature that
demonstrates practical support for SSD queries on a billion-edge
graph.

8. RELATED WORK
As mentioned in Section 1, the existing techniques for I/O-

efficient SSD and SSSP queries include VC-Index [8] and a few
methods that adopt Dijkstra’s algorithm [15, 17–20]. All ofthose
techniques are exclusively designed for undirected graphs, and they
incur significant query overheads, as is shown in our experiments.
In contrast, HoD supports both directed and undirected graphs,
and it offers high query efficiency along with small costs of pre-
computation and space.

Other than the aforementioned work, there exists large bodyof
literature on in-memory algorithms for shortest path and distance
queries (see [9, 23, 25, 26] for surveys). The majority of those al-
gorithms focus on two types of queries: (i)point-to-point shortest
path (PPSP)queries, which ask for the shortest path from one node
to another, and (ii)point-to-point distance (PPD)queries, which

ask for the length of the shortest path between two given nodes.
These two types of queries are closely related to SSD and SSSP
queries, in the sense that any SSD (resp. SSSP) query can be an-
swered using the results ofn PPD (resp. PPSP) queries, wheren
is the number of nodes in the graph. Therefore, it is possibleto
adopt a solution for PPD (resp. PPSP) queries to handle SSD (resp.
SSSP) queries. Such an adoption, however, incurs significant over-
heads, especially whenn is large. For example, the state-of-the-
art solution [4] for PPD queries requires266ns to answer a PPD
query on the USRN dataset in Section 7. (Note: the solution is
not I/O efficient and it requires25.4GB memory to handle USRN.)
If we use this solution to answer an SSD query on USRN, then
we need to execute24.5 million PPD queries, which takes roughly
266ns× 24.5 × 106 = 6.52s. In contrast, HoD requires only1.8s
to process an SSD query on USRN, using only1GB memory.

Furthermore, almost all existing solutions for PPD and PPSP
queries require that the dataset fits in the main memory during pre-
computation and/or query processing. This renders them inappli-
cable for the massive disk-resident graphs considered in this paper.
The only exception that we are aware of is a concurrent work byFu
et al. [12], who propose an I/O-efficient method calledIS-Label.
HoD and IS-Label’s preprocessing algorithms are similar inspirit,
but their index structures and query algorithms are drastically dif-
ferent, as they are designed for different types of queries.In par-
ticular, IS-Label focuses on PPD and PPSP queries, and does not
efficiently support SSD or SSSP queries.

Finally, we note that previous work [9, 13, 22] has exploitedthe
idea of augmenting graphs with shortcuts to accelerate PPD and
PPSP queries. Our adoption of shortcuts is inspired by previous
work [9, 13, 22], but it is rather non-trivial due to the factsthat
(i) we address I/O efficiency under memory-constrained environ-
ments, while previous work [9, 13, 22] focuses on main memory
algorithms; (ii) we tackle SSD and SSSP queries instead of PPD
and PPSP queries; (iii) we focus on general graphs, while pervious
work [9, 13, 22] considers only road networks (where each node is
degree-bounded).

9. CONCLUSIONS
This paper presents HoD, a practically efficient index structure

for distance queries on massive disk-resident graphs. In particu-
lar, HoD supports both directed and undirected graphs, and it ef-
ficiently handlessingle-source shortest path (SSSP) queriesand
single-source distance (SSD) queriesunder memory-constrained
environments. This contrasts the existing methods, which either
(i) require that the dataset fits in the main memory during pre-
computation and/or query processing, or (ii) support only undi-
rected graphs. With extensive experiments on a variety of real-
world graphs, we demonstrate that HoD significantly outperforms
the state of the art in terms of query efficiency, space consumption,
and pre-computation costs. For future work, we plan to investigate
how HoD can be extended to (i) support point-to-point shortest path
and distance queries and (ii) handle dynamic graphs that change
with time.

10. REFERENCES
[1]

http://www.dis.uniroma1.it/challenge9/download.shtml.
[2] http://vmlion25.deri.ie/.
[3]

http://barcelona.research.yahoo.net/webspam/datasets/uk2007/links/.
[4] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F.

Werneck. A hub-based labeling algorithm for shortest paths
in road networks. InSEA, pages 230–241, 2011.

[5] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast
estimation of diameter and shortest paths (without matrix
multiplication).SIAM J. Comput., 28(4):1167–1181, 1999.

[6] D. Ajwani, R. Dementiev, and U. Meyer. A computational
study of external-memory bfs algorithms. InSODA, pages
601–610, 2006.

[7] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail.
Approximating betweenness centrality. InWAW, pages
124–137, 2007.

[8] J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing
of distance queries in large graphs: a vertex cover approach.
In SIGMOD, pages 457–468, 2012.

[9] D. Delling, P. Sanders, D. Schultes, and D. Wagner.
Engineering route planning algorithms. InAlgorithmics of
Large and Complex Networks, pages 117–139, 2009.

[10] E. W. Dijkstra. A note on two problems in connection with
graphs.Numerical Mathematics, 1:269–271, 1959.

[11] D. Eppstein and J. Wang. Fast approximation of centrality. J.
Graph Algorithms Appl., 8:39–45, 2004.

[12] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong. Is-label:
an independent-set based labeling scheme for point-to-point
distance querying on large graphs.PVLDB.

[13] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. InWEA, pages 319–333, 2008.

[14] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou.
Walking in facebook: A case study of unbiased sampling of
osns. InINFOCOM, pages 2498–2506, 2010.

[15] V. Kumar and E. J. Schwabe. Improved algorithms and data
structures for solving graph problems in external memory. In
SPDP, pages 169–176, 1996.

[16] J. Leskovec, L. Backstrom, J. M. Kleinberg, and J. M.
Kleinberg. Meme-tracking and the dynamics of the news
cycle. InKDD, pages 497–506, 2009.

[17] U. Meyer. Via detours to i/o-efficient shortest paths. In
Efficient Algorithms, pages 219–232, 2009.

[18] U. Meyer and V. Osipov. Design and implementation of a
practical i/o-efficient shortest paths algorithm. InALENEX,
pages 85–96, 2009.

[19] U. Meyer and N. Zeh. I/o-efficient undirected shortest paths.
In ESA, pages 434–445, 2003.

[20] U. Meyer and N. Zeh. I/o-efficient shortest path algorithms
for undirected graphs with random or bounded edge lengths.
ACM Transactions on Algorithms, 8(3):22, 2012.

[21] K. Munagala and A. G. Ranade. I/o-complexity of graph
algorithms. InSODA, pages 687–694, 1999.

[22] P. Sanders and D. Schultes. Highway hierarchies hasten
exact shortest path queries. InESA, pages 568–579, 2005.

[23] C. Sommer. Shortest-path queries in static networks, 2012.
http://www.shortestpaths.org/spq-survey.pdf.

[24] F. W. Takes and W. A. Kosters. Determining the diameter of
small world networks. InCIKM, pages 1191–1196, 2011.

[25] Y. Tao, C. Sheng, and J. Pei. On k-skip shortest paths. In
SIGMOD, pages 421–432, 2011.

[26] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou.
Shortest path and distance queries on road networks:
Towards bridging theory and practice. InSIGMOD, 2013.

APPENDIX

A. PROOF OF THEOREM 1

http://www.dis.uniroma1.it/challenge9/download.shtml
http://vmlion25.deri.ie/
http://barcelona.research.yahoo.net/webspam/datasets/uk2007/links/
http://www.shortestpaths.org/spq-survey.pdf

Our proof of Theorem 1 utilizes the concepts ofrank sequences
andarch paths, defined as follows.

DEFINITION 1 (RANK SEQUENCE ANDARCH PATH). Let
P ∗ be a path in the augmented graphG∗ of HoD, such thatP ∗

containsk nodes. Therank sequence of P ∗ is a sequence of
integers〈r1, r2, . . . , rk〉, such thatri (i ∈ [1, k]) equals the rank
of the i-th node inP ∗. P ∗ is an arch path, if its rank sequence
can be divided into three subsequences〈r1, . . . , rx〉, 〈rx, . . . , ry〉,
and〈ry, . . . , rk〉, such that

1. r1 < r2 < . . . < rx, and

2. rx = rx+1 = . . . = ry, and

3. ry > ry+1 > . . . > rk. �

For instance, consider the pathP ∗ = 〈v1, v9, v10, v8, v4〉 in Fig-
ure 1e. The path’s rank sequence is〈1, 4, 4, 3, 2〉. This rank se-
quence can be divided into three subsequences〈1, 4〉, 〈4, 4〉, and
〈4, 3, 2〉. By Definition 1,P ∗ is an arch path.

Let s andt be any two nodes in the original graphG, andP be
the shortest path froms to t in G. If there exist multiple shortest
paths froms to t, we chooseP to be a path where the highest-rank
node ranks no lower than any other node on any other shortest path
from s to t. In the following, we will prove three propositions:

• Proposition 1: For any pathP ∗ from s to t in the augmented
graphG∗, its length is no shorter thanP ’s.

• Proposition 2: There exists an arch pathP ◦ in G∗, such that
l(P ◦) = l(P), i.e.,P ◦ andP have the same length.

• Proposition 3: When HoD’s answers an SSD query froms,
it will traverse a path no longer thanP ◦.

The combination of the above three propositions will establish The-
orem 1.

Proof of Proposition 1. If all edges inP ∗ appear in the original
graphG, the proposition trivially holds since any path froms to t in
G should be no shorter thanP . In the following, we consider only
the case whenP ′ contains at least one shortcut, and we will prove
that there exists a pathP ′ in G, such thatl(P ∗) = l(P ′) ≥ l(P).

Assume without loss of generality thatP ∗ consists of a sequence
of k nodes〈v1, v2, . . . , vk〉, wherev1 = s andvk = t. Further
assume that〈vi, vi+1〉 (i ∈ [1, k]) is a shortcut. By the prepro-
cessing algorithm of HoD, this shortcut must be constructedwhen
HoD removes a certain nodev from the reduced graph, such that
vi and vi+1 are incoming and outgoing neighbors ofv, respec-
tively. This indicates that the augmented graphG∗ must contain
two edges〈vi, v〉 and〈v, vi+1〉, such that their total length equals
l(〈vi, vi+1〉). Given those two edges, we changeP ∗ by replacing
〈vi, vi+1〉 with a two-hop path〈vi, v, vi+1〉. This results in a modi-
fied path froms to t in G∗ that has the same length with the original
P ∗.

If the modifiedP ∗ does not contain any shortcut, then it is a
path inG, and hence,l(P ∗) ≥ l(P). On the other hand, if the
modifiedP ∗ contains any shortcut, then we can replace the shortcut
with a two-hop path inG∗, as in the previous case for the shortcut
〈vi, vi+1〉. By recursively applying this replacement procedure on
the shortcuts inP ∗, we can transformP ∗ into a pathP ′ that (i)
goes froms to t, (ii) contains only edges inG, and (iii) has the
same length withP ∗. Given thatP is the shortest path froms to t
in G, we havel(P) ≤ l(P ′) = l(P ∗), which completes the proof.

Proof of Proposition 2. The proposition trivially holds ifP itself
is an arch path inG∗. In the following, we assume thatP is not an
arch path, and we show thatP can be transformed into a arch path
P ◦ in G∗ with the same length.

Let rmax be the highest rank of the nodes inP . Let vx andvy
be the first and last nodes inP whose ranks equalrmax. We divide
P into three subsequencesP1, P2, andP3, such that

1. P1 is the sequence of nodes inP beforevx (includingvx).

2. P2 is the sequence of nodes inP betweenvx andvy (includ-
ing vx andvy).

3. P3 is the sequence of nodes inP aftervy (includingvy).

Let us first considerP1. We say that a nodev in P1 is pit, if v
ranks no higher than the node that immediately precedesv in P1.
Among the pits inP1, let v′ be one with the lowest rank. Letu
(resp.w) be the node that immediately precedes (resp. follows)v′

in P1. By the preprocessing algorithm of HoD, when HoD removes
v′ from the reduce graph, it would generate a candidate edgee1 =
〈u,w〉, such that the edge has the same length with the two-hop
path〈u, v′, w〉. If e1 is in G∗ (i.e., it is retained by HoD during
preprocessing), then we transformP1 into another path inG∗, by
usinge1 to replace the two-hop path〈u, v′, w〉 in P1. The resulting
path has the same length withP1, and it has one less pits thanP1.

On the other hand, ife1 is not inG∗, there are two possibilities:

1. There already exists an edgee2 = 〈u, w〉 in the reduced
graph, such thatl(e2) = l(e1). (Note thatl(e2) < l(e1)
is impossible given Proposition 1 and the fact thatP1 is the
shortest path froms to vx in G.) In that case,e2 must appear
in G∗. Therefore, if we modifyP1 by usinge2 to replace the
two-hop path〈u, v′, w〉 in P1, we can still obtain a modified
path that retains the length ofP1 but contains one less pits.

2. There exists a two-hop path〈u, v⋄, w〉 in the reduced graph,
such that (i)l(e3) = l(e1), and (ii)v⋄ has a higher rank than
v′. (Note thatl(e3) < l(e1) cannot occur due to Proposition
1 and the fact thatP1 is the shortest path froms to vx in G.)
In that case, we transformP1 by replacingv′ with v⋄. This
may not decrease the number of pits inP1, but it retains the
length ofP1 and replaces a node inP1 with a higher rank
node.

In summary, the above transformation procedure preserves the
length ofP1, and it either (i) reduces the number of pits inP1 or
(ii) substitute a node inP1 with a higher-rank node. Given that the
ranks of nodes are bounded, if we recursively apply the procedure
on the lowest-rank pit inP1, eventually we should obtain a path
P ∗

1 in G∗ without any pit, such that (i)l(P ∗

1) = l(P1), and (ii)P ∗

1

starts ats and ends atvx. In that case, the rank sequence ofP ∗

1

must be an ascending sequence.
Now considerP2 andP3. We say that a node inP2 is a pit if

its rank is smaller thanrmax, and we define a nodev in P3 as a
pit if v ranks no higher than the node that immediately followsv
in P3. By applying the same transformation procedure as in the
case ofP1, we can convertP2 andP3 into two pathsP ∗

2 andP ∗

3

in G∗, such that (i)P ∗

2 andP ∗

3 have no pit, (ii)l(P ∗

2) = l(P2)
and l(P ∗

3) = l(P3), (iii) P ∗

2 starts atvx and ends atvy , and (iii)
P ∗

3 starts atvy and ends att. It can be verified that all nodes in
P ∗

2 should have a rankrmax, andP ∗

3 ’s rank sequence should be a
descending sequence.

Let P ◦ be a path inG∗ obtained by concatenatingP ∗

1 , P ∗

2 , and
P ∗

3 . By Definition 1,P ◦ is an arch path, which completes the proof.

Proof of Proposition 3. Let vx, vy, P ◦, P ∗

1 , P ∗

2 , andP ∗

3 be as
defined in the proof of Proposition 2. Without loss of generality,
assume that each ofP ∗

1 , P ∗

2 , andP ∗

3 contains at least two nodes.
We will prove the proposition by showing that, given an SSD query
from s, the query processing algorithm of HoD will traverse (i) a

path froms to vx that is no longer thanP ∗

1 , (ii) a path fromvx to
vy that is no longer thanP ∗

2 , and (iii) a path fromvy to t that is no
longer thanP ∗

3 .
Recall that HoD’s query algorithm consists of three phases:a

forward search in the forward graphGf , followed by a core search
in the core graphGc, and finally a backward search in the backward
graphGb. The forward search is a variant of Dijkstra’s algorithm
that follows only the outgoing edges whose endpoints rank higher
than the starting points. Since the rank sequence ofP ∗

1 is in as-
cending order,P ∗

1 should be in the search space of the forward
search. Furthermore, by Proposition 1 and the constructionof P ∗

1 ,
Gf does not contain any path froms to vx that is shorter thanP ∗

1 .
Therefore, when the forward search terminates, HoD should either
identify P ∗

1 as the shortest path froms to vx in Gf , or identify an-
other path froms to vx that is no longer thanP ∗

1 . In either case,
HoD will correctly derivedist(s, vx), i.e., the distance froms to
vx in G.

Now considerP ∗

2 , where each node has the same rank. By the
preprocessing algorithm of HoD, all nodes inP ∗

2 must be in the
core graphGc, since any node not in the core graph can only have
outgoing edges to higher-rank nodes (see Section 4). Meanwhile,
recall that the core search of HoD is a continuation of the forward
search inGc, using Dijkstra’s algorithm. By the correctness of

Dijkstra’s algorithm and the fact thatP ∗

2 is the shortest path from
vx to vy in Gc, the core search of HoD should traverse a path from
vx to vy that is no longer thanP ∗

2 .
It remains to prove that HoD’s backward search will traverseP ∗

3 .
Assume without loss of generality thatP ∗

3 contains a sequence of
k nodes〈v1, v2, . . . , vk, wherev1 = vx and vk = t. Recall
that the backward search of HoD examines nodes in descending
order of their ranks. SinceP ∗

3 has a descending rank sequence, the
backward search of HoD should examinevi beforevi+1, for any
i ∈ [1, k − 1].

We will prove by induction that, for anyvi (i ∈ [1, k]), the back-
ward search can correctly derivedist(s, vi). First, given thatP ∗

1

andP ∗

2 have been traversed by HoD before the backward search,
HoD should be able to compute the precise value ofdist(s, v1)
when after it visitsv1. Now assume that, after examiningvj
(j ∈ [1, k − 1]), HoD correctly calculatesdist(s, vj). Then, when
HoD inspectsvj+1, it would identifydist(s, vj)+ l(〈vj , vj+1〉) as
the length of a path froms to vj+1. Given thatP ∗

1 is a shortest path
from s to t in G∗ and thatvj+1 immediately followsvj onP ∗

1 , we
havedist(s, vj+1) = dist(s, vj) + l(〈vj , vj+1〉). This indicates
that HoD will correctly derivedist(s, vj+1), which completes the
proof.

	1 Introduction
	2 Problem Definition
	3 Solution Overview
	3.1 Shortcut Construction
	3.2 Query Processing

	4 Index Construction
	4.1 Node Removal and Shortcut Generation
	4.2 Selecting Nodes for Removal
	4.3 Generation of Baseline Edges
	4.4 Termination Condition
	4.5 Index File Organization
	4.6 Cost Analysis

	5 Algorithm for SSD Queries
	5.1 Forward Search
	5.2 Core Search
	5.3 Backward Search
	5.4 Correctness and Complexities

	6 Extension for SSSP Queries
	7 Experiments
	7.1 Datasets
	7.2 Results on Undirected Graphs
	7.3 Results on Directed Graphs

	8 Related Work
	9 Conclusions
	10 References
	A Proof of Theorem 1

