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ABSTRACT

Spontaneous devaluation in preferences is ubiquitous, where
yesterday’s hit is today’s affliction. Despite technological
advances facilitating access to a wide range of media com-
modities, finding engaging content is a major enterprise with
few principled solutions. Systems tracking spontaneous de-
valuation in user preferences can allow prediction of the on-
set of boredom in users potentially catering to their changed
needs. In this work, we study the music listening histories
of Last.fm users focusing on the changes in their preferences
based on their choices for different artists at different points
in time. A hazard function, commonly used in statistics
for survival analysis, is used to capture the rate at which
a user returns to an artist as a function of exposure to the
artist. The analysis provides the first evidence of sponta-
neous devaluation in preferences of music listeners. Better
understanding of the temporal dynamics of this phenomenon
can inform solutions to the similarity-diversity dilemma of
recommender systems.

Categories and Subject Descriptors

28 [User Modeling]: Dynamic Preferences
; 18 [Recommendation Systems]: Temporal Models

General Terms

Simulations, Exploratory Analysis

Keywords

User Behavior Modeling, Dynamic Preferences, Recommender
Systems
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1. INTRODUCTION
Recommendation systems have become a popular means

of suggesting relevant content to the user. Methods in rec-
ommendations have focused on constructing estimates of
user preferences based on their history of choices. These
preference estimates are then used to suggest new content to
the user. But it is not sufficient for a recommender agent to
only estimate a user’s past preferences; it’s also important
to predict future preferences given past experiences. This
places an additional challenge on the recommender to pre-
dict when and how a user’s preferences will change in the
future. The recommendations community, however, lacks
models which can predict changing preferences of users and
doing so is generally accepted as a hard problem. Exist-
ing recommendation systems avoid confronting this problem
by systematically emphasizing recency as the criterion for
making further recommendations, assuming that user pref-
erences remain static (‘sticky’) over the short-term. The
critical shortcoming of this formulation is that such a sys-
tem merely reacts to preference changes rather than trying
to predict them.
While little work has been done on predicting changes in

user preferences in the recommendation literature, psychol-
ogists and behaviorists have long studied the dynamics of
individual preferences. Several theories have been proposed
to explain why individuals seek out new content (novelty
seeking, exploratory and information seeking behavior) [2].
Other studies talk about individuals making choices to ac-
tively seek an optimal level of stimulation in their environ-
ment [21]. The theory of flow [20] suggests that an envi-
ronment which provides an optimal level of challenge for a
given level of skill leads to a desirable state of flow. Despite
such theoretical developments, it has been difficult to op-
erationalize these aspects of individual choices to solve real
world problems. However, modeling properties of individ-
ual behavior is critical for advancing designs of automated
agents which interact with individuals on a daily basis.
In this work, we study one aspect of dynamic individ-

ual preferences. Individuals are often found to develop dis-
interest and even dislike for their dearly preferred content
both temporarily and lastingly. It’s common to find that
one’s clothes, food, entertainment, jobs etc. have grown



boring despite being enjoyable in the past. We call this phe-
nomenon a spontaneous devaluation of one’s preferences or
boredom for a stimulus. Spontaneous devaluation is seen to
arise when repeated exposure to a stimulus creates a feel-
ing of satiation towards it leading to a loss in interest [7].
Alternatively, spontaneous devaluation has been linked to
lost opportunity for novel experiences when similar experi-
ences are repeated too often [18]. Both theories concur in
suggesting that, in contrast to recency-based expectations,
repeated exposure to familiar choices spontaneously devalues
one’s preference for them.

Human behavior driven by these dynamics could be mod-
eled as randomly alternating between one’s set of choices,
assuming that the time spent in experiencing other stimuli
is sufficient to mitigate the effects of boredom for a par-
ticular stimulus. Several studies on user purchase behavior
have found buyers to alternate among their preferred alter-
natives. However, in practice user has a non-uniform lik-
ing for different alternatives in their choice space. Further-
more, users have a pronounced tendency to stick to their
recent choices [11]. This phenomenon has been called rein-
forcement, inertial or ‘sticky’ behavior. Sticky behavior in
individuals has been responsible for the success of the pre-
viously proposed recommender models. Such behavior can
be explained to arise due to an actual increase in liking on
exposure [9] or a tendency to avoid switching costs.

The presence both of stickiness and devaluation effects in
user preferences make predicting the temporal choices of a
user non-trivial. In this paper, we analyze user music listen-
ing behavior to extract signals of stickiness and boredom.
We demonstrate the use of hazard functions for measuring
these phenomena. Our work provides the first proof of spon-
taneous devaluation in music listening preferences of users
and its impact on user choices. This work can inform design
of future methods that incorporate these dynamics, produc-
ing agents that can cater to new needs of users suffering
from boredom.

The rest of the paper is organized as follows: Section 2
provides a summary of the related work. Section 3 gives
an overview of the dataset and pre-processing details. Sec-
tion 4 lays out terminology relevant to our analysis. Sec-
tion 5 provides details of our methodology. Our results are
summarized in Section 6. We end with a discussion of the
contributions of this work and possible future extensions in
Section 7.

2. RELATED WORK

2.1 Dynamic Preferences
Stimulus satiation was initially used by researchers to ex-

plain spontaneous alternation in rats [7]. Rats were placed
in a T-shaped maze and provided an unlimited supply of
food at the left and the right corners of the maze at equal
distances. The experiment was set up such that that the
rat had to return to the starting point before each trial. It
was seen that rats chose to alternate between the left and
the right ends on repeated trials.Glanzer [10] suggested that
such a behavior arose due to stimulus satiation such that
each time the organism was exposed to the stimulus, satia-
tion for the stimulus increased causing the rat to switch di-
rections. Further, satiation for the stimuli diminished when
the organism could no longer perceive the stimulus and the
rat returned back to the same direction.

Researchers have found individuals to engage in more com-
plex forms of variety seeking behavior while making choices.
McAlister proposed a taxonomy of factors responsible for
varied behavior in individuals [18]. These were classified
into two categories based on whether they arose due to ex-
ternal factors (such as unavailability of a product, launch of
new products etc.) or due to internal motivations. When
arising out of internal motivations, variety seeing behavior
was suggested to manifest in two forms; a desire for unfa-
miliar alternatives or a desire to alternate among familiar
alternatives. The former was linked to individuals seeking
an optimal level of stimulation [2, 21], while, the latter was
seen as a weak form of exploratory behavior. It was also
linked to devaluation in preferences due to satiation. A sin-
gle peaked preference function was proposed to characterize
the attractiveness of a stimulus on repeated exposure [6].
McAlister also [17] proposed a dynamic attribute satiation
model which assumed an ideal level of inventory for differ-
ent attributes of the items. The inventory was designed to
dwindle over time to incorporate the effects of forgetting.
Researchers have subsequently focused on modeling the choice
probabilities of consumers directly given their past choices.
Consumers were found to exhibit either a short term loy-
alty for their last purchased brand (inertia) or devaluation
for the last purchased brand (variety seeking) [11, 9]. Kahn
[12] compared seven models for user choice behavior with
similar results. Bawa et al [1] used a single peaked func-
tion, to model the conditional probability of repeat purchase
given the number of times the brand was re-purchased since
user’s last switch (run length). Chintagunta [5] used hazard
rates to model the level of inertia and variety seeking as a
function of time between purchases. Recent efforts have ex-
panded these models to incorporate heterogeneities between
consumers and external environment variable affecting user
choices [13]. Most of the research in this area, however, has
been limited to panel datasets and analysis of user surveys
and questionnaires.

2.2 Recommender Systems
State-of-the-art methods in recommender systems have

assumed a static view of human preferences.Ding et al [8]
showed that the static view of user preferences used while
generating recommendations was flawed as it did not take
changing user interests into account. They used a decay
function to gradually devalue the impact of a user’s past
history while making prediction of his future likings. [15,
14] proposed a temporal model of recommendation which
was an important part of the solution to the KDD Cup on
Yahoo Music dataset and the Netflix challenge. They in-
corporated several time-sensitive user and item biases in his
factor model. Gradual changes in user preferences over time
were captured using a linear function. Their model showed
that modeling temporal dynamics in user choices was essen-
tial for improving the performance of the recommender. Re-
cently, Sahoo [22] proposed a dynamic model of blog reading
behavior in employees. They use a Hidden Markov Model to
predict future interests of employees based on their previous
choices. However, user transitions are assumed to be driven
by a static transition matrix. t present, the recommenda-
tion community lacks models that predict changes in user
preferences.
Also related to our work are methods to introduce di-

versity and novelty in recommendations. Lathia et al [16]





impact of actual clock time on the satiation level, we define
time in terms of days since the first historical record of the
user. Accordingly, Hu(t) refers to the state of the user on
t-th day since day 1. For simplicity, the state of the user on
a day is defined by the artist listened to most frequently by
him on that day.

5. METHODOLOGY
Survival Analysis is a statistical method commonly used

for modeling time-to-event data. The purpose of this kind
of analysis is to model the probability of survival (where
the occurrence of the event corresponds to death) beyond
a certain point in time. For simplicity, we use a discrete
measures of time t ∈ N. The survivor function at time t is
defined as:

S(t) = P (T > t) (1)

Where, T is a random variable denoting the time of death.
The instantaneous rate of occurrence of the event at time
t, conditioned on having survived up to time t, is captured
using the hazard function. The hazard function is also called
the conditional failure rate and is defined as:

λ(t) = lim
∆t→0|

P (t ≥ T < t+∆t)/T ≥ t)

∆t
= −S′(t)/S(t)

(2)
We use the hazard rate function to compute the exit and en-
try conditional probabilities defined in the previous section.
We set ∆t = 1. This allows us to use the terms hazard
rate and conditional probability of death interchangeably.
We can construct the two different hazard curves based on
how we define our events.

1. Exit Hazard Rate: Here, we measure time from the
point when a user u entered a state a. The event cor-
responds to his ‘exit’ from the state. The random vari-
able Tua

exit denotes the time of exit or death. This haz-
ard rate captures the conditional probability of exiting
the state at time t+1 having survived in the state for
time t or greater; λua

exit(t) = Pua(Tua
exit = t/Tua

exit ≥ t).

2. Entry Hazard Rate: Here, we measure time from
the point when a user u exited a state a. The event
corresponds to his ‘entry’ back into the state. The ran-
dom variable Tua

entry denotes the time of entry or death.
This hazard rate captures the conditional probability
of entering a state at time t having survived outside
the state for time t or greater;
λua
entry(t) = Pua(Tua

entry = t/Tua
entry ≥ t).

An exit and entry hazard rate can be defined for each artist
a user listens to. For our analysis, we pool across the differ-
ent users and the artist choices to compute an average exit
and entry hazard rate for the entire dataset. We normalize
the time of entry and exit variables to mitigate the effects of
differences in preferences for different artists of a user and
differences across users. The time of event variable is log
transformed as well as it becomes harder to exactly predict
time of an event as time for which the event has not hap-
pened increases. In other words, this means that if a user
has not returned to an artist in a month, its more difficult
to predict the exact day of his return, than, when he has
has not returned to the artist for a day. The log transform
accommodates this non-linearity in predictability of return

time.

TN
entry =

log2(T
ua
i )

log2(
1

Pu(a))

(3)

for a user u and artist a. Pu(a) is the prior probability
of user u being in state a. We discretize t into intervals
(0, 0.1], (0.1, 0.2] and so on.

Pu(a) =
Nu(a)

Lu
(4)

where, Nu(a) is the number of times user u was in state a
and Lu is the length of user u’s history. The average hazard
rates for the normalized time of event variable can then be
computed across users and artists:

λi(t) = P (TN
i = t/TN

i ≥ t) (5)

Here, i ∈ {‘entry′, ‘exit′}. The hypothesis presented by us
in section 4 can now be represented using the hazard rates.

1. Hypothesis 1 The exit hazard rate for an artist should
be an increasing function of time. This indicates that a
user’s preferences for an artist decrease with increased
exposure to the artist.

2. Hypothesis 2 The entry hazard rate for an artist
should be an increasing function of time. This indi-
cates that user preferences for the artist are reinstated
after sufficient time gap.

The sticky or inertial view of user choices, on the other hand,
suggest that a user’s probability of visiting a state would in-
crease on having visited it. Contrary to the devaluation hy-
pothesis, the conditional probability of visiting a state again
would increase as time spent in the state increases. This im-
plies that the exit hazard rate for an artist is a decreasing
function of time for sticky users. The entry hazard rate,
would also be a decreasing function of time as a user would
be less likely to visit a state which they has not visited for
long periods of time.
A common analysis methodology is to compare the hazard

rate of interest in an analysis with that generated from a
control experiment. This is done to remove the effects of
covariates not being considered in the analysis. We define
four baseline models to serve as controls. We constructed
listening sequences by simulating user histories using each
of the baseline models for every user. The user histories
were simulated by sampling randomly from the temporal
preference vector (Pref) generated by each of the model. In
order to make the baseline models as close to the real data
as possible, the parameters of the models were fitted to the
actual user histories.

1. Random (R) The user is assumed to sample states
randomly from his average preference vector (Pu).
Prefu(t) = Pu

2. 1st order Markov (M1) A user’s switching proba-
bility from one state to the other is assumed to be con-
trolled by a 1st order Markov model. The dynamics of
the Markov model are controlled by a static transition
matrix (Tu) which is learnt for each user u’s history
using maximum likelihood estimation. Prefu(t) =
Prefu(t− 1) ∗ Tu



(a)Expected hazard rate for a sticky and boredom-prone user (b)Expected hazard rates for the baseline models

(c)Expected ∆ Hazard Rates for sticky users (d)Expected ∆ Hazard Rates for boredom-prone users

Figure 1: Figure (a) and (b) depicts the expected hazard rates for sticky and boredom-prone users and the
baseline models. Both the entry and exit hazard rates should decrease with time for sticky users and increase
with time for uses susceptible to boredom. Figure (c) and (d) shows the expected ∆ hazard rates computed
against each baseline model for sticky and boredom-prone users.

3. Time weighted (TW)We use a recency based model
for generating user histories. Pref(t) = αu∗Prefu(t−
1) + cu(t− 1), where, cu(t− 1) is 1 ∗ |A| choice vector,
which is set to 1 at index i if Hu(t− 1) = si, and is 0
otherwise. The parameter αu is a |A|*1 vector which
was fit to the user u’s history using stochastic gradient
descent. We introduced a small exploratory compo-
nent to this model to prevent extremely long lengths of
continuous listening of the same artist. Therefore, our
modified preference vector is computed as Pref ′(t) =
0.95 ∗ Prefu(t) + 0.05 ∗ Pu

4. Linearly increasing or decreasing (L)We used the
temporal model of user preference used by Koren [14].

Prefu(t) = Pu + sign(t − Lu/2) ∗ (t − L/2)β
u

. The
parameter βu is a |A|*1 vector and was fitted to the
user u’s history using stochastic gradient descent.

The Log-Rank test can be used to test whether the survival
distributions generated by the simulated models are suffi-
ciently different from that of the real data. The hypothesis
test is defined as: Ho: The real data and the simulated data
have different survivor function Ha: The real data and the
simulated data have the same survivor function The Log-
Rank test on the real and the simulated survival functions
rejects the null hypothesis with a p-value < 10−6. The dis-
crepancy between the real data and ‘sticky’ baseline model
predictions can be quantified using a ∆ hazard rate obtained
by subtracting the simulated hazard rates from the hazard
rates computed on real data.

λ∆(t) = −
S′real(t)

Sreal(t)
− −

S′(simulated)(t)

S(simulated)(t)
(6)

We generate four ∆ hazard rates for both the entry and



exit time events for our analysis, namely real vs. random
(λA−R

i ) , real vs. Markov (λA−M1
i ), real vs. time weighted

(λA−TW
i ) and real vs. linear (λA−L

i ), where i ∈ {‘entry′, ‘exit′}.
We display the entry and exit hazard rates expected for

the event times obtained from the ‘sticky’ and ‘boredom-
prone’ models and those expected from the baseline mod-
els in Figure 1. The entry and the exit hazard rates for
a random, markovian and linear model should be indepen-
dent of time spent in the state. A TW model on the other
hand, is essentially a sticky model. Hence, the exit and en-
try hazard rates for TW model would decrease with time.
Figure 1 displays the expected ∆ hazard rates for a sticky
and boredom-prone model, respectively.

6. RESULTS
In this section we examine the obtained ∆ exit and entry

hazard rates in close detail.

6.1 ∆ Exit Hazard Rates
Figure 5 displays the survivor functions for the exit time

for the real data and data generated by each simulated
model. It also depicts the obtained ∆ exit hazard rates.
The changes in λA−R

exit , λA−M1
exit and λA−L

exit , directly represent

changes in the λexit for the real data. Changes in λA−TW
exit

would depict changes in the exit hazard rate for real data
against a decreasing baseline.

1. Real Vs.Random, Markov and Linear models: The
λA−R
exit and λA−M1

exit are negative throughout suggesting
that the exit rate for the real data is lower than that
expected for the baseline models. This supports the
sticky view of user preferences suggesting that a user
has a lower rate of exiting a state after having visited
it. However, contrary to what is expected for the sticky
model, the differential exit hazard rate increases with
time after a point. We expect the differential hazard
rate to eventually flatten out, becoming uninforma-
tive. The survival function for R, M1 and L models
drops sharply indicating a lower probability for large
sequences than those observed in the real data. The
L model has the sharpest drop in survival probabil-
ity, such that we did not enough samples of exit times
greater than 0.1.

2. Real vs. Time-Weighted model: λA−TW
exit is negative

for low values of t, suggesting larger stickiness in users
than generated by the TWmodel. However, the ∆ exit
rate increases thereafter, becoming positive after some
time. Since, the exit hazard rate for the TW model is
expected to decrease with time, this suggests that the
exit hazard rate for real data increases more than the
decrease observed in the TW model.

From these observations we can conclude that users have
high stickiness towards the state on entering the state. How-
ever, the stickiness for a state reduces with time and the dy-
namics driven by boredom start dominating as time spent
in the state increases. A user is thus likely to stick to his
previous state at a higher rate initially and a decreased rate
as time in the state increases.

6.2 ∆ Entry Hazard Rates
Figure 5 displays the survivor functions computed for the

entry time variable for real and simulated data and the ob-
tained ∆ entry hazard rates. Similar to the ∆ exit hazard

rates, the changes in λA−R
entry , λA−M1

entry and λA−L
entry functions

would depict changes in the entry hazard rate for the actual
data. The TW model is expected to have a declining entry
hazard rate, being a sticky model. The changes in λA−TW

entry

should reflect changes in the entry hazard rate for the real
data against a decreasing baseline.

1. Real Vs.Random, Markov and Linear models: The
λA−R
entry , λA−M1

entry and λA−L
entry functions are positive ini-

tially suggesting that the users have a higher rate of
entry than that expected from the baseline models.
This again can be attributed to the sticky nature of
user choices, such that users have a high rate of return-
ing to the artists they had listened to recently. The ∆
hazard rates decrease for intermediate values of t sug-
gesting a prominent devaluation in preferences. The
∆ hazard rates eventually increase for larger values of
t. However, they do not cross the 0-line again suggest-
ing that a user always has a lower rate of return than
that generated by the baseline models. This can be
attributed to fading of an artist from a user’s memory
when he has not been sampled for a long time.

2. Real vs. Time-Weighted model: The λA−TW
diff, entry func-

tion is slightly negative at the beginning suggesting
that the actual entry hazard rate is lower than that
of a TW model. Our TW model is seen to pull back
users which have just left an artist at a higher rate
than observed in real data. The hazard rate increases
thereafter indicating the actual data seems to have a
larger rate of return than that of the TW model.

The analysis on the ∆ entry hazard rates reveals aspects
of sticky behavior in users which produces quick switches
in and out of the artist. Also, we find indicators of deval-
ued preference for intermediate values of time spent out of
the state. Preferences are reinstated after longer periods of
time spent away from the artist, however, the rate of return
eventually flattens out becoming uninformative.

6.3 Previous Return Time
In our previous analyses, we found evidence suggesting

that users quickly switch in and out of an artist in a short
span of time. Such a characteristic of user temporal choices
suggest that a user’s level of exposure to an artist is not com-
pletely defined by the ‘in time’. A user who has just switched
out of the artist and has switched back in almost immedi-
ately after, somewhat continues to be in state a. Therefore,
we suspect that the previous return time (PRT) TN,P

entry also
indicates how much a user has been exposed to the artist
recently. A low PRT indicates higher exposure to the artist
than a larger PRT. A corollary to hypothesis 1 in terms of
the TN,P

entry for the artist follows:

Corollary 1’ The probability that a user listens to an
artist again will depend on his PRT to the artist. We suspect
that of if the user has returned to the artist quite quickly
previously, he will have a lower rate of returning quickly to
the artist in the future.

In order to test this hypothesis we generate two condi-
tional entry hazard rates.

1. λLP
entry Entry Hazard Rate given a low PRT, TN,P

entry < 1



(a) Kaplan-Meier survival functions and 95% confidence interval (b) Nelson-Aalen ∆ exit hazard functions

Figure 2: The figure illustrates the survival and the hazard function computed for the exit time variable. The negative

∆ exit rates for low values of t are indicative of sticky behavior, while the increase in ∆ exit hazard rate indicate a

devaluation in preferences.

(a) Kaplan-Meier survival functions and 95% confidence interval b) Nelson-Aalen ∆ exit hazard functions

Figure 3: This figure illustrates the survival and the hazard function computed for the entry time variable. The ∆

hazard rates are positive for all the model for low values of t which is indicative of sticky behavior. A decline in the ∆

entry hazard rates corresponding to the R, M1 and L models for intermediate values of t indicate that the preferences

were temporally devalued. The increase in the ∆ entry hazard rates corresponding to all the models for larger values

of t suggest that preferences were reinstated

2. λHP
entry Entry Hazard Rate given a high PRT, 1 < TN,P

entry <
1.5

We compute the ∆ hazard rate for the two conditional entry
hazard rates.

λLP-HP
entry = λLP

entry − λHP
entry (7)

λLP-HP
entry function is computed for the real data and data sim-

ulated using a Markov model. The simulated data serves as
a comparison. Figure 4 displays the obtained λLP-HP

entry func-

tion and the survival functions for λLP
entry and λLP

entry for the
real data and simulated data. We find that the conditional
survival functions are coincident for the simulated data. The
log rank test is rejected with a p-value of less than 10−4 on
the conditional survival functions of the simulated and the
real data. However λLP-HP

entry varies by very small amounts. On

the contrary, λLP-HP
entry on the real data varies in an interest-

ing way. The log rank test on the conditional entry hazard
rates passed with a p-value of. We see that λLP-HP

entry is highly
positive initially, which indicates increased stickiness when
PRT is low. However, λLP-HP

entry decreases and becomes neg-

ative eventually which indicates a lower rate of return for
larger values of t when PRT is low than when PRT is high.
Hence, once a user is out of the state he has a lower rate of
returning back to the state when previous return time is low
than rate of return for a user-artist pair for whom previous
return time was high.

7. DISCUSSION
In this work we have outlined a methodology for analyz-

ing music listening histories of Last.fm users for studying the
phenomenon of spontaneous devaluation in user preferences
or boredom. We constructed hypothesis about boredom-
prone behavior in last.fm users and tested them through
experiments on real and simulated data. Exploratory anal-
ysis of dynamic hazard rates computed on both the real and
simulated data suggest that real data has strong evidence
of spontaneous devaluation of preferences, as hypothesized.
We also found strong evidence suggesting stickiness or rein-
forcement nature of past choices in users. Crucially, sticki-
ness and boredom effects on user choices were found to be
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