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Introduction to graphs and networks



Graphs: a simple model

entities — set of vertices

e pairwise relations among vertices
— set of edges

can add directions, weights,. ..

graphs can be used to model many real
datasets
e people who are friends
e computers that are interconnected
e web pages that point to each other
e proteins that interact
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Graph theory

e graph theory started in the 18th
century, with Leonhard Euler

e the problem of Konigsberg bridges
e since then, graphs have been studied
extensively
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Analysis of graph datasets in the past

e graphs datasets have been studied in the past
e.g., networks of highways, social networks

e usually these datasets were small
e visual inspection can reveal a lot of information
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Analysis of graph datasets now

e more and larger networks appear
e products of technological advancement
® e.g., internet, web

e result of our ability to collect more, better-quality, and
more complex data

e e.g., gene regulatory networks
e networks of thousands, millions, or billions of nodes

e impossible to visualize
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The internet map
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Types of networks

social networks

knowledge and information networks

technology networks

biological networks
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Social networks

e links denote a social interaction
networks of acquaintances
collaboration networks

e actor networks
e co-authorship networks
e director networks

e phone-call networks

e e-mail networks

e |IM networks

e sexual networks
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Knowledge and information networks

!

e nodes store information, links
associate information

e citation network (directed
acyclic)

e the web (directed)

e peer-to-peer networks

e word networks

e networks of trust

e software graphs

e bluetooth networks

e home page/blog networks
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Technological networks

e networks built for distribution of a commodity
e the internet, power grids, telephone networks
e airline networks, transportation networks

Frieze, Gionis, Tsourgkakis r A’I&rlthmm Techniques for Modeling andgMining Large .Graphss

11/ 277



US power grid

United States
transmission grid
Source: FEMA
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Biological networks

e biological systems represented as networks

protein-protein interaction networks
gene regulation networks

gene co-expression networks
metabolic pathways

the food web

neural networks
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Photo-sharing site
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What is the underlying graph?

photos, tags, users, groups, albums, sets,
collections, geo, query, ...
° upload, belong, tag, create, join, contact, friend,
family, comment, fave, search, click, ...

also many interesting induced graphs
e tag graph: based on photos
e tag graph: based on users
e user graph: based on favorites
e user graph: based on groups

which graph to pick — not an easy choice
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Recurring theme

e social media, user-generated content
e user interaction is composed by many atomic actions
e post, comment, like, mark, join, comment, fave,

thumps-up, ...
e generates all kind of interesting graphs to mine
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Network science

e the world is full with networks

e what do we do with them?
e understand their topology and measure their properties
e study their evolution and dynamics

e create realistic models
e create algorithms that make use of the network structure
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Outline

e introduction and graphs and networks

e random graphs as models of real-world networks

e properties of real-world networks
e ErdGs-Rényi graphs
e models of real-world networks

e applications of random graphs

e algorithm design for large-scale networks

e graph partitioning and community detection

e dense subgraphs
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Properties of real-world networks



Properties of real-world networks

diverse collections of graphs arising from different phenomena

are there typical patterns?

e static networks
@ heavy tails
® clustering coefficients
©® communities
@ small diameters
e time-evolving networks
@ densification
® shrinking diameters
e web graph
@ bow-tie structure
® bipartite cliques
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Heavy tails

What do the proteins in our bodies, the Internet, a
cool collection of atoms and sexual networks have in
common? One man thinks he has the answer and it
is going to transform the way we view the world.

Scientist 2002

Barabasi
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Degree distribution

e (C, = number of vertices with degree k

frequency

k degree

e problem : find the probability distribution that fits best
the observed data
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Power-law degree distribution

e (C, = number of vertices with degree k, then
Ck=ck™
with v > 1, or
InCy =Inc—~vInk

e plotting In C, versus In k gives a straight line with
slope —~

e heavy-tail distribution : there is a non-negligible fraction
of nodes that has very high degree (hubs)

e scale free : average is not informative
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Power-law degree distribution
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power-laws in a wide variety of networks ([Newman, 2003])
sheer contrast with Erdés-Rényi random graphs
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Power-law degree distribution

do the degrees follow a power-law distribution?
three problems with the initial studies

e graphs generated with , which

produces power-law distributions, even for regular graphs
[Lakhina et al., 2003].

e methodological flaws in determining the exponent
see [Clauset et al., 2009] for a proper methodology

e other distributions could potentially fit the data better
but were not considered, e.g.,

disclaimer: we will be referring to these distributions as
, avoiding a specific characterization
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Power-law degree distribution

e frequently, we hear about “scale-free networks”
correct term is networks with scale-free degree

distribution
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all networks above have the same degree sequence but
structurally are very different (source [Li et al., 2005])
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Maximum degree

e for random graphs, the maximum degree is highly
concentrated around the average degree

o for power-law graphs

dmax ~ nl/(ufl)

e hand-waving argument: solve nPr[X > d| = O(1)
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Heavy tails, eigenvalues
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log-log plot of eigenvalues of the Internet graph in
decreasing order

again a power law emerges [Faloutsos et al., 1999]
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Heavy tails, triangles

Count

#Triangles

e triangle distribution in flickr

e figure shows the count of nodes with k triangles vs. k in
log-log scale

e again, heavy tails emerge [Tsourakakis, 2008]
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Clustering coefficients

e a proposed measure to capture local clustering is the
graph transitivity

T(G) = 3 X number of triangles in the network

number of connected triples of vertices

e captures “transitivity of clustering”

e if u is connected to v and
v is connected to w, it is also likely that
u is connected to w
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Clustering coefficients

e alternative definition

e |ocal clustering coefficient

c Number of triangles connected to vertex i
I' pu—

Number of triples centered at vertex |

e global clustering coefficient
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Community structure
loose definition of community: a set of vertices densely
connected to each other and sparsely connected to the rest of
the graph

artificial communities:
http://projects.skewed.de/graph-tool/
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Community structure

[Leskovec et al., 2009]

e study community structure in an extensive collection of
real-world networks

e authors introduce the network community profile plot

e it characterizes the best possible community over a range
of scales
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Community structure
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Community structure

e do large-scale real-world networks have this nice artifical
structure? NO!

'|0U\||||\|‘||\‘|\|||\|\

I

-
(=1
T I\IIIHl T TT]
T
=
cood

[
|

& (conductance)
=

-3 \Illl\l‘ll\‘l\l‘ll\‘l\
100 10" 10 10® 10t 0% aof
k (number of nodes In the cluster)

(e) ATP-DBLP
Local Spectral
Metis+MQI ———

NCP of a DBLP graph (source [Leskovec et al., 2009])

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 35 /277



Community structure

important findings of [Leskovec et al., 2009]

1. up to a certain size k (k ~ 100 vertices)

- as the size increases so does the quality of the community
2. at the size k we observe the

- such communities are typically connected to the
remainder with a

3. above the size k the
- this is because they blend in and gradually disappear
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Small-world phenomena

small worlds : graphs with short paths

e Stanley Milgram (1933-1984)
“The man who shocked the world”

e obedience to authority (1963)
¢ small-World experiment (1967)

e we live in a small-world

e for criticism on the small-world experiment, see “Could It
Be a Big World After All? What the Milgram Papers in
the Yale Archives Reveal About the Original Small World
Study” by Judith Kleinfeld

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 37 /277



Small-world experiments

e |etters were handed out to people in to be sent
to a target in

e people were instructed to pass on the letters to someone
they knew on first-name basis

e the letters that reached the destination (64 / 296)
followed paths of length around 6

. . (play of John Guare)

e also:

e the Kevin Bacon game
e the Erdés number

e small-World project:
http://smallworld.columbia.edu/index.html
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Small diameter

proposed measures
. . largest shortest-path over all pairs.

. . upper bound of the shortest path of
90% of the pairs of vertices.

o . average of the shortest paths over
all pairs of vertices.

. : median of the shortest paths
over all pairs of vertices.

o . plot of |N,(u)|, the number of neighbors of v
at distance at most h, as a function of h
[Faloutsos et al., 1999].

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 39 /277



Other properties

assortativity
distribution of size of connected components

distribution of motifs
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Time-evolving networks

J. Leskovec J. Kleinberg C. Faloutsos
[Leskovec et al., 2005b]

\ S

LN

e densification power law:

|E;| oc | V4| 1<a<?

e shrinking diameters: diameter is shrinking over time.
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Web graph

e the Web graph is a particularly important real-world
network
Few events in the history of computing have
wrought as profound an influence on society as
the advent and growth of the World Wide Web

[Kleinberg et al., 1999a]
e vertices correspond to static web pages
e directed edge (/./) models a link from page / to page J

e will discuss two of the web graph:

1. the bow-tie structure [Broder et al., 2000]
2. abundance of bipartite cliques
[Kleinberg et al., 1999a, Kumar et al., 2000]
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Web is a bow-tie

Central core
56 million pages

(source [Broder et al., 2000])
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Bipartite subgraphs

e websites that are part of the same community frequently
do not reference one another

(competitive reasons, disagreements, ignorance)
[Kumar et al., 1999].

e similar websites are co-cited

e therefore, web communities are characterized by
directed bipartite subgraphs

www.boeing.com
www.airbus.com

www.embraer.com

(source [Kleinberg et al., 1999a])
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Erdos-Rényi graphs



Random graphs

e a random graph is a set of graphs together with a
probability distribution on that set

e example

Probability 1 Probability + Probability l;

a random graph on {1.2. 3} with 2 edges with the
uniform distribution
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Random graphs

o Erdés-Rényi (or Gilbert-Erdés-Rényi ) random graph
model

Paul Erdos Alfréd Rényi
1913 - 1996 1921 - 1970
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Random graphs

the G(n, p) model:
n : the number of vertices

0 < p < 1: probability

for each pair (v, v), independently generate the edge
(u, v) with probability p

G(n, p) a family of graphs, in which a graph with m

—m

edges appears with probability p™(1 — p)(z)

the G(n. m) model: related, but not identical
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Properties of random graphs

e a property P holds almost surely/with high probability
(whp — 1 —0(1)) if

lim Pr[G has P] =1
n—00
e which properties hold as p increases?
e threshold phenomena : many properties appear suddenly
e there exist a probability p. such that
for p < p. the property does not hold a.s.

for p > p. the property holds a.s.
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The giant component

let z = np be the average degree

if z < 1 the largest component has size O(log n) a.s.

if z > 1 the largest component has size ©(n) a.s.;
the second largest component has size O(log n) a.s.

if z = w(logn) the graph is connected a.s.
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Phase transition

e if z =1 there is a phase transition

e the largest component has size O(n?/?)

e the sizes of the components follow a power-law
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Phase transition — proof sketch

Michael Krivelevich Benny Sudakov

the phase transition in random graphs — a simple proof

The Erdés-Rényi paper, which launched the modern
theory of random graphs, has had enormous
influence on the development of the field and is
generally considered to be a single most important
paper in Probabilistic Combinatorics, if not in all of
Combinatorics
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Phase transition — proof sketch

[Krivelevich and Sudakov, 2013] give a simple proof for the
transition based on running on G

e S : vertices whose exploration is complete

e | : unvisited vertices

U=V —(S5UT): vertices in stack

observation:

the set U

when a vertex v is added in U, it happens because v is a
neighbor of the last vertex v in U; thus, u augments the
path spanned by U, of which v is the last vertex

epoch is the period of time between two consecutive
emptyings of U

each epoch corresponds to a connected component
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Phase transition — proof sketch

Lemma

Let ¢ > 0 be a small enough constant and let N = ()
Consider the sequence X — (X;)\, of i.i.d.
with parameter p
1letp="2 andk=5Inn
then whp there is no interval of length kn in [N], in
which at least k of the random variables X; take value 1

2 /etp:%anng

7
then whp ZNO X; — dtan

+e)n < e
2
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Phase transition —

Lemma (Union bound)

For any events A;. .. ., An, PriAiU. . A <> Pr[A]

Lemma (Chebyshev's inequality)
Let X be a random variable with finite expectation £ | X| and
finite non-zero variance Var [X|. Then for any t > 0,
Var [X]
t2

PriX —E[X]| > 1] <

Lemma (Chernoff bound, upper tail)

Let 0 < ¢ < 1. Then,

Pr[Bin(n,p) > (1 + €)np] < e 5"

v
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Phase transition — proof sketch

e fix interval / of length knin [N], N = (1)
then > ., X; ~ Bin(kn, p)
1. apply Chernoff bound to the upper tail of B(kn, p).
2. apply union bound on all (N — k -+ 1) possible intervals
of length kn
- upper bound the probability of the existence of a
violating interval

2
(N — k +1)Pr[B(kn, p) > k] < n?* - e~ 5179k = o(1)

o sum > X; distributed binomially (params /\; and p)

5 € 2
- expectation: Nop = “5F = @

- standard deviation of order n
- applying Chebyshev's inequality gives the estimate

O
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Phase transition — proof sketch

CASE |: p = L=

n

e assume to the contrary that G contains a connected
component C with more than k = % In n vertices

e consider the moment inside this epoch when the
algorithm has found the (k + 1)-st vertex of C and is
about to move it to U

e denote AS = S C at that moment then |[AS U U| = k,
and thus the algorithm got exactly k positive answers to
its queries to random variables X; during the epoch, with
each positive answer being responsible for revealing a new
vertex of C, after the first vertex of C was put into U in
the beginning of the epoch.

U
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Phase transition — proof sketch

e at that moment during the epoch only pairs of edges
touching AS U U have been queried, and the number of
such pairs is therefore at most (g) + k(n— k) < kn

- it thus follows that the sequence X contains an interval of
length at most kn with at least k 1's inside — a
contradiction to Property 1 of Lemma 1

CASE II: p = £

n

e same type of argument:

assume the result does not hold and reach a contradiction
by examining carefully the number of queries

O

v
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Degree distribution

e degree distribution : binomial

n—1
Ch = ( . )pk(l —p)" "

e the limit distribution of the normalized binomial
distribution Bin(n, p) is the normal distribution provided
that np(1 — p) — +o0 as n — +oc.

e if p = 2 the limit distribution of Bin(n. p) is the Poisson
distribution.
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Degree distribution
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Degree distribution
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Degree distribution

Let p = 'Og” ~w(n) with w(n) — +oc arbitrarily slowly.
Fixx € G and ¢ > 0. Then in G(n, p) whp for all vertices x

deg(x) ~ (n— 1)p

\

Theorem ([McKay and Wormald, 1997])

Let X, be the number of vertices of degree k in G(n.p) when
p =, with ¢ > 0 constant. Then whp for k = 0,1, ...

cke—¢ Xy cke—¢
Kl S? (L+e)—

, asn— +00

4
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Random graphs and real datasets

e a beautiful and elegant theory studied exhaustively
e have been used as idealized generative models

e unfortunately, they don't always capture reality. . .
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Models of real-world networks



Models

@ classic
e grown versus static random graphs (CHKNS)
o growth with preferential attachment
e structure + randomness — small-world networks
® more models
e Copying model
Cooper-Frieze model
Kronecker graphs
Chung-Lu model
Forest-fire model
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CHKNS model

Callaway, Hopcroft, Kleinberg, Newman and Strogatz
[Callaway et al., 2001]

e simple growth model for a random graph without
preferential attachment

e main thesis: grown graphs, however randomly they are
constructed, are from their
random-graph counterparts

CHKNS model
e start with O vertices at time 0.
e at time t, a new vertex is created

e with probability 0 add a random edge by choosing two
existing vertices uniformly at random
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CHKNS model

let d,(t) be the number of vertices of degree k at time t
then

E[do(t+1)] = E[do(t)] + 1 — 52Mdt0(t)]

2F [dy_1(t)] 2E [dk(t)])
t

E [dy(t + 1)] :E[dk(t)]+(5< ;

it turns out that

E[d(t)] 1 25\
t _26+1(26+1)
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CHKNS model

Size of —
nonfinite L L op
component «— static

1/8 1/4

size of giant component for a CHKNS random graph and a
static random graph with the same degree distribution

e why are grown and static random graphs so different?

positive correlation between the degrees of connected
vertices in the grown graph

older vertices tend to have higher degree, and to link with
other high degree vertices, merely by virtue of their age
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Preferential attachment

PRV
. Barabasi B. Bollobas O. Riordan

g
W
L

R. Albert

growth model:
e at time 1, vertex n is added to the graph
e one edge is attached to the new vertex

e the other vertex is selected at random with probability
proportional to its degree

e obtain a sequence of graphs {Gl(")}.
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Preferential attachment — generalization

The case of G\ where instead of a single edge we add m

(n) : (nm) :
edges reduces to G, ’ by creating a G; "’ and then collapsing
vertices km, km — 1,... (k —1)m + 1 to create vertex k.
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Preferential attachment

1,2,3 t
2
at time t, vertices 1 to % have degrees greater than d (Source
[Hopcroft and Kannan, 2012])

heuristic analysis
o deg,(t) the expected degree of the /-th vertex at time ¢
e the probability an edge is connected to / is %
e therefore

Odeg;(t)  deg;(t)
ot 2t

e the solution is deg;(t) = /¢

1
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Preferential attachment

d
1
/o Pr [degree = d]0d = Pr[degree < d] =1 — 7
by using the fact that di(t) < d if i > 5 and by taking the
derivative
9,

Pr [degree = d] = %<1 - E> = —

power law distribution!

these results can be proved rigorously using the linearized
chord diagrams (LCD) model and also prove strong
concentration around the expectation using martingales
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Generalized preferential attachment
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\4

log-linear plot of the exponents of all the networks reported as
having power-law (source [Dorogovtsev and Mendes, 2002])

many real-world networks have a power-law slope 2 < a < 3
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Generalized preferential attachment

how can we tune the power-law slope?

e [Buckley and Osthus, 2004] analyze a modified
preferential attachment process where o > 0 is a fitness
parameter

e when t vertex comes in, it chooses / according to
deg,_1(i)+a—1 . .
—=e—— if1<i<t—-1

Pr [t chooses /] = { (ett)i=l 2T :

CESIISE ifi=t

e o = 1 gives the Barabasi-Albert/Bollobas-Riordan

G model
e the power-law slope is 2 + a.
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Generalized preferential attachment

2
. of G\ is (m*lg)# in expectation

e therefore tends to 0 [Bollobas and Riordan, 2003].

e can also be fixed by generalizing the model
[Holme and Kim, 2002, Ostroumova et al., 2012].

o . if an edge between v and v was added
in the previous preferential attachment step, then add one
more edge from v to a randomly chosen neighbor of w.

Holme-Kim Model

e perform a preferential attachment step

e the perform with probability /7, another preferential attach-
ment step or a triangle formation step with probability 1 — /3,

for PA and GPA is —°2” and log n respectively

loglog n
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Random Apollonian networks

are there power-law planar graphs?

(d) t =100

@t=1 (byt=2 ) t=3
snapshots of a random Apollonian network (RAN) at:

(a)t=1(b)t=2(c)t=23(d) t=100

e at time ¢t + 1 we choose a face F uniformly at random

among the faces of G,
e let (/./. k) be the vertices of F
e we add a new vertex inside / and we connect it to /, /, k
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Random Apollonian networks

Preferential attachment mechanism

what each vertex “sees” (boundary and the rest respectively)
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Random Apollonian networks
Theorem ([Frieze and Tsourakakis, 2013])

Let Z,(t) denote the number of vertices of degree k at time t,
k > 3. Forany t > 1 and any k > 3 there exists a constant b,
depending on k such that

|E [Zk(t)] — bet| < K, where K = 3.6.
Furthermore, for t sufficiently large and any \ > 0

Pr{|Zi(t) — E[Z(t)]| > A < e %=

Corollary

The diameter d(G,) of G, satisfies asymptotically whp
Pr[d(G;) > T7.1logt] = 0
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Random Apollonian networks

key idea: establish a bijection with random ternary trees

& O
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Random Apollonian networks

: o o

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 80 / 277



Random Apollonian networks

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 81 /277



Random Apollonian networks
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Small-world models

Duncan Watts Steven Strogatz

construct a network with
e small diameter

e positive density of triangles
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Small-world models

why should we want to construct a network with
e small diameter,

e positive density of triangles?

LG =Y dlu.v) () - ,172 C.

pairsu,v (2)

Graph ~ | V| 2| E’/| V| Lactual Lrandom Cactual Crandom

Film actors 225K 61 3.65 2.99 0.79  0.00027
Power grid 5K 2.67 18.7 12.4 0.08 0.005
C. elegans 0.3K 14 2.65 2.25 0.28 0.05
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Small-world models

model

e let G be the r-th power of the cycle on n vertices

- notice that diam(G) = 3= and C(G) = 23((2rr:11))

e let G(p) be the graph obtained from G by deleting
independently each edge with probability and then adding
the same number of edges back at random
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Small-world models

Watts-Strogatz on 1000 vertices with rewiring

probability p = 0.05
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Small-world models

p=0 increasing randomness p=1
< 1 OOUTGEG
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Rewiring Probability (p)
rewiring probability, p

even for a small value of p, L(G(p)) drops to O(log n),
which C(G(p)) ~ 2

4
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Small-world models

0.005 0.010 0.050 0.100 0.500 1.000 0.005 0.010 0.050 0.100 0.500 1.000

average distance clustering coefficient

Watts-Strogatz graph on 4000 vertices, starting from a
10-regular graph

e intuition: if you add a little bit of randomness to a
structured graph, you get the small world effect

. : see [Bollobds and Chung, 1988]
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Navigation in a small world

Jon Kleinberg

how to find short paths using only local information?
e we will use a simple directed model [Kleinberg, 2000].
e a local algorithm
e can remember the source, the destination and its current
location

e can query the graph to find the long-distance edge at
the current location.
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Navigation in a small world
d(u, v): shortest path distance using only original grid edges
directed graph model, parameter r :

e each vertex is connected to its four adjacent vertices

e for each vertex v we add an extra link (v, u) where v is
chosen with probability proportional to d(v, u) "

notice: compared to the Watts-Strogatz model the long range
edges are added in a way

(source [Kleinberg, 2000])
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Navigation in a small world

e r = 0: random edges, independent of distance
® as r the length of the long distance edges

results
1. r < 2: the end points of the long distance edges tend to
be uniformly distributed over the vertices of the grid

- is unlikely on a short path to encounter a long distance
edge whose end point is close to the destination

- no local algorithm can find them

2. r=2:

- a short path can be found be the simple algorithm that
always selects the edge that takes closest to the
destination

2. r>2: , with high probability
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Copying model

[Kumar et al., 2000] analyze the copying model of
[Kleinberg et al., 1999b].

e o< (0.1): copy factor

e d constant out degree.

evolving copying model, time t 4 1

e create a new vertex © + 1

e choose a prototype vertex u € V; uniformly at random

e the /-th out-link of # + 1 is chosen as follows:

with probability o we select x € V; 1 uniformly at random, and

with the remaining probability it copies the /-th out-lin of u
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Copying model

in-degrees follow power-law distribution [Kumar et al., 2000]

Theorem

2|

tf)

.~ exists and satisfies

for r > 0 the limit P, = lim;_,,

2—«

P, =O(r ).

explains the large number of bipartite cliques in the web graph

static models with power-law degree distributions do not
account for this phenomenon!
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Cooper-Frieze model

Colin Cooper Alan Frieze

Cooper and Frieze [Cooper and Frieze, 2003] introduce a
general model
@ many parameters

® generalizes preferential attachment, generalized
preferential attachment and copying models

©® whose attachment rule is a mixture of preferential and
uniform
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Cooper-Frieze model

findings

1. we can obtain densification and shrinking diameters
- add edges among existing vertices

2. power law in expectation and strong concentration under
mild assumptions.

martingales + Laplace
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Kronecker graphs

reminder: Kronecker product

A = [a;] an m x n matrix

B = [b;] a p x g matrix

then, A B is the mp x ng matrix

a]_]_B .. al,,B
amB .. anm,B
[Leskovec et al., 2010] propose a model based on the

Kronecker product, generalizing RMAT
[Chakrabarti et al., 2004].
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Kronecker graphs

o X
) b
Jx,
Xi
Cemmlnod.eisxg.:_
(a) Graph K (b) Intermediate stage (c) Graph K; = K; © K

111]0 K[k 0
11]1 K |K K,

0|11 NEE

(d) Adjacency matrix (e) Adjacency matrix
of i of Kb =Ky 2 Ky

source [Leskovec et al., 2010]

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 97 / 277



Kronecker graphs

(a) K3 adjacency matrix (27 x 27) (b) K4 adjacency matrix (81 x 81)

source [Leskovec et al., 2010]
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Kronecker graphs
a is defined by two parameters

e an integer k

e the seed/initiator matrix ¢/

(52)

e we obtain a graph with n = 2* vertices by taking
repeatedly Kronecker products

o let Ary =0 ... 0 be the resulting matrix
————
| times
e adjacency matrix A, obtained by a randomized rounding
e typically 2 x 2 seed matrices are used;

however, one can use other seed matrices
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Kronecker graphs

Vi Vo V3 Vg Vi Vo Vi Wy
vy |asa|ab|b-a|bb v | a ! bla ! b
u; Us —a b—
v, |ac|ad|bc|bd vz | ¢ | d|c | d
up|lafb i i
wlc|d vy |[cra|c-b]da|db Vs _acb__adb_
v, |cc|cd]d-c|dd Ve | C | dlc | d

in practice we never need to compute A, but we can actually
do a sampling based on the hierarchical properties of
Kronecker products.
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Kronecker graphs
consider G(V/, E) such that |V| = n = 2K,

05 05
05 05

e hierarchical community structure

09 0.1
0.1 0.9

e More known structures obtained by other seed matrices.

o Erdos-Rényi
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Kronecker graphs

e power-law degree distributions [Leskovec et al., 2010]

e power-law eigenvalue distribution [Leskovec et al., 2010]
e small diameter [Leskovec et al., 2010]

e densification power law [Leskovec et al., 2010]

e shrinking diameter [Leskovec et al., 2010]

e triangles [Tsourakakis, 2008]

e connectivity [Mahdian and Xu, 2007]

e giant components [Mahdian and Xu, 2007]

e diameter [Mahdian and Xu, 2007]

e searchability [Mahdian and Xu, 2007]
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Kronecker graphs

how do we find a seed matrix 6 such that Ag 0 ® ...®0 7
———
k times
e maximum-likelihood estimation: argmaxyPr [G|0]
- hard since exact computation requires O(n!n?) time, but

- Metropolis sampling and approximations allow O(m) time
good approximations [Leskovec and Faloutsos, 2007]

e moment based estimation: express the expected number
of certain subgraphs (e.g., edges, triangles, triples) as a
function of a. b, ¢ and solve a system of equations
[Gleich and Owen, 2012]
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Chung-Lu model

Ve

33

Fan Chung Graham Linyuan Lu
e model is specified by w = (w;, ..., w,) representing
expected degree sequence
e certices /., are connected with probability
W o
e to have a proper probability distribution w?_ < p
e can obtain an Erdds-Rényi random graph by setting

w = (pn,...,pn)
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Chung-Lu model
How to set the weights to get power law exponent 37
e the probability of having degree k in power law
kfﬁ

Pr[deg(v) = k] = )

e hence, for 7 > 1
-8 1
&)~ G- D

e assuming weights are decreasing and setting
w; = k, i/n = Pr[deg(v) > k]

v (g(@)(/ﬁl’ - 1)/)81
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Chung-Lu model

rigorous results on:
e degree sequence
e giant component
e average distance and the diameter
e eigenvalues of the adjacency and the Laplacian matrix
[ ]

Cmfirerca Tlard o 44 Wit wsusil e

CBMS

Regral Carlerenis Sorks i Mallwrasten

Complex graphs and networks, AMS
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Kronecker vs. Chung-Lu

“the SKG model is close enough to its associated CL
model that most users of SKG could just as well use

the CL model for generating graphs.”
[Pinar et al., 2011]
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(a) Degrea distribution (b) Clusteri

Comparison of the graph properties of SKG and an equivalent
CL.
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Forest-fire model

L

J. Leskovec J. Kleinberg C. Faloutsos

[Leskovec et al., 2007] propose the forest fire model that is
able to re-produce at a qualitative scale most of the
established properties of real-world networks
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Forest-fire model

basic version of the model

1. p:
2. r:

e initially, we have a single vertex
e at time t a new vertex v arrives to G;

e node v picks an ambassador/seed node v uniformly at
random link to u

e two numbers x, y are sampled from two geometric
distributions with parameters fpp and ITrp respectively

- then, v chooses x out-links and y in-links of v which are
incident to unvisited vertices

- let uy,... v, be these chosen endpoints

e mark u1,..., U, as visited and apply the previous step
recursively to each of them
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Forest-fire model
the forest-fire model is able to explain

heavy tailed in-degrees and out-degrees
densification power law
shrinking diameter

deep cuts at small size scales and the absence of deep
cuts at large size scales

reminder
10° T T
AN
g o |
jémrz, 7]
103 Feod il it e

10° 10" 102 10 10 10° 10t
k (number of nodes in the cluster)
(e) ATp-DBLP

Local Spectral
Metis+MQl ——

NCP of a DBLP graph (source [Leskovec et al., 2009]).
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Applications of random graphs



Influence of search engines on preferential
attachment

Junghoo Cho

search-engine bias project

e in early days, search engines merely observed and
exploited the web graph for ranking

e nowadays, they are unquestionably influencing the
evolution of the web graph

e how?
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Influence of search engines on preferential
attachment

e ‘virtuous circle of limelight"”

a search engine ranks a page highly

+

web page owners find this page more often and link to it

1

raises its popularity

and so on...

e main finding

[Cho and Roy, 2004] estimate that the time taken for a

page to reach prominence can be delayed by a factor of
over 60 if a search engine diverts clicks to popular pages

e random graphs used to obtain insights into this
phenomenon [Chakrabarti et al., 2005]
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Influence of search engines on preferential

attachment

Chakrabarti, Frieze and Vera [Chakrabarti et al., 2005]
introduce a model with three parameters:
e p: a probability
e /\: maximum number of celebrity nodes listed by the
search engine
e m: edge parameter

e sequence of graphs { G}, . G will have t vertices and
mt edges.

o D(U) = 2 scy dege(x)
e 5, the set of at most /V vertices with largest degrees in G,.

e d,(t) denotes the number of vertices of degree k at time
t. in the set V, — S,.
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Influence of search engines on preferential
attachment

e time step 1: the process is initialized with graph G; which
consists of an isolated vertex x; and m loops
e time step t > 1. we add a vertex x; to G;_;
- we then add m random edges (x;,y;), i =1,....m
incident with x;, where y; are nodes in G,
- for each /:
e with probability p we choose y; € 5; 1
e with probability 1 — p we choose y; € V1

in both case y; is selected by preferential attachment, i.e.,

deg;_1(x)
D uey dege—1(u)
where U = S5, 1 or U =V,

Prly, = x] =
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Influence of search engines on preferential
attachment

Let m > max{15, ﬁ} and0 < p<1

o Let S. = {s1....sy} in decreasing order of degree.

Then E [deg:(s;)] ~ a;t for every i < N for some
constant «v; > 0

e There is an absolute constant A; such that for every
k>m

A
E [dk(t)] = 1r; + second order terms

1
kK 1-p

v

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 116 / 277



Influence of search engines on preferential
attachment

the theorem and its proof verify our intuition
e the celebrity lit gets fixed quickly

e each celebrity page captures a constant fraction of all
edges ever generated in the graph

e the non-celebrity vertices obey a power law which is
steeper
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Robustness and vulnerability

e intuitively, a complex network is robust if it keeps its basic
functionality under the failure of some of its components.

e distinguish between random failure and intentional attacks

e related to percolation

Wi sl
.:.lr ..‘,
Wyt

percolation
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Robustness and vulnerability

/\\' f'n s
*\ .

R. Albert H. Jeong L. Barabdsi

[Albert et al., 2000] provide simulations indicating that scale
free networks are robust to random failures

10 second sound bite science
The Internet is robust yet fragile. 95% of the links
can be removed and the graph will stay connected.
However, targeted removal of 2.3% of the hubs

would disconnect the Internet.

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 119 / 277



Robustness and vulnerability

12 S . | |
E SF
a o Failure i
E ) |
10 ¢ 0 Attack o
o= B
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b 1 8
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a a a a o o =] o o a a a [n] a o o i
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0.00 0.02 T

n = 10000 vertices m = 20000 links

e diameter of an Erd6s-Rényi and a scale-free network as a
function of the fraction f of vertices deleted

e the power-law distribution implies that under random
sampling, vertices with small degree are selected selected with
much higher probability
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Robustness and vulnerability

Frieze, Gionis, Tsoura{aﬁiso'
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e the cluster size

distribution for various
values of f for an
Erdés-Rényi graph and
a scale-free network
under random and
malicious failures
(source

[Albert et al., 2000])

Intuition: scale-free
graphs are
inhomogeneous which
implies both better
performance under
random failures and
reduced attack
survivability

f=0.18 f=0.45
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Robustness and vulnerability

Bélla Bollobas Oliver Riordan

[Bollobas and Riordan, 2004] studied the robustness and
vulnerability of a scale-free graph, using specifically the
Barabasi-Albert model
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Robustness and vulnerability

o when vertices of G\ are deleted independently with
probability 1 — p, there is always a giant component!

- no critical p
e however the size of the giant component depends on p

Theorem
Let m > 2,0 < p < 1 be fixed and let G, be obtained from
G by deleting vertices independently with probability 1 — p

Then as n — +oc whp the largest component of G, has order
((c(p, m) 4 o(1))n
1

Furthermore, as p — 0 with m fixed, c(p, m) = exp (W)
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Robustness and vulnerability

o when G\ is deliberately attacked, finding the “best”
attack is hard

e Bollobas and Riordan consider the natural attack of
deleting the earliest vertices up to some cutoff cn

Theorem

Let G. be obtained by G\ by deleting all vertices with index

less than cn, where 0 < ¢ < 1 is a constant.
_ m—1
Let ¢, = T i

If ¢ < c,, then whp G_. has a component with ©(n) vertices.

If ¢ > ¢, then whp G_ has no such component.
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More applications

e study of interdependent networks [Brummitt et al., 2012]

a random three- and four-regular graph connected by Bernoulli
distributed coupling with interconnectivity parameter p = 0.1
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More applications

Yo 7

Itai Ashlagi Alvin Roth

compatibility graph : each vertex is a donor-patient pair and
each edge between two vertices denotes compatibility for
kidney exchange.

e model kidney exchange with many patient-donor pairs as
a random compatibility graph
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More applications

Motivation
e we wish to messages in a cellular network G, between any
two vertices in a pipeline
e we require that each link on the route between the
vertices (namely, each edge on the path) is assigned a
distinct channel (e.g., a distinct frequency)

an edge colored graph G is rainbow edge connected if any two
vertices are connected by a path whose edges have distinct
colors

goal: Find the minimum number of colors needed to rainbow
color

[Frieze and Tsourakakis, 2012] study in
sparse random graphs
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More applications

[Cooper and Frieze, 2004| studied the performance of
crawlers in random evolving scale-free graphs

[Valiant, 2005] uses random graphs to model
memorization and association functionalities of the brain

simulations (epidemics, performance of algorithms etc.)
graph anonymization [Leskovec et al., 2005a]

allow to argue about the structure of real-world networks
for instance, given a random graph with a fixed degree
distribution, what do we expect for the spectrum,
subgraphs etc?

give rise to objectives by using them as null models
(modularity)

and many more ..
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Conclusions (random graphs)

e just scratched the tip of the iceberg
e random geometric graphs [Penrose, 2003]

e hyperbolic geometry [Gugelmann et al., 2012]
e line of sight networks [Frieze et al., 2009]

protean graphs [Luczak and Pratat, 2006]
geometric preferential attachment [Flaxman et al., 2006]
affiliation networks [Lattanzi and Sivakumar, 2009]
many other interesting stochastic models ..
optimization based models for topology

e Doyle et al. [Doyle and Carlson, 2000, Li et al., 2005]

e heuristically optimized trade-offs [Fabrikant et al., 2002]

e a different line of research, networks as biproduct of
strategy selection [Dutta and Jackson, 2003],
[Fabrikant et al., 2003], [Borgs et al., 2011]
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Conclusions (random graphs)

e there is no single model that matches all established
existing properties

e the forest-fire model appears to match most, but we do
not understand well this model

e many types of networks (social networks, information
networks, technological networks), develop specialized
models
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Outline

e introduction and graphs and networks

e random graphs as models of real-world networks

e properties of real-world networks
e ErdGs-Rényi graphs
e models of real-world networks

e applications of random graphs

e algorithm design for large-scale networks

e graph partitioning and community detection

e dense subgraphs
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Graph partitioning and community detection



Graph partitioning and community detection

e knowledge discovery
e partition the web into sets of related pages (web graph)
e find groups of scientists who collaborate with each other
(co-authorship graph)
o find groups of related queries submitted in a search

engine (query graph)

e performance
e partition the nodes of a large social network into
different machines so that, to a large extent, friends are
in the same machine (social networks)
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Graph partitioning — high-level problem definition

e graph G = (V. E,w)
e edge (u, v) denotes affinity between v and v

e weight of edge w(u, v) can be used to quantify the
degree of affinity

e we want to partition the vertices in clusters so that:

e vertices within clusters are well connected, and
e vertices across clusters are sparsely connected

e typical graph-partitioning problems are NP-hard
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Graph partitioning

(Zachary's karate-club network, figure from [Newman and Girvan, 2004])
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Objective functions: (1) min cut

e the minimum number of edges cut by a two-component
partitioning
e cut:

E(S,T)={(u,v)e E|lueSandveT}

e min cut:

c(G) =min |[E(S,V\S)|

scv
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Objective functions: (2) graph expansion

e normalize the cut by the size of the smallest component

e ratio cut: \E(S V\S)|
a(G,S) = — ’
R SRR
e graph expansion:
[E(S,V\S)|

a(G) =

T min{[S[, [V \ S|}
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Objective functions: (3) conductance

e normalize by volume
vol(S) = Z di, for S €V (so, vol(V) = 2m)
ieS
e set conductance:

[E(S, V\ S)|
min{vol(S), vol(V \ S)}

¢(G,5) =

e graph conductance:

- |E(S,V\ S)
¢(G) = gngl\r} min{vol(S), vol(V \ S)}
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Background: linear algebra and eigenvalues

e consider a real n x n matrix A

(A, u) an eigenvalue—eigenvector pair if Au= \u

e a symmetric real matrix has real eigenvalues

the set of eigenvalues of a matrix is called the spectrum

of the matrix
o(A)={A1,..., \n}

index them so that \; < ... < )\,
A is positive semi-definite if xTAx > 0 for all x € R”

e a symmetric positive semi-definite real matrix has non
negative eigenvalues
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Background: linear algebra and eigenvalues

e for a symmetric matrix, the eigenvectors that corespond
to different eigenvalues are orthogonal
(A # )\ implies u/ u; = 0)

e the range of A is the linear space spanned by the columns
of A

range(A) = {x € R" | Ay = x, for some y € R"}

e for a real and symmetric matrix A, the range of A is
spanned by the eigenvectors with non-zero eigenvalues

e for a real and symmetric matrix A, with eigenvalues
A1 < ... < )\, and corresponding eigenvectors uy, ..., u,

n
A= E )\,’U,’UI-T
i=1
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Background: min—max characterization of
eigenvalues

e for a real and symmetric matrix A with eigenvalues
M <. <),

A\, = max v Av
viv=1

A = min v Av
viv=1

A= min v Av
viv=1
viu;=0

and in general
A = min viAv

viv=1

viuj=0,i=1...k—1
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Spectral analysis of graphs

e G = (V,E) an undirected graph
e A the adjacency matrix of G:
e define the [aplacian matrix of A as
diifi=]
L=D-A or L=< —1 if(i,j)eEi#]
0 if (i) ZE.i#)
e where D = diag(d;,....d,), a diagonal matrix

e L is symmetric positive semi-definite

The smallest eigenvalue of L is \; = 0, with eigenvector
up = (1,1,...,1)7
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Spectral analysis of graphs

e consider the second smallest eigenvector )\, of L

Z(i,j)EE(X" — ;)

A= min x'Lx= min 5
|Ix||=1 S x=0 doix
XTU1:O

e the corresponding eigenvector u, is called Fielder vector

e ordering according to the values of u, will group similar
(connected) vertices together

e one-dimensional embedding that preserves the graph
structure

e physical interpretation: minimize elastic potential energy
if graph is materialized with springs at its edges
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Spectral analysis of graphs

2
> ijyee(Xi — X))
A= min x'Lx= min (i)<E ’2 ’
|[x[|=1 > xi=0 > oix
xTu170
. according to the values of u, will group similar
(connected) vertices together
[ ]
structure

that preserves the graph

[y
[}
[l
[
[
'
'
1
\
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Random walks

e consider on the graph G by following edges
e from vertex / move to vertex j with prob. 1/d; if (i.j) € E
o pgt) probability of being at vertex / at time ¢
e process is described by equation p!**!) = p(p,
where P = D ' A'is
e process converges to stationary distribution 7 = 7 P
(under certain irreducibility conditions)

o for and graphs

d; . e
Y (stationary distribution ~ degree)
m
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Random walks — useful concepts

e hitting time H(/,j): expected number of steps before
visiting vertex /, starting from /
e commute time x(/,/): expected number of steps before
visiting / and / again, starting at /
k(i,4) = H(i.j) + H(, )
e cover time R: expected number of steps to reach every
node
e mixing time 7(¢): a measure of how fast the random walk
approaches its stationary distribution
7(e) = min{t | d(t) < €}

where
d(t) = max|[p(i, ) — || = max {Z p*(i.J) - 7@-!}
J
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Random walks — spectral analysis

e instead of L = D — A consider normalized Laplacian
['=1—D12AD1/?

L'u = Au
(I =DY2ADY*)u = \u
(D—A)u = ADu
Du = Au+ADu
(1-Nu = D 'Au
pu = Pu

e (A, u) is an eigenvalue—eigenvector pair for L" if and only
if (1 — X\, u) is an eigenvalue—eigenvector pair for P

e the eigenvector with smallest eigenvalue for L is the
eigenvector with largest eigenvalue for P
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Random walks — spectral analysis

e stochastic matrix P, describing the random walk
e eigenvalues: —1 <, < ... <o <=1

e spectral gap: v =1— o
1

e relaxation time: 7, =

~

e theorem: for an aperiodic, irreducible, and reversible
random walk, and any ¢

(7. — 1) log <21€> s 7(e) < mlog <26\/IT>
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Random walks — spectral analysis

e intuition: fast mixing related to graph being an expander

e large mixing time = bottlenecks = clusters

e large spectral gap = no clusters

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 149 / 277



Spectral analysis and clustering measures

e clustered structure of G captured by
min cut ¢(G)
expansion a(G)
conductance ¢(G)

e no surprise those clustering measures are related to
spectral gap
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Cheeger inequality

e eigenvalues of the stochastic matrix P, describing the
random walk: —1 < 1, < ... < <y =1

eigenvalues of normalized Laplacian:
D= X< <...< )\,

spectral gap: V. =1— =X

Cheeger inequality:

A < s <20(6)

[reminder] graph conductance:

o |E(S,V\ S)
o(G) = sev min{vol(S), vol(V \ S)}
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Spectral analysis of graphs

e consider the second smallest eigenvector \, of L

Z(i,j)eE(Xi — ;)

A= min x'Lx= min 5
|Ix||=1 S x=0 doix
XTU1:O

e ordering according to the values of u, will group similar
(connected) vertices together

e one-dimensional embedding that preserves the graph
structure

e )\, corresponds to spectral gap
e the smaller \, the better the clusters
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Interesting special case

e the smaller A\, the better the clusters

e theorem: let L be the Laplacian of a graph G = (V E).
Ao > 0 if and only if G is connected

proof: if G disconnected then
(Lo
L= < 0 L, )

Z(i,j)eE(Xi — ;)

consider also

A= min x'Lx= min 5
Ix[=1 3 x=0 Do Xi
x'u;=0

O
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Inside the proof of Cheeger’s inequality

e 0=X; <A <...< )\, (normalized Laplacian)
e Cheeger inequality

?(G)?
2

[h2 <2¢(G)]

e 2¢(G) can be written as an expression over x; € {0, 1}
indicating whether / € S

e )\, can be written as the fractional relaxation of the
previous expression
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Inside the proof of Cheeger’s inequality

e 0=X; <A\ <...< )\, (normalized Laplacian)
e Cheeger inequality

[6(6) < V2]

e constructive

e order graph vertices according to the eigenvector of )\,
e form S by spliting vertices around their median

e show for that partitioning ¢(S) < /2 )\,
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Basic spectral-partition algorithm

©® form normalized Laplacian L' = | — D~Y2AD~1/2

® compute the eigenvector u, that corresponds to A,

© order vertices according their coefficient value on u,

@ consider only sweeping cuts: splits that respect the order
@ take the sweeping cut S that minimizes ¢(5)

theorem the basic spectral-partition algorithm finds a cut S such
that o(S) < 2./¢(G)

proof by Cheeger inequality ¢(S) < /2 X\ < /2-2-0(G)
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Spectral partitioning rules

(1] find the partition that minimizes ¢(G)
(2} split in two equal parts
(3] separate positive and negative values

(4] separate according to the largest gap
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Other common spectral-partitioning algorithms

® utilize more eigenvectors than just the Fielder vector
use k eigenvectors

@® different versions of the Laplacian matrix
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Using k eigenvectors

e ideal scenario: the graph consists of k disconnected
components (perfect clusters)

e then: eigenvalue 0 of the Laplacian has k
the of eigenvalue 0 is spanned by indicator

vectors of the graph components
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Using k eigenvectors
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Using k

eigenvectors

Frieze, Gionis, Tsourakakis
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Using k

eigenvectors
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Using k eigenvectors

e robustness under perturbations: if the graph has less
well-separated components the previous structure holds
approximately

e clustering of Euclidean points can be used to separate the
components
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Using k eigenvectors
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Laplacian matrices

e unormalized Laplacian: L=D — A

diifi=]j
L=< —1 (i, j)eE i#]j
0 if(i,j))gEi#J

e normalized symmetric Laplacian: L' = | — D™Y/2AD~%/?

e normalized “random-walk” Laplacian: L., =/ — D7!A
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All Laplacian matrices are related

unormalized Laplacian: A2 = min =1 Z(ij)EE(Xi — x;)?
x'u;=0 '

normalized Laplacian:

Xi X
A2 = min Z (= — —L)?
W S VY

,u) is an eigenvalue/vector of L, if and only if
,D'?u) is an eigenvalue/vector of [’

is an eigenvalue/vector of L, if and only if
solve the generalized eigen-problem Lu= ADu

u
u

)
)

N
9

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 166 / 277



Algorithm 1: unormalized spectral clustering

input graph adjacency matrix A, number k

1. form diagonal matrix D
form unormalized Laplacian L=D — A
compute the first k eigenvectors vy, ... v, of L

form matrix U € R™ with columns w1, .. .. uy

consider the i-th row of U as point y; € R* /= 1,... n,

A

cluster the points {y;}; 1
e.g., with k-means clustering

output clusters Ay, . ... Apwith A; = {j |y € G}
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Algorithm 2: normalized spectral clustering

[Shi and Malik, 2000]

input graph adjacency matrix A, number k
1. form diagonal matrix D
2. form unormalized Laplacian L = D — A

3. compute the first k eigenvectors u, .. .. u; of the
generalized eigen-problem Lu = A D u (eigvctrs of Ly,)

4. form matrix U € R"** with columns w5, .. .. u,

5. consider the i-th row of U as point y; € RF /i =1,... n,
6. cluster the points {y;}; 1

e.g., with k-means clustering

output clusters Ay, ... A, with A, = {j | y; € G}
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Algorithm 3: normalized spectral clustering

[Ng et al., 2001]

input graph adjacency matrix A, number k

1.

No ok wN

form diagonal matrix D

form normalized Laplacian L' = | — D-Y2AD~1/2
compute the first k eigenvectors w1, ..., u, of [’
form matrix U € R™* with columns w1, .. .. uy

normalize U so that rows have norm 1

consider the i-th row of U as point y; € R* /=1, ...

cluster the points {y;};—1
e.g., with k-means clustering

output clusters Ay, ..., A with A; = {j |y € G}
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intuition of the spectral algorithms
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Notes on the three spectral algorithms

e quite similar except for using the three different

Laplacians

e can be used to cluster any type of data, not just graphs
form and use as adjacency
matrix

e computation of the first eigenvectors of sparse matrices
can be done efficiently using the Lanczos method
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Zachary's karate-club network
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Zachary's karate-club network

ordering by v2 of unormalized Laplacian
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Zachary's karate-club network

unormalized normalized normalized
Laplacian symmetric random walk

lacian Laplacian
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Zachary's karate-club network

unormalized normalized normalized
Laplacian symmetric random walk
Laplacian Laplacian
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Which Laplacian to use?

[von Luxburg, 2007]

e when graph vertices have about the same degree all
Laplacians are about the same

o for skewed degree distributions normalized Laplacians
tend to perform better, and L., is preferable

e normalized Laplacians are associated with conductance,
which is preferable than ratio cut

(conductance involves vol(S) rather than |S| and
captures better community structure)
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Modularity

e cut ratio, graph expension, conductance useful to extract
e not clear how to extend to

e related question: what is the optimal number of
partitions?

° has been used to answer those
questions

e [Newman and Girvan, 2004]

e originally developed to find the optimal number of
partitions in hierarchical graph partitioning
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Modularity

e intuition: compare actual subgraph density with
expected subgraph density, if vertices were attached
regardless of community structure

1 .
Q = o (Aj — Py)o(G, G)
1 d:d:
S N VL ol
o __( j 2m)( , G)

“xla 6]

Py = 2mpip; = 2m(d;/2m)(d;/2m) = (cid /2m)
m.: edges within cluster ¢
d.: total degree of cluster ¢
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Values of modularity

e 0 random structure; 1 strong community structure;
[0.3..0.7]; typical good structure; can be negative, too

e () measure is not monotone with k

0.
07,
0.6
05
<}
2 04
s
]
3 03
£
02
01
0|
-01
0 o5 1 15 2 25 3 35 4 45 N . .
th join 1o FIG. 2: A visualization of the community structure at max-
imum modularity. Note that the some major communities
have a large number of “satellite” communities connected only
) . to them (top, lower left, lower right). Also, some pairs of ma-
FIG. 1: The modularity Q over the course of the algorithm jor communities have sets of smaller communities that act
(the = axis shows the number of joins). Its maximum value is as “bridges” between them (c.g., between the lower left and
@Q = 0.745, where the partition consists of 1684 communities. lower right, near the center).

(figures from [Clauset et al., 2004])

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 179 / 277



Optimizing modularity

problem: find the partitioning that optimizes modularity

NP-hard problem [Brandes et al., 2006]

top-down approaches [Newman and Girvan, 2004]
spectral approaches [Smyth and White, 2005]

mathematical-programming [Agarwal and Kempe, 2008]
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Top-down algorithms for optimizing modularity
[Newman and Girvan, 2004]

e a set of algorithms based on removing edges from the
graph, one at a time

e the graph gets progressively disconnected, creating a
hierarchy of communities

e]e)
16177 51112202 1822144 138 3 10 2319161521 9 31332925263224273034 28

(figure from [Newman, 2004])
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Top-down algorithms

e select edge to remove based on

three definitions

. : number of shortest paths that
the edge belongs to

o : expected number of paths for
a random walk from v to v

. . resistance derived from
considering the graph as an electric circuit
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Top-down algorithms

general scheme

TorDoOwN
1. Compute betweenness value of all edges
2. Remove the edge with the highest betweenness
3. Recompute betweenness value of all remaining edges
4, Repeat until no edges left

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 183 / 277



Shortest-path betweenness

how to compute shortest-path betweenness?

° from each vertex

leads to O(mn) for all edge betweenness

OK if there are single paths to all vertices
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Shortest-path betweenness
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Shortest-path betweenness
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Shortest-path betweenness

overall time of ToOPDOWN is O(m?n)
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Random-walk betweenness

e stochastic matrix of random walk is P = D' A
e s is the vector with 1 at position s and 0 elsewhere
e probability distribution over vertices at time 1 is s P”

e expected number of visits at each vertex given by
> sP=s(1-P)"

1

c, = E[# times passing from u to v] = [s (1 — P)’l]u T

c=s(l1-P)'D'=s(D- A"

e define random-walk betweenness at (u,v) as |c, — ¢,
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Random-walk betweenness

e random-walk betweenness at (u,v) is |¢c, — ¢,
withc=s(D — A)*

e one matrix inversion O(n?)

e in total O(n*m) time with recalculation

e not scalable

e current-flow betweenness is equivalent!

[Newman and Girvan, 2004] recommend shortest-path
betweenness
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Other modularity-based algorithms

spectral approach [Smyth and White, 2005]

k

ERNEAS
;Lm - <2m> ] o 3 [(2m) me — ]
c=1
n 2
— 2m Z WijXicXjc — (Z diXic>
i=1

ij=1

QR =

0
x> | =
=

a
I
—

=

= [(2m)x W x. — x! Dx]
c=1

= tr(X"(W — D) X)

where X = [x; ... xx] = [x;] point-cluster assignment matrix
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Spectral-based modularity optimization

maximize  tr(X" (W' — D) X)

such that X is an assignment matrix

solution:
Lo X = XA

where Lo = W' — D, @Q-Laplacian

e standard eigenvalue problem

e but solution is fractional, we want integral

e treat rows of X as vectors and cluster graph vertices
using k-means

e [Smyth and White, 2005] propose two algorithms, based
on this idea
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Spectral-based modularity optimization

spectral algorithms perform almost as good as the
agglomerative, but they are more efficient

“““ - Spectral-1
---- Spectral-2
— Newman
02 — normalized Q 0.2
0.1 o standard Q
===+ transition matrix 0
00 10 20 . 30 20 50 0 20 40 K 60 80 100
Figure 3: Q versus k for the WordNet data. Figure 7: @ versus k for NIPS coauthorship data.

[Smyth and White, 2005]
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Other modularity-based algorithms

mathematical programming [Agarwal and Kempe, 2008]

R ZB’J — Xj)

ij=1
where

v 0 if /i and j get assigned to the same cluster
Y 1 otherwise

it should be
X < xjj + xj for all vertices 7, /, k

solve the integer program with triangle inequality constraints
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Mathematical-programming approach
for modularity optimization

[Agarwal and Kempe, 2008]

integer program is NP-hard

relax integrality constraints

replace x; € {0,1} with 0 < x; <1

corresponding linear program can be solved in polynomial
time

solve linear program and round the fractional solution
place in the same cluster vertices / and j if x;; is small
(pivot algorithm [Ailon et al., 2008])
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Results

Network |size n| GN | DA | EIG | VP | LP | UB
KARATE 34(0.401/0.419]0.419{0.4200.420|0.420
DOLPH 6210.520| - - 10.526]0.529|0.531
MIS 7610.540| - - 10.560]0.560|0.561
BOOKS 105 - - 10.526|0.527(0.527{0.528
BALL 115|0.601| - - 10.605|0.605(0.606
JAZZ 19810.405|0.445|0.442|0.445|0.445|0.446
COLL 235]0.720| - - 10.803|0.803{0.805
META 453]0.403]0.43410.435]0.450| - -

EMAIL 1133]0.532]0.574]0.572(0.579| - -

Table 2. The modularity obtained by many of the previously
published methods and by the methods introduced in this pa-
per, along with the upper bound.

Frieze, Gionis, Tsourakakis

(table from [Agarwal and Kempe, 2008])
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Need for scalable algorithms

° : : algorithms
. to very large graphs
e handle datasets with of vertices and edges

e facebook: ~ 1 billion users with avg degree 130
e twitter: > 1.5 billion social relations

e google: web graph more than a trillion edges (2011)

design algorithms for scenarios

e real-time story identification using twitter posts
e election trends, twitter as election barometer
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Graph partitioning

e graph partitioning is a way to split the graph vertices in
multiple machines

e graph partitioning objectives guarantee low
communication overhead among different machines

e additionally balanced partitioning is desirable

G=(V,E)

e each partition contains ~ n/k vertices
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Off-line k-way graph partitioning

METIS algorithm [Karypis and Kumar, 1998]

e popular family of algorithms and software
e multilevel algorithm

. phase in which the size of the graph is
successively decreased

e followed by (based on spectral or KL method)

e followed by phase in which the bisection is
successively refined and projected to larger graphs
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Off-line k-way graph partitioning

Krauthgamer, Naor and Schwartz [Krauthgamer et al., 2009

e problem: minimize number of edges cut, subject to
cluster sizes ©(n/k)

e approximation guarantee: O(+/log k log n)

e based on the work of Arora-Rao-Vazirani for the
sparsest-cut problem (k = 2) [Arora et al., 2009]
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streaming k-way graph partitioning

e input is a
e graph is ordered

e arbitrarily
o breadth-first search
o depth-first search

e generate an balanced graph partitioning

/ = each partition
-

holds O(n/k)
graph stream — T : vertices
partitioner

P L R Y i R T e X |
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Graph representations

e adjacency stream

e at time t, a vertex arrives with its neighbors

e edge stream

e at time t, an edge arrives
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Partitioning strategies

e hashing: place a new vertex to a cluster/machine chosen
uniformly at random

e neighbors heuristic: place a new vertex to the
cluster/machine with the maximum number of neighbors

e non-neighbors heuristic: place a new vertex to the

cluster/machine with the minimum number of
non-neighbors
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Partitioning strategies

[Stanton and Kliot, 2012]

e d.(v): neighbors of v in cluster ¢
e f.(v): number of triangles that v participates in cluster ¢

e balanced: vertex v goes to cluster with least number of
vertices

e hashing: random assignment

e weighted degree: v goes to cluster ¢ that maximizes
de(v) - w(c)

e weighted triangles: v goes to cluster j that maximizes

te(v)/(“4”) - w(c)
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Weight functions

e s.: number of vertices in cluster ¢

unweighted: w(c) =1

linearly weighted: w(c) =1 — s.(k/n)

exponentially weighted: w(c) =1 — elss=n/k)
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FENNEL algorithm

[Tsourakakis et al., 2012]

minimize p—(s,, .. s,) 10 e(P)|

n
subject to 1Si| < v forall 1 </<k
e hits the ARV barrier

minimize p_(s,, .s,) |0 E(P)| + an(P)

where cin(P) = 5, s(]S;

), so that objective self-balances

e relax hard cardinality constraints
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FENNEL algorithm
[Tsourakakis et al., 2012]

e for S C V, f(S)=elS] — a|S]7, with v > 1
e given partition P = (S;,....S) of V in k parts define

g(P)=f(5)+...+f(5)

e the goal: maximize g(P) over all possible k-partitions

g(P)=> elSi]— QZ ||

i
—— ——
number of minimized for
edges cut balanced partition!

e notice:
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Connection

notice

£(S) = e[S] - a <|§>

e related to modularity

e related to quasicliques (see next)
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FENNEL algorithm

theorem [Tsourakakis et al., 2012]

e ~ = 2 gives approximation factor log(k)/k
where k is the number of clusters

e random partitioning gives approximation factor 1/k

e no dependence on n

mainly because relaxing the hard cardinality constraints
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FENNEL algorithm — greedy scheme

e v = 2 gives non-neighbors heuristic
e v =1 gives neighbors heuristic

e interpolate between the two heuristics, e.g., v = 1.5
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FENNEL algorithm — greedy scheme

[P e oe s o0 o P os s s 9] holds O(n/k)
graph stream —> 1 : vertices

partitioner

/ each partition
— ==

e send v to the partition / machine that maximizes
F(SiU{v}) —£(S)
=elS;U{v} —a(|Si| + 1) — (e[Si] — ]S
= ds,(v) — aO(ISi|")

)

e fast, amenable to streaming and distributed setting
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FENNEL algorithm — results

edges cut S;
/\:—#{ g } /):max"|
m 1<i<k n/k
Fennel METIS
m k A P A P

7185314 [ 4 [ 625 % | 1.04 | 65.2% | 1.02
6714510 | 8 | 82.2% | 1.04 | 81.5% | 1.02
6483201 | 16 | 92.9 % | 1.01 | 92.2% | 1.02
6364819 | 32 | 96.3% | 1.00 | 96.2% | 1.02
6308013 | 64 | 98.2% | 1.01 | 97.9% | 1.02
6279566 | 128 | 98.4 % | 1.02 | 98.8% | 1.02

e v=15
e comparable results in quality, but FENNEL is lightway,
fast, and streamable

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs

211 / 277



Conclusions (graph partitioning)

summary
e spectral techniques, modularity-based methods,
graph partitioning

e well-studied and mature area

future directions

e develop alternative notions for communities,

e.g., accounting for graph labels, constraints, etc.

e further improve efficiency of methods

e overlapping communities
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Dense subgraphs



What is a dense subgraph?

a set of vertices with abundance of edges

a highly connected subgraph

key primitive for detecting communities

related problem to community detection and
graph partitioning, but not identical

e not constrainted for a disjoint partition of all vertices
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Applications of finding dense subgraphs

e thematic communities and spam link farms
[Kumar et al., 1999]

e graph visualization [Alvarez-Hamelin et al., 2005]

e real-time story identification [Angel et al., 2012]

o motif detection [Fratkin et al., 2006]

e epilepsy prediction [lasemidis et al., 2003]

e finding correlated genes [Zhang and Horvath, 2005]

® many more ...
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Density measures

e consider subgraph induced by S C V of G = (V. E)

clique: each vertex in S is connected
to every other vertex in S

e o-quasiclique: the set S has at least o|S|(|S| —1)/2
edges

e J-core: every vertex in S is connected to at least k other
vertices in S
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Density measures
e consider subgraph induced by S C V of G = (V. E)

e density:
)= 5] = Ts051 =1
e average degree:
d(s) = 2f£f]

e k-densest subgraph:

i(S) = 2|615[|5]’ such that |S| = k

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 217 / 277



Density measures

compare with measures we saw previously....

graph expansion:

e[S, v\ S
a(G) = min min{|S,|V \ S[}

graph conductance:

o e[S, V'\ §]
¢(G) = v min{vol(S), vol(V \ S)}

edges within (e[S]) instead of edges accross (e[S, V \ S])
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Complexity of density problems — clique

. find the max-size clique in a graph:
NP-hard problem

e strong innaproximability result:

for any ¢ > 0, there cannot be a polynomial-time
algorithm that approximates the maximum clique problem
within a factor better than O(n' ), unless P = NP

[Hastad, 1997]
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Complexity of other density problems

density i(S) = (e‘[SS‘]) pick a single edge
average degree d(S) = 2‘85] in P

k-densest subgraph  6(S) = 221 |S| =k NP-hard

DalkS 6(S) = 21 |S| >k NP-hard

DamkS 6(S) = 221 |S| <k L-reduction to DkS
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Densest subgraph problem

e find set of vertices S C V/ with maximum average degree

d(S) = 2¢[5]/15]

e solvable in polynomial time

e max-flow [Goldberg, 1984]
o LP relaxation [Charikar, 2000]

e simple linear-time greedy algorithm gives factor-2
approximation [Charikar, 2000]
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Greedy algorithm for densest subgraph

[Charikar, 2000]

input: undirected graph G = (V. E)
output: S, a dense sungraph of G

1 setG,+ G

2  for k < n downto 1

2.1 let v be the smallest degree vertex in G,

2.2 Gi—1 < G\ {v}

3 output the densest subgraph among G, G, 1,..., G,
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 229 /277



Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example

N

Frieze, Gionis, Tsourakakis
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Greedy algorithm for densest subgraph — example

v | | ‘ H | | l : .
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Other notions and generalizations

e k-core: every vertex in S is connected to at least k other
vertices in S

e c-quasiclique: the set S has at least o|S|(|S| —1)/2
edges

e enumerate all a-quasicliques [Uno, 2010]

e dense subgraphs of directed graphs: find sets S, T C V
to maximize
e[S, T]

AT =

[Charikar, 2000, Khuller and Saha, 2009]
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Edge-surplus framework

e for a set of vertices S define edge surplus

F(S) = g(elS]) = h(|S])

where g and h are both strictly increasing

e optimal (g, h)-edge-surplus problem:
find S* such that

f(S7) > f(S), forallsets SC S*
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Edge-surplus framework
e edge surplus 7(S) = g(e[S]) — h(|S])

e example 1
g(x) = h(x) = log x

e[S]

find S that maximizes log g

densest-subgraph problem

e example 2

0 if x =k
+00 otherwise

g0 =x he) = {
k-densest-subgraph problem
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The optimal quasiclique problem

e edge surplus 7(S) = g(e[S]) — h(|S])

e consider

find S that maximizes e[S] — ('ﬁ‘)

optimal quasiclique problem [Tsourakakis et al., 2013]

e theorem: let g(x) = x and h(x) concave

then the optimal (g, h)-edge-surplus problem is
polynomially-time solvable
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The optimal quasiclique problem

theorem: let g(x) = x and h(x) concave

then the optimal (g, h)-edge-surplus problem is
polynomially-time solvable

proof

g(x) = x is supermodular

if h(x) concave h(x) is submodular
—h(x) is supermodular

g(x) — h(x) is supermodular

maximizing supermodular functions is solvable in
polynomial time
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Optimal quasicliques in practice

densest subgraph vs. optimal quasiclique

densest subgraph

optimal quasi-clique

|{S/| 0 D T % 0 D T
Dolphins | 0.32 0.33 3 0.04 | 0.12 0.68 2 0.32
Football | 1 009 4 003010 073 2 034
Jazz | 0.50 0.34 3 0.08 | 0.15 1 1 1
Celeg. N. | 0.46 0.13 3 0.05 | 0.07 0.61 2 0.26
[Tsourakakis et al., 2013]
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Finding and optimal quasiclique
adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V. E)

output: a quasiclique S

1 setG,«+ G

2 for k - n downto 1

2.1 let v be the smallest degree vertex in G,

2.2 Gk,1 < Gk \ {V}

3 output the subgraph in G, ..., Gy that maximizes 7(S)

additive approximation guarantee [Tsourakakis et al., 2013]
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top-k densest subgraphs and quasicliques
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The community-search problem

a dense subgraph that contains a given subset
of vertices @ C V/ (the query vertices)

e the problem

e the problem

e the problem
applications

¢ find the community of a given set of users

e a meaningful way to address the issue of
overlapping communities

¢ find a set of proteins related to a given set

e form a team to solve a problem
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Center-piece subgraph
[Tong and Faloutsos, 2006]
e given: graph G = (V. E) and set of query vertices Q C V
e find: a connected subgraph H that

(a) contains @
(b) optimizes a goodness function g(H)

® main concepts:

e k softAND: a node in H should be well connected to at
least k vertices of @

e r(7,/) goodness score of j wrt g, € @

e r(Q,)) goodness score of j wrt

e g(H) goodness score of a candidate subgraph H
o H* =argmaxy g(H)
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Center-piece subgraph

[Tong and Faloutsos, 2006]

e r(i,J) goodness score of j wrt g; € @Q

probability to meet j in a random walk with restart to g;

e (@) goodness score of j wrt @

probability to meet j in a random walk with restart to k
vertices of ()

e proposed algorithm:

1. greedy: find a good destination vertex j ito add in H
2. add a path from each of top-k vertices of () path to j
3. stop when H becomes large enough
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Center-piece subgraph — example results
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[Tong and Faloutsos, 2006]
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The community-search problem
[Sozio and Gionis, 2010]

e given: graph G = (V, E) and set of query vertices Q C V
e find: a connected subgraph H that

(a) contains @
(b) vertices of H are close to @
(c) optimizes a density function d(H)

e distance constraint (b):

d(Q.j) =Y d*(g.j)<B

geQ

e density function (c):
average degree, minimum degree, quasiclique, measured
on the induced subgraph H
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The community-search problem

both the distance constraint and the minimum-degree density
help addressing the problem of free riders
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The community-search problem

algorithm proposed by [Sozio and Gionis, 2010]
adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V/, E), query vertices Q C V/
output: connected, dense subgraph H
1 setG,+ G
2  for k +— n downto 1
2.1 remove all vertices violating distance constraints
2.2 let v be the smallest degree vertex in G,
among all vertices not in )
2.3 Gk,1 — Gk \ {V}
2.4 if left only with vertices in () or disconnected graph, stop
3 output the subgraphin G,. ..., G, that maximizes f(H)
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Properties of the greedy algorithm

e returns optimal solution if no size constraints or
lower-bound constraints

e heuristic variants proposed when upper-bound constraints

e generalized for monotone constraints and monotone
objective functions
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The community-search problem — example results

(a) Database theory (b) Complexity theory

(from [Sozio and Gionis, 2010])
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Conclusions (dense subgraphs)

summary

discussed a number of different density measures

discussed a number of diiferent problem formulations

polynomial-time solvable or NP-hard problems

global dense subgraphs or relative to query vertices

promising future directions

explore further the concept of a-quasiclique

better algorithms for upper-bound constraints

top-k versions of dense subgraphs

adapt concepts for labeled graphs

local algorithms
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thank you!
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