
Model-based Validation of Streaming Data
(Industry Article)

Cheng Xu
Department of Information Technology

Uppsala University
Box 337, SE-75105, Sweden

+46 18 471 7345
cheng.xu@it.uu.se

Daniel Wedlund
AB Sandvik Coromant

R&D Application solutions,
Functional Products

SE-811 81 Sandviken, Sweden
daniel.wedlund@sandvik.com

Tore Risch
Department of Information Technology

Uppsala University
Box 337, SE-75105

+46 18 471 6342
tore.risch@it.uu.se

Martin Helgoson
AB Sandvik Coromant

R&D Application solutions,
Functional Products

SE-811 81 Sandviken, Sweden
martin.helgoson@sandvik.com

ABSTRACT

An approach is developed where functions are used in a data

stream management system to continuously validate data

streaming from industrial equipment based on mathematical

models of the expected behavior of the equipment. The models

are expressed declaratively using a data stream query language.

To validate and detect abnormality in data streams, a model can

be defined either as an analytical model in terms of functions over

sensor measurements or be based on learning a statistical model of

the expected behavior of the streams during training sessions. It is

shown how parallel data stream processing enables equipment

validation based on expensive models while scaling the number of

sensor streams without causing increasing delays. The paper

presents two demonstrators based on industrial cases and

scenarios where the approach has been implemented.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems – Parallel databases,

Query processing

Keywords

Equipment Monitoring; data stream management system; data

stream validation; parallelization; anomaly detection.

1. INTRODUCTION
Emerging business scenarios such as provision of total care

products, product service systems (PSS), industrial product-

service-systems (IPS2), and functional products [3] [4] [5] [14]

[15] imply needs to efficiently monitor, verify and validate the

functionality of a delivered product in use. This can be done with

regard to pre-defined criteria, e.g. productivity, reliability,

sustainability, and quality. A functional product in this context

mean an integrated provision of hardware, software and services.

In case of machining several factors and dependencies have to be

considered, which in turn means that data (e.g. in-process data)

from the machining process, information (e.g. about cutting tools),

and knowledge (e.g. physical models), from several domains have

to be captured, combined and analyzed in a comprehensive

knowledge integration framework that includes quality assurance

of data, validation of models, learning capabilities, and

verification of functionality [10]. A considerable challenge is to

scale up data analysis for handling huge amount of equipment.

In this context novel software technologies are needed to

efficiently process and analyze the large data streams, in particular

related to in-process activities, and to facilitate the steps towards

increased automation of the related processes.

In manufacturing industry, equipment such as machine controllers

and various sensors are installed. This equipment measure and

generate data during the machining process, i.e. in-process.

Depending on the case a huge amount of parameters (e.g. power,

torque, etc.) at different sample rates (ranging from a couple of

HZ to 20 kHZ) need to be processed. Processing data streams

from controllers and sensors is critical for monitoring the

functional product in use. For instance, the parameters related to

the power consumption could help the engineers to analyze the

process, compare different application strategies, monitor and

maintain the hardware e.g. to get an indication of the degree of

tool-wear or when a tool needs to be replaced or machine

maintenance is required.

Often a mathematical model of the process can be developed, e.g.

to calculate the expected power consumption and detect abnormal

behavior. In other cases, when there is no such model pre-defined,

a model can be learned based on observing sensor readings during

training sessions. This requires a general approach to define the

correct behavior of the equipment either analytically or

statistically.

Data Stream Management Systems (DSMSs), such as Aurora [1]

and STREAM [16], process continuous queries, CQs, over data

streams that filter, analyze, and transform the data streams. A

simple CQ can be: “give me the sensor id and the power

consumption whenever the power is greater than 100W”.

However, detecting abnormal behavior in equipment often

involves advanced computations based on knowledge about the

machining process, e.g. theoretical models of the equipment’s

behavior, rather than just simple numerical comparisons in a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.

Copyright © ACM 978-1-4503-1758-0/13/06...$15.00.

query condition. An advanced CQ could be: “given a power

consumption model computing the theoretical expected power

consumption at any point in time, give me the sensor id whenever

the difference between the actual power consumption and the

theoretical expected power on the average is greater than 10W

during 1 second.”

To enable general stream validation based on mathematical

models, the system called SVALI (Stream VALIdator) was

developed and used in industrial applications. The system

provides the following facilities:

1. Users can define and install their own analytical models inside

the DSMS to validate correct behavior of the data streams. The

models are expressed as side-effect free functions (formulae)

over streamed data values.

2. For applications where no theoretical model can be easily

defined, the system can also dynamically learn a model based

on some existing observed correct behavior and then use that

learned model for subsequent validation.

SVALI is a distributed DSMS extending SCSQ [22] with

validation functionality. Many SVALI nodes can be started on

different compute nodes. The distributed SVALI architecture

enables processing of validations in parallel without causing

unacceptable delays by the often expensive computations, as

shown in this paper.

The paper is organized as follows. In Section 2 the architecture of

a SVALI node is presented. Section 3 presents two general

strategies for stream validations in SVALI called model-and-

validate and learn-and-validate, illustrated by real-life industrial

examples. Section 4 presents results from simulations on how the

parallelization enables scalable processing of expensive validation

functions in the applications, and Section 5 discusses related

work. Finally, Section 6 summarizes and outlines future work.

2. SYSTEM ARCHITECTURE
Figure 1 shows the architecture of the SVALI system. Different

kinds of data streams are collected from stream sources of sensor

readings. SVALI is an extensible DSMS where new kinds of

stream sources can be plugged in by defining stream wrappers. A

stream wrapper is an interface that continuously reads a raw data

stream and emits the read events to the SVALI kernel. On top of

the stream wrappers, equipment specific stream models over raw

data streams analyze the received stream tuples to validate that

different kinds of equipment behave correctly. A stream model is

a function over either individual stream tuples or over windows of

stream tuples. Stream models are passed as a parameter to the

stream validator that applies the models to produce validation

streams where deviations from correct behavior are indicated.

The main-memory local database stores meta-data about the

streams such as stream models, tolerance thresholds, collected

statistics, etc.

For validating streaming data using an analytical stream model the

system provides a second order function, called

model_n_validate(). It validates data streaming from sensors on a

set of machines based on a stream model function and emits a

validation stream of significant deviations for malfunctioning

machines.

It is also possible to automatically build at run-time a model of

correct behavior based on observed correct streaming data using

another second order function called learn_n_validate(). During a

learning phase it computes statistics of correct behavior of the

monitored equipment based on a user provided statistical model.

After the learning phase the collected statistics is stored in the

local database and used as the reference with which the streaming

data will be compared. As for model-and-validate, the system will

emit a validation stream when significant deviations from normal

behavior are detected.

The validation streams can be used in CQs. For example, in

Figure 1 CQ1 is used as input to a visualizer of incorrect power

consumption and CQ2 is a stream of alert messages signaling

abnormal power consumption.

It is possible to dynamically modify the validation models while a

validating CQ is running by sending update commands from the

application to the local database. For instance, it is possible to

change some threshold parameter used in an analytical model for

a particular kind of machine, which will immediately change the

behavior of the running validation function.

Usually the process of validation of a single machine’s behavior

depends on data streaming only from that particular machine

combined with data in the local database. The overall detected

abnormal behaviors are then collected by merging the individual

machines’ validation streams. For such CQs, the system

automatically parallelizes the execution so that each compute

node executes validation functions for a single data stream source

independent of streams from other machinery. The system then

merges the validation streams before delivering the result to the

application. All the nodes contain the same database schema of

machine installations and meta-data such as thresholds used in

validation models. In the paper it is shown that this parallelization

strategy outperforms validation on a single node and enables the

delay caused by the monitoring of many machines to be bounded.

Figure 1. System Architecture

3. MODEL BASED VALIDATION
The functionalities of the two kinds of model based validation

methods in SVALI are described along with examples of how

they are applied on industrial equipment in use.

3.1 Model-and-validate
When the expected value can be estimated based on an analytical

stream model, it is defined as a function which is passed as a

parameter to the general second order function called

model_n_validate() that has the following signature:

model_n_validate (Bag of Stream s, Function modelfn,

 Function validatefn)

 -> Stream of (Number ts, Object m, Object x)

The user defined stream model function, modelfn(Object e)-

>Object x, specifies how to compute the expected value x based

on a stream element e. A stream element can be a single stream

tuple or a window of tuples.

The user defined validation function, validatefn(Object r, Object

x)->(Number ts, Object m), specifies whether a received stream

element r is invalid compared to the expected value x as computed

by the model function. In case r is invalid the validation function

returns the ts time stamped invalid measurement m in r.

The element of the validation stream returned by model-and-

validate() are tuples (ts, m, x), where ts and m are computed by the

validation function and x is computed by the model function.

CQs specification involving model-and-validate calls are sent to a

SVALI server as a text string for dynamic execution. It is up to

the SVALI server to determine how to execute the CQs in an

efficient way. In particular SVALI transparently parallelizes the

execution to minimize the delay caused by executing expensive

validation functions.

3.1.1 Demonstrator 1
This section demonstrates how model-and-validate is used to

validate the power consumption in an industrial case based on a

milling scenario. The case, including the framework, meta-data,

models, a cutting tool, a machine tool, related equipment to

capture the needed in-process data, and a stream server called

Corenet was provided by Sandvik Coromant. The streaming

process data used in this demonstrator was simulated using real

recorded process data from Sandvik Coromant. To be specific, the

data was collected from a MoriSeiki 5000 with a Fanuc control

system that was equipped with the Kistler sensor system 9255B,

and DMG with a Siemens control system. The difference between

running Corenet with a recorded file compared to Corenet with

connection to a machine is just a matter of configuration. In this

paper a consistent behavior was needed to evaluate the

performance and therefore it was of benefit to use recorded data

from earlier machining attempts.

Figure 2 illustrates how the milling process was performed. The

parameters in Table 1 describe the milling process. Tool working

engagement is denoted by ae feed per tooth by fz, maximum chip

thickness by hex, cutting depth by ap cutting speed by vc and the

number of cutting edges by zc.

Table 1. Parameters that measured

ae

[mm]

fz

[mm/tooth]

hex

[mm]

ap

[mm]

vc

[m/min]
zc

2 0.0756 0.05 20 200 4

3 0.0641 0.05 20 200 4

This model can be expressed as a formula:

where

The following parameters are stored in the SVALI local database

as meta-data for a specific milling model:

The user installs the validation model expressed as functions as

shown in Table 2 applied on the JSON objects r received in the

stream from the equipment called “mill1”:

Table 2. Functions installed in SVALI

Model
Corresponding function

installed in SVALI

Create function hm(Record r)

 ->Number

as 2*pi()*sin(90*pi()/180)*ae(r)*fz(r) /

 (pi()*dcap(r)* acos(1-2*ae(r)/dcap(r)));

create function kc(Record r)

 ->Number

as kc1(“mill1”)*power(hm(r), -0.25)

 * (1-mc(“mill1”)/100);

measured power

consumption

create function measuredPower(Record r)

 -> Number

as r[“power”];

create function expectedPower(Record r)
 -> Number
as (ap(r)*ae(r)*fz(r)*vc(r)*zt(r)* kc(r))/
 (pi() * dcap(r) * 60000);

Figure 2. The side milling process

The validation function is defined as:

create function validatePower(Record r, Number x)

 -> (Number ts, Number m)

 as select ts, m

 where m = measuredPower(r)

 and abs(x - m) > th(“mill1”);

The function th(Chartsring k) is a table of validation thresholds

for each kind of machine k stored in the local database. After the

model is installed in the SVALI server, a CQ validating a single

JSON stream delivered from host “h1” on port 1337 is expressed

as1:

select model_n_validate(bagof(input), #'expectedPower',

 #’validatePower’)

from Stream input

where input = corenetJsonWrapper("h1", 1337);

 Here, the wrapper function corenetJsonWrapper() interfaces a

data stream server called “Corenet” delivering JSON objects to

SVALI.

3.2 Learn-and-Validate
In cases where a mathematical model of the normal behavior is

not easily obtained the system provides an alternative validation

mechanism to learn the expected behavior by dynamically

building a statistical reference model based on sampled normal

behavior measured during the first n stream elements in a stream.

Once the reference model has been learned it is used to validate

the rest of the stream. This is called learn-and-validate and is

implemented by a stream function with the following signature:

learn_n_validate(Bag of Stream s, Function learnfn,

 Integer n, Function validatefn)

 -> Stream of (Number ts, Object m, Object e)

The learning function, learnfn(Vector of Object f)->Object x,

specifies how to collect statistics x, the reference model, of

expected behavior, based on a sequence f of the n first streams

elements.

As for model-and-validate, the validation function,

validatefn(Object r, Object x)->(Number ts, Object m), returns a

pair (ts, m) whenever a measured value m in r is invalid at time ts

compared to the reference value x returned by the learning

function.

The function learn_n_validate() returns a validation stream of

tuples (ts, m, x) with time stamp ts, measured value m, and the

expected value x according to the reference model learned from

the first n normally behaving stream elements.

3.2.1 Demonstrator 2
This part demonstrates how learn-and-validate has been applied in

an industrial case, based on a cyclical manufacturing scenario.

The case was provided by Sandvik Coromant, including the

framework, methods, meta-data, needed systems, equipment, and

the generated in-process data [2]. The streaming process data used

in this demonstrator was simulated in the same way as in

Demonstrator 1.

1 The notation #’fn’ specifies the function named ’fn’.

In Figure 3, the blue curve shows the normal behavior of one

cycle where the x-axis is time and the y-axis is the measured

power consumption. Continuous processing will lead to a certain

degree of wear of the equipment. The wear rate is computed by

the difference in power consumption between cycles. When the

wear rate exceeds an upper limit, indicated by the red curve in the

figure, the tool is worn out and should be replaced. Data for this

demonstrator was logged using a system from Artis

(http://www.artis.de/en/), the visualization in Figure 3 was also

generated using that system.

The raw cyclic data streams is in this case represented by JSON

records [“id”:id, “trigger”:tr, “time”:ts, “value”:val] where ts is

a time stamp, id indicates the identity of a particular machine

process, tr indicates whether the cycle starts or stops, and val is

the measured sensor reading to be validated.

Predicate windows: The value tr is set by the monitored

equipment to 1 when a window starts and 0 when it stops. Such

windows with dynamic extents are in SVALI represented as

predicate windows. Traditional time or count windows cannot be

used to identify the cycles when the logic or physical size of the

cycle is unknown beforehand and is dependent on a predicate, as

in our example. For this SVALI provides a predicate window

forming operator pwindowize(Stream s, Function start, Function

stop)->Stream of Window that creates a stream of windows based

on two predicates (Boolean functions) called the window start

condition and the window stop condition.

The window start condition is specified by the start function,

startfn(Object s)->Boolean. It returns true if a stream element s

indicates that a new cycle is started, in which case s is the start

element of the cycle. The window stop condition is specified by a

stop function, stopfn(Object s, Object r)->Boolean, that receives

the start element s and a received stream element r and returns

true if the received element indicates that the cycle has ended.

For example:

create function cycleStart(Record s) -> Boolean

 as s[“trigger”] = 1;

create function cycleStop(Record s, Record r) -> Boolean

 as r[“trigger”] = 0 and s[“trigger”] = 1;

Figure 3. Cyclic behavior curve

In our example, pwindowize() is used to build the reference model

from the first two cycles of predicate windows. Analogous to the

milling example, the CQ validates a JSON stream delivered from

host “h2” on port 1338 based on learn-and-validate. It is

expressed as:

select learn_n_validate(bagof(sw), #’learnCycle’, 2,

 #’validateCycle’)

from Stream s, Stream sw

where s= corenetJsonWrapper("h2", 1338) and

 sw = pwindowize(s, #’cycleStart’, #’cycleStop’);

Learning function: In our example the learning function

computes the average power consumption of the n first windows f

in the stream. It has the definition:

create function learnCycle(Vector of Window f)

 -> Vector of Number

as navg(select extractPowerW(w) from Window w where w in f);

The function navg(Bag of Vector)->Vector returns the average

vector of a set of numerical vectors normalized for possibly

different lengths. The function extractPowerW(Window w)-

>Vector x extracts a vector of the power consumptions of each

element in window w. It has the definition:

create function extractPowerW(Window w) -> Vector of Number

as window2vector(w, #’extractPower’);

The function extractPower() is defined as:

create function extractPower(Record r)-> Number as r[“val”];

The system function window2vector(Window w, Function fe)-

>Vector f creates a new vector f by applying the function

fe(Object e)->Object on each element in window w.

Validation function: To validate the current stream window, we

first extract the power consumption for the current window as a

vector and then compare the extracted vector with the learned

vector. This is defined as:

create function validateCycle(Window w, Vector e)

 -> (Number ts, Vector of Number m)

 as select timestamp(w), m

 where neuclid(e, m) > th(“machine2”) and

 m = extractPowerW(w);

The function neuclid(Vector x, Vector y)->Number returns the

Euclidean distance between x and y normalized for different

lengths.

4. PERFORMANCE EXPERIMENTS
To analyze the performance of stream validation in SVALI, the

performance of model_n_validate() was measured for a set of

streams with varying stream rates. Scale-up is simulated by

generating many simulated streams with different time offsets

based on the raw data provided by Sandvik Coromant. The

number of machines is scaled up by increasing the set of streams.

The scalability of two queries was investigated:

 Q1: Given the analytical model for the power

consumption of a machine process above, produce a

validation stream per event of those machines where the

power exceeds a threshold 1.2.

 Q2: Given the analytical model for the power

consumption of a machine process, produce a validation

stream of those machines where the power on average

exceeds a threshold 1.2 for 0.1 seconds.

Query Q1 is the example query defined in Sec 3.1.1. Query Q2

uses the following second order functions measuredPower(),

expectedPower() and validatePower():

create function measuredPower(Window r)

 -> Vector of Number m

 as window2vector(r, #'measuredPower');

create function expectedPower(Window r)

 -> Vector of Number x

as window2vector(r, #'expectedPower');

create function validatePower(Window r, Vector of Number x)

 -> (Number ts, Vector of Number m)

as select ts(r), m

 where m = measuredPower(r)

 and neuclid(m, x) > th("mill1");

Given these three functions, query Q2 validating a bag of streams

bsw of 0.1 second windows is defined as:

model_n_validate(bsw, #’expectedPower’, #’validatePower’);

By simulation, the number of machines is scaled up to 100. Each

machine emits a data stream during 30 seconds. To simulate the

impact of the performance of streams of different stream rates, the

element rate of each stream was randomly chosen between 1 and

10 ms. The validations were done both centrally and in parallel.

Central validation first merges streams from all machine processes

and then validates them in one process, while parallel validation

assigns an independent SVALI process per stream source and then

merges the validation streams in a separate process. The

parallelization strategy is chosen by the model_n_validate()

function.

The experiments were made on a Dell NUMA computer

PowerEdge R815 featuring 4 CPUs with 16 2.3 GHz cores each.

OS: Scientific Linux release 6.2 (Carbon). All simulated stream

sources and SVALI nodes run as UNIX processes.

The selectivity of the CQs is defined as the relative stream volume

of outgoing tuples from SVALI compared with the incoming

ones. Table 3 shows the selectivity of the two queries. The

selectivity of the two cases are slightly different because of the

randomness in the simulation based on the real data.

Table 3. Query selectivity

 selectivity Q1 selectivity Q2

central validation 14.5% 3.4%

parallel validation 15% 3.5%

Response time of the validation is measured since low latency is

critical because decisions are made when the abnormalities are

detected.

For the simple query Q1 Figure 4 shows the average delay

(response time) per event caused by SVALI as the number of

machines is increased, measured by recording the time when each

event arrives to SVALI compared with the time when SVALI

emits the corresponding processed event. It shows that Q1 has fast

response time but still increases with the number of machines. By

contrast parallel validation stays around 0.2 ms as the number of

monitored machines increases.

For expensive validations of complex queries like Q2, Figure 5

shows that the central validation does not scale, while the parallel

approach remains within bound, i.e. from 1 ms to 2 ms. We also

continue increasing the number of simulated machines to explore

the capability of our NUMA computer of parallel validation of

Q2. In our experiment environment, our system is efficient to

handle up to 450 simulated machines.

Both figures show that central validation is slightly faster than the

parallel one when the number of machines is small. This is due to

the overhead of starting an extra independent validation process

for each machine.

In conclusion, central validation does not scale with the number of

machines in particular when validation is expensive, while

parallel processing enables scalable validation as long as there are

sufficient resources to do the processing.

5. RELATED WORK
This paper complements other work on data stream processing [1]

[7] [9] [16] [17] [22] by introducing a general approach to

validate normal behavior of streams with non-trivial validation

functions.

Several applications of anomaly detection are discussed in [6],

such as intrusion detection [8] [11], medical and public health

anomaly detection [13] [20] [21], industrial damage detection [12]

and so on. Our work belongs to the area of industrial damage

detection, i.e. monitoring the behavior of industrial components.

Jakubek and Strasser [12] use Neural Networks with ellipsoidal

basis functions to monitor a large number of measurements with

as few parameters as possible in the automotive field. By contrast,

SVALI provides general functionality for monitoring streams

from a large number of equipment in parallel, based on plugging

in general models.

An adaptive runtime anomaly prediction system called ALERT

[19] was developed for large scale hosting infrastructures. The

aim was to provide a context aware anomaly prediction model

with good prediction accuracy. Rather than anomaly prediction,

we mainly focused on supporting online anomaly detection that

requires more strict response time. The data streams analyzed in

[19] have a fairly low arrival rate, i.e. one sample every 2 seconds

and one sample every 10 seconds. By contrast, we show that our

system can handle many streams with much higher arrival rates.

Di Wang et al. [20] proposed an active complex event processing

system in a hospital environment, where rules are triggered by

state changes of the system during CQ processing. In our system,

validation models are stored in the SVALI local database and can

be modified dynamically by update commands from the

application side.

The main focus of [23] is time series data stream aggregate

monitoring, while our approach is providing a flexible stream

validation framework that can be applied on both individual event

monitoring, where only latest event is of interest for processing,

and aggregate monitoring, where window aggregation is required

for the analysis. This is based on the fact that our stream

validation operator treats both raw stream and windowed stream

equally.

6. CONCLUSION AND FUTURE WORK
Two general strategies were presented to validate streams from

industrial equipment, called model-and-validate and learn-and-

validate, respectively. Model-and-validate is based on explicitly

specifying an analytical model of expected behavior, which is

compared with actual measured data stream elements. Learn-and-

validate dynamically builds a statistical model based on a set of

observed correct behavior in streams. We show that the approach

is applicable in an industrial setting on real industrial data from

real industrial machines.

In our SVALI system, continuous queries validating that

equipment behaves correctly are defined declaratively in term of

validation functions that are sent to a server, which generates a

parallel execution plan to enable scalable computation of

validation streams. The experiments show that parallel execution

scales better than a central implementation of model-and-validate

when increasing the number of streams from monitored machines.

Investigating parallelization of learn-and-validate is future work.

Another interesting future work is to regularly refine the learnt

model. Furthermore, the impact of complex model functions on

the strategy chosen should be investigated, for instance, to

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 20 40 60 80 100 120

A
v

e
ra

g
e

 r
e

sp
o

n
se

 t
im

e
 (

se
c)

Number of Machines

centralValidation Q1

parallelValidation Q1

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

A
v

e
ra

g
e

 r
e

sp
o

n
se

 t
im

e
 (

se
c)

Number of Machines

centralValidation Q2

parallelValidation Q2

Figure 4. Average response time for Q1

Figure 5. Average response time for Q2

validate streaming data based on trends of measured equipment

behavior over time. This can be handled by defining complex

model functions that compute trends over time rather than the

actual expected measurements. This may involve new scalability

challenges.

ACKNOWLEDGMENTS
This work was supported by the Swedish Foundation for Strategic

Research, grant RIT08-0041 and by the EU FP7 project Smart

Vortex [18].

7. REFERENCES
[1] Abadi, D.J., et al.: Aurora: a new model and architechture for

data stream management. The VLDB journal, 12(2), 2003.

[2] Alizadeh, Z.: Method for automated tests of wear (Metod för

automatisering av förslitningstest). Project work in

Automated Manufacturing, 2011.

[3] Alonso-Rasgado, T., Thompson, G. and Elfstrom, B.O.: The

design of functional (total care) products. Journal of

Engineering Design, Vol. 15, No. 6, pp.515-540, 2004.

[4] Alonso-Rasgado, T. and Thompson, G.: A rapid design

process for Total Care Product creation. Journal of

Engineering Design, Vol. 17, No.6, pp.509-531, 2006.

[5] Baines, T.S., Lightfoot, H.W., Evans, S., Neely, A.,

Greenough, R., Peppard, J., Roy, R., Shehab, E., Braganza,

A., Tiwari, A., Alcock, J.R., Angus, J.P., Bastl, M., Cousens,

A., Irving, P., Johnson, M., Kingston, J., Lockett, H.,

Martinez, V., Michele, P., Tranfield, D., Walton, I.M.,

Wilson, H.: State-of-the-art in product-service systems.

Proceedings of the Institution of Mechanical Engineers, Part

B, Journal of Engineering Manufacture, Vol. 221, pp.1543-

1552, 2007.

[6] Chandola, V., Banerjee, A., and Kumar, V.: Anomaly

detection: a survey. ACM Computing Surveys, 41(3), 2009

[7] Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.:

Gigascope: A Stream Database for Network Applications.

Proc. SIGMOD Conf., 2003.

[8] Gonzalez, F.A. and Dasgupta, D.: Anomaly detection using

real-valued negative selection. Genetic Programming and

Evolvable Machines 4, 4, pp.383-403, 2003.

[9] Girod, L., Mei, Y., Newton, R., Rost, R., Thiagarajan,

Balakrishnan, A.H., Madden, S.: XStream: A Signal-

Oriented Data Stream Management System. ICDE Conf.,

2008.

[10] Helgoson, M., Kalhori, V.: A conceptual model for

knowledge integration in process planning, 45th CIRP

Conference on Manufacturing Systems, Procedia CIRP 3

(2012), pp.573-578, Elsevier, 2012.

[11] Hu, W., Liao, Y. and Vemuri, V.R.: Robust anomaly

detection using support vector machines. Proc. of the

International Conference on Machine Learning, pp.282-289,

San Francisco, CA, USA, 2003.

[12] Jakubek, S. and Strasser, T.: Fault-diagnosis using neural

networks with ellipsoidal basis functions. American Control

Conference. Vol. 5. pp.3846-3851, 2002.

[13] Lin, J., Keogh, E., Fu, A., and Herle, H.V.: Approximations

to magic: Finding unusual medical time series, Proc. of the

18th IEEE Symposium on Computer-Based Medical Systems.

IEEE, 329-334, Washington, DC, USA, 2005.

[14] Löfstrand, M., Backe, B., Kyösti, P., Lindström, J., Reed, S.:

A Model for predicting and monitoring industrial system

availability. Int. J. of Product Development, Vol. 16, No 2.

pp.140-157, 2012.

[15] Meier, H., Roy, R. Seliger, G., Industrial Product-Service

Systems-IPS2: CIRP Annals - Manufacturing Technology,

59, pp.607-627, 2010.

[16] Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S.,

Datar, M., Manku, G., Olsten, C., Rosenstein, J., and Varma,

R.: Query processing, resource management, and

approximation in a data stream management system, 1st

Biennial Conference on Innovative Database Research

(CIDR), Asilomar, CA, 2003.

[17] Shasha, D. and Zhu, Z.: Statstream: statistical monitoring of

thousands of data streams in real time, VLDB Conf., pages

358-369, 2002.

[18] Smart Vortex Project - http://www.smartvortex.eu/

[19] Tan, T., Gu, X., and Wang, H.: Adaptive system anomaly

prediction for large-scale hosting infrastructures. PODC

Conf., 2010.

[20] Wang, D., Rundensteiner, E., Ellison, R.: Active Complex

Event Processing for Realtime Health Care, VLDB Conf.,

3(2): pp.1545-1548, 2010.

[21] Wong, W.K., Moore, A., Cooper, G., and Wagner, M.:

Bayesian network anomaly pattern detection for disease

outbreaks, 20th International Conference on Machine

Learning, AAAI Press, Menlo Park, California, pp.808-815,

2003.

[22] Zeitler, E. and Risch, T.: Massive scale-out of expensive

continuous queries, Proceedings of the VLDB Endowment,

ISSN 2150-8097, Vol. 4, No. 11, pp.1181-1188, 2011.

[23] Zhu, Y. and Shasha, D.: Efficient elastic burst detection in

data streams, 9th SIGKDD Conf., 2003.

