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ABSTRACT 

An approach is developed where functions are used in a data 

stream management system to continuously validate data 

streaming from industrial equipment based on mathematical 

models of the expected behavior of the equipment. The models 

are expressed declaratively using a data stream query language. 

To validate and detect abnormality in data streams, a model can 

be defined either as an analytical model in terms of functions over 

sensor measurements or be based on learning a statistical model of 

the expected behavior of the streams during training sessions. It is 

shown how parallel data stream processing enables equipment 

validation based on expensive models while scaling the number of 

sensor streams without causing increasing delays. The paper 

presents two demonstrators based on industrial cases and 

scenarios where the approach has been implemented.   

Categories and Subject Descriptors 

H.2.4 [Database Management]: Systems – Parallel databases, 

Query processing  

Keywords 

Equipment Monitoring; data stream management system; data 

stream validation; parallelization; anomaly detection. 

1. INTRODUCTION 
Emerging business scenarios such as provision of total care 

products, product service systems (PSS), industrial product-

service-systems (IPS2), and functional products [3] [4] [5] [14] 

[15] imply needs to efficiently monitor, verify and validate the 

functionality of a delivered product in use. This can be done with 

regard to pre-defined criteria, e.g. productivity, reliability, 

sustainability, and quality. A functional product in this context 

mean an integrated provision of hardware, software and services. 

In case of machining several factors and dependencies have to be 

considered, which in turn means that data (e.g. in-process data) 

from the machining process, information (e.g. about cutting tools), 

and knowledge (e.g. physical models), from several domains have 

to be captured, combined and analyzed in a comprehensive 

knowledge integration framework that includes quality assurance 

of data, validation of models, learning capabilities, and 

verification of functionality [10]. A considerable challenge is to 

scale up data analysis for handling huge amount of equipment. 

In this context novel software technologies are needed to 

efficiently process and analyze the large data streams, in particular 

related to in-process activities, and to facilitate the steps towards 

increased automation of the related processes. 

In manufacturing industry, equipment such as machine controllers 

and various sensors are installed. This equipment measure and 

generate data during the machining process, i.e. in-process. 

Depending on the case a huge amount of parameters (e.g. power, 

torque, etc.) at different sample rates (ranging from a couple of 

HZ to 20 kHZ) need to be processed. Processing data streams 

from controllers and sensors is critical for monitoring the 

functional product in use. For instance, the parameters related to 

the power consumption could help the engineers to analyze the 

process, compare different application strategies, monitor and 

maintain the hardware e.g. to get an indication of the degree of 

tool-wear or when a tool needs to be replaced or machine 

maintenance is required.  

Often a mathematical model of the process can be developed, e.g. 

to calculate the expected power consumption and detect abnormal 

behavior. In other cases, when there is no such model pre-defined, 

a model can be learned based on observing sensor readings during 

training sessions. This requires a general approach to define the 

correct behavior of the equipment either analytically or 

statistically. 

Data Stream Management Systems (DSMSs), such as Aurora [1] 

and STREAM [16], process continuous queries, CQs, over data 

streams that filter, analyze, and transform the data streams. A 

simple CQ can be: “give me the sensor id and the power 

consumption whenever the power is greater than 100W”. 

However, detecting abnormal behavior in equipment often 

involves advanced computations based on knowledge about the 

machining process, e.g. theoretical models of the equipment’s 

behavior, rather than just simple numerical comparisons in a 
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query condition. An advanced CQ could be: “given a power 

consumption model computing the theoretical expected power 

consumption at any point in time, give me the sensor id whenever 

the difference between the actual power consumption and the 

theoretical expected power on the average is greater than 10W 

during 1 second.” 

To enable general stream validation based on mathematical 

models, the system called SVALI (Stream VALIdator) was 

developed and used in industrial applications. The system 

provides the following facilities: 

1. Users can define and install their own analytical models inside 

the DSMS to validate correct behavior of the data streams. The 

models are expressed as side-effect free functions (formulae) 

over streamed data values. 

2. For applications where no theoretical model can be easily 

defined, the system can also dynamically learn a model based 

on some existing observed correct behavior and then use that 

learned model for subsequent validation. 

SVALI is a distributed DSMS extending SCSQ [22] with 

validation functionality. Many SVALI nodes can be started on 

different compute nodes. The distributed SVALI architecture 

enables processing of validations in parallel without causing 

unacceptable delays by the often expensive computations, as 

shown in this paper.  

The paper is organized as follows. In Section 2 the architecture of 

a SVALI node is presented. Section 3 presents two general 

strategies for stream validations in SVALI called model-and-

validate and learn-and-validate, illustrated by real-life industrial 

examples. Section 4 presents results from simulations on how the 

parallelization enables scalable processing of expensive validation 

functions in the applications, and Section 5 discusses related 

work. Finally, Section 6 summarizes and outlines future work. 

2. SYSTEM ARCHITECTURE 
Figure 1 shows the architecture of the SVALI system. Different 

kinds of data streams are collected from stream sources of sensor 

readings. SVALI is an extensible DSMS where new kinds of 

stream sources can be plugged in by defining stream wrappers. A 

stream wrapper is an interface that continuously reads a raw data 

stream and emits the read events to the SVALI kernel. On top of 

the stream wrappers, equipment specific stream models over raw 

data streams analyze the received stream tuples to validate that 

different kinds of equipment behave correctly. A stream model is 

a function over either individual stream tuples or over windows of 

stream tuples. Stream models are passed as a parameter to the 

stream validator that applies the models to produce validation 

streams where deviations from correct behavior are indicated.  

The main-memory local database stores meta-data about the 

streams such as stream models, tolerance thresholds, collected 

statistics, etc. 

For validating streaming data using an analytical stream model the 

system provides a second order function, called 

model_n_validate(). It validates data streaming from sensors on a 

set of machines based on a stream model function and emits a 

validation stream of significant deviations for malfunctioning 

machines. 

It is also possible to automatically build at run-time a model of 

correct behavior based on observed correct streaming data using 

another second order function called learn_n_validate(). During a 

learning phase it computes statistics of correct behavior of the 

monitored equipment based on a user provided statistical model. 

After the learning phase the collected statistics is stored in the 

local database and used as the reference with which the streaming 

data will be compared. As for model-and-validate, the system will 

emit a validation stream when significant deviations from normal 

behavior are detected. 

The validation streams can be used in CQs. For example, in 

Figure 1 CQ1 is used as input to a visualizer of incorrect power 

consumption and CQ2 is a stream of alert messages signaling 

abnormal power consumption. 

It is possible to dynamically modify the validation models while a 

validating CQ is running by sending update commands from the 

application to the local database. For instance, it is possible to 

change some threshold parameter used in an analytical model for 

a particular kind of machine, which will immediately change the 

behavior of the running validation function. 

Usually the process of validation of a single machine’s behavior 

depends on data streaming only from that particular machine 

combined with data in the local database. The overall detected 

abnormal behaviors are then collected by merging the individual 

machines’ validation streams. For such CQs, the system 

automatically parallelizes the execution so that each compute 

node executes validation functions for a single data stream source 

independent of streams from other machinery. The system then 

merges the validation streams before delivering the result to the 

application. All the nodes contain the same database schema of 

machine installations and meta-data such as thresholds used in 

validation models. In the paper it is shown that this parallelization 

strategy outperforms validation on a single node and enables the 

delay caused by the monitoring of many machines to be bounded. 

Figure 1. System Architecture 



3. MODEL BASED VALIDATION 
The functionalities of the two kinds of model based validation 

methods in SVALI are described along with examples of how 

they are applied on industrial equipment in use. 

3.1 Model-and-validate 
When the expected value can be estimated based on an analytical 

stream model, it is defined as a function which is passed as a 

parameter to the general second order function called 

model_n_validate() that has the following signature: 

model_n_validate (Bag of Stream s, Function modelfn, 

                                   Function validatefn) 

           -> Stream of (Number ts, Object m, Object x) 

The user defined stream model function, modelfn(Object e)-

>Object x, specifies how to compute the expected value x based 

on a stream element e. A stream element can be a single stream 

tuple or a window of tuples.  

The user defined validation function, validatefn(Object r, Object 

x)->(Number ts, Object m), specifies whether a received stream 

element r is invalid compared to the expected value x as computed 

by the model function. In case r is invalid the validation function 

returns the ts time stamped invalid measurement m in r. 

The element of the validation stream returned by model-and-

validate() are tuples (ts, m, x), where ts and m are computed by the 

validation function and x is computed by the model function. 

CQs specification involving model-and-validate calls are sent to a 

SVALI server as a text string for dynamic execution. It is up to 

the SVALI server to determine how to execute the CQs in an 

efficient way. In particular SVALI transparently parallelizes the 

execution to minimize the delay caused by executing expensive 

validation functions. 

3.1.1 Demonstrator 1 
This section demonstrates how model-and-validate is used to 

validate the power consumption in an industrial case based on a 

milling scenario. The case, including the framework, meta-data, 

models, a cutting tool, a machine tool, related equipment to 

capture the needed in-process data, and a stream server called 

Corenet was provided by Sandvik Coromant. The streaming 

process data used in this demonstrator was simulated using real 

recorded process data from Sandvik Coromant. To be specific, the 

data was collected from a MoriSeiki 5000 with a Fanuc control 

system that was equipped with the Kistler sensor system 9255B, 

and DMG with a Siemens control system. The difference between 

running Corenet with a recorded file compared to Corenet with 

connection to a machine is just a matter of configuration. In this 

paper a consistent behavior was needed to evaluate the 

performance and therefore it was of benefit to use recorded data 

from earlier machining attempts. 

Figure 2 illustrates how the milling process was performed. The 

parameters in Table 1 describe the milling process. Tool working 

engagement is denoted by ae feed per tooth by fz, maximum chip 

thickness by hex, cutting depth by ap cutting speed by vc and the 

number of cutting edges by zc. 

 

 

 

Table 1. Parameters that measured 

ae 

[mm]
 

fz 

[mm/tooth] 

hex 

[mm] 

ap 

[mm] 

vc 

[m/min] 
zc 

2 0.0756 0.05 20 200 4 

3 0.0641 0.05 20 200 4 

 

This model can be expressed as a formula: 
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The following parameters are stored in the SVALI local database 

as meta-data for a specific milling model: 

                  

The user installs the validation model expressed as functions as 

shown in Table 2 applied on the JSON objects r received in the 

stream from the equipment called “mill1”: 

Table 2. Functions installed in SVALI 

Model 
Corresponding function 

installed in SVALI 

   
                

               
    

    
 

 

Create function hm(Record r) 

                                   ->Number 

as 2*pi()*sin(90*pi()/180)*ae(r)*fz(r) / 

    (pi()*dcap(r)* acos(1-2*ae(r)/dcap(r))); 

         
         

   

   
  

create function kc(Record r) 

                                      ->Number 

as kc1(“mill1”)*power(hm(r), -0.25)  

    * (1-mc(“mill1”)/100); 

measured power 

consumption
 

create function measuredPower(Record r) 

                                      -> Number 

as r[“power”]; 

   
                 

             

 

 

create function expectedPower(Record r) 
                                      -> Number 
as (ap(r)*ae(r)*fz(r)*vc(r)*zt(r)* kc(r))/ 
    (pi() * dcap(r) * 60000); 

 

 

 

 

 

Figure 2. The side milling process 



The validation function is defined as: 

create function validatePower(Record r, Number x) 

                     -> (Number ts, Number m) 

  as select ts, m 

       where m = measuredPower(r) 

  and abs(x - m) > th(“mill1”); 

The function th(Chartsring k) is a table of validation thresholds 

for each kind of machine k stored in the local database. After the 

model is installed in the SVALI server, a CQ validating a single 

JSON stream delivered from host “h1” on port 1337 is expressed 

as1: 

select model_n_validate(bagof(input), #'expectedPower', 

                                              #’validatePower’) 

from Stream input 

where input = corenetJsonWrapper("h1", 1337); 

    Here, the wrapper function corenetJsonWrapper() interfaces a 

data stream server called “Corenet” delivering JSON objects to 

SVALI. 

3.2 Learn-and-Validate 
In cases where a mathematical model of the normal behavior is 

not easily obtained the system provides an alternative validation 

mechanism to learn the expected behavior by dynamically 

building a statistical reference model based on sampled normal 

behavior measured during the first n stream elements in a stream. 

Once the reference model has been learned it is used to validate 

the rest of the stream. This is called learn-and-validate and is 

implemented by a stream function with the following signature: 

learn_n_validate(Bag of Stream s, Function learnfn, 

                                Integer n, Function validatefn) 

           -> Stream of (Number ts, Object m, Object e) 

The learning function, learnfn(Vector of Object f)->Object x, 

specifies how to collect statistics x, the reference model, of 

expected behavior, based on a sequence f of the n first streams 

elements.  

As for model-and-validate, the validation function, 

validatefn(Object r, Object x)->(Number ts, Object m), returns a 

pair (ts, m) whenever a measured value m in r is invalid at time ts 

compared to the reference value x returned by the learning 

function. 

The function learn_n_validate() returns a validation stream of 

tuples (ts, m, x) with time stamp ts, measured value m, and the 

expected value x according to the reference model learned from 

the first n normally behaving stream elements. 

3.2.1 Demonstrator 2 
This part demonstrates how learn-and-validate has been applied in 

an industrial case, based on a cyclical manufacturing scenario. 

The case was provided by Sandvik Coromant, including the 

framework, methods, meta-data, needed systems, equipment, and 

the generated in-process data [2]. The streaming process data used 

in this demonstrator was simulated in the same way as in 

Demonstrator 1. 

                                                                 

1 The notation #’fn’ specifies the function named ’fn’. 

In Figure 3, the blue curve shows the normal behavior of one 

cycle where the x-axis is time and the y-axis is the measured 

power consumption. Continuous processing will lead to a certain 

degree of wear of the equipment. The wear rate is computed by 

the difference in power consumption between cycles. When the 

wear rate exceeds an upper limit, indicated by the red curve in the 

figure, the tool is worn out and should be replaced. Data for this 

demonstrator was logged using a system from Artis 

(http://www.artis.de/en/), the visualization in Figure 3 was also 

generated using that system. 

The raw cyclic data streams is in this case represented by JSON 

records [“id”:id, “trigger”:tr, “time”:ts, “value”:val] where ts is 

a time stamp, id indicates the identity of a particular machine 

process,  tr indicates whether the cycle starts or stops, and val is 

the measured sensor reading to be validated. 

 

Predicate windows: The value tr is set by the monitored 

equipment to 1 when a window starts and 0 when it stops. Such 

windows with dynamic extents are in SVALI represented as 

predicate windows. Traditional time or count windows cannot be 

used to identify the cycles when the logic or physical size of the 

cycle is unknown beforehand and is dependent on a predicate, as 

in our example.  For this SVALI provides a predicate window 

forming operator pwindowize(Stream s, Function start, Function 

stop)->Stream of Window that creates a stream of windows  based 

on two predicates (Boolean functions)  called the window start 

condition and the window stop condition.  

The window start condition is specified by the start function, 

startfn(Object s)->Boolean. It returns true if a stream element s 

indicates that a new cycle is started, in which case s is the start 

element of the cycle. The window stop condition is specified by a 

stop function, stopfn(Object s, Object r)->Boolean, that receives 

the start element s and a received stream element r and returns 

true if the received element indicates that the cycle has ended. 

For example: 

create function cycleStart(Record s) -> Boolean 

  as s[“trigger”] = 1; 

create function cycleStop(Record s, Record r) -> Boolean 

  as r[“trigger”] = 0 and s[“trigger”] = 1; 

Figure 3. Cyclic behavior curve 



In our example, pwindowize() is used to build the reference model 

from the first two cycles of predicate windows. Analogous to the 

milling example, the CQ validates a JSON stream delivered from 

host “h2” on port 1338 based on learn-and-validate. It is 

expressed as: 

select learn_n_validate(bagof(sw), #’learnCycle’, 2, 

                                            #’validateCycle’) 

from Stream s, Stream sw 

where s= corenetJsonWrapper( "h2", 1338) and 

             sw = pwindowize(s, #’cycleStart’, #’cycleStop’); 

 

Learning function: In our example the learning function 

computes the average power consumption of the n first windows f 

in the stream. It has the definition: 

create function learnCycle(Vector of Window f)  

                                                      -> Vector of Number 

as navg(select extractPowerW(w) from Window w where w in f); 

The function navg(Bag of Vector)->Vector returns the average 

vector of a set of numerical vectors normalized for possibly 

different lengths. The function extractPowerW(Window w)-

>Vector x extracts a vector of the power consumptions of each 

element in window w. It has the definition: 

create function extractPowerW(Window w)  -> Vector of Number 

as window2vector(w, #’extractPower’); 

 

The function extractPower() is defined as: 

 

create function extractPower(Record r)-> Number as r[“val”]; 

 

The system function window2vector(Window w, Function fe)-

>Vector f creates a new vector f  by applying the function 

fe(Object e)->Object on each element in window w. 

 

Validation function: To validate the current stream window, we 

first extract the power consumption for the current window as a 

vector and then compare the extracted vector with the learned 

vector. This is defined as: 

create function validateCycle(Window w, Vector e) 

                                 -> (Number ts, Vector of Number m) 

  as select timestamp(w), m 

       where neuclid(e, m) > th(“machine2”) and 

                   m = extractPowerW(w); 

The function neuclid(Vector x, Vector y)->Number returns the 

Euclidean distance between x and y normalized for different 

lengths. 

4. PERFORMANCE EXPERIMENTS 
To analyze the performance of stream validation in SVALI, the 

performance of model_n_validate() was measured for a set of 

streams with varying stream rates. Scale-up is simulated by 

generating many simulated streams with different time offsets 

based on the raw data provided by Sandvik Coromant. The 

number of machines is scaled up by increasing the set of streams. 

The scalability of two queries was investigated: 

 Q1: Given the analytical model for the power 

consumption of a machine process above, produce a 

validation stream per event of those machines where the 

power exceeds a threshold 1.2. 

 Q2: Given the analytical model for the power 

consumption of a machine process, produce a validation 

stream of those machines where the power on average 

exceeds a threshold 1.2 for 0.1 seconds. 

Query Q1 is the example query defined in Sec 3.1.1. Query Q2 

uses the following second order functions measuredPower(), 

expectedPower() and validatePower(): 

create function measuredPower(Window r)  

                               -> Vector of Number m 

  as window2vector(r, #'measuredPower'); 

create function expectedPower(Window r) 

                              -> Vector of Number x 

as window2vector(r, #'expectedPower'); 

create function validatePower(Window r, Vector of Number x) 

                                  -> (Number ts, Vector of Number m) 

as select ts(r), m 

     where m = measuredPower(r) 

     and neuclid(m, x) > th("mill1"); 

 

Given these three functions, query Q2 validating a bag of streams 

bsw of 0.1 second windows is defined as: 

model_n_validate(bsw, #’expectedPower’, #’validatePower’); 

By simulation, the number of machines is scaled up to 100. Each 

machine emits a data stream during 30 seconds. To simulate the 

impact of the performance of streams of different stream rates, the 

element rate of each stream was randomly chosen between 1 and 

10 ms. The validations were done both centrally and in parallel. 

Central validation first merges streams from all machine processes 

and then validates them in one process, while parallel validation 

assigns an independent SVALI process per stream source and then 

merges the validation streams in a separate process. The 

parallelization strategy is chosen by the model_n_validate() 

function. 

The experiments were made on a Dell NUMA computer 

PowerEdge R815 featuring 4 CPUs with 16 2.3 GHz cores each. 

OS: Scientific Linux release 6.2 (Carbon). All simulated stream 

sources and SVALI nodes run as UNIX processes. 

The selectivity of the CQs is defined as the relative stream volume 

of outgoing tuples from SVALI compared with the incoming 

ones. Table 3 shows the selectivity of the two queries. The 

selectivity of the two cases are slightly different because of the 

randomness in the simulation based on the real data. 

Table 3. Query selectivity 

 selectivity Q1 selectivity Q2 

central validation 14.5% 3.4% 

parallel validation 15% 3.5% 

 



Response time of the validation is measured since low latency is 

critical because decisions are made when the abnormalities are 

detected. 

For the simple query Q1 Figure 4 shows the average delay 

(response time) per event caused by SVALI as the number of 

machines is increased, measured by recording the time when each 

event arrives to SVALI compared with the time when SVALI 

emits the corresponding processed event. It shows that Q1 has fast 

response time but still increases with the number of machines. By 

contrast parallel validation stays around 0.2 ms as the number of 

monitored machines increases. 

 

 

For expensive validations of complex queries like Q2, Figure 5 

shows that the central validation does not scale, while the parallel 

approach remains within bound, i.e. from 1 ms to 2 ms. We also 

continue increasing the number of simulated machines to explore 

the capability of our NUMA computer of parallel validation of 

Q2. In our experiment environment, our system is efficient to 

handle up to 450 simulated machines. 

Both figures show that central validation is slightly faster than the 

parallel one when the number of machines is small. This is due to 

the overhead of starting an extra independent validation process 

for each machine. 

 

 

 

In conclusion, central validation does not scale with the number of 

machines in particular when validation is expensive, while 

parallel processing enables scalable validation as long as there are 

sufficient resources to do the processing. 

5. RELATED WORK 
This paper complements other work on data stream processing [1] 

[7] [9] [16] [17] [22] by introducing a general approach to 

validate normal behavior of streams with non-trivial validation 

functions. 

Several applications of anomaly detection are discussed in [6], 

such as intrusion detection [8] [11], medical and public health 

anomaly detection [13] [20] [21], industrial damage detection [12] 

and so on. Our work belongs to the area of industrial damage 

detection, i.e. monitoring the behavior of industrial components. 

Jakubek and Strasser [12] use Neural Networks with ellipsoidal 

basis functions to monitor a large number of measurements with 

as few parameters as possible in the automotive field. By contrast, 

SVALI provides general functionality for monitoring streams 

from a large number of equipment in parallel, based on plugging 

in general models. 

An adaptive runtime anomaly prediction system called ALERT 

[19] was developed for large scale hosting infrastructures. The 

aim was to provide a context aware anomaly prediction model 

with good prediction accuracy. Rather than anomaly prediction, 

we mainly focused on supporting online anomaly detection that 

requires more strict response time. The data streams analyzed in 

[19] have a fairly low arrival rate, i.e. one sample every 2 seconds 

and one sample every 10 seconds. By contrast, we show that our 

system can handle many streams with much higher arrival rates. 

Di Wang et al. [20] proposed an active complex event processing 

system in a hospital environment, where rules are triggered by 

state changes of the system during CQ processing. In our system, 

validation models are stored in the SVALI local database and can 

be modified dynamically by update commands from the 

application side. 

The main focus of [23] is time series data stream aggregate 

monitoring, while our approach is providing a flexible stream 

validation framework that can be applied on both individual event 

monitoring, where only latest event is of interest for processing, 

and aggregate monitoring, where window aggregation is required 

for the analysis. This is based on the fact that our stream 

validation operator treats both raw stream and windowed stream 

equally. 

6. CONCLUSION AND FUTURE WORK 
Two general strategies were presented to validate streams from 

industrial equipment, called model-and-validate and learn-and-

validate, respectively. Model-and-validate is based on explicitly 

specifying an analytical model of expected behavior, which is 

compared with actual measured data stream elements. Learn-and-

validate dynamically builds a statistical model based on a set of 

observed correct behavior in streams. We show that the approach 

is applicable in an industrial setting on real industrial data from 

real industrial machines. 

In our SVALI system, continuous queries validating that 

equipment behaves correctly are defined declaratively in term of 

validation functions that are sent to a server, which generates a 

parallel execution plan to enable scalable computation of 

validation streams. The experiments show that parallel execution 

scales better than a central implementation of model-and-validate 

when increasing the number of streams from monitored machines.  

Investigating parallelization of learn-and-validate is future work. 

Another interesting future work is to regularly refine the learnt 

model. Furthermore, the impact of complex model functions on 

the strategy chosen should be investigated, for instance, to 

0 

0.0002 

0.0004 

0.0006 

0.0008 

0.001 

0.0012 

0 20 40 60 80 100 120 

A
v

e
ra

g
e

 r
e

sp
o

n
se

 t
im

e
 (

se
c)

 

Number of Machines 

centralValidation Q1 

parallelValidation Q1 

0 

5 

10 

15 

20 

25 

30 

35 

40 

0 20 40 60 80 100 120 

A
v

e
ra

g
e

 r
e

sp
o

n
se

 t
im

e
 (

se
c)

 

Number of Machines 

centralValidation Q2 

parallelValidation Q2 

Figure 4. Average response time for Q1 

Figure 5. Average response time for Q2 



validate streaming data based on trends of measured equipment 

behavior over time. This can be handled by defining complex 

model functions that compute trends over time rather than the 

actual expected measurements. This may involve new scalability 

challenges. 
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