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ABSTRACT

Natural graphs, such as social networks, email graphs, or
instant messaging patterns, have become pervasive through
the internet. These graphs are massive, often containing
hundreds of millions of nodes and billions of edges. While
some theoretical models have been proposed to study such
graphs, their analysis is still difficult due to the scale and
nature of the data.

We propose a framework for large-scale graph decomposi-
tion and inference. To resolve the scale, our framework is
distributed so that the data are partitioned over a shared-
nothing set of machines. We propose a novel factorization
technique that relies on partitioning a graph so as to min-
imize the number of neighboring vertices rather than edges
across partitions. Our decomposition is based on a stream-
ing algorithm. It is network-aware as it adapts to the net-
work topology of the underlying computational hardware.
We use local copies of the variables and an efficient asyn-
chronous communication protocol to synchronize the repli-
cated values in order to perform most of the computation
without having to incur the cost of network communication.
On a graph of 200 million vertices and 10 billion edges, de-
rived from an email communication network, our algorithm
retains convergence properties while allowing for almost lin-
ear scalability in the number of computers.

Categories and Subject Descriptors

[[.2.6] [Artificial Intelligence]: Learning — Parameter Learn-

ing; [E.1] [Data Structures]: Graphs and Networks
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1. INTRODUCTION

Very large natural graphs are common on the internet,
particularly in the context of social networks. For instance,
Facebook has at present in excess of 900M registered users.
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Similarly large graphs can be found among email and in-
stant messaging graphs. Online recommendation for prod-
ucts and connections, as well as online advertising, clearly
rely on the analysis of such networks, which makes inference
on very large natural graphs a pressing problem. However,
this problem is hard and cannot at present be solved on a
single machine. For inference problems at the scale of bil-
lions of edges it is imperative to use a distributed setting
where the graph is partitioned over a number of machines.

1.1 Challenges

We examine the challenges in applying distributed latent
variable models to graph factorization. Latent variable mod-
eling is a promising technique for many analytics and pre-
dictive inference applications. However, parallelization of
such models is difficult since many latent variable models
require frequent synchronization of their state. The power-
law nature of such graphs makes it difficult to use chromatic
scheduling [18]. Furthermore, the bulk-synchronous process-
ing paradigm of Map-Reduce [19] does not afford low-enough
latency for fast convergence: this has been reported, e.g.
in comparisons between bulk-synchronous convergence [20]
and asynchronous convergence [23]. Consequently there is a
considerable need for algorithms which address the following
issues when performing inference on large natural graphs:

Graph Partitioning We need to find a communication-
efficient partitioning of the graph in such a manner
as to ensure that the number of neighboring vertices
rather than the number of edges is minimized. This
is relevant since latent variable models and their infer-
ence algorithms store and exchange parameters that
are associated with vertices rather than edges [1].

Network Topology In many graph-based applications the
cost of communication (and to some extent also com-
putation) dwarfs the cost of storing data. Hence it is
desirable to have an algorithm which is capable to lay-
out data in a network-friendly fashion on the fly once
we know the computational resources.

Variable Replication While the problem of variable syn-
chronization for statistical inference with regular struc-
ture is by now well understood, the problem for graphs
is more complex: The state space is much larger (each
vertex holds parts of a state), rendering synchroniza-
tion much more costly — unlike in aspect models [3]
only few variables are global for all partitions.

Asynchronous Communication Finally there is the prob-
lem of eliminating the synchronization step in tradi-



tional bulk-synchronous systems [19, 21] on graphs.
More specifically, uneven load distribution can lead to
considerable inefficiencies in the bulk synchronous set-
ting [24]. After all, it is the slowest machine that de-
termines the runtime of each processing round (e.g.
MapReduce). Asynchronous schemes, on the other
hand, are nontrivial to implement as they often require
elaborate locking and scheduling strategies.

Large-scale matrix factorization has received considerable
attention in data mining and machine learning communi-
ties in recent years due to the proliferation of tasks such as
recommendation (e.g., a matrix of movies vs. users), news
personalization (users vs. news items), or keyword search
(terms vs. documents). Several sequential and distributed
algorithms have been proposed to tackle this problem over
the last four years [11, 17, 25, 26, 16]. We use factoriza-
tion as our test case and we relate to these approaches in
Section 8.

1.2 Main Contributions

We address the issues raised in the previous section in a
systematic fashion. To validate our strategy we apply our
algorithm to a social graph with 200 million vertices and
10 billion edges. We show how this graph can be factor-
ized in parallel on hundreds of computers performing dis-
tributed asynchronous optimization. We tackle the issues
raised above as follows:

Graph Partitioning We propose a streaming algorithm
for graph partitioning to ensure that the number of
neighbors for any given partition does not exceed a
machine-specific capacity limit. The algorithm pro-
ceeds by greedily adding vertices to partitions such as
to minimize the amount of additional storage required
per vertex.

Network Topology The data layout problem at runtime
can be expressed as a quadratic assignment problem
(QAP), which is NP-hard. We experimentally show
that explicitly addressing the data layout problem by
(approximately) solving the QAP significantly mini-
mizes the cost of communication.

Variable Replication We resort to a global consensus for-
mulation [6, 9]: we create local copies of global vari-
ables and optimize over the slightly relaxed optimiza-
tion problem jointly.

Asynchronous Communication Unlike classical MM [(]
or ADMM [9] methods for relaxation which alternate
between explicit local and global steps for optimiza-
tion, we perform integrated updates. This eliminates
an explicit global update phase. Global constraints are
updated asynchronously and independently.

Outline. Section 2 formally defines our optimization prob-

lem and its distributed variant. We propose a synchronous

algorithm in Section 3 and an asynchronous algorithm in

Section 4. Section 5 discusses large-scale graph partitioning

and Section 6 details a novel approach to distribute parts of

the graph over cluster nodes. Experiments on large natural
graphs are presented in Section 7, followed by a discussion

of related work in Section 8, and we conclude in Section 9.

2. GRAPH FACTORIZATION

Many social networks have an undirected graph as one
of their core data structures. Graph factorization allows us

to find latent (unobserved) factors associated with vertices
(users) which can be used for further inference in the net-
work. Furthermore, graph factorization is a test bed for con-
siderably more sophisticated algorithms, such as nonpara-
metric latent variable models. Hence it is highly desirable
to solve the factorization problem efficiently.

We begin by specifying our notation: We are given an
undirected graph G = (V, E) with n nodes and m edges. In
this paper, n is in the order of 108 — 10° vertices and m is
in the order of 10'° edges, hence typically m = O(n). For a
node v € V, denote by N(v) the set of its neighbors, that is,
{u € V|(u,v) € E}. The adjacency matrix of G, Y € R"*"
is symmetric, and our goal is to find a matrix Z € R™*",
with a given r < n, such that ZZ7 is close to Y in terms of
observed (non-zero) entries.

G | the given graph

n = |V| | number of nodes

m = |E| | number of edges

N(v) | set of neighbors of node v

Y € R"*™ | Y;; is the weight on edge between i and j
7 € R™*" | factor matrix with vector Z; for node
Xi(k) € R" | idem, local to machine k

A, i | regularization parameters

{O1,...,0k} | pairwise disjoint partitions of V'

By | {ve Vv ¢ Oy, 3u € O, (u,v) € E}

Vi | Ox U By

Objective

There exists a wide range of objective functions for graph
reconstruction and factorization [13]. Many of them share
the property that we have vertex attributes Z; which can
be used to determine whether an edge (4,j) should be es-
tablished. This is also a consequence of the Aldous-Hoover
[3] theorem. A discussion of this rich variety of models is
beyond the scope of the current paper.

For the purpose of demonstrating the feasibility of our
model we restrict ourselves to a simple inner product model
where we assume that information regarding the presence of
an edge Y;; can be captured efficiently via (Z;, Z;). More-
over, we impose a small amount of regularization to ensure
that the problem remains well-posed even in the absence suf-
ficient data. Note that the algorithms we describe apply to a
much larger family of models. However, for the benefit of a
focused and streamlined presentation we limit ourselves to a
simple regularized Gaussian matrix factorization. More ad-
vanced models are subject to research and will be reported
elsewhere. We use the following objective to recover Z.

1 2 A
f¥,z,0) =35 > (Y —(Zi,Zy)" + 0 SOz (1)
(i,4)€E i
The gradient of f with respect to the row i of Z is given by
of
oz, =~ 2 (0

JEN()

7<Z¢,Zj>)Zj + M\Z; (2)

For a pair (4,j) € E this amounts to
— (Yij = (2i,2;)) Z; — \Z:. 3)

It is straightforward to include other variables, such as per-
node and common additive biases. Stochastic gradient de-
scent is a common way of solving this nonconvex problem.
Algorithm 1 gives the pseudocode for this procedure for a



Algorithm 1 Sequential stochastic gradient descent

Require: Matrix Y € R"*", rank r, accuracy e
Ensure: Find a local minimum of (1)

1: Initialize Z' € R™*" € at random

2:t+1

3: repeat

4: 7'« Z

5.  for all eldges (i,j) € E do

6 n< —&=
7 t <+ t\—[ﬁ 1
8 Zi = Zi + 77[(Yij
9:  end for
10: until ||Z — 2|7, <€
11: return 7

—(Zi, Zj)) Z;j + \Zi]

single machine. By construction its runtime complexity is
linear in the number of iterations and edges m in G.

Distributing the Optimization

Since the algorithm requires access to a matrix, the two-
dimensional pattern of access will result in non-sequential
I/0 if the data were to be stored on disk. Thus, in our
solution we aim to keep the data in main memory. When-
ever both the number of vertices is large (e.g. 10® users) and
the attribute space is nontrivial (e.g. hundreds of bytes), it
is impossible to store the full graph. It would take 10GB
to 1TB for efficient representation. Hence, we need to dis-
tribute data on a cluster of workstations where each one
retains parts of the global state. This raises some issues:

e We need to select subsets of vertices on each machine,
such that the partial views of the graph fit on it.

e We need to keep solutions on subsets from diverging.

e We need an efficient communications layer for speed.

We achieve this by partitioning data such as to minimize
the number of neighboring vertices rather than minimizing
the number of edge cuts. For now we assume that we have
a partitioning of the graph into non-overlapping clusters of
nodes Oy C V such that the union Vj, of each cluster with the
set of its direct neighbors, Vi = Op U By where By = {v €
Vv ¢ O, 3u € Oy, (u,v) € E}, fits on a single machine.

We describe a partitioning algorithm in Section 5. We
call nodes in Oy owned and nodes in By borrowed by ma-
chine k. In the diagram above darker shapes represent non-
overlapping partitions Oy, and lighter shapes encompassing
them depict Vi, the overlapping extensions of O obtained
by including their neighboring nodes.

Distributed Objective

Each machine can optimize the objective restricted to the
cluster of nodes assigned to it, Vi, but the solutions obtained
by different machines have to be encouraged to match on
nodes which are shared between clusters, By. We borrow
intuition from the theory of dual multipliers [9, 6]. That is,

we use variables Xi(k) on machine k to act as a proxy for Z;.
If we were to enforce

S5 |7 - X =0 @

k=1i€Vy

the decomposed problem would be equivalent to the origi-
nal problem of solving (1). Since this is clearly impossible,
we relax the above constraints and add them with a suit-
able Lagrange multiplier u to the objective. This yields the
Lagrange function (and distributed objective)

L(Y,z, XM, ... x5 A u) (5)
X L1
=3 A, X®) N 3, [ S0z - xM)P]
k=1 =1 i€V
where fi (Y, X*), ) (6)
1 k K2 . A k
5 O (= (XX 55 xR,
(i,j)€EE, 1€V,
i,jEV

Dual ascent in the Lagrange function L with respect to p
means that we end up increasing p commensurate to the
extent to which the equality constraint is violated. That
said, if we were to start with a large value of u the prob-
lem would not be numerically well-conditioned in X and Z,
hence this only makes sense once we are close to optimality.
Note that here the goal is to learn Z and the copies X *
serve as auxiliary parameters. Updates in p can be carried
out, e.g. by dual gradient ascent. In the following sections
we will describe two approaches of optimizing this objective.

3. BASELINE: SYNCHRONOUS OPTIMIZA-
TION

As a baseline to solve the above optimization problem,
we follow [7, 9] and use the following synchronous block-
minimization strategy for minimizing L with respect to X, Z:
We randomly initialize Z and set X = Z on all machines;
Subsequently we alternate until convergence:

Latent Parameter Update: Optimize X for fixed Z. This
step decomposes over all machines and can be done in
parallel. Each machine minimizes (7). This modifies

only the local copies of X-(k) for all i € Vj,

minimize fi (Y, Y, X®) A) + ,u Z | Z: — Xi(k)H2 (7)
x® i€V,
These updates are analogous to standard matrix fac-

torization and can be obtained using stochastic gra-
dient descent (SGD) with the following gradient for

x®,
6f k k k
o =~ > (Y= xP X)X
i JENG) (8)
X 4 u(x® — 7).



Algorithm 2 Synchronous Optimization

Require: Matrix Y € R"*", rank r, accuracy e
Ensure: Find a local minimum of (5) over X and Z

1: Global Server

2: Initialize Z € R"*" at random

3: repeat

4: 7'+ Z

5: for all k£ do send Z,, to machine k

6:  Wait until all machines finish local optimization
7 for all k do receive X® from machine k

8:  Update Z by solving (9)

9: until 3, |1 Z] — Zi||> < e

10: Send termination signal to all machines

11: Machine k

12: repeat

13: Receive global factors Z,, and match X *) to it
14:  repeat

15: X0 x®)

16: for all nodes i € v, do update X\ using (8)
17:  until ), HXi(k)/ - Xi(k)H2 <e

18 Send X™® to the global server

19: until Global server signals termination

Latent Synchronizer Update: A second phase minimizes
Z given X. This is a global update step:

K
o1 (k)2
minimize 5 E [,u E 1Zi — X7 } (9)

k=1 i€V

This term has a closed form solution, simply by setting
Z; to the average of each machine’s local copy. In other
words, the different copies of each latent factor are
averaged to produce a new Z which is again distributed
to all machines.

Algorithm 2 describes a client-server architecture which can
be easily mapped to MapReduce. The drawback of the syn-
chronous optimization procedure is that at each step, all
machines must wait until every machine has finished com-
putation. Consequently the slowest machine will determine
the execution speed of the algorithm — a problem known as
the curse of the last reducer [24].

4. ASYNCHRONOUS OPTIMIZATION

While the synchronous variant has merit in terms of be-
ing easy to implement, it suffers from rather middling speed
of convergence. This is due to both the systems-specific is-
sues of having to wait for the slowest machine and the fact
that aggressive synchronization makes for slow convergence.
The key idea is to carry out stochastic gradient descent on
X®) and Z jointly. That is, we repeat the following steps
in machine k: pick a node i; update its factors ka), and
its corresponding global versions Z; and repeat until conver-
gence. The part of the gradient for node Z; restricted to its
local version at machine k, X i(k) , is given by

of
07

There are several difficulties with the above approach. First,
the global factors Z; are not stored in machine k& and might

[XP] =z - xM). (10)

be stored in a rather distant machine. Thus a naive imple-
mentation of this idea would proceed as follows: First pick
node 4 in machine k, obtain its global version Z; from the
global server and lock it, update X i(k) and Z; using a gradi-
ent step with the gradient from (10), send the updated Z;
to the global server and unlock it. Clearly, this approach is
rather inefficient and would be slower than the synchronous
version described in Section 3. A possible solution is for ma-
chine k to cache the value of the global variable locally and
use it while refreshing its cache from the global server peri-
odically. If we let ka) denote the cached value of the global
variable Z; at machine k, then the asynchronous method
proceeds as follows: For each node i in machine k, first up-
date XZ.(k) using

af k) 3 (k)Y v (k)
x® > (v = (X X)) X
i JEN() (11)

+AXP 4o x® =z,

Now we still need to update the value of the global variable
and refresh the local copy of the global variable. Before
specifying these details, we first describe the architecture
and how the global variables are distributed across machines,
and then give the full algorithm in Section 4.3.

4.1 Client Architecture

Recall that we assume to have a suitable partitioning of
the graph into K partitions which are mapped to K ma-
chines. Each machine k € {1... K} runs a client processing
the nodes assigned to it. Edge information via Yj; is ingested
by optimizer threads in parallel. An updater thread incorpo-
rates the changes using (11) to shared memory. This decou-
pling is useful since this way the optimizer threads, which
are computationally more expensive, do not need to acquire
write locks to incorporate changes. Instead, all writes are
delegated to a separate thread. Occasionally checkpoints are
committed to file. This ensures fault tolerance.

Each client holds both the local copy X Z.(k) and the cached

values of the global variables, ka). The synchronizer thread
takes care of refreshing the cached copies of the global vari-
ables periodically. It executes a gradient descent step on Z
using (10). The overall client architecture resembles that of
[1, 23], however the modules here execute different functions
as described in Section 4.3.

4.2 Global Variable Distribution

To distribute the global variables among a set of servers we
use the ICE asynchronous RPC server by www.zeroc.com.
Each machine k£ executes a client and a server program.
We distribute the global variables among the servers such
that the server at machine k is assigned the global vari-
ables corresponding to the nodes owned by the partition &,
Oy.. This enables efficient communication since, among all
clients, client k has to be the one requesting global copies of
nodes in Oy most frequently when updating its local copies.

Note that other clients will also require access to nodes in
Oy, if these nodes appear in their borrowed sets. It is impor-
tant here to examine the amount of replication in our solu-
tions: As {O1,...,0Oxk} are assumed to be non-overlapping
partitions of G, we have n = |V| = 3, |O|. Denote by
N := %", |Bx| the total number of borrowed nodes. For
each client k, we need to keep 2(|Ox|+ |Bx|) copies of factor


www.zeroc.com

Algorithm 3 Asynchronous Distributed Optimization

Require: Matrix Y € R"*", rank r, accuracy e
Ensure: Find a local minimum of (5) over X and Z
Initialization
for all ¢ do Initialize Z; randomly
for all k,i € O, do X « 7,
for all k,i € B, do X\* « 2" « 7,
Client k£ Optimizer Thread
repeat

for all nodes 7 € V}, do

Update X;I) using the gradient from (11)

end for

10: until Termination

11: Client £ Send Thread

12: repeat

13:  for all nodes 7 € Vi do

14: Send ka) to the Global server
15:  end for

16: until Termination

17: Client k receive (Z;)

18: zF) 7,

19: Global Server Receive (Xi(k))

20: Update Z; using the gradient form (10)
21: Send Z; to machine k

vectors: one for the local copies ka) and one for the cached

copies of the global variables, Zi(k), for i € Oy U By. This
amounts to 2n + 2N variables in R". We then add to them
n global variables, which makes the total memory consump-
tion (3n+2N)r. This is the same order of magnitude (albeit
slightly more) as for the synchronous optimizer in Section 3.

4.3 Communication Protocol and Convergence

The details of the optimization strategy are given in Al-
gorithm 3. The optimizer thread in the client is rather
straightforward. Hence we focus here on the synchroniza-
tion threads: Their goal is to execute the gradient step over
the global variable Z; and to refresh the local copies of the
global variables, Zi(k). We use asynchronous communication
as follows: Each client executes a thread that loops through
the client local memory storing X(k)i. For each node 1, it
sends this local copy to the server holding the global variable
Z;. When the server receives this values, it performs a gra-
dient step using (10) and returns the new value of Z;. Upon
reception of this value, the client synchronization thread up-
dates the cached copy Zi(k) with this new value which is then
used by the optimizer thread. All these steps are done in
parallel. This is analogous to the lock-free SGD [22], albeit
in a distributed setting.

We denote by the synchronization time the time needed to
move the local copies in machine £ to the global servers and
receive a response from the global sever. This is the time
needed to perform a synchronization pass. Niu et al. [22]
showed that the convergence rate of the lock-free algo-
rithm is inversely proportional to the synchronization time,
and the number of overlapped nodes. Our goal is thus to
accelerate convergence as much as possible, and we tackle
this problem by partitioning the graph in order to mini-
mize the number of overlapped nodes (Section 5) and by

allocating partitions to machines taking into consideration
the inter-partition overlap which dictates the communica-
tion bandwidth needed between any two partitions (Section
6) and thus minimize synchronization time.

5. GRAPH PARTITIONING
5.1 Motivation

As discussed above, we need an efficient algorithm to par-
tition very large graphs into portions that are small enough
to fit onto individual machines. For our purpose it matters
that we perform vertex partitioning of the graph, that is, we
need to minimize the number of neighboring vertices rather
than the number of edges that are cut: The bulk of the com-
putational cost is incurred by updating the local factors X i(k)
and updating the global factors Z;. Both updates require ac-
cess to the up-to-date value of the global factor, thereby in-
ducing cross-node communication. This increases the cost of
the computation. For all nodes {u € Og|Vv € N(u),v € Ok}
that reside on the same machine with all their neighbors, the
changes affect only local factors - no synchronization with
the global factors outside the same machine is required’.

In summary, we would like to find a partitioning that re-
duces the total number of borrowed nodes, that is, the sum
of | Bg| over all partitions k. Moreover, since the nodes in By,
are replicated across machines and as the number of nodes
in each partition is constrained by the size of the main mem-
ory, reducing their number increases the throughput of the
whole architecture and requires fewer partitions.

Ideally, each machine would hold one or several connected
components of the graph, thereby avoiding communication
with other machines. This would require the largest con-
nected component and all the variables associated with it
to easily fit on one machine. However, this is unlikely to
happen in natural graphs, in which the largest connected
component usually contains a very large fraction of nodes:
In the email graph used in our experiments the largest con-
nected component contains more than 90% of all nodes.

More formally, we can postulate the partitioning of the
graph nodes V into {O1,...,Ok} with all Oy pairwise dis-
joint and J, Or = V, as a constrained optimization prob-
lem:

K

. B 12
rgi?}%?ﬁ% | By | (12)
subject to O; N O; = 0 and |0y U By| < capacity

Such balanced graph partitioning is an NP-hard problem
[5]. There exist efficient heuristics, such as METIS [15], and
its parallel version, ParMETIS, that can be configured to
return partitions with size not exceeding a given threshold.
Unfortunately ParMETIS did not scale to 10 Billion edges.
To address this we propose two algorithms: a flat greedy
partitioning and a faster hierarchical greedy strategy.

5.2 A Greedy Single-Pass Algorithm

Assume that the graph is stored on a disk as an adja-
cency list with each line containing a vertex and a list of its

"While an update to every node i requires access to the
global factor of node i, if i is owned by a given machine,
say m, and not borrowed by any other machine, then the
global factor will reside on machine m and be only updated
by machine m, which speeds up convergence.



Rack 1 Rack 2

v,
V| —— Machine 1.6
V. , —— Machine 1.3 [Siachine 13
A\ 3 \A Machine | R
V, —— Machine 2.4
Machine 2.4|
V; —— Machine 2.1
V. Vi Vs —— Machine 1.5
[Machine 1.6] UMuchinc 26
Figure 1: Left: nodes correspond to overlapping

partitions Vi, = O U By of the graph. The thick-
ness of the edges is commensurate with how much
is shared between nodes |V; N V;|. Right: two racks
with 3 busy (shaded) and 3 available machines each.
Communication time between racks is slower than
within a rack. Middle: assignment of the partitions
to machines to minimize communication cost.

neighbors. Our algorithm consumes this list in a streaming
fashion, requiring only a single pass. It proceeds as follows:

e We keep a set of open partitions in memory, corre-
sponding to Oy and By for k € {1,... K}. These are
dynamically updated as we receive data.

e A partition is considered open if | By |+|Ox| < capacity.
That is, if it can still accommodate additional nodes.
Note that once a partition k is closed, the sets By
and O remain automatically fixed since By already
contains all neighbors of Oy.

e Once a vertex i is read from file we have to assign it
to an open partition that will not overflow if we add ¢
to it. We first compute the overhead of adding node
i to each open partition, say partition k, as follows:
Node 7 would increase the size of O by one. However,
Bj, would change based on how many nodes from the
neighborhood of 4, N(i), are already in k. We count
the extra nodes added to By as a result of adding i to
k for all open partition k and we choose to add node
i to partition k with the minimum increase in Bg. In
case of a tie, we favor the partition with the smallest
number of total borrowed nodes, |By|.

e If no open partition can accommodate node i, for in-
stance, if adding ¢ would make any of the open parti-
tions overflow, we increase the total number of parti-

tions in memory by dK.
For efficiency, we maintain Oy and By, as bit vectors of length

n where n is the total number of nodes in the graph. We
implemented a multi-threaded version of the algorithm on
an 8-core machine. In our experiments, it took 166 minutes
to partition a graph with 200 million nodes and 10 billion
edges. It results in 150 partitions, each of them holding at
most 3 million nodes. Note that any advances in the area of
vertex partitioning graphs can be utilized in our framework.

5.3 A Hierarchical Approximation

The dominant cost in generating the partitioning is to
compute the set of candidate improvements for each vertex.
This requires search over all Oy and By, for all neighbors of
a given vertex. Hence, if the total number of partitions is
small, should be able to perform this step faster. This sug-
gests a hierarchical extension of the above flat algorithm:
First partition into a set of larger supernodes and then repar-
tition the latter again. We considered the following variants:

Hierarchical (Hier) We run partitioning to obtain a set
of H splits. Then we re-partition each of the H splits.

Random (HierRandom) We randomly split the nodes of
the graph into H parts and repartition the result.

Locality Sensitive Hashing (HierLSH) We use LSH |
to group nodes into H partitions. We consider each
row of the connectivity matrix as a vector and hash it
into a b-dimensional bitvector with b < n using the
inner product representation of [10]. Subsequently we
partition the hash range in H buckets and partition
based on proximity to the buckets. This operation is
very fast as it only involves bit-wise comparisons.

6. ONLINE DATA LAYOUT

So far we discussed offline performance optimization, that
is, optimization prior to requesting computers from a re-
source pool. Many server centers have nonuniform network
layout, that is, the bandwidth within a rack is considerably
higher than between racks, due to oversubscription of top-
of-rack routers. Hence it pays to ensure that partitions with
the largest overlap share the same rack whereas more loosely
connected partitions are best relegated to different racks, as
described in Figure 1.

As we shall see, this leads to a quadratic assignment prob-
lem. While such problems are NP-hard, it pays to make at
least some progress towards optimality rather than picking
an entirely random configuration. More formally, the com-
munication required between two machines holding V; and
Vi respectively is given by the amount of updates on nodes
belonging to one partition and borrowed by the other. That
is, it amounts to

]

Cri = |Ox N Bi| + |0y N By| for k # 1 and Cyy, = |Ok| + | Bi|.

It follows by Gerschgorin’s theorem [12] that C' > 0 since it
is diagonally dominant.> The second matrix of interest in
our case is the communication time matrix. The latter is
given by the inverse point-to-point bandwidth.

1

Dp=———
"~ bandwidth(k, )

for k # | and Dy, = 0 otherwise.

Hence the aggregate time required to synchronize all vertex
partitions is given by

Z Dy Cy; = tr DC
kl

(13)

Now denote by 7 a permutation matrix encoding an assign-
ment of partitions Vi to machines [, i.e., m; = 1. With
slight abuse of notation we also denote this by 7(k) = (. In
this case the aggregate time required to synchronize data
becomes machines is given by

T(x) =tr CrD7 . (14)

Maximizing T'(7) amounts to a quadratic assignment prob-
lem and is NP-hard in general, even for approximations.
Nonetheless, optimizing for 7 is always better than using
the random configuration that the system assigns. We use
an off-the-self heuristic QAP solver as a preprocessing step.

2The actual value of Cly, is immaterial for the purpose of op-
timization. However, it just serves to make the optimization
problem more tractable since it will allow us to lower-bound
the arising quadratic assignment problem.



To summarize, our architecture proceeds as follows: We
first partition the graph into K partitions. Then we obtain
K machines from the cloud. We query the bandwidth be-
tween each pair of machines and then let a single machine
solve the QAP above to determine the optimal partition lay-
out. This layout is then propagated to all machines to let
each machine know it assigned partition. Afterwards, Algo-
rithm 3 is executed until convergence. The time needed to
solve the QAP is negligible and in the order of a few seconds.

7. EXPERIMENTS
7.1 Data

To demonstrate our ideas we recorded the volume of email
exchanges between all pairs of nodes in a subset of users
of Yahoo! Mail during a nondisclosed period of time. The
graph contains only the users who sent at least one mes-
sage/email during the period under consideration. Edges
Yi; = Y;; = 1 and between users ¢ and j were added if user
i contacted user j. The weight of the edge is commensu-
rate with the amount of communications between the users.
The graph has 200 million nodes and 10 billion edges. The
largest connected component contains more than 90% of all
nodes. The task we consider in our experiments is to predict
the volume of email exchange between held-out test pairs of
users selected uniformly at random from the whole graph.

It is important to stress that we use this task purely as a
test bed for our framework. A plethora of methods for solving
this specific task exist and will be studied in subsequent work.
The point of our experiments is simply to show that the
distributed factorization framework is effective.

7.2 Experimental Setup

To evaluate convergence we compare three systems: a sin-
gle machine setup, a synchronous parallel implementation
and an asynchronous implementation.

Single Machine is used as a baseline on a subset of the
graph since the entire graph would not fit into a single
computer. It employs the standard matrix factoriza-
tion algorithm described in Section 2.

Baseline: Parallel Synchronous implements the paral-
lel baseline synchronous algorithm of Section 3. This
baseline is similar to ADMM of [9]. For fairness, to
avoid the wasteful overhead of Hadoop’s MapReduce
framework we used the same architecture as described
in Section 4. This has the advantage of keeping graph
data local between iterations. Moreover it eliminates
the need to allocate mappers at each iteration, which
is an expensive operation.

Parallel Asynchronous implements the asynchronous al-
gorithm described in Section 4. Unless otherwise stated,
we use the flat streaming partitioning algorithm from
Section 5.2 and solve a quadratic assignment problem
(QAP) for improved task layout over machines.

Unless otherwise stated, we use r = 50 as the number of
factors, and tune the regularization parameters and learning
rate on a small subset of the graph using the single machine
baseline. The experiments aim to answer the following:

e How does the quality of the solution of the distributed
algorithm compare to that of the single-machine algo-
rithm?

32M Nodes

T T
= = = Multi-Machine Asynchronous (32 servers)
= Single machine

.
.

-
-~

2.85

281

2751

Average test erorr

2,65

L
102 10" 10° 10' 10° 10°
Time in minutes (Log Scale)

Figure 2: Convergence results on a subgraph of 32
Million nodes using 20 factors. Solid line: solution
quality obtained by a single machine. Dashed line:
solution quality obtained by asynchronous optimiza-
tion using 32 machines.
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Figure 3: Convergence for synchronous (baseline)
vs. asynchronous optimization using the full graph.
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Figure 4: Scaling behavior as a function of the
amount of data. For a fixed number of machines the
time per epoch increases linearly whereas for fixed
amount of data per machine time remains constant.



How does the algorithm scale in terms of computation
and communication with increasing graph size?

What is the added value of the data layout algorithm?
e What is the effect of the quality of graph partitioning
on the performance of the system?

7.3 Solution Quality

To assess the quality of the solution obtained from the
asynchronous multi-machine algorithm, we compare its test
error over the held-out dataset to the error obtained using
the single-machine algorithm. To be able to perform opti-
mization in a single machine, we randomly chose a subgraph
of 32 million nodes and used 20 factors to be able to fit it in
the main memory of the machine.

Figure 2 presents the evolution of the test error as training
proceeds in both systems. While the convergence of the test
error in the first minutes seems to be faster in a single ma-
chine, later this changes dramatically and the multi-machine
asynchronous setting achieves convergence more than an or-
der of magnitude faster than the single-machine scheme.
The reason for this initial behavior is due to the time needed
to initially synchronize the factors across machines. The fi-
nal test errors achieved by both methods are identical.

To compare the synchronous and asynchronous (both multi-
machine) alternatives we use the full 200M graph and set
the number of factors to 50. Figure 3 shows the convergence
curve of the objective function (i.e., the training error) of the
two approaches®. As we can see from this figure, the asyn-
chronous algorithm is almost an order of magnitude faster
than the synchronous version. As noted earlier, the rea-
son for this happening is that the synchronous algorithm is
as fast as the slowest machine due to the barrier effect en-
forced before updating the global factors in each iteration.
The asynchronous algorithm does not suffer from this effect.
Finally, we note that the quality of the solution obtained by
the two systems is again almost indistinguishable.

7.4 Communication and Scalability

We first assess how the runtime changes as a function of
the graph size. Linear scaling is nontrivial — many algo-
rithms do not slow down even if the amount of resources
scales with the problem size. We show that our algorithm
indeed scales linearly up to graphs with 200 million nodes.
Figure 4 presents the time required for a single iteration
of stochastic gradient descent (i.e., traverse all edges and
update parameters of their endpoints). For each point in
Figure 4 we run flat streaming partitioning algorithm. The
number of machines scales linearly with the number of nodes
in the graph.

As can be seen from Figure 4, the runtime for a single ma-
chine is linear in the amount of data. This is expected, as
the complexity of the stochastic gradient descent is linear in
the number of edges in the graph G, and natural graphs are
often sparse. Note that we cannot handle more than 32 mil-
lion vertices on a single machine. On multiple machines, we
observe a constant line, indicating that our architecture can
handle hundreds of millions of vertices without any prob-
lem. For all graph sizes up to 32 millions of nodes, the test

3Tt is valid to compare the two algorithms using the training
error since it is computed using the global factors and the
comparison is done using the same number of factors, so
there is no danger of overfitting.

How does asynchronous optimization affect convergence?
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Figure 5: The effect of data layout optimization on
the time to perform a synchronization pass over all
nodes in a given machine, shown as a histogram over
all machines. Top: without optimization. Bottom:
with data layout optimization.

error obtained using single and multi-machine settings was
indistinguishable, as can be seen in Figure 2.

Second, we study the effect of the data layout scheme.
Figure 5 shows the distribution of the synchronization time
across clients with and without solving the quadratic assign-
ment problem to minimize the synchronization time. We see
that without optimization the synchronization time is bi-
modal. There are a few clients that are assigned partitions
with relatively few nodes to be synchronized, and therefore
no matter where these partitions are allocated, their syn-
chronization time is small while other closely connected ones
end up in different racks. By solving the QAP, we move
clients with demanding communication constraints in close
proximity with each other. This smoothes out the total syn-
chronization time, thus accelerating convergence.

Finally, we study the effect of graph size and number of
factors on the synchronization time. From Figure 6, we
see that as the number of factors increases, synchroniza-
tion rates do not get significantly affected, but computation
time per iteration increases almost linearly (due to large di-
mensionality). Thus, we can synchronize more often per
iteration, which will again bring variables up to date faster.
As we simultaneously linearly increase the number of ma-
chines (4, 8, 16 etc) and the graph size (4 x 10%, 8 x 10°,
16 x 10°, etc), the average time to synchronize a single ma-
chine does not increase too rapidly, thanks to solving the
QAP: this is the case since by exploiting local graph struc-
ture the aggregate network load is sublinear in the graph



size. We conclude again that our architecture shows good
scalability.
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Figure 6: The time it takes to make a single synchro-
nization pass over the nodes in a given machine as a
function of the number of factors, and as a function
of the graph size. Note the essentially linear depen-
dency in terms of the payload. Furthermore note
that the increase is sublinear in terms of the size of
the graph. This follows from locality effects.
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Figure 7: Convergence for flat and hierarchical par-
titioning, showing the benefit of preprocessing.

7.5 Graph Partitioning

We conclude our experimental analysis by studying the ef-
fect that the quality of graph partitioning has on the perfor-
mance of our system. Intuitively, a good partitioning algo-
rithm should minimize the number of borrowed nodes. This
is important since the larger the number of borrowed nodes,
the harder it is to bring them to agreement and the longer

Table 1: Effect of the partitioning algorithm on vari-

able replication and synchronization time.

Method Borrowed nodes | Partitioning | Sync time

(millions) (minutes) | (seconds)
Flat 252.31 166.0 71.5
Hierarchical 392.33 48.7 85.9
HierLSH 640.67 17.8 136.1
HierRandom 720.88 11.6 145.2

it takes to converge to a feasible solution on which the local
factors agree with the global factors. On the other hand, as
we noted in Section 5, minimizing the total number of bor-
rowed nodes is an NP-hard problem, thus there is a trade-off
between the time we spend to get a good partitioning of the
nodes and its quality.

We first study the performance of the streaming algorithm
discussed in Section 5. Table 1 provides the time needed for
partitioning, the quality of the partitioning and the time
it takes to perform a single synchronization pass using this

partitioning in the asynchronous setting.
e For the hierarchical algorithms we use two levels with

10 splits at the first level.

e For the LSH variant, we used a hash of 128 bits.
This table shows that random and LSH schemes are very fast

but result in poor performance and slow synchronizing rates.
The hierarchical algorithm achieves almost 4-fold speed-up
over the flat algorithm but yields a partitioning with more
borrowed nodes and slower synchronization rates. To help
better understand this trade-off between flat and hierarchi-
cal partitioning, we show in Figure 7 the convergence curve
of the training error of the asynchronous algorithm when
using each of them. As we can see from this figure, the flat
algorithm results in a better partitioning with fewer bor-
rowed nodes and, as such, enables faster convergence and
better quality of the final model. On the test data we found
that the solution obtained by using the output form the hier-
archical algorithm is 6.4% worse than the solution obtained
when using the output of the flat partitioning algorithm.

Finally while we were not able to run METIS or other par-
titioning algorithms on our large scale graphs, we plan in the
future to combine METIS [15] or any alternative partition-
ing algorithm such as [1] with our hierarchical algorithm so
that we start to use these algorithms once the graph reaches
a manageable size.

8. RELATED WORK

There exist a number of approaches related to the algo-
rithms proposed in the present paper. They fall into three
categories: collaborative filtering, distributed latent variable
inference algorithms, and graph partitioning algorithms.

Collaborative Filtering Several recent papers addressed
the rather related but not identical problem of dis-
tributed matrix factorization mostly in collaborative
filtering settings [11, 17, 25, 26, 16]. Note that most
of these approaches rely on synchronous approaches
while, as we showed in this paper, asynchronous ap-
proaches are faster. Second, several of the algorithms
proposed for distributed collaborative filtering would
not be as effective for graph factorization as the rows
and columns share the same factors which limits the
admissible permutations for block-based optimization



algorithms such as [11]. As a rough comparison of
throughput with [11], using their published numbers
we note that their algorithm on average took 72 sec-
onds per a single iteration over the Netflix data that
has 100 Million non-zero entries using 64 machines
with 50 factors (a throughput of 21.7K entries per ma-
chine per second). However, our asynchronous algo-
rithm took 40 seconds per a single iteration over 10
Billion non-zero entries using 200 machines with 50
factors (a throughput of 1.25 Million entries per ma-
chine per second). Moreover, we also note that the
famous alternating least squares (ALS) method for ma-
trix factorization [26] can not be applied in our setting
efficiently out of the box without modification as the
rows and columns of the adjacency matrix of the graph
represent the same object.

Graph Partitioning [1] addressed the problem of over-
lapping clustering for distributed computation which
shares some of the flavor of our graph partitioning al-
gorithm. However, the goal in [1] was to facilitate ran-
dom walk models which results in a different algorithm
than the one we gave in Section 5. Moreover, while
the authors in [4] only provided simulation results as a
proof of concept, here we give a full implementation on
a large-scale natural graph orders of magnitude larger.

Distributed Latent Variable Models Closest in spirit to
the present work are [1, 2] and [23]. Effectively, they
are precursors to the present approach in describing a
scalable generic architecture for latent variable mod-
els. While our client architecture slightly overlaps with
[1] in terms of the module structure inside each client,
the semantics of each module is not the same and the
semantics of the communication protocol is totally dif-
ferent: here the messages represent gradients while in
[1] the messages perform a §-aggregation on an Abelian
group. In fact, experiments using Abelian group up-
dates showed that the algorithm diverges on natural
graphs and that a dual decomposition as described in
this paper is vital. Finally, we address many practical
issues such as graph partitioning and data layout.

Finally, graphlab.org provides a general framework for ana-
lyzing large graphical models. The version described in [18]
allows for efficient computation and scheduling algorithms
whenever the degree of vertices is not too high. Very re-
cently (October 2012) a paper describing a new version of
GraphLab [141] which provides functionality for dealing with
high degree vertices was published. This makes it an inter-
esting platform for designing large scale graph factorization
algorithms. In other words, this provides an attractive tool
to implement the algorithms described in the present paper.
Due to the recency of this relevant work we did not compare
our native implementation with one relying on GraphLab
generic primitives. *

4We hypothesize that our task-based native implementation
is faster than an implementation using GraphLab generic
primitives. As an anecdotal evidence, our native asyn-
chronous LDA implementation [1] is 33% faster than an
implementation based on GraphLab generic primitives —
personal communication with the GraphLab team. While
clearly the task here is different, we plan though to compare
our native implementation with a GraphLab-based imple-
mentation for the graph factorization task in the future.

9. DISCUSSION AND CONCLUSIONS

In this paper we addressed the problem of factorizing nat-
ural graphs. We gave an augmented representation of the
factorization problem which is amenable to distributed com-
putation and we described two algorithms for optimizing the
resulting objective function. Our contributions are the fol-
lowing;:

e We provide an efficient algorithm for vertex partition-
ing the graph and demonstrate that it is important.

e We describe automatic task layout at runtime and
show that it is efficient in practice.

e Asynchronous optimization is highly beneficial for scal-
able inference, providing an order of magnitude speedup.

e We perform factorization on one of the largest natural
user graphs currently available.

In summary, we describe efficient algorithms and experi-
ments at a scale previously not achievable for distributed
inference and factorization. Future work will see improve-
ments in the graph partitioning algorithm. Moreover, we
plan to address many further graph-based latent variable
models by integrating the techniques in this paper with the
generic latent variable architecture in [1].

10. REFERENCES

[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy,
and A. Smola. Scalable inference in latent variable
models. In WSDM, 2012.

[2] A. Ahmed, Y Low, M. Aly, V. Josifovski, and
A. Smola. Scalable Distributed Inference of Dynamic
User Interests for Behavioral Targeting. In KDD, 2011.

[3] D. Aldous. Representations for partially exchangeable
arrays of random variables. Journal of Multivariate
Analysis, 11(4):581-598, 1981.

[4] R. Andersen, D. Gleich, and V. Mirrokni. Overlapping
clusters for distributed computation. In WSDM, 2012.

[5] K. Andreev and H. Riicke. Balanced graph
partitioning. In Parallelism in algorithms and
architectures, pages 120-124, 2004.

[6] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, Belmont, MA, 1995.

[7] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, Belmont, MA, second edition, 1999.

[8] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
allocation. JMLR, 3:993-1022, 2003.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of
multipliers. Foundations and Trends in Machine
Learning, 3(1):1-123, 2010.

[10] M. Charikar. Similarity estimation techniques from
rounding algorithms. In ACM Tymposium on Theory
of Computing, pages 380-388, 2002.

[11] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis.
Large-scale matrix factorization with distributed
stochastic gradient descent. In KDD, 69-77, 2011.

[12] G. H. Golub and C. F. Van Loan. Matriz
Computations. John Hopkins Press, 1996.

[13] T. Griffiths and Z. Ghahramani. Infinite latent feature
models and the Indian Buffet Process. NIPS 18,
475-482, 2006.


graphlab.org

[14]

J. Gonzalez, Y. Low, H. Gu, D. Bickson and

C. Guestrin. PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs. OSDI , October,
2012.

G. Karypis and V. Kumar. MeTis: Unstrctured Graph
Partitioning and Sparse Matriz Ordering System,
Version 2.0, 1995.

Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
IEEE Computer, 42(8):30-37, 20009.

C. Liu, H.-C. Yang, J. Fan, L.-W. He, and Y.-M.
Wang. Distributed nonnegative matrix factorization
for web-scale dyadic data analysis on mapreduce. In
WWW, 681-690, 2010.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,

C. Guestrin, and J. M. Hellerstein. GraphLab: A new
parallel framework for machine learning. In Conference
on Uncertainty in Artificial Intelligence, 2010.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In

20]

21]

(22]

(23]
24]

25]

[26]

ACM ICDM, 135-146. 2010.

D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed algorithms for topic models. Journal of
Machine Learning Research, 10:1801-1828, 2009.

C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira,
and B. Reed. Interactive analysis of web-scale data. In
CIDR, 2009.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In NIPS, pages 693-701, 2011.

A. J. Smola and S. Narayanamurthy. An architecture
for parallel topic models. In VLDB, 2010.

S. Suri and S. Vassilvitskii. Counting triangles and the
curse of the last reducer. In WWW, 607-614. 2011.
K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast
nonparametric matrix factorization for large-scale
collaborative filtering. In SIGIR, pages 211-218, 2009.
Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
Netflix prize. In Algorithmic Aspects in Information
and Management, pages 337-348, 2008.



	Introduction
	Challenges
	Main Contributions

	Graph Factorization
	Baseline: Synchronous Optimization
	Asynchronous Optimization
	Client Architecture
	Global Variable Distribution
	Communication Protocol and Convergence

	Graph partitioning
	Motivation
	A Greedy Single-Pass Algorithm
	A Hierarchical Approximation

	Online Data Layout
	Experiments
	Data
	Experimental Setup
	Solution Quality
	Communication and Scalability
	Graph Partitioning

	Related Work
	Discussion and Conclusions
	References

