Parallel algorithm for simulating the spatial transmission
of Influenza in EpiGraph

Gonzalo Martin
Universidad Carlos Il
Madrid, Spain
gmcruz@arcos.inf.
uc3m.es

David E.Singh
Universidad Carlos llI
Madrid, Spain
desingh@arcos.inf.
uc3m.es

ABSTRACT

This paper introduces an approach to modeling and simulat-
ing the propagation of flu-like infectious diseases over large,
widely spread urban areas connected by transportation net-
works. We incorporate geographic location and a trans-
portation model into our region-based, closed-world Epi-
Graph simulator to realistically model the movement of the
virus between different geographic regions. The resulting
simulator can assist in understanding how outbreaks prop-
agate between far apart regions due to the movement of
people outside their base location. This paper describes
the MPI-based implementation of EpiGraph and its perfor-
mance evaluation when simulating large-scale scenarios. We
evaluate the simulator both on a distributed memory system
and on a shared memory system.

Categories and Subject Descriptors

1.6.3 [Computing Methodologies|: Modeling and sim-
ulation—Applications; J.3 [Life and Medical Science]:
Medical information systems.

General Terms

Algorithms, Performance.

Keywords

Simulation, computational epidemiology, parallel algorithms,
MPI, distributed computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EuroMPI ’13, September 15 - 18 2013, Madrid, Spain

Copyright 2013 ACM 978-1-4503-1903-4/13/09 $15.00.

Maria-Cristina Marinescu
Barcelona Supercomputing
Center
Barcelona, Spain

maria.marinescu@bsc.es

Jesus Carretero
Universidad Carlos Il
Madrid, Spain
jcarrete@arcos.inf.
uc3m.es

1. INTRODUCTION

Today’s interconnected world, in which movement of peo-
ple between urban areas is an ordinary reality, creates an
environment where infectious agents can propagate fast and
far. Recent decades show the occurrence of global influenza
pandemics originated in Asia (1957, A/H3N2 strain) and
Latin America (2009, A/HIN1 strain) as examples of out-
breaks related to the movement of people between conti-
nents [9, 10]. Understanding the dissemination patterns
of viruses such as influenza, over large geographic regions,
would help public health authorities to respond more effi-
ciently to outbreaks.

One of the existing tools for modeling influenza propa-
gation is EpiGraph [7], an epidemiological simulator that
can predict the evolution of infections over short to medium
time frames within closed urban regions. EpiGraph was
validated by comparing the simulation results against the
data from the New York State Department of Health Re-
port (NYSDOH), with similar temporal distribution results
for the number of infected individuals.

EpiGraph is implemented as a scalable, fully distributed
application based on MPI, but it assumes that there are
no new individuals introduced in the population. One im-
portant source of incoming population is those people who
travel between different urban areas, and which—voluntarily
or not—get in contact with the local population. Modeling
this type of contacts is crucial to understand the effect that
travel and commute have on the evolution of epidemics at
a global level. The work we report on in this paper is an
extension of EpiGraph that enables the efficient simulation
of infection propagation within arbitrarily far apart urban
areas interconnected via transportation networks. This ex-
tension involves the design and implementation of a new
parallel algorithm based on MPI for EpiGraph.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 summarizes the main
features of EpiGraph. Section 4 introduces our approach to
simulating the spatial transmission of flu-like infectious dis-
eases. Results and performance evaluation are presented in
Section 5. Section 6 summarizes the paper with the conclu-
sions.

2. RELATED WORK

Epidemiological simulators based on social contact net-
work models have become the most extensively used ap-
proach to simulating the propagation of infectious diseases
in heterogeneous human social networks. This is a realistic
approach because the dynamics of the propagation of in-
fectious diseases is tightly related to the structure and the
characteristics of the network of connections between the
individuals within a population [3]. Contact network-based
simulators—such as EpiGraph—model the evolution of epi-
demics as an stochastic process.

EpiFast [5] is an MPI-based simulator which implements
a SIR-like model for simulating the evolution of epidemics
on heterogeneous social contact networks. However, these
contact networks are generated at random and neither de-
mographic or geographic information are used. The paral-
lel implementation of EpiFast is based on the master-slave
communication model, which increases the complexity of the
communications and reduces the scalability of the algorithm
when executing on many processors.

FIuTE [6] is a individual-based simulation model of In-
fluenza epidemics. The social contact network is built using
a hierarchical structure of communities based on data ex-
tracted from the census. Social contacts within each com-
munity are not modeled realistically because are generated
at random as uniformly mixing groups. FIuTE is able to sim-
ulate large-scale scenarios and implements a transportation
model based on information extracted from the air traffic
routes in the U.S. However, the complexity of the MPI-based
parallel algorithm increases when the size of the communi-
ties is very large, thus reducing the performance of FIuTE
when simulating large-scale scenarios.

EpiSimdemics [4] is an epidemiological simulator which
integrates an efficient, MPI-based parallel algorithm for sim-
ulating the propagation of infectious diseases in realistic so-
cial networks. EpiSimdemics presents an individual-based
approach in which social contact networks are generated us-
ing demographic data extracted from the census without
considering a transportation model. EpiSimdemics is able
to simulate very large populations of up to 100 million peo-
ple, although it requires large computing resources. In con-
trast, EpiGraph requires lower computing resources to simu-
late large-scale scenarios with a more sophisticated epidemic
model and a realistic social model which captures the trans-
mission of an infection across different urban regions due to
the movement of the population.

3. EPIGRAPH BACKGROUND

EpiGraph consists of two main components: the social
model based on the contact network of the individuals in a
population, and the epidemic model which captures the dif-
ferent stages of the infection. Each individual in the social
model is represented by age, gender, race, and occupation.
We represent the interactions as an interconnection graph
in which each node represents an individual and each edge
represents a time-dependent interaction between two indi-
viduals. Social interaction patterns are modeled using real
information extracted from on-line social networks such as
Enron and Facebook; we use real demographic information
to represent the characteristics of the individuals. Daily
interaction patterns are based on the occupation and the
time and the day of the week. This reflects the fact that

at different times individuals may interact with each other
in different environments: at work, at home, during leisure
time, or via spontaneous contacts.

The epidemic model is specific to the infectious agent un-
der study, in our case, the Influenza virus. We extended
the classic SEIR epidemic model to include additional states
such as latent, asymptomatic, dead and hospitalized. One
feature of EpiGraph is that it is possible to evaluate the
effect of intervention strategies such as vaccination, school
closing, and social distancing for non-worker individuals. So-
cial distancing restricts the interaction of individuals by re-
taining them at home, which reflects closures of public fa-
cilities to mitigate the spreading of the disease.

We implemented EpiGraph based on the SPMD paradigm.
Communication and synchronization operations are carried
out using MPI, which enables an efficient execution both on
shared memory, as well as on distributed memory architec-
tures. SPMD-based applications require a workload parti-
tioning strategy to distribute the data that will be used by
the processes that execute in parallel. In order to perform
large scale simulations, it is necessary to manage the inter-
actions of millions of individuals. This makes EpiGraph not
only computation-intensive, but also memory-intensive.

The interconnection graph is stored internally as a sparse
matrix. To make better use of the memory, data structures
are distributed among processes rather than replicated on
each of them. The sparse matrix is partitioned by dividing
the population in independent sets which are assigned to
different processes. Other data structures such as vectors
which store individuals’ information—health status, age, or
race—are partitioned using the same methodology. As a
result, each process is only responsible for performing the
simulation for the local individuals assigned to it.

3.1 The parallel algorithm

Algorithm 1 shows the pseudocode for the parallel algo-
rithm implemented by the simulator. The iterative algo-
rithm consists of four phases. The first phase (L3) consists
in updating the status of every local individual v in the epi-
demic model. Following other approaches, we have modeled
the effect of Influenza on humans by means of a state au-
tomaton [7]. The algorithm processes the status of each
infected individual and evaluates the probability of transi-
tioning to the next sickness stage. An infected individual
stops transitioning when he has reached the immune, recov-
ered, or dead state.

The second phase (L5) consists in computing the dissemi-
nation of the infectious agent from infected to susceptible
individuals. For every connection of every local infected
individual v the algorithm evaluates the probability that
the infection will be transmitted through to its contacts
(contacts(v)) in the social network. This probability de-
pends on the type of connections between individuals, the
time of the day, and the specific characteristics of the indi-
vidual subject to being infected—such as gender or age.

If during the second phase a local individual gets infected,
its state will be locally updated by process rank in the next
iteration of the algorithm. However, if this individual is not
local to process rank, it is necessary to communicate his
new state to the remote process r responsible for him, thus
maintaining the integrity and consistency of the data in the
simulation. The updated status of each newly infected, non-
local individual is stored by each process in a data structure

Algorithm 1 EpiGraph parallel algorithm.

Input: (rank,p, status, Arqank) where rank is the rank of the
process in the default, global MPI communicator, p is the
number of processes in the global communicator, A,qnk is
the partition of the social contact network, and status is the
health status of the individuals of the urban region.

Output: (status) where status is the updated status of individ-
uals in the simulation.

1: for timestep = 1 — simulation_time do

2 for each local individual v € A,qnr do

3 UpdateStatus(status(v))

4 if status(v) is infectious then

5: ComputeSpread(v, contacts(v), new_in fected)
6 end if

7 end for

8: for each process r € p where (r # rank) do

9: SendNewlIn fections(new_infected,qnk—sr, rank,r)
10: end for
11: if timestep % n then
12: Interventions(status(Argnk), rank)
13: end if
14: end for

(new_in fected) which records the transmission of the dis-
ease to individuals who are local to a remote process.

Communication of newly infected, non-local individuals
is performed during the third phase (L9) of the algorithm.
Each process rank uses MPI point-to-point primitives (MPI_
Send and MPI_Recv) to communicate newly infected individ-
uals who are local to each remote process r in the simula-
tion (new_infectedrqnk—r). Communications are designed
to overlap in time to minimize the communication overhead.

The fourth phase (L12) consists in evaluating both phar-
maceutical and non-pharmaceutical interventions in order
to mitigate the propagation of the infectious disease. Non-
pharmaceutical interventions—such as closing schools or so-
cial distancing—are triggered when the number of infected
individuals in the population surpasses a threshold. Collec-
tive MPI operations (MPI_Allreduce) are performed every
n time steps to gather the number of local infected individ-
uals from all processes and then distribute the result back
to all processes.

4. SIMULATION OF WIDE AREAS

We have extended EpiGraph to cope with the propagation
of Influenza-like infectious diseases over large geographic ar-
eas within which people are traveling for work and vacation
purposes. To realistically model the transmission of the in-
fection between urban regions, we enhanced the original Epi-
Graph social model to incorporate geographic location and
a transportation model for the population between different
urban regions. This approach allows us to study the spatial
dynamics of the spread of Influenza at a global level.

As our case study we simulated the propagation of In-
fluenza in and between the 24 most populated cities of Spain
(Table 1). We used demographic information obtained from
the National Institute of Statistics of Spain [2] to determine
the distribution of the population in group types—workers,
students, unemployed, households and elderly—, and indi-
vidual information such as gender, age, and race. In the
next section we explain our approach, then we describe how
we implemented it in MPI.

4.1 Modeling interconnected urban regions

The transportation model reflects the movement of peo-
ple between cities for work, study, or vacation, and is based
on the gravity model proposed by Viboud et al. [10]. The
gravity model calculates the volume of individuals who move
between two locations depending on the population size of
the origin and destination cities, as well as the distance be-
tween them. EpiGraph implements a transportation model
in which the bi-directional flow is equal and calculated con-
sidering the destination city to be the larger one in the pair.
Once the inter-city flows are calculated, we randomly select
individuals from specific group types within the populations
and move them for a specific period of time. We consider
movement of workers and students for distances below the
threshold specified by the gravity model for close regions
(119 km); this reflects the daily commute to neighboring
cities. We also consider the long-distance commute (above
120km) of workers that need to reside at a different location
for several days in a row. Additionally, we consider people
from any group type that move at any distance for several
days for vacation purposes.

The geographical information that we integrate into Epi-
Graph includes latitude, longitude, and distance between
urban regions, and was extracted from the Google Maps
web service using the Google Distance Matrix API [1]. Al-
though this work simulates urban regions that are spatially
co-located within the same country, EpiGraph can be used
to simulate very large-scale scenarios in which regions spawn
different countries or continents.

4.2 Process mapping

The goal of the mapping task is to balance the workload
of the application between the MPI processes. We balance
the workload at two levels: the first one at the top level of
the simulation (inter-region level), and the second one at the
internal level of each urban region (intra-region level).

At the inter-region level, we balance the workload of the
application taking into account the workload associated to
each urban region, the available computing power of the
platform, and the spatial locality of the data. We exploit
the data locality of the application by mapping processes
which execute on the same processor to the same urban re-
gion, thus minimizing the cost of the MPI communications.
We balance the global workload by calculating the relative
computing power (in FLOPS) of each processing element
(PE). We consider each of the cores of modern multiproces-
sors as an independent PE. The relative computing power
of each PE is computed by means of an offline microbench-
mark. The load associated with each city is estimated taking
into account its population and the number of contacts in
its intercommunication graph. Then, we assign to each ur-
ban region a computing power which is proportional with its
associated load. Figure 1 shows an example of applying this
procedure for the configuration of a sample scenario consist-
ing of the urban regions of Madrid, Barcelona, and Valencia
when executing on 4 processors: 3 Quad core processors and
1 Dual core processor. First, we order the PEs by their phys-
ical location and calculate their relative computing power.
Then we use a basic allocation strategy, allocating each PE
to one process (P,). Using this method, 8 processes are
allocated for Madrid, 4 for Barcelona, and 2 for Valencia.

At the intra-region level, we balance the computation by
redistributing the workload between the processes involved

Leo Qe Qe R fleeloe oo fer f o o [fero o |

Processor 0 Processor 1 Processor 2
Quad core Quad core Quad core

Figure 1: Process mapping according to the number
of processing elements available for execution, the
size of the urban populations, and exploiting the
data locality.

'[
1

1

1

:;[mpn,comm,mmnm]; :{MPLCOMM?BARCELONA}.
" " '
" " !
i i :
n "o

" " '
: : :
n :
-

:[MPLCOMM?VALENCIA}

Figure 2: Two-level schema of MPI communicators.

in the computation of a specific urban region. We use the
run-time library FLEX-MPI [8] to ensure that processes
with more load transfer part of their assigned individuals
(including their associated subgraphs in the interconnection
graph) to the processes with less load within the same ur-
ban region. These operations are performed transparently,
without user intervention.

4.3 MPI implementation

When executing an MPI application, all of the processes
are by default grouped into the global communicator MPI_
COMM_WORLD. A collective operation—such as those performed
by EpiGraph when gathering the number of infected individ-
uals within an urban region—that uses this global communi-
cator blocks until all processes complete. In order to reduce
the communication overhead of collective operations we used
a communication model based on a two-level schema: the
first level at the granularity of each urban region, and the
second being the global default communicator.

The global communicator is used to perform communica-
tion operations between all of the running processes in be-
half of the transportation model. Each process is identified
by the communicator by a global_rank. Intra-region com-
munications involve both point-to-point messages to trans-
mit new infections and collective operations to gather the
number of infected individuals. We introduce ad-hoc local
communicators (MPI_COMM_[REGION]) to enable the decou-
pled execution between those subsets of processes that are
associated with each urban region. Once the algorithm has
mapped groups of processes to urban regions, the local com-
municators group together the subsets of processes involved
in the computation of each specific urban region. Processes
are identified in the MPI_COMM_[REGION] communicator by
a local_rank. Figure 2 shows the two-level schema for the
scenario described in Figure 1. This approach allows each
region-specific subset of processes to perform collective op-
erations independently of each other.

Algorithm 2 Spatial transmission algorithm.

Input: (p, global_rank,rp,local_rank,urban_regions,local_region,
Alocal_rank, Status) where p is the number of processes in
the global MPI communicator, global_rank is the rank of
the process in the global communicator, rp is the number of
processes in the local MPI communicator, local_rank is the
rank of the process in the local communicator, urban_regions
is the number of urban regions in the simulation, local_region
is the urban region assigned to process rank in the subset rp,
Ajlocal rank 18 the partition of the social contact network of
the urban region assigned, and status is the health status of
the individuals of the local_region.

Output: (status) where status is the updated status of individ-
uals in the simulation.

1: for timestep = 1 — stmulation_time do

2 for each local individual v € Ajpeal rank do

3 UpdateStatus(status(v))

4 if status(v) is infectious then

5: ComputeSpread(v, contacts(v), new_in fected)

6 end if

7 end for

8 for each process r € rp where (r # local_rank) do

9: SendNewlInfections(new_infectedjocal_rank—r, local_rank,r)

10: end for

11: if timestep % n then

12: Interventions(status(Ajocai_rank), local_rank)

13: end if

14: for each region € urban_regions
where (region # local_region) do

15: Transportation(pop_size(local_region), pop_size(region),

distance, global_rank)
16: end for
17: end for

4.4 Spatial transmission algorithm

Algorithm 2 shows the parallel algorithm that implements
the spatial transmission of the infectious disease. In our
implementation each urban region is simulated by a non-
overlapping subset of processes rp within the set p of all
processes. The social contact network of each urban region
is partitioned between each subset of processes. Updating
the status of local individuals (L3), the dissemination of the
infectious disease (L5), the communication of newly infected
individuals within the same urban region (L9), and evalu-
ating interventions are computed in the same way as Al-
gorithm 1. Note that intra-region communications are per-
formed using the local communicator (MPI_COMM_[REGION]),
where each process in the subset rp is identified by its lo-
cal_rank.

The propagation of the infection via the transportation
model (L15) is computed once a day for each pair of urban
regions in the simulation. Each subset of processes corre-
sponding to a region compute the number of individuals
which move from this region to another region depending
on the size of the two populations (pop_size(local_region),
pop_size(region)) and the geographical distance between the
locations (distance). Note that inter-region communications
are performed using the global communicator (MPI_COMM_WORLD),
where each process in the number p of processes is identified
by its global_rank.

5. RESULTS AND DISCUSSION

We evaluated EpiGraph by simulating the spatial trans-
mission of the flu virus both on a distributed memory system
and on a shared memory system. The distributed platform
is a cluster with 16 compute nodes, each of them has one

Table 1: Largest urban regions of Spain and number
of processes (P) assigned to each urban region in the
simulation.

City Population | P City Population | P
Madrid 3,233,527 | 16 | Valladolid 311,501 2
Barcelona 1,620,943 8 Vigo 297,355 1
Valencia 797,028 4 Gijon 277,733 1
Seville 702,355 4 | Hospitalet 257,057 1
Zaragoza 679,624 4 | A Coruna 246,146 1
Malaga 567,433 3 Vitoria 242,223 1
Murcia 441,354 2 Granada 239,017 1
Palma 407,648 2 Elche 230,587 1
Las Palmas 382,296 2 Oviedo 225,973 1
Bilbao 351,629 2 | Badalona 220,977 1
Alicante 334,678 2 | Cartagena 216,655 1
Coérdoba 328,841 2 Terrasa 215,678 1

Intel Quad Core Xeon E5405 processor running at 2.00GHz
and 4GB of memory. The shared memory system consists
of a single compute node which has four Intel Xeon E7-4807
processors with Hyper-Threading support and 6 cores each,
running at 1.87GHz and 128GB of memory. All the compute
nodes run under Linux Ubuntu Server 10.10 with 2.6.35-32
kernel and are interconnected by a Gigabit Ethernet net-
work. We use the MPICH-2 v1.4.1 implementation of MPI.

5.1 Large-scale area simulations

We simulated the virus propagation for the 24 most pop-
ulated cities in Spain 1 and a simulated time span of 200
days. We executed the scenario on the cluster using 64
processes—4 processes per compute node. We compare the
spatio-temporal propagation of the infectious disease when
the outbreak is originated in different regions.

Figure 3 illustrates the spatio-temporal propagation of In-
fluenza epidemics started in Madrid and A Coruna. We ob-
serve that the infectious disease is rapidly propagated when
the epidemic is originated in a highly populated, well con-
nected region (Madrid) compared with a smaller, more iso-
lated region (A Coruna). When the epidemic is originated in
Madrid the disease is rapidly propagated both to neighbor-
ing regions and to far apart regions due to the travel volume
but also to the more pronounced long distance travel. Oth-
erwise, when the epidemic is originated in an isolated region
as A Corufia the virus takes several weeks to reach far away
regions.

5.2 Performance evaluation

The following experiment evaluates the performance of
EpiGraph when executing on both distributed and shared
parallel architectures. We simulated the spreading of the
virus in a medium-scale scenario which consists of a subset of
4 urban regions of the former 24: Madrid, Barcelona, Valen-
cia, and Seville. This configuration allows us to evaluate the
strongscaling of EpiGraph by increasing linearly the num-
ber of processes for executing the fixed-size, medium-scale
scenario. Table 2 shows the number of processes mapped to
each region when executing with 8, 16, 32, and 64 processes.

The execution of the medium-scale simulations requires a
minimum of 2 compute nodes (running 4 processes each)
when executing on the cluster due to the large memory
footprint of the simulator. Thus, we consider the execu-
tion with 8 processes as our base execution in both systems.

(a)

(c¢) A Coruiia, day 40

(d) Madrid, day 40

(e) A Coruiia, day 70 (f) Madrid, day 70

Figure 3: Comparison of the spatio-temporal prop-
agation of Influenza at days 30, 40, and 70 since the
outbreak of epidemics originated in A Coruna and
Madrid.

Table 2: Process mapping for EpiGraph simula-
tions, where NP stands for the number of processes
and (Puv, Pg, Pv, Ps) stand for the number of pro-
cesses assigned to Madrid, Barcelona, Valencia, and
Seville, respectively. Nodes stands for the number
of compute nodes used when executing on the dis-
tributed memory system.

NP PM PB PV PS Nodes
8 4 2 1 1 2
16 8 4 2 2 4
32 16 8 4 4 8

The experiment is bounded from above by 32 processes in
the shared memory system because it has 48 logical PEs
supported by Hyper-Threading and we cannot map 64 pro-
cesses. Figure 4 shows how the application scales on both
parallel architectures with respect to the performance of the
base execution. EpiGraph scales well up to 32 processes in
the cluster and almost linearly in the shared memory system
due to a low intra-node communication overhead and a bet-
ter cache behavior. The memory access pattern in EpiGraph
is irregular because the processes access non-consecutive en-
tries of the sparse matrix. When the number of processes
increases there are less data assigned to each PE, which leads
to a better cache behavior.

To analyse the performance in greater detail, we profiled

4000

Il Execution time (distributed)
[l Execution time (shared)

—e— Relative speedup (distributed)
3200 - = -Relative speedup (shared)

o

1
Number of processes

Figure 4: Execution time (left Y axis) and relative
speedup (right Y axis) of EpiGraph.

100

[JOther

| | JTransportation

[Jinterventions

| | I SendNewInfections
Il UpdateStatus
Il ComputeSpread

90

801

700
601
500
40/

Execution time (%)

301

201

101

0

8 16 32 64
Number of processes

Figure 5: Time spent by EpiGraph in each of the
phases of the simulation algorithm.

EpiGraph by instrumenting the code with wall-clock tim-
ing functions to collect the time spent by each process when
executing on the cluster in each of the phases of the algo-
rithm: (1) computing the dissemination of the virus (line
L5 in Algorithm 2), (2) updating the status of the local in-
dividuals (L3), (3) communicating newly infected individu-
als (L9), (4) evaluating interventions (L12), and (4) simu-
lating the transportation model (L15). Figure 5 shows the
percentage of the execution time which corresponds to the
average time spent by all the processes in each of these
phases. As we expected, the percentage of the execution
time spent in the computation phases (ComputeSpread and
UpdateStatus) decreases and the time spent in the commu-
nication phases (SendNewlnfections, Interventions and
Transportation) increases when using more processes for
simulation. When executing on 32 and 64 processes more
than half of the execution time is invested in communica-
tion operations. Note that in the simulations the execu-
tion time of the Transportation phase is significantly larger
than the execution time of the SendNewlnfections and
Interventions phases. The simulation of the transporta-
tion model involves both collective and point-to-point com-
munication and synchronization operations between all of
the running processes, which increases the cost of the inter-

region communications. Communication operations in the
Interventions phase are performed using the ad hoc local
communicators, which optimizes the cost of the collective
intra-region communications consuming less than 1% of the
execution time.

6. CONCLUSIONS

This paper presents a novel approach to simulating the
spatial transmission of Influenza over large-scale areas. We
have extended EpiGraph by implementing a new MPI-based
parallel algorithm for simulating a transportation model,
which allows us to study the spatial dynamics of the spread
of Influenza. We use a two-level schema of MPI communi-
cators to optimize the communications between processes.
We have devised a process mapping strategy which consid-
ers two levels of parallelism to exploit the locality of the data
and balance the workload of the application. Results show
the high performance of EpiGraph when simulating large-
scale scenarios both on a cluster platform and on a shared
memory compute node.

7. ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Science under the grant IPT-430000-2010-14.

8. REFERENCES

[1] Google Maps API. developers.google.com/maps/.

[2] National Statistics Institute (INE). wwuw.ine.es/.

[3] R. Anderson, R. May, and B. Anderson. Infectious
diseases of humans: dynamics and control, volume 28.
Wiley Online Library, 1992.

[4] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng,
and M. V. Marathe. EpiSimdemics: an efficient
algorithm for simulating the spread of infectious
disease over large realistic social networks. In
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, page 37. IEEE Press, 2008.

[5] K. Bisset, J. Chen, X. Feng, V. Kumar, and
M. Marathe. Epifast: a fast algorithm for large scale
realistic epidemic simulations on distributed memory
systems. In Proceedings of the 23rd international
conference on Supercomputing. ACM, 2009.

[6] D. Chao, M. Halloran, V. Obenchain, and I. Longini.
FIuTE, a publicly available stochastic influenza
epidemic simulation model. PLoS computational
biology, 6(1):¢1000656, 2010.

[7] G. Martin, M. Marinescu, D. Singh, and J. Carretero.
Leveraging social networks for understanding the
evolution of epidemics. BMC' Syst Biol, 5(S3), 2011.

[8] G. Martin, M. Marinescu, D. Singh, and J. Carretero.
FLEX-MPI - Technical Report. Technical report,
Universidad Carlos III de Madrid, 2012.
www.arcos.in f.ucdm.es/~desingh/publications.html.

[9] S. B. Thacker. Spatial aspects of influenza epidemics.
The Journal of the American Medical Association,
258(18):2593-2594, 1987.

[10] C. Viboud, O. N. Bjgrnstad, D. L. Smith,
L. Simonsen, M. A. Miller, and B. T. Grenfell.
Synchrony, waves, and spatial hierarchies in the
spread of influenza. Science, 312(5772):447-451, 2006.

