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ABSTRACT

We study a combinatorial market design problem, where
a collection of indivisible objects is to be priced and sold
to potential buyers subject to equilibrium constraints. The
classic solution concept for such problems is Walrasian Equi-
librium (WE), which provides a simple and transparent pric-
ing structure that achieves optimal social welfare. The main
weakness of the WE notion is that it exists only in very re-
strictive cases. To overcome this limitation, we introduce the
notion of a Combinatorial Walrasian equilibium (CWE), a
natural relaxation of WE. The difference between a CWE
and a (non-combinatorial) WE is that the seller can pack-
age the items into indivisible bundles prior to sale, and the
market does not necessarily clear.

We show that every valuation profile admits a CWE that
obtains at least half of the optimal (unconstrained) social
welfare. Moreover, we devise a poly-time algorithm that,

given an arbitrary allocation X, computes a CWE that achieves

at least half of the welfare of X. Thus, the economic prob-
lem of finding a CWE with high social welfare reduces to the
algorithmic problem of social-welfare approximation. In ad-
dition, we show that every valuation profile admits a CWE
that extracts a logarithmic fraction of the optimal welfare as
revenue. Finally, these results are complemented by strong
lower bounds when the seller is restricted to using item prices
only, which motivates the use of bundles. The strength of
our results derives partly from their generality — our re-
sults hold for arbitrary valuations that may exhibit complex
combinations of substitutes and complements.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
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1. INTRODUCTION

Recent years have been marked by an explosion of inter-
est in the role of computer science theory in market design.
Large-scale, computer-aided combinatorial markets are be-
coming a reality, with the FCC spectrum auctions emerging
as a front-running example [3]. The potential outcome of
this line of work is a system in which many bidders, each
having complex preferences over combinations of items for
sale, can express these preferences to an auction resolution
algorithm that decides an appropriate outcome and pay-
ments. Spurred forward by this vision, the computer sci-
ence community has generated an entire subfield of work on
developing efficient algorithms for combinatorial allocation
problems [11[131[15126128]32].

Much of the existing work on combinatorial auctions has
focused on the desideratum of incentive compatibility, where
bidders are incentivized to report their preferences truthfully
to an auction resolution mechanism. It is our view, however,
that the connection between computational requirements
and combinatorial market design is much broader than the
design of incentive compatible mechanisms, and combina-
torial extensions of complex markets are fundamental in a
wider context. In this paper we study a classic market de-
sign problem: setting prices so that socially efficient out-
comes arise when buyers select their most demanded sets.
We propose a natural combinatorial extension of this prob-
lem, whereby the seller can choose to bundle objects prior to
assigning prices. We demonstrate that providing this basic
operation to the seller leads to the existence of (and algo-
rithms to find) near-optimal outcomes in settings that were
previously known to suffer from severe limitations.

Background: Walrasian Equilibrium.

A vast literature in economic theory is dedicated to meth-
ods of assigning prices to outcomes so that a market clears
in equilibrium and a socially efficient outcome arises. Sup-
pose that we have a single sellef] with a set M of m items
for sale, and there is a set N of n buyers who have possibly
complex preferences over the items, represented by a valu-
ation function v;(-) : 22 — Rs( that maps every subset of
M to a real value. A strong notion of a pricing equilibrium
for such a market is as follows. First, the seller sets prices
{pj}iem on the items for sale. Second, each buyer selects
his most-desired set of items at those prices, i.e., a set S in
argmaxg vi(S) =3 ;¢ P;- If no item is desired by more than

!We note that the seller could be either a government agency
wishing to maximize market efficiency, or a monopolist wish-
ing to maximize revenue.
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one bidder (i.e., there is no over-demand), and all items are
sold (i.e., there is no over-supply), this outcome is known as
a Walrasian equilibrium (WE).

The WE solution concept is appealing: despite competi-
tion among the agents, every buyer is maximally happy with
her allocation, the market clears, and the pricing structure
is natural, simple, and transparent. Moreover, it is known
that a WE, when it exists, is socially efficient; i.e., it maxi-
mizes social welfare — the sum of buyers’ valuations [6]. The
main disadvantage of WE is that the concept is “too good
to be true” — it is known to exist only for an extremely
restrictive subset of sub-modular valuations, known as gross
substitutes [21]. Since a motivating feature of combinato-
rial auctions is the ability to capture complementarities in
the buyers’ preferences (i.e., super-additive valuation func-
tions), this restriction limits the applicability of WE in many
algorithmic mechanism design settings.

Circumventing the existence problem requires relaxing the
WE notion, and several approaches can be taken with re-
spect to this relaxation. One approach is to allow the seller
to set arbitrary bundle prices instead of item prices; i.e., set
a price pg for every bundle S (see, e.g., [7L0133]). This ap-
proach does lead to strong existence and efficiency results,
but loses much of the simplicity and transparency that is
offered by item pricing.

Another approach is to relax the requirement for market
clearance (while still insisting that every buyer maximizes
his utility). This approach is natural in settings where the
seller wishes to maximize some well-defined objective func-
tion, such as social welfare or revenue, and might be able
to credibly leave some unsold items in the market. This
relaxation completely solves the existence problem; indeed,
an outcome in which all items are priced prohibitively high
would trivially adhere to the proposed equilibrium notion.
It might, however, come at a huge social expense. This begs
the question: can a good social welfare be supported in a
pricing equilibrium that relaxes the market clearance condi-
tion? As we show in Section [2:2] the answer is surprisingly
discouraging. In particular, even for the class of fractionally
subadditive valuations [I6] — a strict subset of subadditive
functions that exhibits strong substitutability among items
— the loss in social welfare can be linear in the number
of items. Relaxing market clearance, therefore, is not suf-
ficient, and a new approach is needed. In what follows we
introduce a new equilibrium concept that captures a novel
approach to the problem.

A New Concept: Combinatorial Walrasian Equilibrium
(CWE).

We propose to pair the notion of Walrasian equilibrium
with a simple combinatorial operation, as follows. The seller
first partitions the items for sale into indivisible bundles.
This partition induces a reduced market, where individual
items are no longer available, rather only the specified bun-
dles. This operation can be perceived as redefining the
items. Each individual bundle — now an indivisible item
— is then assigned a price, overall pricing over the reduced
market is linear, i.e., the price of a set of bundles equals the
sum of the bundles’ pricesﬁ. The outcome of such a process
is a CWE if every bidder obtains a utility-maximizing set of

2This essential feature — linearity of prices in the reduced
market — distinguishes the proposed solution concept from
previous notions in the spirit of bundle pricing [7].

bundles in the reduced market, and no conflict arises. Thus,
the essential feature of a CWE is the ability of the seller to
redefine his items by pre-bundling them prior to sale. This is
an innocuous and natural power to afford the seller; after all,
as the owner of the objects to be sold, it seems reasonable
that he may choose to repackage them as he sees fit.

Clearly, a CWE is guaranteed to exist for every valuation
profile, even without relaxing market clearance. Indeed, the
seller could simply collect all objects together into a single
grand bundle, and then sell that one bundle to the bidder
who values it most. However, this may be a very inefficient
outcome for the market. The natural combinatorial ques-
tion, then, is whether there exists a partition of the objects
(and associated prices) so that a CWE exists and has high
social welfare. An additional question is how best to par-
tition the objects and set prices in order to maximize the
seller’s revenue. We are interested in both the existential
and computational aspects of these problems.

Our Results.

An observation that facilitates our analysis is a character-
ization of the set of CWE allocations (i.e., allocations that
admit supporting CWE prices). Specifically, an outcome
can be implemented at CWE if and only if that outcome is
an optimal solution to a certain linear program: the con-
figuration LP for the assignment problem, restricted to the
bundles in the outcome allocation. This implies that every
CWE generates an efficient allocation of the bundles that
are sold, though we note that this necessary condition is not
always sufficient. In particular, the optimal allocation can-
not necessarily be implemented at CWE; in Section 23] we
exhibit an example where the welfare-optimal CWE attains
only 2/3 of the unconstrained optimal social welfare.

Characterization in hand, we study the problem of finding
CWE outcomes that maximize social welfare and /or revenue
in general market settings. Our main result is the following:

Result 1 (2-approximation for social welfare): Given
an allocation Y, we provide an algorithm that computes a
CWE X that guarantees a social welfare of at least 2SW(Y),
and runs in polynomial time, given an access to each bidder’s
demand oracle.

A direct corollary of the above result is that every in-
stance admits a CWE that obtains at least half of the op-
timal (unconstrained) social welfare. Note that our result
does not restrict the preferences of the bidders; it holds for
arbitrary valuation functions, including those with comple-
ments. Moreover, since the result holds for arbitrary Y,
every social-welfare approximation can be converted into a
CWE allocation that achieves the same approximation (up
to factor 2). In other words, our algorithm can be inter-
preted as a black-box reduction that reduces the economic
problem of finding a CWE with good social welfare to the
algorithmic problem of social-welfare approximation for a
given class of valuation functions. The fact that our method
proceeds in a black-box manner is significant, as it allows a
separation of the algorithmic and economic aspects of our
pricing problem; such reductions have been developed only
rarely, such as for approximately efficient Bayesian incentive
compatible mechanisms [24][25].

The presentation of our algorithm is given in two stages.
We first describe an algorithm that provides the desired ap-
proximation result, albeit might run in exponential time.



The advantage of this algorithm is its simplicity and its nat-
ural interpretation as an ascending price auction (see Sec-
tion B]). A more challenging task is to modify the proposed
algorithm into a poly-time algorithm that preserves the same
approximation ratio. This is the content of Section [d The
algorithm is polynomial, given an access to a demand oracle
of each agent (in the reduced market) — where agents get a
set of item prices and respond with their most desired bun-
dle given these prices. We note that the definition of CWE
implicitly involves agents answering demand queries, hence
our assumption that we have access to demand oracles is
effectively driven by the notion of CWE itself. Additionally,
since we consider reduced markets defined by the seller’s
choice of partition, we will allow demand queries over any
reduced market (not just the original instance without bun-
dles).

We also provide a negative result illustrating the need for
bundles: there are instances in which no equilibrium with
item prices gives a sublinear approximation to social welfare,
even if valuations are fractionally subadditive.

We next consider the problem of revenue maximization
and provide the following results.

Result 2 (O(log n)-approximation for revenue): Given
an allocation Y to n buyers, we provide an algorithm that
computes a CWE X that extracts revenue of O(logn) frac-
tion of SW(Y), and runs in polynomial time, given an access
to agents’ demand oracles.

Moreover, this result is tight in terms of the trade-off be-
tween social welfare and revenue objectives for the outcomes
that might be supported at CWE: there are instances in
which no CWE extracts more than a logarithmic fraction
of the social welfare. A corollary of our result is that, for
any class of valuations functions that admits a polytime con-
stant approximation to social welfare, one can find (in poly-
time) a CWE that obtains an O(log n) approximation to the
revenue-optimal CWE. Furthermore, a computational hard-
ness result due to Briest [10] shows that one cannot hope for
better than a polylogarithmic approximation: even in the
special case of unit-demand bidders, where CWE reduces to
envy-free pricing, there is a lower bound of Q(log®(n)) for
the problem of approximating optimal revenue (subject to
natural hardness assumptions).

Our techniques.

The aforementioned configuration LP provides a useful
framework to study efficiency of stable pricing and existence
of Walrasian equilibria. Generally speaking, the techniques
of LP relaxations and rounding and especially the configu-
ration LP are prevailing instruments in the study of com-
binatorial auctions. However, there is a new distinguishing
feature in the context of Combinatorial Walrasian Equilib-
rium, as we have to determine a proper partition of the
market into bundles. One may think of every bundle in a
partition as imposing a set of additional linear constraints
on the configuration LP of the initial (unpartitioned) mar-
ket. In order to meet the goal of achieving a nearly efficient
and stable state, we need to cast a carefully chosen set of
those new constraints which push the solution of a derived
LP to be achieved in an integral point corresponding to a
proper allocation.

The main combinatorial tool employed in our design and
analysis resembles techniques taken from the theory of stable

matching. In particular, our scheme proceeds in a fashion
that is similar to the Gale-Shapley algorithm [20], with bid-
ders and items residing in the two sides of the market, and
bidders “making proposals” to the items. During the proce-
dure, the price of each item reflects the item’s preferences
over the bidders and it keeps growing monotonically. Mean-
while, the choice of every bidder becomes scarcer and at
greater expenses. Finally, the resulting allocation of buyers
to bundles may be viewed as a matching, since every allo-
cated set of items and/or bundles may be further treated as
a single big bundle.

Despite the similarities to the Gale-Shapley algorithm,
there are several important aspects that distinguish our setup
from the standard setting of stable matching. Firstly, our
combinatorial auction model allows for bidders to demand
sets of items. As a result, bundles demanded by the bidders
may overlap in a complex way, which makes our task of re-
solving conflicts on the over-demanded items incomparably
more difficult than for the unit demand valuations in any
matching setup. Secondly, the stable matching framework
assumes no money in the market, while in our setting prices
play a crucial role to guarantee stability. Finally, our rou-
tine begins with an initial allocation which is provided as
part of the input and serves as a benchmark against which
to compare the obtained social welfare. The initial allo-
cation is indeed necessary if one is looking for an efficient
implementation, due to the strong NP-hardness results on
social-welfare approximation in combinatorial auctions.

The ascending-price nature of our basic algorithm leads
to a potentially exponential runtime, as prices may climb
slowly toward a stable profile. To address this problem, we
must aggressively raise prices to “interesting” breakpoints.
We then analyze the structure of the agents’ demands at
these maximal price profiles, and find that by resolving the
demands of agents in a particular order we can ensure that
steady progress is made toward a final solution, leading to
a polynomial runtime.

To construct a CWE with high revenue, a natural ap-
proach is to impose reserves: lower bounds on bundle prices.
However, manipulating prices in this way can affect the
structure of a final equilibrium in non-trivial ways, so that
it is not clear that revenue will ultimately increase. To cir-
cumvent this issue, we begin with a CWE with high wel-
fare, then modify prices by adding a constant amount to the
price of each bundle. This operation is conceptually similar
to imposing a reserve, but does not fundamentally change
the structure of a stable allocation. Our approach to maxi-
mizing revenue then reduces to tuning the extent of this flat
price increase.

Related Work.

The study of pricing equilibria in markets and related con-
cepts of outcome fairness have a rich history in theoretical
economics. Some of the earliest work in this spirit of envy-
freeness is due to Foley [18] and Varian [35]. An envy-free
outcome is one where no agent wishes to exchange outcomes
with another. The line of work on market-clearing prices
in our market assignment problem was initiated by Shapley
and Shubik [34]. Characterizations of existence of Walrasian
equilibria were studied in, for example, [2[621127]29].

An alternative line of work considers markets with non-
linear bundle prices. Such package auctions were formalized
by Bikhchandani and Ostroy [7]. Applications to combi-



natorial auctions include mechanisms due to Ausubel and
Milgrom [3], Wurman and Wellman [36], and Parkes and
Ungar [33]. Our notion of CWE differs in that the seller
commits to a partition of the objects, then sets linear prices
over those bundles.

The problem of computing revenue-optimal envy-free prices
has received recent attention in the computer science liter-
ature. Guruswami et al. [22] provide approximation algo-
rithms for envy-free pricing in certain special cases, leading
to a line of work improving on the attainable approximation
factors [5[11,[23] and a polylogarithmic lower bound [10].
Mu’alem [31] studies the revenue maximization question for
agents with general types. The notion of envy-freeness has
also been applied to problems in machine scheduling [12].

Fiat et al. [I7] considered an extension of envy-freeness
in which no agent envies any subset of other agents. This
concept is related to our notion of CWE. However, crucially,
they restrict their definition to agents with single-minded
types, which dampens the distinction between multi-envy
freeness and envy-freeness.

A significant line of work in the algorithmic mechanism
design literature is concerned with the development of truth-
ful mechanisms for combinatorial markets. See, for exam-
ple, [TLI3L15126L28][32] and references therein. The goal in
this work is to develop algorithms that elicit truthful value
revelation from the bidders. In contrast, we assume a full-
information model and our goal is to develop an algorithmic
pricing structure that satisfies certain transparency and fair-
ness conditions.

Some of our algorithms make use of demand queries, a
manner of eliciting preference information from bidders with
complex valuations. For representative works on the power
of demand queries, see [41[8[141[30].

Fu, Kleinberg and Lavi [19] introduced the notion of con-
ditional equilibrium as a WE relaxation, where no buyer
wishes to add additional items to his allocation under the
given prices, but may wish to drop ones. They show that,
when buyers have submodular valuations, a conditional equi-

librium always exists and every conditional equilibrium achieves

at least half of the optimal social welfare. While their work
is similar in spirit to the results herein, our equilibrium con-
cept differs fundamentally in that it does not relax the re-
quirement that every agent receives a bundle in his demand
set. In particular, the conditional equilibrium notion is quite
weak from the agents’ happiness perspective. In particu-
lar, it violates basic envy-freeness conditions, even for sub-
modular valuations.

2. MODEL AND PRELIMINARIES

We consider an auction framework with a set M of m
indivisible objects and a set of n agents. Each agent has
a valuation function v;(-) : 2 — Rs¢ that indicates his
value for every set of objects, is non-decreasing (i.e., v;(S) <
vi(T) for every S C T C M) and is normalized so that
v;(#) = 0. The profile of agent valuations is denoted by
v = (v1,...,Vn), and an auction setting is defined by a tuple
A= (M,v).

A price vector p = (p1,...,pm) consists of a price p; for
each object j € M. An allocation is a vector of sets X =
(X0, X1,...,X,), where X; N X), = 0 for every i # k, and
U, Xi = M. In the allocation X, for every i € N, X; is the
bundle assigned to agent ¢, and Xo is the set of unallocated
objects; Le., Xo = M\ U, Xi.

As standard, we assume that each agent has a quasi-linear
utility function. That is, if agent i is allocated bundle X;
under prices p, then the utility of agent 4 is u;(X;,p) =
v (X5) — ZjEXi p;. Given prices p, the demand correspon-
dence D;(p) of agent 7 contains the sets of objects that max-
imize agent i’s utility:

Dip) = {57 +5" € angmax(ui(s. ) |
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A tuple (X, p) is said to be stable for auction A = (M, v)
if X; € D;(p) for every i € N. A price vector p is stable if
there exists an allocation X such that (X, p) is stable. An
allocation X is stable if there exists a pricing p such that
(X, p) is stable.

For a partition I' = (T'1,...,['x) of the item set M we
slightly abuse notation and denote by I' = {T'1, ..., s} the
reduced set of items, where the valuation of each agent i of a
subset S C I'is Ui(Uj:FjeS I';). We denote by Ar an auction
over the reduced set of items I' with the induced valuation
profile.

Every allocation X induces a partition of the objects,
I'(X) = (Xo,...,Xn), where Xo denotes the unallocated
objects. A tuple (X, p), where X = (Xo,...,Xn), and p; is
the price of X; for every X; # 0, is a Combinatorial Wal-
rasian Equilibrium (CWE) if (X, p) is stable in the auction
Arpx). Clearly, Xo may be an empty set, in which case no
item remains unallocated (i.e., the market clears). Allowing
for Xo to be non-empty is essentially the relaxation of the
market clearance condition. An allocation X is said to be
CWE if it admits a price vector p € R’;ng such that (X, p)
is CWE.

Relation to WE.

A tuple (X,p), where X = (Xo0,X1,...,Xn) and p =
(p1,-..,pm), is a Walrasian equilibrium (WE) if (X, p) is
stable in A and p; = 0 for every item j € Xo. When the
latter condition is satisfied, we also say that (X, p) clears the
market. We emphasize that a CWE is weaker than a WE
in two ways: first, it allows for market reduction by means
of bundling; second, it does not require market clearance, so
items with positive price can be left unsold.

2.1 Characterization of WE

We will make use of the following characterization of an
allocation that can be supported in a WE [6]. For a given
partition I' of the objects, the allocation of I" to N can be
specified by a set of integral variables y, s € {0,1}, where
y; s = 1 if the set S C T is allocated to agent ¢ € N and
Y; s = 0 otherwise. These variables should satisfy the fol-
lowing conditions: D gy, s <1 for every i € N (each agent
is allocated to at most one bundle) and 37 y, 5 <1 for

4,507
every I'; € T' (each element of the partition is allocated to
at most one agent). A fractional allocation of T' is given
by variables y, ; € [0,1] that satisfy the same conditions
and intuitively might be viewed as an allocation of divisible
items. The configuration LP for Ar is given by the follow-
ing linear program, which computes the fractional allocation



that maximizes social welfare.

max 3" uS) v
©,S

s.t. Zyi’s <1lforeveryic N
s

Z Y, s < 1forevery I'; €T
4,52

Y;s €10,1] foreveryi € N,SCT

The characterization given in [6] states that a WE exists if
and only if the optimal fractional solution to the allocation
LP occurs at an integral solution.

2.2 Stable item pricing

The proposed concept of CWE is weaker than the con-
cept of WE both in that it allows to restrict the item set by
bundling and in that it does not require market clearance.
Clearly, relaxing any one of these conditions is sufficient to
guarantee existence of a stable allocation. This begs the
question whether it is possible to achieve good guarantees
on the market efficiency (social welfare) by relaxing only
one of these conditions. In this section, we show that relax-
ing the market clearance condition alone is not sufficient, in
general. In particular, for several families of valuation func-
tions, we establish strong lower bounds on the social-welfare
approximation that can be achieved in a stable item-priced
allocation. These results reinforce the need for bundling, as
captured by the CWE notion.

Unit-demand & single-minded valuations. Consider
the following auction: bidder 1 is a unit-demand agent, who
values any non-empty subset of the items at 1 + ¢; bidder 2
is a single-minded agent, who desires the set of all items for
a value of m. In the optimal allocation all m items must go
to agent 2 resulting in a SW of m. However, in every stable
pricing p that supports this allocation, there exists an item
j € [m] such that p; < 1 (otherwise the set [m] cannot be
a demand set of agent 2). But this in turn implies that j
is demanded by agent 1. Therefore, every stable allocation
assigns a single item to agent 1 for a SW of 1+ ¢, compared
to the optimal SW of m, and the linear gap follows.

It might not come at a surprise that item prices are not

sufficient to obtain high welfare if valuations are super-additive.

After all, if items are complementary to each other, then
bundling is an intuitive operation. Surprisingly, the next
example shows that a linear gap may exist even if all valu-
ations are sub-additive.

XOS (fractionally-subadditive) valuations. Consider
an auction with m items and two agents with the following
symmetric XOS valuations. Agent 1 is unit-demand and val-
ues every subset at 1/2 — 0, for a sufficiently small § (that
will be determined soon). Agent 2 values any subset of size
k at max(1,k/2); it is easy to verify that this is an XOS
valuation. We claim that there is no stable pricing that
sells more than a single item. For every m > 2, the opti-
mal integral solution obtains a value of m/2 (by giving all
the items to the XOS agent). By the characterization given
in [6] (see also Section BI), this allocation admits a stable
pricing if and only if m/2 is the optimal fractional solution
of the corresponding configuration LP. We will now show a
fractional solution that obtains value greater than m/2 for
every § < m Consider the fractional solution in which
the allocation of the first (unit demand) agent is given by

y1,{;3 = 1/m for every j € [m], and the allocation of the

second (XOS) agent is given by y2 ;1 = m for every
J € [m], and yo () = z—j One can easily verify that this

is a feasible solution, and the welfare obtained by {y; s} is
given by SW(y) = & + 2(1111——1) — §, which is greater than
% for every § < Q(quw as required. We conclude that a
stable outcome can allocate at most one object, and thus the
highest welfare that can be obtained in a stable allocation
is 1, resulting in a linear gap of m/2.

2.3 Efficiency loss due to CWE: A lower bound

In this section we prove a lower bound on the efficiency of
combinatorial Walrasian equilibria. In particular, we show
that there are instances in which no CWE obtains more than
a (2/3 + ¢) fraction of the optimal social welfare, for every
€ > 0. Consider an auction with 3 items and 3 bidders. Each
agent ¢ has the valuation v; ({i}) = 1 and v; ({1, 2,3}\ {i}) =
2 4+ . The optimal allocation has a social welfare of 3 with
each object i € {1,2,3} being allocated to agent i. Any
CWE that supports this allocation must, in fact, be a WE
(since no items are bundled and all items are allocated).
By the characterization given in [6], such a WE exists only
if 3 is the optimal fractional solution of the corresponding
configuration LP, but this is not the case: the fractional
solution 41 (2.3} = ¥2,{1,3} = ¥s,{1,2} = '/2 obtains a total
value of 3 4+ 3¢/2 > 3. Therefore, in any CWE either one
item is unsold or at least two items are bundled together.
In either case the social welfare cannot exceed 2 + . Thus,
no CWE in this market can approximate the optimal social
welfare within a factor better than 2755 (for an arbitrary
small € > 0).

3. SOCIAL WELFARE APPROXIMATION

In Section [2.3] we established a lower bound of 1.5 on the
social welfare approximation that can be achieved at a CWE.
In this section we show that there always exists a CWE
that gives a 2-approximation to the optimal social welfare
for arbitrary valuations.

Our algorithm is a natural extension of the tdtonnement
process that is used to achieve a Walrasian equilibrium for
(gross) substitutes valuations. In a traditional taAtonnement
process, prices are initially set to zero, agents iteratively
respond to the current prices with their demand, and prices
of over-demanded items increase monotonically. In our case,
in addition to increasing prices of over-demanded items, the
market orchestrator will make use of an additional tool —
merging bundles. These operations will be monotone: prices
increase monotonically, and bundles never break apart.

Our algorithm is defined formally as Algorithm [II Infor-
mally, the algorithm begins by bundling objects according to
an initial allocation (Y in the statement of Theorem B]) and
setting properly-designed initial prices (specifically, pricing
every Y; at v;(Y;)/2). It maintains a pool of buyers who
are not allocated a demanded set (initially all buyers). The
algorithm iteratively chooses a buyer from the pool and asks
for his most-demanded set. Whenever a buyer’s demand set
S contains more than one item, the items in S are bundled
together (irrevocably), the bundle S is allocated to him, and
any agents who were allocated subsets of S are deallocated
and placed back in the pool. It should be noted that with
our “aggressive” bundling, setting initial prices too low (as
in standard tAtonnements) can lead to a big welfare loss.



Algorithm 1 Simple CWE Algorithm
Input: Valuations v; initial allocation Y = (Y1,...,Y%)
Output: A CWE (X, p)
1: Initialize: I' = {Yi : Vi # 0}; p(Ys) = Fvi(Y3) for all 4
X; = 0 for all ¢; Pool = N

2: while Pool # () do

3 Remove an arbitrary element a from Pool
4:  if Do(p,T) # 0 then

5: Choose S € D,(p,I")

6 Xo S

7 if |S| > 1 then

s Set p(S) i= Yr. s p(T)

9: for 7 such that X; € S do

11: Pool + Pool U {i}

12: '+ Bundle(I',S) \«[':={T;:T'; €STU{S}*\
13: else

14: if 3b # a such that X, = S then

15: ResolveConflict(S, a, b)

16: Return (X, p)

ResolveConflict(S, a, b):
1: while S € Dq(p,T') N Dy(p,T") do
20 p(S) < p(S)+e
3: if S & Do(p,T") then X, + 0; Pool + Pool U {a}
4: else X < (); Pool < Pool U {b}

Therefore, the initial prices must be carefully chosen. If
the demanded set is a singleton that is already allocated
to another agent, the conflict is resolved (in subprocedure
ResolveConflict) by gradually increasing the price of the
item, until it is not demanded by one of these agents. The
algorithm terminates when all agents’ demands are satisfied.
We now present a formal description of the process that
is simple and intuitive, but may run in exponential time (in
m and n). In Section [] we present a refined algorithm that
obtains the same result with a poly-time implementation.

THEOREM 3.1. Given an initial allocation Y, Algorithm
[ computes a CWE (X, p) such that SW(X) > $SW(Y).

ProoF. First, it is easy to see that the procedure must
terminate. Indeed, bundles monotonically merge and prices
monotonically increase. Moreover, on every iteration of the
procedure, either a bundle merges (lines 7-12), a price strictly
increases (lines 14-15 and ResolveConflict), or the size of
the pool strictly decreases (otherwise). Thus, assuming fixed
price increments of €, the algorithm is guaranteed to termi-
nate.

Second, upon termination, the obtained allocation and
prices is a CWE. Indeed, every agent that is removed from
the pool receives his most desired bundle given the current
prices, and agents that are deallocated due to some other
agent’s demand go back to the pool. Thus, when the pool
becomes empty, every agent receives his demand at the cur-
rent prices, and the final allocation and pricing is CWE.

It remains to show that the returned CWE obtains at least
half the social welfare of the original allocation Y. Let U be
the set of agents that get non-empty allocations in X; i.e.,

U = {i: X; # 0}. Then, the social welfare is given by

D ui(Xi) = (ui(Xe) = p(Xi) + > p(X)
€U €U €U

=D wi(Xi) + Y p(Xi)

ieU €U

> w(x)+Y Y suh), ()

ieU €U Y;CX;

where the last inequality follows directly from the following
facts: (i) every bundle Y; is originally priced at Suv;(Y;),
(ii) the price of a bundle that is created by a merge of two
bundles equals the sum of their prices, and (iii) a bundle’s
price can only increase.

The second term in the RHS of ({]) captures the welfare
that comes from bundles Y; that are being allocated in X.
We next need to take care of the welfare that comes from
Y;’s that are not being allocated in X. We first observe that
every bundle that is allocated in our procedure, keeps being
allocated until termination. This is because a bundle can
be deallocated from one agent only if it is being allocated
to another agent. Therefore, every bundle Y; that is not
allocated in X has never been allocated, and therefore still
has a price of $v;(Y;) (as priced originally).

Given the last observation, we conclude that for every
bundle Y; that is not allocated in X, it must be that j € U.
Indeed, if 7 ¢ U, then agent j would gained a utility of
v;(Y;) — p(Y;5) > v;(Y;) — 3v;(Y;) > 0 from the bundle Y},
contradicting the fact that ) € D, (p).

However, the agent j € U who has been allocated the
bundle Y; in Y is allocated in the CWE X another bundle
which is preferred by him. This means that agent j’s utility
from X; is at least $v;(Y;).

Since all unallocated bundles Y; were allocated in Y to
agents ¢ € U, summing over all these bundles, we get

Zui(Xi) > Z %UJ(YJ) (2)

ieU Yi¢Uicu X

By plugging the last inequality in () we obtain

S (X0 > 5 3 u(;) = 5SW(Y)

ieU
and the assertion of the theorem follows. [

Applying CWE algorithm to the optimal allocation Y we
derive the following corollary.

COROLLARY 1. For every valuation profile v, there exists
a CWE that obtains at least half of the optimal social welfare.

4. POLY-TIME IMPLEMENTATION

Here we discuss how one could implement our procedure
efficiently in a polynomial number of demand queries to the
agents. We note that in our context demand queries are in-
deed unavoidable, as agents must know their demand sets in
order just to verify whether a given outcome is stable. We
also emphasize that our procedure takes as input an initial
target allocation Y; the problem of finding an initial alloca-
tion Y is outside the scope of our procedure. However, we
can think of Y as being generated from some approximation
algorithm tailored to a particular class of valuations.



The polytime algorithm is given as Algorithm Infor-
mally speaking, Algorithm [2lmakes two main changes to the
more straightforward Algorithm[Il First, after each main it-
eration of the algorithm, we invoke procedure RaisePrices
to increase the prices of the allocated bundles; prices are
raised as much as possible without changing the demand
set of any bidder with an allocation. Second, whenever the
demand set of a player from the pool is a singleton cur-
rently allocated to another bidder b, we immediately award
the allocation to a. We then ensure that b is the next bid-
der to be considered, and allocate to b a particular set from
his demand correspondence, which is determined during the
previous call to RaisePrices.

Algorithm 2 Polytime CWE Algorithm

Input: Valuations v; target allocation Y = (Y3,...,Y5)
Output: A CWE (X, p)
1: Initialize: I' = {Y; : Y; # 0}; p(Y:) = 2vi(Y3) for all 4;
X; = 0 for all i; Pool = N; Reject = (); T; = 0 for all 4
2: while Pool # () do
3 Remove an arbitrary element a from Pool
4:  if ua(S,p) <0 for each S € Dy(p,T") then
5: Reject < Reject U {a}
6
7
8
9

else
Choose S € Dq(p,TI")
AllocateDemand(a, S)
RaisePrices()

AllocateDemand(a, S):

1: if |S| > 1 then

2 for 7 such that X; € S do

3 X0

4 Pool « Pool U {i}

5. '« Bundle(I',S) \ D :={T;:[; €STU{S}*\
6 p(S) S, con(l)

7

8

Xo+ S
: else
9 Xa+ S
10: if 3b # a such that X, = S then
11: Xb < @
12: AllocateDemand(b,75) \* Attempt to allocate

Ty (from RaisePrices) to b. *\

RaisePrices():

1: Initialize: N « {i: X; # 0}

2: while N # () do

3: forie N do

4: choose S; € Di(p,I'\{X;:j € N})
excluding allocations to agents in N x*\

5 di < ui(Xi, p) — ui(Si, p)

6: a <« argmin;cy d;

7. forie N do

8.

9

\* Demand

p(Xi) < p(Xi) +da
Toy < Sa \* Tg is the set demanded by a, ex-
cluding allocations to agents in N *\
10: N « N —{a}

We first note that, like Algorithm[Il Algorithm [2]is mono-
tone in the following sense:
(MONOTONICITY). Quer the course of Algorithm [3, prices
only increase and no bundle is ever split. Moreover, once a
bundle is allocated it never become unallocated.

Also like Algorithm [Tl after an invocation of AllocateDe-
mand completes, each bidder that isn’t in Pool is allocated
a demanded set.

LEMMA 1. After a call to AllocateDemand terminates,
each bidder i & Pool is allocated to his most demanded set.

Proor. If AllocateDemand is called with bidder a, then
we have two cases. If the demanded set for a is S with
|S| > 1, then a is allocated S and other conflicting bid-
ders are added to Pool, so the result holds inductively. If
|S| =1, then a is allocated S, so in particular a is allocated
his most demanded set. The call to AllocateDemand then
terminates only if there is no conflicting bidder; in this case
the result holds. Note that we have not yet argued that
AllocateDemand will, in fact, terminate. [

We next show that RaisePrices increases the price vector
P to a maximal vector such that each bidder ¢ with X; #
has X; € D;(p,TI).

LEMMA 2 (CORRECTNESS OF RAISEPRICES). After each
call to RaisePrices(), for each i with X; # 0, pi(X;) is the
mazimal value such that X; € D;(p,T).

PRrROOF. For a subset of players N and an allocation X,
write I'y for {X;: 7 € N} and 'y for I'\I'y.

We first show that RaisePrices is equivalent to a differ-
ent procedure which does not run in polynomial time. In
this alternative procedure, the set IV is defined as before,
and the prices of elements of I'y are raised uniformly and
continuously until the threshold at which the demand set of
some a € N changes (note that this must occur eventually;
the new demanded set may be ()). When this occurs, a is
removed from NN, and the prices continue to increase for the
elements remaining in I'y. This process continues until NV
is empty.

To see that this is equivalent to RaisePrices, consider
some iteration of this new process, say with initial price
vector p and set N. Suppose the demand set of some a € N
changes to S, and that the price vector at the point of the
change is p’. We claim that S C I'-nx. The reason is that
any S that includes elements of I'x has its price increase by
at least as much as X,, and hence a cannot prefer it to X, at
prices p’. Thus when the demand set of a changes, it must
be to some S € Do(p’,T-n) = Do(p,T-n). At the point at
which the demand of a changes, it must be that u.(X.,p’) =
ua (S, p’) = ua(S, p). Thus the price increase between p and
p’ is precisely uq(Xa, p) —ua(S, p), and moreover player a is
precisely the player in N for which this quantity is minimal
(since a was the first for whom the demanded set changed).
It is therefore equivalent to directly compute this quantity
for each player in N, choose the minimum, and raise the
price of each object in I'y by this amount. This is precisely
what is done by RaisePrices, and hence the procedures are
equivalent as required.

The lemma now follows easily from the definition of this
equivalent process. For each i with X; # (), we have that
at the point when i is removed from N, an increase of
p(X;) would cause X; € D;(p,I"). Moreover, one element in
D;(p,T) is contained in '~ x, and the price of this element
does not change between the point at which ¢ is removed
from M and the conclusion of the process. Thus, when the
process concludes, it will still be that an increase of p(X;)
would cause X; & D;(p,I"). Thus p(X;) is maximal such
that X; € D;(p,T'), as required. [



Note that RaisePrices defines an ordering over the play-
ers with X; # 0: the order in which they are removed from
N. Given an iteration of Algorithm 2] we will write 7 for
this permutation defined by the invocation of RaisePrices
on the previous iteration. That is, 7(¢) denotes the order in
which player ¢ was removed; for notational convenience we
will set 7(i) = oo for all ¢ with X; = (. Note that on the
first iteration of Algorithm 21 we have (i) = oo for all 3.

We now bound the number of iterations that can occur on
a single invocation of AllocateDemand.

LEMMA 3. An invocation of AllocateDemand can re-
curse at most n times.

PrOOF. Note that AllocateDemand concludes with a
potential tail recursion, which can be thought of as an itera-
tion of AllocateDemand with a different agent. We must
show that this tail recursion cannot occur more than n times
in a single invocation of AllocateDemand. To show this,
we’ll show that if AllocateDemand on input a results in a
tail recursion with input b, then it must be that 7(b) < 7(a).
In particular, this means that no agent i can be passed as
input to AllocateDemand more than once in a recursive
chain, and hence the number of recursive calls is at most n.

To prove the claim, note that a recursive call occurs pre-
cisely when agent a demands a single object from I, and this
bundle is currently assigned to a bidder b. In an initial (i.e.
non-recursive) call to AllocateDemand we have w(a) = oo
(since a was drawn from Pool) and 7(b) < oo, so the re-
sult holds trivially. In a recursive call we have 7(a) < oo,
and X, € Dq(p,I"). However, recalling our notation from
the proof of Lemma [2, we know that the demanded set T,
of a is contained entirely in I'-.ny. Thus, since T, = Xy, it
must be that b ¢ N when a is removed from N, and hence

w(b) <m(a). O
THEOREM 4.1. Algorithm[d runs in polynomial time.

PROOF. In each iteration of the main loop, either a set of
objects is bundled or an agent is added to the rejection set
R. Each of these can happen at most n times. Since each in-
vocation of AllocateDemand also runs in polynomial time
by the above lemma, the result follows. [

THEOREM 4.2. Algorithm [2 returns an CWE with social
welfare at least half of the optimal allocation.

PROOF. The fact that Algorithm [2] returns an CWE fol-
lows immediately from Lemmal[ll The argument for the ap-
proximation factor guarantee is the same as for Algorithm [T}
as this depends only on the starting condition (which is un-
changed) and the fact that no object becomes unallocated
after it has been allocated. [

5. REVENUE APPROXIMATION

In this section we consider the objective of the seller’s rev-
enue. Clearly, for any valuation profile, the seller’s revenue
can never exceed the social welfare of the optimal allocation.
Therefore, given an allocation, its social welfare serves as a
natural benchmark for the revenue objective. We prove that
given an allocation Y, the seller can compute in polynomial
time a CWE that extract revenue of 1/o(logn) of the social
welfare of Y.

We first prove a lower bound: there are instances in which
no CWE extracts revenue greater than !/in(n) times the op-
timal social welfare.

An example with a logn separation. Consider a mar-
ket that consists of n items and n unit-demand buyers, where
buyer 4 has value v;({j}) = 1/i for every item j. In any op-
timal allocation every agent gets exactly one item, which
results in a social welfare of > 7 | 1/i &~ Inn. Any reduced
set of items has the same structure of the agent’s valua-
tions as before; i.e. the reduced market contains m < n
items with n unit-demand buyers, where buyer i has value
v;({j}) = Y/ for every item j in the market. It is easy to
verify that due to the structure of valuations, in any CWE
all allocated items must have the same price. Suppose that k
agents receive non-empty bundles; then one of these agents
has index ¢ > k. For this agent, v;(-) = /i < 1/k. Therefore,
the price on every sold item is at most 1/k, which generates
revenue of at most k- 1/k = 1.

We next show that given an allocation Y, one can com-
pute a CWE that extracts revenue within a factor 1/o(logn)
of the social welfare of Y. As a corollary, there always exists
a CWE in which the revenue is at least a 1/0(logn) fraction
of the optimal social welfare.

To see how to construct a CWE with high revenue, con-
sider beginning with a CWE with high social welfare. A
natural approach to increasing revenue is to impose reserve
prices: a lower bound on the price of each bundle. However,
manipulating prices in this way can affect demanded sets in
non-trivial ways, and it is not clear that the final outcome
will actually generate more revenue (or even be stable at all).
Instead of imposing a reserve price, we will instead consider
adding a constant amount to the price of each bundle. This
operation is conceptually similar to imposing a reserve, but
does not change the structure of a stable allocation (beyond
compelling some agents to leave empty-handed). We prove
that there exists at least one choice for this per-bundle price
increase such that the corresponding revenue is least a log-
arithmic fraction of the initial social welfare.

THEOREM 5.1. Given an arbitrary allocation Y, one can
find a CWE that extracts revenue within factor 1/o(logn) of
SW(Y) in a polynomial number of demand queries.

PrOOF. Given an allocation Y, we first run Algorithm
with Y as an input, and obtain a CWE (X, p) such that
SW(X) > 2SW(Y). This step can be done in a polynomial
number of demand queries, as established in Section dl Let
X = (Xo, X1,...,Xx) and p = (po,...,pr); that is, in the
CWE (X,p), for every i = 1,...,k, agent ¢ receives the
bundle X; at a price of p;. We next make the following
important observation.

CrLAaM 1. Let (X, p) be a CWE, where X = (Xo,...,Xk)
and p = (po,...,pr). For any positive constant o let p° be
the price vector (po+o,...,pr+0), and X be the allocation

X if vi(Xy) >p°
] otherwise.

Vi=1,...,k X;’—{

Then, (X7,p°) is a CWE.

PRrROOF. For any non-empty set S it holds that v;(S) —
2jesPi Svi(S)=>",cgpi—0o. Onthe other hand, vi(X;)—
pf = vi(X;) —pi —o. Since (X, p) is a CWE, it follows that
vi(Xi) — pi = vi(S) — 2 cgps for every S. Combining the
above inequalities, we get that u;(X;,p?) > wi(S,p?). In
addition, u;(X;,p”) > 0 if and only if v;(X;) > py. The
assertion follows. [



Let SWo = Zle v;(X;) denote the social welfare of CWE
(X, p). In addition, let £ = [log(2k)], and for every integer
t€{l,...,0+1} define o™ = 2713 Let p™® and X*

be the vectors with X{’m defined as in Claim [1]
o) o)
PP =+ oo™, XY =(x7, . X7,

Due to Claim [ for every ¢t € {1,...,£+ 1}, (X®,p®) is
a CWE. For every CWE (X®, p®) we let SW;, REV; and
Wt denote its social welfare, revenue, and the set of indices
of allocated bundles, respectively. Note that for every ¢,
Wit1 € Wi, Finally, let REV( denote the revenue of CWE
(X, p). The following is the key lemma in the proof of the
theorem.

LemMA 4. 3 t€{0,1,...,0+1} st REV, > 200,

PROOF. We first observe that

k
SWy = ZUZ(XZ) = Z 'UZ(XZ) + Z ’UZ(XZ)
i=1 i€EWy igWn
SWo
< Do X+ Z (P + 55)
€W g Wy
< SW; +REV + k- S;’ZO

= SW; + REV, + S\;Vo‘

The first inequality follows from the fact that for every i ¢
Wi, vi(X;) < pl(.l), and the second inequality follows by
substituting SW; = Ziewl v;(X;) and Zi¢wl pi < REV.

Therefore, SW; > %SWO — REV(. One may assume that
REV, < %SWO7 since otherwise the assertion of the lemma
follows directly. Thus, SW; > %SWO.

We next show that SWey1 = 0. For every i € {1,...,k},
pﬁ”” = pi+2£S;N_kD > pi+SWo > pi+vi(Xs) > vi(X;); thus
We+1 = @ and SW[+1 =0.

Given that SW; > %SWO and SWy41 = 0, there must
exist some t € {1,..., £} such that SW; — SW;1 > SZV—ZO. We
get:

SWoy
44

<SW¢ — SWiqa

= >

1EW\ Wiy

SW.
< > <pi+2t 2k0>

1EW\ Wy

SWo
< ;2
_Z<p+2 2k>

i€EWy

<2 3 (o2 ) = mev,
€Wy

Ul(Xz)

where the second inequality follows from the fact that for
every i € Wi \ Wiy, vi(X;) < p: D We get that REV, >
ng—lo, completing the proof of Lemma[d [

We are now ready to complete the proof of Theorem [5.11
Recall that SWp is within factor 2 of SW(Y). Combining
this with the last lemma, and noting that ¢ = [log(2k)],

where k < n implies that REV; is within factor m

of

SW(Y). To conclude the proof we observe that after the ex-
ecution of Algorithm [2] all the quantities v;(X;), SW¢, REV,
can be easily computed in polynomial time. [

By applying Theorem [B.1] with the initial allocation Y
being the optimal allocation, the following corollary follows.

COROLLARY 2. For every valuation profile v, there exists
a CWE that extracts revenue within a factor 1/o(logn) of the
optimal social welfare.

6. OPEN PROBLEMS

Our results leave many open questions and avenues for
future research.

First, there is a gap between the 2-approximation result
for social welfare and the lower bound of 3/2. We conjecture
that 3/2 is the true bound, but closing this gap seems a
challenging task. The integrality gap for the configuration
LP approaches 2 when the integral solution is a matching,
so this technique cannot be used to improve the gap.

Second, the equilibrium notion studied in this paper does
not require market clearance. An important question is
whether our results extend to the stronger equilibrium no-
tion of CWE with market clearance.

Third, it would be interesting to study how well item-
pricing equilibria, without market clearance, can approxi-
mate social welfare. A priori, it seems intuitive that bundling
should be most helpful when agent valuations exhibit com-
plementarities. However, our negative result for fractionally
sub-additive valuations, from Section [2Z2] shows that item
pricing can be insufficient for achieving a good welfare ap-
proximation even when valuations are complement-free. For
the more restricted class of gross-substitutes valuations, a
WE always exists, and thus optimal welfare can be achieved
in equilibrium. Identifying the family of valuations for which
a constant fraction of the optimal SW can be achieved via
item-pricing equilibrium would be an interesting research
direction. This question seems especially interesting for the
class of submodular valuations.

Fourth, our algorithm receives an initial allocation as in-
put and returns a CWE allocation that performs well with
respect to the given allocation. This result leaves open the
design of a natural process that arrives at a good approx-
imation without receiving an initial allocation. The severe
NP-hardness results for various valuation families preclude
the possibility of a poly-time process that would work for
arbitrary inputs, but some families of valuations (e.g. sub-
modular) seem particularly appealing in this context.

Fifth, our algorithms make use of demand queries, but of
a special form: we allow the seller to define a partition of the
objects into bundles, and can then ask demand queries with
respect to the reduced market in which these bundles are
the objects for sale. This interpretation of demand queries
seems natural, since the assumption that agents can deter-
mine their demands is not tied to the particular items for
sale. What is the additional computational power afforded
by this (seemingly stronger) definition of demand queries?

Finally, this paper operates in the full information regime,
where incentive compatibility is not a concern. An interest-
ing question is to what extent our results can be extended
to private-information settings. That is, what is the best so-
cial welfare that can be obtained by an incentive-compatible
CWE mechanism, poly-time or not?
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