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Efficient rounding for the noncommutative

Grothendieck inequality

Assaf Naor ∗ Oded Regev † Thomas Vidick ‡

Abstract

The classical Grothendieck inequality has applications to the design of approximation al-
gorithms for NP-hard optimization problems. We show that an algorithmic interpretation may
also be given for a noncommutative generalization of the Grothendieck inequality due to Pisier
and Haagerup. Our main result, an efficient rounding procedure for this inequality, leads to a
constant-factor polynomial time approximation algorithm for an optimization problem which
generalizes the Cut Norm problem of Frieze and Kannan, and is shown here to have additional
applications to robust principle component analysis and the orthogonal Procrustes problem.
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1 Introduction

In what follows, the standard scalar product on Cn is denoted 〈·, ·〉, i.e, 〈x, y〉 = ∑
n
i=1 xiyi for all

x, y ∈ Cn. We always think of Rn as canonically embedded in Cn; in particular the restriction of
〈·, ·〉 to Rn is the standard scalar product on Rn. Given a set S, the space Mn(S) stands for all
the matrices M = (Mij)

n
i,j=1 with Mij ∈ S for all i, j ∈ {1, . . . , n}. Thus, Mn(Mn(R)) is naturally

identified with the n4-dimensional space of all 4-tensors M = (Mijkl)
n
i,j,k,l=1 with Mijkl ∈ R for all

i, j, k, l ∈ {1, . . . , n}. The set of all n × n orthogonal matrices is denoted On ⊆ Mn(R), and the set
of all n × n unitary matrices is denoted Un ⊆ Mn(C).

Given M = (Mijkl) ∈ Mn(Mn(R)) denote

Opt
R
(M)

def
= sup

U,V∈On

n

∑
i,j,k,l=1

MijklUijVkl .

and similarly, for M = (Mijkl) ∈ Mn(Mn(C)) denote

Opt
C
(M)

def
= sup

U,V∈Un

∣

∣

∣

n

∑
i,j,k,l=1

MijklUijVkl

∣

∣

∣
.

Theorem 1. There exists a polynomial time algorithm that takes as input M ∈ Mn(Mn(R)) and outputs
U, V ∈ On such that

Opt
R
(M) 6 O(1)

n

∑
i,j,k,l=1

MijklUijVkl.

Respectively, there exists a polynomial time algorithm that takes as input M ∈ Mn(Mn(C)) and outputs
U, V ∈ Un such that

Opt
C
(M) 6 O(1)

∣

∣

∣

n

∑
i,j,k,l=1

MijklUijVkl

∣

∣

∣
.

We will explain the ideas that go into the proof of Theorem 1 later, and it suffices to say at this
juncture that our algorithm is based on a rounding procedure for semidefinite programs that is
markedly different from rounding algorithms that have been previously used in the optimization
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literature, and as such it indicates the availability of techniques that have thus far remained un-
tapped for the purpose of algorithm design. Prior to explaining the proof of Theorem 1 we list
below some of its applications as an indication of its usefulness.

Remark 2. The implied constants in the O(1) terms of Theorem 1 can be taken to be any number
greater than 2

√
2 in the real case, and any number greater than 2 in the complex case. There is

no reason to believe that the factor 2
√

2 in the real case is optimal, but the factor 2 in the complex
case is sharp in a certain natural sense that will become clear later. The main content of Theorem 1
is the availability of a constant factor algorithm rather than the value of the constant itself. In
particular, the novelty of the applications to combinatorial optimization that are described below
is the mere existence of a constant-factor approximation algorithm.

1.1 Applications of Theorem 1

We now describe some examples demonstrating the usefulness of Theorem 1. The first example
does not lead to a new result, and is meant to put Theorem 1 in context. All the other examples
lead to new algorithmic results. Many of the applications below follow from a more versatile
reformulation of Theorem 1 that is presented in Section 5 (see Proposition 20).

1.1.1 The Grothendieck problem

The Grothendieck optimization problem takes as input a matrix A ∈ Mn(R) and aims to efficiently
compute (or estimate) the quantity

max
ε,δ∈{−1,1}n

n

∑
i,j=1

Aijε iδj. (1)

This problem falls into the framework of Theorem 1 by considering the 4-tensor M ∈ Mn(Mn(R))
given by Miijj = Aij and Mijkl = 0 if either i 6= j or k 6= l. Indeed,

Opt
R
(M) = max

U,V∈On

n

∑
i,j=1

AijUiiVjj = max
x,y∈[−1,1]n

n

∑
i,j=1

Aijxiyj = max
ε,δ∈{−1,1}n

n

∑
i,j=1

Aijε iδj.

A constant-factor polynomial time approximation algorithm for the Grothendieck problem
was designed in [AN04], where it was also shown that it is NP-hard to approximate this problem
within a factor less that 1 + ε0 for some ε0 ∈ (0, 1). A simple transformation [AN04] relates
the Grothendieck problem to the Frieze-Kannan Cut Norm problem [FK99] (this transformation
can be made to have no loss in the approximation guarantee [KN12, Sec. 2.1]), and as such the
constant-factor approximation algorithm for the Grothendieck problem has found a variety of
applications in combinatorial optimization; see the survey [KN12] for much more on this topic.
In another direction, based on important work of Tsirelson [Tsi87], the Grothendieck problem has
found applications to quantum information theory [CHTW04]. Since the problem of computing
Opt

R
(·) contains the Grothendieck problem as a special case, Theorem 1 encompasses all of these

applications, albeit with the approximation factor being a larger constant.
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1.1.2 Robust PCA

The input to the classical principal component analysis (PCA) problem is K, n ∈ N a set of points
a1, . . . , aN ∈ Rn. The goal is to find a K-dimensional subspace maximizing the sum of the squared
ℓ2 norms of the projections of the ai on the subspace. Equivalently, the problem is to find the
maximizing vectors in

max
y1,...,yK∈Rn

〈yi,yj〉=δij

N

∑
i=1

K

∑
j=1

|〈ai, yj〉|2, (2)

where here, and in what follows, δij is the Kronecker delta. This question has a closed-form solu-
tion in terms of the singular values of the N × n matrix whose i-th row contains the coefficients of
the point ai.

The fact that the quantity appearing in (2) is the maximum of the sum of the squared norms of
the projected points makes it somewhat non-robust to outliers, in the sense that a single long vec-
tor can have a large effect on the maximum. Several more robust versions of PCA were suggested
in the literature. One variant, known as “R1-PCA,” is due to Ding, Zhou, He, and Zha [DZHZ06],
and aims to maximize the sum of the Euclidean norms of the projected points, namely,

max
y1,...,yK∈Rn

〈yi,yj〉=δij

N

∑
i=1

( K

∑
j=1

|〈ai, yj〉|2
)1/2

. (3)

We are not aware of any prior efficient algorithm for this problem that achieves a guaranteed
approximation factor. Another robust variant of PCA, known as “L1-PCA”, was suggested by
Kwak [Kwa08], and further studied by McCoy and Tropp [MT12] (see Section 2.7 in [MT12] in
particular). Here the goal is to maximize the sum of the ℓ1 norms of the projected points, namely,

max
y1,...,yK∈Rn

〈yi,yj〉=δij

N

∑
i=1

K

∑
j=1

|〈ai, yj〉|. (4)

In [MT12] a constant factor approximation algorithm for the above problem is obtained for K = 1
based on [AN04], and for general K an approximation algorithm with an approximation guarantee
of O(log n) is obtained based on prior work by So [So11].

In Section 5.1 we show that both of the above robust versions of PCA can be cast as special
cases of Theorem 1, thus yielding constant-factor approximation algorithms for both problems
and all K ∈ {1, . . . , n}.

1.1.3 The orthogonal Procrustes problem

Let n, d > 1 and K > 2 be integers. Suppose that S1, . . . , SK ⊆ Rd are n-point subsets of Rd. The
goal of the generalized orthogonal Procrustes problem is to rotate each of the Sk separately so as to
best align them. Formally, write Sk = {xk

1, xk
2, . . . , xk

n}. The goal is to find K orthogonal matrices
U1, . . . , UK ∈ Od that maximize the quantity

n

∑
i=1

∥

∥

∥

K

∑
k=1

Ukxk
i

∥

∥

∥

2

2
. (5)
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If one focuses on a single summand appearing in (5), say ∑
K
k=1 Ukxk

1, then it is clear that in order
to maximize its length one would want to rotate each of the xk

1 so that they would all point in the
same direction, i.e., they would all be positive multiples of the same vector. The above problem
aims to achieve the best possible such alignment (in aggregate) for multiple summands of this
type. We note that by expanding the squares one sees that U1, . . . , UK ∈ Od maximize the quantity
appearing in (5) if and only if they minimize the quantity ∑

n
i=1 ∑

K
k,l=1 ‖Ukxk

i − Ulx
l
i‖2

2.
The term “generalized” was used above because the orthogonal Procrustes problem refers to the

case K = 2, which has a closed-form solution. The name “Procustes” is a (macabre) reference to
Greek mythology (see http://en.wikipedia.org/wiki/Procrustes).

The generalized orthogonal Procrustes problem has been extensively studied since the 1970s,
initially in the psychometric literature (see, e.g., [CC71, Gow75, TB77]), and more recent applica-
tions of it are to areas such as image and shape analysis, market research and biometric identifica-
tion; see the books [GD04, DM98], the lecture notes [SG02], and [MP07] for much more informa-
tion on this topic.

The generalized orthogonal Procrustes problem is known to be intractable, and it has been in-
vestigated algorithmically in, e.g., [TB77, Bou82, SB88]. A rigorous analysis of a polynomial-time
approximation algorithm for this problem appears in the work of Nemirovski [Nem07], where
the generalized orthogonal Procrustes problem is treated as an important special case of a more
general family of problems called “quadratic optimization under orthogonality constraints”, for
which he obtains a O( 3

√
n + d+ log K) approximation algorithm. This was subsequently improved

by So [So11] to O(log(n + d + K)). In Section 5.2 we use Theorem 1 to improve the approximation
guarantee for the generalized orthogonal Procrustes problem as defined above to a constant ap-
proximation factor. See also Section 5.2 for a more complete discussion of variants of this problem
considered in [Nem07, So11] and how they compare to our work.

1.1.4 A Frieze-Kannan decomposition for 4-tensors

In [FK99] Frieze and Kannan designed an algorithm which decomposes every (appropriately de-
fined) “dense” matrix into a sum of a few “cut matrices” plus an error matrix that has small
cut-norm. We refer to [FK99] and also Section 2.1.2 in the survey [KN12] for a precise formulation
of this statement, as well as its extension, due to [AN04], to an algorithm that allows sub-constant
errors. In Section 5.3 we apply Theorem 1 to prove the following result, which can be viewed as
a noncommutative variant of the Frieze-Kannan decomposition. For the purpose of the statement
below it is convenient to identify the space Mn(Mn(C)) of all 4-tensors with Mn(C) ⊗ Mn(C).
Also, for M ∈ Mn(C)⊗ Mn(C) we denote from now on its Frobenius (Hilbert-Schmidt) norm by

‖M‖2
def
=

√

√

√

√

n

∑
i,j,k,l=1

|Mijkl |2.

Theorem 3. There exists a universal constant c ∈ (0, ∞) with the following property. Suppose that
M ∈ Mn(C)⊗ Mn(C) and 0 < ε 6 1/2, and let

T
def
=

⌈

cn2‖M‖2
2

ε2Opt
C
(M)2

⌉

. (6)
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One can compute in time poly(n, 1/ε) a decomposition

M =
T

∑
t=1

αt(At ⊗ Bt) + E, (7)

such that At, Bt ∈ Un, the coefficients αt ∈ C satisfy |αt| = O(‖M‖2/n), and Opt
C
(E) 6 εOpt

C
(M).

Moreover, if M ∈ Mn(R)⊗ Mn(R) then one can replace Opt
C
(M) in (6) by Opt

R
(M), take the coeffi-

cients αt to be real, At, Bt ∈ On and E such that Opt
R
(E) 6 εOpt

R
(M).

Theorem 3 contains as a special case its commutative counterpart, as studied in [FK99, AN04].
Here we are given A ∈ Mn(R) with |aij | 6 1 for all i, j ∈ {1, . . . , n}, and we aim for an error εn2.
Define Miijj = aij and Mijkl = 0 if i 6= j or k 6= l. Then ‖M‖2 6 n. An application of Theorem 3 (in

the real case) with ε replaced by εn2/Opt
R
(M) yields a decomposition A = ∑

T
t=1 αt(atb

∗
t ) + E with

at, bt ∈ [−1, 1]n and E ∈ Mn(R) satisfying supε,δ∈{−1,1} ∑
n
ij=1 Eijε iδj 6 εn2. Moreover, the number

of terms is T = O(1/ε2).
Theorem 3 is proved in Section 5.3 via an iterative application of Theorem 1, following the

“energy decrement” strategy as formulated by Lovász and Szegedy [LS07] in the context of general
weak regularity lemmas. Other than being a structural statement of interest in its own right, we
show in Section 5.3 that Theorem 3 can be used to enhance the constant factor approximation
of Theorem 1 to a PTAS for computing Opt

C
(M) when Opt

C
(M) = Ω(n‖M‖2). Specifically, if

Opt
C
(M) > κn‖M‖2 then one can compute a (1 + ε)-factor approximation to Opt

C
(M) in time

2poly(1/(κε))poly(n). This is reminiscent of the Frieze-Kannan algorithmic framework [FK99] for
dense graph and matrix problems.

1.1.5 Quantum XOR games

As we already noted, the Grothendieck problem (recall Section 1.1.1) also has consequences in
quantum information theory [CHTW04], and more specifically to bounding the power of entan-
glement in so-called “XOR games”, which are two-player one-round games in which the play-
ers each answer with a bit and the referee bases her decision on the XOR of the two bits. As
will be explained in detail in Section 1.2 below, the literature on the Grothendieck problem re-
lies on a classical inequality of Grothendieck [Gro53], while our work relies on a more recent yet
by now classical noncommutative Grothendieck inequality of Pisier [Pis78] (and its sharp form
due to Haagerup [Haa85]). Even more recently, the Grothendieck inequality has been general-
ized to another setting, that of completely bounded linear maps defined on operator spaces [PS02,
HM08]. While we do not discuss the operator space Grothendieck inequality here, we remark
that in [RV12a] the operator space Grothendieck inequality is proved by reducing it to the Pisier-
Haagerup noncommutative Grothendieck inequality. Without going into details, we note that this
reduction is also algorithmic. Combined with our results, it leads to an algorithmic proof of the
operator space Grothendieck inequality, together with an accompanying rounding procedure.

In the preprint [RV12b] written by the last two named authors, the noncommutative and op-
erator space Grothendieck inequalities are shown to have consequences in a setting that general-
izes that of classical XOR games, called “quantum XOR games”: in such games, the questions to
the players may be quantum states (and the answers are still a single classical bit). The results
in [RV12b] derive an efficient factor-2 approximation algorithm for the maximum success prob-
ability of players in such a game, in three settings: players sharing an arbitrary quantum state,
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players sharing a maximally entangled state, and players not sharing any entanglement. Theo-
rem 1 implies that in all three cases a good strategy for the players, achieving a success that is a
factor 2 from optimal, may be found in polynomial time. These matters are taken up in [RV12b]
and will not be discussed further here.

1.2 The noncommutative Grothendieck inequality

The natural semidefinite relaxation of (1) is

sup
d∈N

sup
x,y∈(Sd−1)n

n

∑
i,j=1

Aij〈xi, yj〉, (8)

where Sd−1 is the unit sphere of Rd. Since, being a semidefinite program (SDP), the quantity
appearing in (8) can be computed in polynomial time with arbitrarily good precision (see [GLS93]),
the fact that the Grothendieck optimization problem admits a constant-factor polynomial time
approximation algorithm follows from the following inequality, which is a classical inequality of
Grothendieck of major importance to several mathematical disciplines (see Pisier’s survey [Pis12]
and the references therein for much more on this topic; the formulation of the inequality as below
is due to Lindenstrauss and Pełczyński [LP68]).

sup
d∈N

sup
x,y∈(Sd−1)n

n

∑
i,j=1

Aij〈xi, yj〉 6 KG sup
ε,δ∈{−1,1}n

n

∑
i,j=1

Aijε iδj. (9)

Here KG ∈ (0, ∞), which is understood to be the infimum over those constants for which (9) holds
true for all n ∈ N and all A ∈ Mn(R), is a universal constant known as the (real) Grothendieck
constant. Its exact value remains unknown, the best available bounds [Ree91, BMMN11] being
1.676 < KG < 1.783. In order to actually find an assignment ε, δ to (1) that is within a constant
factor of the optimum one needs to argue that a proof of (9) can be turned into an efficient rounding
algorithm; this is done in [AN04].

If one wishes to mimic the above algorithmic success of the Grothendieck inequality in the
context of efficient computation of Opt

R
(·), the following natural strategy presents itself: one

should replace real entries of matrices by vectors in ℓ2, i.e., consider elements of Mn(ℓ2), and
replace the orthogonality constraints underlying the inclusion U ∈ On, namely,

∀ i, j ∈ {1, . . . , n},
n

∑
k=1

UikUjk =
n

∑
k=1

UkiUkj = δij,

by the corresponding constraints using scalar product. Specifically, given an n × n vector-valued
matrix X ∈ Mn(ℓ2) define two real matrices XX∗, X∗X ∈ Mn(R) by

∀ i, j ∈ {1, . . . , n}, (XX∗)ij
def
=

n

∑
k=1

〈Xik, Xjk〉, and (X∗X)ij
def
=

n

∑
k=1

〈Xki, Xkj〉, (10)

and let the set of d-dimensional vector-valued orthogonal matrices be given by

On(R
d)

def
=
{

X ∈ Mn(R
d) : XX∗ = X∗X = I

}

. (11)

7



One then considers the following quantity associated to every M ∈ Mn(Mn(R)),

SDPR(M)
def
= sup

d∈N

sup
X,Y∈On(Rd)

n

∑
i,j,k,l=1

Mijkl

〈

Xij, Ykl

〉

. (12)

Since the constraints that underlie the inclusion X, Y ∈ On(Rd) are linear equalities in the pairwise
scalar products of the entries of X and Y, the quantity SDPR(M) is a semidefinite program and can
therefore be computed in polynomial time with arbitrarily good precision. One would therefore
aim to prove the following noncommutative variant of the Grothendieck inequality (9),

∀ n ∈ N, ∀ M ∈ Mn(Mn(R)), SDPR(M) 6 O(1) · Opt
R
(M). (13)

The term “noncommutative” refers here to the fact that Opt
R
(M) is an optimization problem

over the noncommutative group On, while the classical Grothendieck inequality addresses an
optimization problem over the commutative group {−1, 1}n . In the same vein, noncommutativity
is manifested by the fact that the classical Grothendieck inequality corresponds to the special case
of “diagonal” 4-tensors M ∈ Mn(Mn(R)), i.e., those that satisfy Mijkl = 0 whenever i 6= j or k 6= l.

Grothendieck conjectured [Gro53] the validity of (13) in 1953, a conjecture that remained open
until its 1978 affirmative solution by Pisier [Pis78]. A simpler, yet still highly nontrivial proof of
the noncommutative Grothendieck inequality (13) was obtained by Kaijser [Kai83]. In Section 4
we design a rounding algorithm corresponding to (13) based on Kaijser’s approach. This settles
the case of real 4-tensors of Theorem 1, albeit with worse approximation guarantee than the one
claimed in Remark 2. The algorithm modeled on Kaijser’s proof is interesting in its own right, and
seems to be versatile and applicable to other problems, such as possible non-bipartite extensions
of the noncommutative Grothendieck inequality in the spirit of [AMMN06]; we shall not pursue
this direction here.

A better approximation guarantee, and arguably an even more striking rounding algorithm,
arises from the work of Haagerup [Haa85] on the complex version of (13). In Section 3 we show
how the real case of Theorem 1 follows formally from our results on its complex counterpart, so
from now on we focus our attention on the complex case.

1.2.1 The complex case

In what follows we let Sd−1
C

denote the unit sphere of Cd (thus S0
C

can be identified with the unit
circle S1 ⊆ R2). The classical complex Grothendieck inequality [Gro53, LP68] asserts that there
exists K ∈ (0, ∞) such that

∀ n ∈ N, ∀ A ∈ Mn(C), sup
x,y∈(S2n−1

C
)n

∣

∣

∣

n

∑
i,j=1

Aij〈xi, yj〉
∣

∣

∣
6 O(1) sup

α,β∈(S0
C
)n

∣

∣

∣

n

∑
i,j=1

Aijαiβ j

∣

∣

∣
. (14)

Let KC

G denote the infimum over those K ∈ (0, ∞) for which (14) holds true. The exact value of KC

G
remains unknown, the best available bounds being 1.338 < KC

G < 1.4049 (the left inequality is due
to unpublished work of Davie, and the right one is due to Haagerup [Haa87]).

For M ∈ Mn(Mn(C)) we define

SDPC(M)
def
= sup

d∈N

sup
X,Y∈Un(Cd)

∣

∣

∣

n

∑
i,j,k,l=1

Mijkl

〈

Xij, Ykl

〉

∣

∣

∣
, (15)
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where analogously to (11) we set

Un(C
d)

def
=
{

X ∈ Mn(C
d) : XX∗ = X∗X = I

}

.

Here for X ∈ Mn(Cd) the complex matrices XX∗, X∗X ∈ Mn(C) are defined exactly as in (10),
with the scalar product being the complex scalar product. Haagerup proved [Haa85] that

∀ n ∈ N, ∀ M ∈ Mn(Mn(C)), SDPC(M) 6 2 · Opt
C
(M). (16)

Our main algorithm is an efficient rounding scheme corresponding to inequality (16). The constant
2 in (16) is sharp, as shown in [HI95] (see also [Pis12, Sec. 12]).

We note that the noncommutative Grothendieck inequality, as it usually appears in the lit-
erature, involves a slightly more relaxed semidefinite program. In order to describe it, we first
remark that instead of maximizing over X, Y ∈ Un(Cd) in (15) we could equivalently maximize
over X, Y ∈ Mn(Cd) satisfying XX∗, X∗X, YY∗, Y∗Y 6 I, which is the same as the requirement
‖XX∗‖, ‖X∗X‖, ‖YY∗‖, ‖Y∗Y‖ 6 1, where here and in what follows ‖ · ‖ denotes the operator
norm of matrices. This fact is made formal in Lemma 6 below. By relaxing the constraints to
‖XX∗‖+ ‖X∗X‖ 6 2 and ‖YY∗‖ + ‖Y∗Y‖ 6 2, we obtain the following quantity, which can be
shown to still be a semidefinite program.

‖M‖nc
def
= sup

d∈N

sup
X,Y∈Mn(Cd)

‖XX∗‖+‖X∗X‖62
‖YY∗‖+‖Y∗Y‖62

∣

∣

∣

n

∑
i,j,k,l=1

Mijkl

〈

Xij, Ykl

〉

∣

∣

∣
. (17)

Clearly ‖M‖nc > SDPC(M) for all M ∈ Mn(Mn(C)). Haagerup proved [Haa85] that the following
stronger inequality holds true for all n ∈ N and M ∈ Mn(Mn(C)).

‖M‖nc 6 2 · Opt
C
(M). (18)

As our main focus is algorithmic, in the following discussion we will establish a rounding algo-
rithm for the tightest relaxation (16). In Section 2.3 we show that the same rounding procedure
can be used to obtain an algorithmic analogue of (18) as well.

1.2.2 The rounding algorithm

Our main algorithm is an efficient rounding scheme corresponding to (16). In order to describe it,
we first introduce the following notation. Let ϕ : R → R+ be given by

ϕ(t)
def
=

1

2
sech

(π

2
t
)

=
1

eπt/2 + e−πt/2
. (19)

One computes that
∫

R
ϕ(t)dt = 1, so ϕ is a density of a probability measure µ on R, known as the

hyperbolic secant distribution. By [JKB95, Sec. 23.11] we have

∀ a ∈ (0, ∞),
∫

R

ait ϕ(t)dt =
2a

1 + a2
. (20)

It is possible to efficiently sample from µ using standard techniques; see, e.g., [Dev86, Ch. IX.7].
In what follows, given X ∈ Mn(Cd) and z ∈ Cd we denote by 〈X, z〉 ∈ Mn(C) the matrix

whose entries are 〈X, z〉jk = 〈Xjk, z〉.

9



Rounding procedure

1. Let X, Y ∈ Mn(Cd) be given as input. Choose z ∈ {1,−1, i,−i}d uniformly at random, and
sample t ∈ R according to the hyperbolic secant distribution µ.

2. Set Xz
def
= 1√

2
〈X, z〉 ∈ Mn(C) and Yz

def
= 1√

2
〈Y, z〉 ∈ Mn(C).

3. Output the pair of matrices (A, B) = (A(z, t), B(z, t))
def
= (Uz|Xz|it, Vz|Yz|−it) ∈ Un × Un

where Xz = Uz|Xz| and Yz = Vz|Yz| are the polar decompositions of Xz and Yz, respectively.

Figure 1: The rounding algorithm takes as input a pair of vector-valued matrices X, Y ∈ Mn(Cd).
It outputs two matrices A, B ∈ Un(C).

Theorem 4. Fix n, d ∈ N and ε ∈ (0, 1). Suppose that M ∈ Mn(Mn(C)) and that X, Y ∈ Un(Cd) are
such that

∣

∣

∣

n

∑
i,j,k,l=1

Mijkl〈Xij, Ykl〉
∣

∣

∣
> (1 − ε)SDPC(M), (21)

where SDPC(M) is given in (15). Then the rounding procedure described in Figure 1 outputs a pair of
matrices A, B ∈ Un such that

E

[ ∣

∣

∣

n

∑
i,j,k,l=1

Mijkl AijBkl

∣

∣

∣

]

>

(1

2
− ε
)

SDPC(M). (22)

Moreover, rounding can be performed in time polynomial in n and log(1/ε), and can be derandomized in
time poly(n, 1/ε).

While the rounding procedure of Figure 1 and the proof of Theorem 4 (contained in Section 2
below) appear to be different from Haagerup’s original proof of (18) in [Haa85], we derived them
using Haagerup’s ideas. One source of difference arises from changes that we introduced in order
to work with the quantity SDPC(M), while Haagerup’s argument treats the quantity ‖M‖nc. A
second source of difference is that Haagerup’s proof of (18) is rather indirect and nonconstructive,
while it is crucial to the algorithmic applications that were already mentioned in Section 1.1 for
us to formulate a polynomial-time rounding procedure. Specifically, Haagerup establishes the
dual formulation of (18), through a repeated use of duality, and he uses a bootstrapping argument
that relies on nonconstructive tools from complex analysis. The third step in Figure 1 originates
from Haagerup’s complex-analytic considerations. Readers who are accustomed to semidefinite
rounding techniques will immediately notice that this step is unusual; we give intuition for it in
Section 1.2.3 below, focusing for simplicity on applying the rounding procedure to vectors rather
than matrices (i.e., the more familiar setting of the classical Grothendieck inequality).

1.2.3 An intuitive description of the rounding procedure in the commutative case

Consider the effect of the rounding procedure in the commutative case, i.e., when X, Y ∈ Mn(Cd)
are diagonal matrices. Let the diagonals of X, Y be x, y ∈ (Cd)n, respectively. The first step

10



consists in performing a random projection: for j ∈ {1, . . . , n} let αj =
〈

xj, z
〉

/
√

2 ∈ C and

β j =
〈

yj, z
〉

/
√

2 ∈ C, where z is chosen uniformly at random from {1,−1, i,−i}n (alternatively,
with minor modifications to the proof one may choose i.i.d. zj uniformly from the unit circle, as
was done by Haagerup [Haa85], or use standard complex Gaussians). This step results in se-
quences of complex numbers whose pairwise products αkβ j, in expectation, exactly reproduce the
pairwise scalar products 〈xk, yj〉. However, in general the resulting complex numbers αk and β j

may have modulus larger than 1. Extending the “sign” rounding performed in, say, the Goemans-
Williamson algorithm for MAXCUT [GW95] to the complex domain, one could then round each
αk and β j independently by simply replacing them by their respective complex phase.

The procedure that we consider differs from this standard practice by taking into account po-
tential information contained in the modulus of the random complex numbers αk, β j. Writing in

polar coordinates αk = rkeiθk and β j = sje
iφj we sample a real t according to a specific distribution

(the hyperbolic secant distribution µ), and round each αk and each β j to

ak
def
= ei(θk+t log rk) ∈ S0

C
, and bj

def
= ei(φj−t log s j) ∈ S0

C
,

respectively. Observe that this step performs a correlated rounding: the parameter t is the same for
all j, k ∈ {1, . . . , n}.

The proof presented in [Haa85] uses the maximum modulus principle to show the existence of
a real t for which ak, bj as defined above provide a good assignment. Intuition for the existence
of such a good t can be given as follows. Varying t along the real line corresponds to rotating the
phases of the complex numbers αj, βk at a speed proportional to the logarithm of their modulus:
elements with very small modulus vary very fast, those with modulus 1 are left unchanged, and
elements with relatively large modulus are again varied at (logarithmically) increasing speeds.
This means that the rounding procedure takes into account the fact that an element with modu-
lus away from 1 is a “miss”: that particular element’s phase is probably irrelevant, and should
be changed. However, elements with modulus close to 1 are “good”: their phase can be kept
essentially unchanged.

We identify a specific distribution µ such that a random t distributed according to µ is good, in
expectation. This results in a variation on the usual “sign” rounding technique: instead of directly
keeping the phases obtained in the initial step of random projection, they are synchronously ro-
tated for a random time t, at speeds depending on the associated moduli, resulting in a provably
good pair of sequences ak, bj of complex numbers with modulus 1.

Roadmap: In Section 2 we prove Theorem 4 both as stated in Section 1.2.2 and in a form based
on (18). The real case as well as a closely related Hermitian case are treated next, first in Section 3
as a corollary of Theorem 4, and then using an alternative direct rounding procedure in Section 4.
Section 5 presents the applications that were outlined in Section 1.1.

2 Proof of Theorem 4

In this section we prove Theorem 4. The rounding procedure described in Figure 1 is analyzed
in Section 2.1, while the derandomized version is presented in Section 2.2. The efficiency of the
procedure is clear; we refer to Section 2.2 for a discussion on how to discretize the choice of t. In
Section 2.3 we show how the analysis can be modified to the case of ‖M‖nc and (18).

11



In what follows, it will be convenient to use the following notation. Given M ∈ Mn(Mn(C))
and X, Y ∈ Mn(Cd), define

M(X, Y)
def
=

n

∑
i,j,k,l=1

Mijkl

〈

Xij, Ykl

〉

∈ C. (23)

Thus M(·, ·) is a sesquilinear form on Mn(Cd) × Mn(Cd), i.e., M(αX, βY) = αβM(X, Y) for all
X, Y ∈ Mn(Cd) and α, β ∈ C. Observe that if A, B ∈ Mn(C) then

M(A, B) =
n

∑
i,j,k,l=1

Mijkl AijBkl =
n

∑
i,j,k,l=1

Mijkl

(

A ⊗ B
)

(ij),(kl)
. (24)

2.1 Analysis of the rounding procedure

Proof of (22). Let X, Y ∈ Un(Cd) be vector-valued matrices satisfying (21). Let z ∈ {1,−1, i,−i}d

be chosen uniformly at random, and

Xz
def
=

1√
2
〈X, z〉 and Yz

def
=

1√
2
〈Y, z〉

be random variables taking values in Mn(C) defined as in the second step of the rounding proce-
dure (see Figure 1). Then,

Ez

[

M(Xz, Yz)
]

=
1

2
Ez

[ d

∑
r,s=1

zrzs

n

∑
i,j,k,l=1

Mijkl(Xij)r(Ykl)s

]

=
1

2
M(X, Y), (25)

where we used the fact that E[zrzs] = δrs for every r, s ∈ {1, . . . , d}.
Observe that (20) implies that

∀ a ∈ (0, ∞), Et[a
it ] = 2a − Et[a

2+it].

Applying this identity to the nonzero singular values of Xz ⊗ Yz, we deduce the matrix equality

Et

(

A ⊗ B
)

= Et

[ (

Uz|Xz|it
)

⊗
(

Vz|Yz|it
) ]

= 2Xz ⊗ Yz − Et

[ (

Uz|Xz|2+it
)

⊗
(

Vz|Yz|2+it
) ]

= 2Xz ⊗ Yz − Et

[ (

Uz|Xz|2+it
)

⊗
(

Vz|Yz|2−it
) ]

, (26)

where Uz, Vz ∈ Un are such that Xz = Uz|Xz| and Yz = Vz|Yz| are the polar decompositions of Xz

and Yz, respectively (and therefore the polar decomposition of Yz is Yz = Vz|Yz|), and we recall
that the output of our rounding scheme as described in Figure 1 is A = Uz|Xz|it and B = Vz|Yz|−it.

It follows from (23), (24), (25) and (26) that

Ez,t

[

M(A, B)
]

= M(X, Y)− Ez,t

[

M
(

Uz|Xz|2+it, Vz|Yz|2−it
) ]

. (27)

Our goal from now on is to bound the second, “error” term on the right-hand side of (27). Specif-
ically, the rest of the proof is devoted to showing that for any fixed t ∈ R we have

∣

∣

∣
Ez

[

M
(

Uz|Xz|2+it, Vz|Yz|2−it
) ]

∣

∣

∣
6

1

2
SDPC(M). (28)
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Once established, the estimate (28) completes the proof of the desired expectation bound (22) since

Ez,t

[

|M(A, B)|
]

(27)∧(28)

> M(X, Y)− 1

2
SDPC(M)

(21)

>

(

1

2
− ε

)

SDPC(M).

So, for the rest of the proof, fix some t ∈ R. As a first step towards (28) we state the following
claim.

Claim 5. Let W ∈ Mn(Cd) be a vector-valued matrix, and for every r ∈ {1, . . . , d} define Wr ∈ Mn(C) by
(Wr)ij = (Wij)r. Let z ∈ {1,−1, i,−i}d be chosen uniformly at random. Writing Wz = 〈W, z〉 ∈ Mn(C),
we have

Ez

[

(WzW∗
z )

2
]

= (WW∗)2 +
d

∑
r=1

Wr(W
∗W − W∗

r Wr)W
∗
r , (29)

Ez

[

(W∗
z Wz)

2
]

= (W∗W)2 +
d

∑
r=1

W∗
r (WW∗ − WrW

∗
r )Wr. (30)

Proof. By definition Wz = ∑
d
r=1 zrWr, and recalling (10) we have WW∗ = ∑

d
r=1 WrW

∗
r and W∗W =

∑
d
r=1 W∗

r Wr . Consequently,

Ez

[

(WzW∗
z )

2
]

= Ez

[ d

∑
p,q,r,s=1

zpzqzrzsWpW∗
q WrW

∗
s

]

=
d

∑
p=1

WpW∗
p WpW∗

p + ∑
p,q∈{1,...,d}

p 6=q

(

WpW∗
p WqW∗

q + WpW∗
q WqW∗

p

)

=
d

∑
p,q=1

WpW∗
p WqW∗

q +
d

∑
p,q=1

WpW∗
q WqW∗

p −
d

∑
p=1

WpW∗
p WpW∗

p

=
( d

∑
p=1

WpW∗
p

)2
+

d

∑
p=1

Wp

( d

∑
q=1

W∗
q Wq

)

W∗
p −

d

∑
p=1

WpW∗
p WpW∗

p ,

proving (29). A similar calculation yields (30).

Now, for every t ∈ R define two vector-valued matrices

F(t), G(t) ∈ Mn

(

C
{1,−1,i,−i}d

)

by setting for every j, k ∈ {1, . . . , n} and z ∈ {1,−1, i,−i}d ,

(F(t)jk)z
def
=

1

2d

(

Uz|Xz|2+it
)

jk
and (G(t)jk)z

def
=

1

2d

(

Vz|Yz|2−it
)

jk
. (31)

Thus,

M(F(t), G(t)) =
1

4d ∑
z∈{1,−1,i,−i}d

M
(

Uz|Xz|2+it, Vz|Yz|2−it
)

= Ez

[

M
(

Uz|Xz|2+it, Vz|Yz|2−it
) ]

. (32)
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Moreover, recalling that Xz = Uz|Xz| is the polar decomposition of Xz, we have

F(t)F(t)∗ =
1

4d ∑
z∈{1,−1,i,−i}d

Uz|Xz|4U∗
z = Ez

[

Uz|Xz|4U∗
z

]

= Ez

[

(XzX∗
z )

2
]

. (33)

Similarly F(t)∗F(t) = Ez

[

(X∗
z Xz)

2
]

, so that an application of Claim 5 with W = 1√
2
X yields, using

XX∗ = X∗X = I since X ∈ Un(Cd),

F(t)F(t)∗ +
1

4

d

∑
r=1

XrX∗
r XrX∗

r = F(t)∗F(t) +
1

4

d

∑
r=1

X∗
r XrX∗

r Xr =
1

2
I. (34)

Analogously,

G(t)G(t)∗ +
1

4

d

∑
r=1

YrY
∗
r YrY

∗
r = G(t)∗G(t) +

1

4

d

∑
r=1

Y∗
r YrY

∗
r Yr =

1

2
I. (35)

The two equations above imply that F(t), G(t) satisfy the norm bounds

max
{

‖F(t)F(t)∗‖, ‖F(t)∗F(t)‖, ‖G(t)G(t)∗‖, ‖G(t)∗G(t)‖
}

6
1

2
. (36)

As shown in Lemma 6 below, (36) implies that there exists a pair of vector-valued matrices

R(t), S(t) ∈ Un(C
d+2n2

)

such that
M(R(t), S(t)) = M(

√
2F(t),

√
2G(t)). (37)

(This fact can also be derived directly using (34) and (35).) Recalling the definition of SDPC(M)
in (15), it follows that for every t ∈ R,
∣

∣

∣
Ez

[

M
(

Uz|Xz|2+it, Vz|Yz|2−it
) ]

∣

∣

∣

(32)
= |M(F(t), G(t))| (37)

=
1

2
|M(R(t), S(t))| 6 1

2
SDPC(M), (38)

completing the proof of (28).

Lemma 6. Let X, Y ∈ Mn(Cd) be such that max(‖X∗X‖, ‖XX∗‖, ‖Y∗Y‖, ‖YY∗‖) 6 1. Then there exist

R, S ∈ Un(Cd+2n2
) such that for every M ∈ Mn(Mn(C)) we have M(R, S) = M(X, Y). Moreover, R

and S can be computed from X and Y in time poly(n, d).

Proof. Let A = I − XX∗ and B = I − X∗X, and note that A, B > 0 and Tr(A) = Tr(B). Write the
spectral decompositions of A and B as A = ∑

n
i=1 λi(uiu

∗
i ) and B = ∑

n
j=1 µj(vjv

∗
j ) respectively. Set

σ = ∑
n
i=1 λi = ∑

n
j=1 µj, and define

R
def
= X ⊕

(
n
⊕

i,j=1

√

λiµj

σ
(uiv

∗
j )
)

⊕
(

0
Mn(Cn2)

)

∈ Mn(C
d ⊕ C

n2 ⊕ C
n2
).

With this definition we have RR∗ = XX∗ + A = I and R∗R = X∗X + B = I, so R ∈ Un(Cd+2n2
).

Let S ∈ Un(Cd+2n2
) be defined analogously from Y, with the last two blocks of n2 coordinates

permuted. One checks that M(R, S) = M(X, Y), as required.
Finally, A, B, their spectral decomposition, and the resulting R, S can all be computed in time

poly(n, d) from X, Y.
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2.2 Derandomized rounding

Note that we can always assume that X, Y ∈ Un(Cd), where d 6 2n2. We start by slightly changing
the projection step. Define X′

z to be the projection Xz = 1√
2
〈X, z〉, after we replace all singular

values of Xz that are smaller than ε with ε. Then, writing

2X′
z ⊗ Yz

′
= 2Xz ⊗ Yz + 2(X′

z − Xz)⊗Yz + 2X′
z ⊗ (Y′

z − Yz),

we see that in the analogue of (27) the first term is at least M(X, Y) − 4εdSDPC(M). Here we
use that ‖Xz‖, ‖Yz‖ 6 d which follows by the triangle inequality and X, Y ∈ Un(Cd). For the
second term in (27), the previous analysis remains unchanged, provided we prove an analogue
of (36). Using (33) and the analogous equations for F(t)∗F(t), G(t)G(t)∗ and G(t)∗G(t), it will
suffice to bound four expressions such as

∥

∥Ez

[

(X′
z(X

′
z)

∗)2
]
∥

∥. One checks that the modification to

the rounding we did can only increase this by ε4 (even for each z), hence following the previous
analysis we get the bound in (38) with SDPC(M)/2 replaced by (1 + ε4)SDPC(M)/2.

Next, we observe that the coordinates of z need not be independent, and it suffices if they are
chosen from a four-wise independent distribution. As a result, there are only poly(n) possible
values of z and they can be enumerated efficiently. Therefore, we can assume that we have a value
z ∈ {1,−1, i,−i}d for which

∣

∣Et

[

M
(

Uz|X′
z|it, Vz|Y′

z|−it
) ]
∣

∣ >

(1

2
− ε
)

SDPC(M). (39)

Notice that for some universal constant c > 0, with probability at least 1 − ε, a sample from
the hyperbolic secant distribution is at most c log(1/ε) in absolute value. Therefore, denoting the
restriction of the hyperbolic secant distribution to the interval [−c log(1/ε), c log(1/ε)] by µ′, and
using the fact that the expression inside the expectation in (39) is never larger than SDPC(M), for
t′ distributed according to µ′ we have

∣

∣Et′
[

M
(

Uz|X′
z|it

′
, Vz|Y′

z|−it′) ]
∣

∣ >

(1

2
− 2ε

)

SDPC(M).

Moreover, for any t, t′ ∈ R,

∣

∣M
(

Uz|X′
z|it, Vz|Y′

z|−it
)

− M
(

Uz|X′
z|it

′
, Vz|Y′

z|−it′)
∣

∣

=
∣

∣M
(

Uz(|X′
z|it − |X′

z|it
′
), Vz|Y′

z|−it
)

+ M
(

Uz|X′
z|it

′
, Vz(|Y′

z|−it − |Y′
z|−it′)

)
∣

∣

6
∣

∣M
(

Uz(|X′
z|it − |X′

z|it
′
), Vz|Y′

z|−it
)
∣

∣+
∣

∣M
(

Uz|X′
z|it

′
, Vz(|Y′

z|−it − |Y′
z|−it′)

)
∣

∣. (40)

The first absolute value in (40) is at most

SDPC(M) · ‖Uz(|X′
z|it − |X′

z|it
′
)‖ · ‖Vz|Y′

z|−it‖ = SDPC(M) · ‖|X′
z|it − |X′

z|it
′‖

6 SDPC(M) · log(max{‖X′
z‖, ‖(X′

z)
−1‖}) · |t − t′|.

We have ‖X′
z‖ 6 d as explained above, and ‖(X′

z)
−1‖ 6 1/ε by the way our modified rounding

procedure was defined. Similar bounds hold for Y′
z. It therefore suffices to pick t from a grid of

size O(log(1/ε)max(1/ε2, d/ε)).
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2.3 The rounding procedure in the case of (18)

Theorem 4 addressed the performance of the rounding procedure described in Figure 1 with re-
spect to inequality (16). Here we prove that this rounding procedure has the same performance
with respect to the noncommutative Grothendieck inequality (18) as well. This is the content of
the following theorem.

Theorem 7. Fix n, d ∈ N and ε ∈ (0, 1). Suppose that M ∈ Mn(Mn(C)) and that X, Y ∈ Mn(Cd)
satisfy

max {‖XX∗‖+ ‖X∗X‖, ‖YY∗‖+ ‖Y∗Y‖} 6 2, (41)

and
∣

∣

∣

n

∑
i,j,k,l=1

Mijkl〈Xij, Ykl〉
∣

∣

∣
> (1 − ε)‖M‖nc, (42)

where ‖M‖nc was defined in (18). Then the rounding procedure described in Figure 1 outputs a pair of
matrices A, B ∈ Un such that

E

[
∣

∣

∣

n

∑
i,j,k,l=1

Mijkl AijBkl

∣

∣

∣

]

>

(1

2
− ε
)

‖M‖nc. (43)

Proof. We shall explain how to modify the argument presented in Section 2.1, relying on the nota-
tion that was introduced there. All we need to do is to replace (38) by the assertion

∀ t ∈ R, |M(F(t), G(t))| 6 1

2
‖M‖nc. (44)

To this end we use the following corollary of Claim 5, which is a slight variant of [Haa85, Lem. 4.1].

Corollary 8. Let W ∈ Mn(Cd) be a vector-valued matrix and z ∈ {1,−1, i,−i}d chosen uniformly at
random. Writing Wz = 〈W, z〉 ∈ Mn(C), we have

∥

∥Ez

[

(WzW∗
z )

2
]
∥

∥+
∥

∥Ez

[

(W∗
z Wz)

2
]
∥

∥ 6
(

‖WW∗‖+ ‖W∗W‖
)2

. (45)

Proof. Starting from (29) and noting that

∥

∥

∥

d

∑
r=1

Wr(W
∗W − W∗

r Wr)W
∗
r

∥

∥

∥
6 ‖W∗W‖ ·

∥

∥

∥

d

∑
r=1

WrW
∗
r

∥

∥

∥
= ‖W∗W‖ · ‖WW∗‖ ,

we obtain the inequality

∥

∥Ez

[

(WzW∗
z )

2
]∥

∥ 6 ‖WW∗‖2 + ‖W∗W‖ · ‖WW∗‖ . (46)

Similarly, from (30) we get

∥

∥Ez

[

(W∗
z Wz)

2
]∥

∥ 6 ‖W∗W‖2 + ‖WW∗‖ · ‖W∗W‖ . (47)

By summing (46) and (47) one deduces (45).
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Combining (33) with (45) for W = X/
√

2, we have

‖F(t)F(t)∗‖+ ‖F(t)∗F(t)‖ 6
1

4
(‖XX∗‖+ ‖X∗X‖)2

(41)

6 1. (48)

Analogously,

‖G(t)G(t)∗‖+ ‖G(t)∗G(t)‖ 6
1

4
(‖YY∗‖+ ‖Y∗Y‖)2

6 1. (49)

Recalling the definition of ‖M‖nc, it follows from (48) and (49) that for every t ∈ R,

∣

∣

∣
Ez

[

M
(

Uz|Xz|2+it, Vz|Yz|2−it
) ]

∣

∣

∣

(32)
= |M(F(t), G(t))| 6 1

2
‖M‖nc. (50)

Hence,

Ez,t

[

|M(A, B)|
]

(27)∧(50)

> M(X, Y)− 1

2
‖M‖nc

(42)

>

(

1

2
− ε

)

‖M‖nc,

completing the proof of the desired expectation bound (43).

Remark 9. The following example, due to Haagerup [Haa85], shows that the factor 2 approx-
imation guarantee obtained in Theorem 7 is optimal: the best constant in (18) equals 2. Let
M ∈ Mn(Mn(C)) be given by M1jk1 = δjk, and Mijkl = 0 if (i, l) 6= (1, 1). A direct computa-

tion shows that Opt
C
(M) = 1. Define X, Y ∈ Mn(Cn) by X1j = Yj1 =

√

2/(n + 1) ej ∈ Cn

for j ∈ {1, . . . , n} and all other entries of X and Y vanish (here e1, . . . , en is the standard basis of
Cn). Using these two vector-valued matrices one shows that ‖M‖nc > 2n/(n + 1). Recall that in
the Introduction we mentioned that it was shown in [HI95] that the best constant in the weaker
inequality (16) is also 2, but the example exhibiting this stronger fact is more involved.

3 The real and Hermitian cases

The n × n Hermitian matrices are denoted Hn. A 4-tensor M ∈ Mn(Mn(C)) ∼= Mn(C)⊗ Mn(C) is
said to be Hermitian if Mijkl = Mjilk for all i, j, k, l ∈ {1, . . . , n}. Investigating the noncommutative
Grothendieck inequality in the setting of Hermitian M is most natural in applications to quantum
information, while problems in real optimization as described in the Introduction lead to real
M ∈ Mn(Mn(R)). These special cases are treated in this section.

Consider the following Hermitian analogue of the quantity Opt
C
(M).

Opt∗
C
(M)

def
= sup

A,B∈Hn
‖A‖,‖B‖61

∣

∣

∣

n

∑
i,j,k,l=1

Mijkl AijBkl

∣

∣

∣
.

Note that the convex hull of Un consists of all the matrices A ∈ Mn(C) with ‖A‖ 6 1, so by
convexity for every M ∈ Mn(Mn(C)) we have

Opt
C
(M) = sup

A,B∈Mn(C)
‖A‖,‖B‖61

∣

∣

∣

n

∑
i,j,k,l=1

Mijkl AijBkl

∣

∣

∣
. (51)
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This explains why Opt∗
C
(M) should indeed be viewed as a Hermitian analogue of Opt

C
(M). The

real analogue of (51) is that, due to the fact that the convex hull of On consists of all the matrices
A ∈ Mn(R) with ‖A‖ 6 1, for every M ∈ Mn(Mn(R)) we have

Opt
R
(M) = sup

A,B∈Mn(R)
‖A‖,‖B‖61

∣

∣

∣

n

∑
i,j,k,l=1

Mijkl AijBkl

∣

∣

∣
. (52)

The following theorem establishes an algorithmic equivalence between the problems of ap-
proximating either of these two quantities.

Theorem 10. For every K ∈ [1, ∞) the following two assertions are equivalent.

1. There exists a polynomial time algorithm Alg∗ that takes as input a Hermitian M ∈ Mn(Mn(C))
and outputs A, B ∈ Hn with max{‖A‖, ‖B‖} 6 1 and Opt∗

C
(M) 6 K|M(A, B)|.

2. There exists a polynomial time algorithm Alg that takes as input M ∈ Mn(Mn(R)) and outputs
U, V ∈ On such that Opt

R
(M) 6 KM(U, V).

In Section 3.2 we show that for every K > 2
√

2 there exists an algorithm Alg∗ as in part 1) of
Theorem 10. Consequently, we obtain the algorithm for computing Opt

R
(M) whose existence was

claimed in Theorem 1. The implication 1) =⇒ 2) of Theorem 10 is the only part of Theorem 10
that will be used in this article; the reverse direction 2) =⇒ 1) is included here for completeness.
Both directions of Theorem 10 are proved in Section 3.3.

3.1 Two-dimensional rounding

In this section we give an algorithmic version of Krivine’s proof [Kri79] that the 2-dimensional
real Grothendieck constant satisfies KG(2) 6

√
2. The following theorem is implicit in the proof

of [Kri79, Thm. 1].

Theorem 11 (Krivine). Let g : R → R be defined by g(x) = sign(cos(x)), and let f : [0, π/2) → R be
given by

f (t)
def
=







1 if 0 6 t 6 π
4 ,

6
π

(

π
2 − t

)

− 1
2

(

4
π

)3(
π
2 − t

)3
if π

4 6 t < π
2 .

Extend f to a function defined on all of R by requiring that it is even and f (x +π) = − f (x) for all x ∈ R.
There exists a sequence {b2ℓ+1}∞

ℓ=0 ∈ RN such that for every L ∈ N the numbers {b0, . . . , b2L+1} can be
computed in poly(L) time, ∑

∞
ℓ=L+1 |b2ℓ+1| 6 C/L for some universal constant C, ∑

∞
ℓ=0 |b2ℓ+1| = 1, and

∀x, y ∈ R, cos(x − y) =
√

2
∞

∑
ℓ=0

b2ℓ+1
1

2π

∫ π

−π
f
(

(2ℓ+ 1)x − t
)

g
(

t − (2ℓ+ 1)y
)

dt.

An explicit formula for the sequence {b2ℓ+1}∞
ℓ=0 can be extracted as follows from the proof

of [Kri79, Thm. 1]. For any ℓ > 0, define a2ℓ = 0,

a2ℓ+1 = (−1)ℓ cos
( (2ℓ+ 1)π

4

) 16

π2(2ℓ+ 1)4

( 1

2ℓ+ 1
− (−1)ℓ

π

4

)

,
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b1 =
√

2(π/4)3/(3a1), and for ℓ > 0,

b2ℓ+1 = − 1

a1
∑

d|(2ℓ+1)
d 6=1

adb 2ℓ+1
d

.

Then |a2ℓ+1| = O(1/ℓ4), from which one deduces the crude bound |b2ℓ+1| = O(1/ℓ2).

Two-dimensional rounding procedure

1. Let ε > 0 and, for j, k ∈ {1, . . . , n} let xj, yk ∈ C with |xj| = |yk| = 1, be given as input. Let
f , g, C and {b2ℓ+1}∞

ℓ=0 be as in Theorem 11.

2. For every j, k let θj ∈ [0, 2π) (resp. φk ∈ [0, 2π)) be the angle that xj (resp. yk) makes with the
x-axis.

3. Select t ∈ [−π, π] uniformly at random. Let L = ⌈C/ε⌉ and p = 1 − ∑
∞
ℓ=L+1 |b2ℓ+1|. Select

ℓ ∈ {−1, 0, . . . , L} with probability Pr(−1) = 1 − p and Pr(ℓ) = |b2ℓ+1| for ℓ ∈ {0, . . . , L}.

4. For every j, k, if ℓ > 0 then set λj
def
= sign(b2ℓ+1) f ((2ℓ+ 1)θj − t) and µk

def
= g(t − (2ℓ+ 1)φk).

Otherwise, set λj = 0, µk = 0.

5. Return (λj)j∈{1,...,n} and (µk)k∈{1,...,n}.

Figure 2: The two-dimensional rounding algorithm takes as input real 2-dimensional unit vectors.
It returns real numbers of absolute value at most 1.

Figure 2 describes a two-dimensional rounding scheme derived from Theorem 11. The follow-
ing claim states its correctness in a way that will be useful for us later.

Claim 12. Let ε > 0 and for every j, k ∈ {1, . . . , n} let xj, yk ∈ C satisfy |xj| = |yk| = 1. Then
the rounding procedure described in Figure 2 runs in time poly(n, 1/ε) and returns λj, µk ∈ R with
|λj|, |µk| 6 1 for every j, k ∈ {1, . . . , n}, and

E
[

λj µk

]

=
1√
2
ℜ
(

xjyk

)

+ ε〈x′j, y′k〉, (53)

where x′j, y′k ∈ L2(R) are such that ‖x′j‖2, ‖y′k‖2 6 1.

Proof. Fix j, k ∈ {1, . . . , n} and let θj, φk and λj, µk be as defined in Steps 2 and 4 of the rounding
procedure, respectively. Applying Theorem 11,

E
[

λj µk

]

=
L

∑
ℓ=0

b2ℓ+1
1

2π

∫ π

−π
f
(

(2ℓ+ 1)θj − t
)

g
(

t − (2ℓ+ 1)φk

)

dt =
1√
2

cos(θj − φk) + ηjk,

where

ηjk
def
= −

∞

∑
ℓ=L+1

b2ℓ+1
1

2π

∫ π

−π
f
(

(2ℓ+ 1)θj − t
)

g
(

t − (2ℓ+ 1)φk

)

dt.
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By definition, cos(θj − φk) = ℜ
(

xjyk

)

. Using 1 − ε 6 p 6 1, which follows from the bound
stated in Theorem 11, ηjk equals 1 − p 6 ε times a weighted average of the product of certain
values taken by f and g, the former only depending on θj and the latter on φk. Equivalently, this
weighted average can be written as the inner product of two vectors x′j and y′k of norm at most 1.

Finally, all steps of the rounding procedure can be performed in time polynomial in n and 1/ε.

3.2 Rounding in the Hermitian case

Let M ∈ Mn(Mn(C)) be Hermitian, and X, Y ∈ Un(Cd). For every r ∈ {1, . . . , d} define as usual
Xr, Yr ∈ Mn(C) by (Xr)jk = (Xjk)r and (Yr)jk = (Yjk)r. Define X′, Y′ ∈ Mn(C2d) by

X′
jk

def
=

d

∑
p=1

(

(

Xp + X∗
p

2

)

jk

e2p−1 + i

(

Xp − X∗
p

2

)

jk

e2p

)

∈ C
2d,

and

Y′
jk

def
=

d

∑
p=1

(

(

Yp + Y∗
p

2

)

jk

e2p−1 + i

(

Yp − Y∗
p

2

)

jk

e2p

)

∈ C
2d.

Then (X′)(X′)∗ = (X′)∗(X′) = (XX∗ + X∗X)/2 = I, so X′ ∈ Un(C2d) and similarly Y′ ∈ Un(C2d).
Moreover, since M is Hermitian, |M(X, Y)| = |M(X′, Y′)|. This shows that for the purpose of
proving the noncommutative Grothendieck inequality for Hermitian M we may assume without
loss of generality that the “component matrices” of X, Y are Hermitian themselves. Neverthe-
less, even in this case the rounding algorithm described in Figure 1 returns unitary matrices A, B
that are not necessarily Hermitian. The following simple argument shows how Krivine’s two-
dimensional rounding scheme can be applied on the eigenvalues of A, B to obtain Hermitian ma-
trices of norm 1, at the loss of a factor

√
2 in the approximation. A similar argument, albeit not

explicitly algorithmic, also appears in [RV12b, Claim 4.7].

Theorem 13. Let n be an integer, M ∈ Mn(Mn(C)) Hermitian, ε ∈ (0, 1) and X, Y ∈ Un(Cd) such that

∣

∣M
(

X, Y
) ∣

∣ > (1 − ε)SDPC(M).

Then the rounding procedure described in Figure 3 runs in time polynomial in n and 1/ε and outputs a
pair of Hermitian matrices A′, B′ ∈ Mn(C) with norm at most 1 such that

E

[

∣

∣M
(

A′, B′) ∣
∣

]

>

( 1

2
√

2
−
(

1 +
1√
2

)

ε
)

SDPC(M).

Proof. Let A, B ∈ Mn(C) be as defined as in Step 2 of Figure 3, and assume as in Figure 3 that
M(A, B) is real. By Theorem 4 we have E[|M(A, B)|] >

(

1
2 − ε

)

SDPC(M). Hence to conclude it
will suffice to show that for any fixed pair of matrices A, B ∈ Mn(C),

E

[

∣

∣M(A′, B′)
∣

∣

]

>
1√
2

∣

∣M(A, B)
∣

∣− ε SDPC(M), (54)
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Hermitian rounding procedure

1. Let X, Y ∈ Mn(Cd) and ε > 0 be given as input.

2. Let A, B ∈ Mn(C) be the unitary matrices returned by the complex rounding procedure
described in Figure 1. If necessary, multiply A by a complex phase to ensure that M(A, B) is
real. Write the spectral decompositions of A, B as

A =
n

∑
j=1

eiθj uju
∗
j and B =

n

∑
k=1

eiφk vkv∗k ,

where θj, φk ∈ R and uj, vk ∈ Cn.

3. Apply the two-dimensional rounding algorithm from Figure 2 to the vectors xj
def
= eiθj and

yk
def
= eiφk . Let λj, µk be the results.

4. Output

A′ def
=

n

∑
j=1

λjuju
∗
j and B′ def

=
n

∑
k=1

µkvkv∗k .

Figure 3: The Hermitian rounding algorithm takes as input a pair of vector-valued matrices X, Y ∈
Mn(Cd). It outputs two Hermitian matrices A′, B′ ∈ Mn(C) of norm at most 1.

where A′, B′ are as returned by the rounding procedure and the expectation is over the random
choices made in the two-dimensional rounding step, i.e., Step 3 of Figure 3. Applying Claim 12,

E
[
∣

∣M(A′, B′)
∣

∣ ] >

∣

∣

∣

n

∑
j,k=1

M(uju
∗
j , vkv∗k )E

[

λjµk

]

∣

∣

∣

(53)

>

∣

∣

∣

1√
2

n

∑
j,k=1

M(uju
∗
j , vkv∗k )ℜ

(

ei(θj−φk)
) ]

∣

∣

∣
− ε

∣

∣

∣

n

∑
j,k=1

〈x′j, y′k〉 M(uju
∗
j , vkv∗k )

∣

∣

∣

=
1√
2

∣

∣M(A, B)
∣

∣− ε
∣

∣M(W, Z)
∣

∣, (55)

where in the last inequality, for the first term we used that M(uju
∗
j , vkv∗k ) is real since M is Hermi-

tian, and for the second term we defined the vector-valued matrices

W
def
=

n

∑
j=1

x′j uju
∗
j ∈ Mn(L2(C)) and Z

def
=

n

∑
k=1

y′k vkv∗k ∈ Mn(L2(C)).

One checks that WW∗ = ∑
n
j=1 ‖x′j‖2

2uju
∗
j . Since ‖x′j‖2 6 1 for all j ∈ {1, . . . , n}, it follows that

‖WW∗‖ 6 1. Similarly max{‖W∗W‖, ‖ZZ∗‖, ‖Z∗Z‖} 6 1. Applying Lemma 6 we obtain R, S ∈
Un(ℓ2(C)) such that M(W, Z) = M(R, S), hence |M(W, Z)| 6 SDPC(M). Eq. (55) then implies the
desired estimate (54).
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3.3 Proof of Theorem 10

In this section we prove Theorem 10. We first record for future use the following simple lemma,
which is an algorithmic version of (52).

Lemma 14. There exists a polynomial time algorithm that takes as input a 4-tensor M ∈ Mn(Mn(R)) and
two matrices A, B ∈ Mn(R) with max{‖A‖, ‖B‖} 6 1 and outputs two orthogonal matrices U, V ∈ On

such that
n

∑
i,j,k,l=1

Mijkl AijBkl 6

n

∑
i,j,k,l=1

MijklUijVkl.

Proof. Write the singular value decompositions of A, B as A = ∑
n
i=1 σiei f ∗i and B = ∑

n
i=1 τigih

∗
i ,

where each of the sequences (ei)
n
i=1, ( fi)

n
i=1, (gi)

n
i=1, (hi)

n
i=1 ⊆ Rn is orthonormal, and σ, τ ∈ [0, 1]n

(since max{‖A‖, ‖B‖} 6 1). Now, M(A, B) is given by

n

∑
i,j=1

σiτj M(ei f ∗i , gjh
∗
j ). (56)

Fixing all σi, τj but, say, σ1, (56) is a linear function of σ1, and thus we can shift σ1 to either −1 or 1,
without decreasing (56). Proceeding in this way with the other variables σ2, . . . , σn, τ1, . . . , τn, each
one in its turn, we obtain ε, δ ∈ {−1, 1}n such that if we define U, V ∈ On by U = ∑

n
i=1 ε i(ei f ∗i )

and V = ∑
n
i=1 δi(gih

∗
i ) then M(A, B) 6 M(U, V), as required.

Proof of Theorem 10. We first prove the implication 1) =⇒ 2). For any A ∈ M2n(C) define

A1, A2, A3, A4 ∈ Mn(C) through the block decomposition A =
(

A1 A2
A3 A4

)

. Given M ∈ Mn(Mn(R))

let M′ ∈ M2n(M2n(R)) be such that M′(A, B) = M(ℜA2,ℜB2) for every A, B ∈ H2n. Formally, for
every i, j, k, l ∈ {1, . . . , 2n} we have

M′
ijkl =

1

4























Mi,j−n,k,l−n if (i, k) ∈ {1, . . . , n}2 and (j, l) ∈ {n + 1, . . . , 2n}2,

Mj,i−n,l,k−n if (j, l) ∈ {1, . . . , n}2 and (i, k) ∈ {n + 1, . . . , 2n}2,
Mi,j−n,l,k−n if (i, l) ∈ {1, . . . , n}2 and (j, k) ∈ {n + 1, . . . , 2n}2,

Mj,i−n,k,l−n if (j, k) ∈ {1, . . . , n}2 and (i, l) ∈ {n + 1, . . . , 2n}2,
0 otherwise.

Then M′ is Hermitian. Apply the algorithm Alg∗ (whose existence is the premise of part 1) of
Theorem 10) to M′ to get A, B ∈ H2n such that Opt∗

C
(M) 6 K|M(A, B)|. Since A, B ∈ H2n we have

A3 = A∗
2 and B3 = B∗

2 . Because max{‖A‖, ‖B‖} 6 1 also max{‖ℜA‖, ‖ℜB‖} 6 1. By Lemma 14
we can therefore efficiently find U, V ∈ On such that

KM(U, V) > K|M(ℜA,ℜB)| = K|M′(A, B)| > Opt∗
C
(M′)

= sup
C,D∈H2n

‖C‖,‖D‖61

∣

∣M′(C, D)
∣

∣ > sup
S,T∈On

∣

∣M′ (( 0 S
S∗ 0

)

,
(

0 T
T∗ 0

))∣

∣ = sup
S,T∈On

M(S, T) = Opt
R
(M).

To prove the reverse implication 2) =⇒ 1), define ψ : M2n(R) → Hn by

ψ
((

A1 A2
A3 A4

))

def
=

1

4
(A1 + A∗

1 + A4 + A∗
4) +

i

4
(A2 − A∗

2 + A∗
3 − A3) ∈ Hn. (57)
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Suppose that M ∈ Mn(Mn(C)) is Hermitian and define M′′ ∈ M2n(M2n(R)) by requiring that
M′′(A, B) = M (ψ(A), ψ(B)) for every A, B ∈ M2n(R). Note that M(ψ(A), ψ(B)) ∈ R since
M, ψ(A), ψ(B) are all Hermitian. Apply the algorithm Alg of part 2) to M′′, obtaining two orthog-
onal matrices U, V ∈ O2n satisfying Opt

R
(M′′) 6 KM′′(U, V) = KM(ψ(U), ψ(V)). By Lemma 15

below we have max{‖ψ(U)‖, ‖ψ(V)‖} 6 1. Moreover, using Lemma 16 below we have

Opt
R
(M′′) = sup

A,B∈M2n(R)
‖A‖,‖B‖61

∣

∣M(ψ(A), ψ(B))
∣

∣ > sup
X,Y∈Hn

‖X‖,‖Y‖61

∣

∣M
(

ψ
(( ℜX ℑX

−ℑX ℜX

))

, ψ
(( ℜY ℑY

−ℑY ℑY

)))
∣

∣ . (58)

Observe that for every X ∈ Hn we have ψ
(( ℜX ℑX

−ℑX ℜX

))

= X. Consequently the rightmost term
in (58) equals Opt∗

C
(M). Therefore Opt∗

C
(M) 6 K|M(ψ(U), ψ(V))|, so that the algorithm that

outputs ψ(U), ψ(V) has the desired approximation factor.

Lemma 15. Let ψ : M2n(R) → Hn be given as in (57). Then ‖ψ(Y)‖ 6 ‖Y‖ for all Y ∈ M2n(R).

Proof. For Y ∈ M2n(R) write Z = (Y+Y∗)/2. Setting Z =
(

Z1 Z2
Z3 Z4

)

, where Z1, Z2, Z3, Z4 ∈ Mn(R),

we then have ψ(Y) = (Z1 + Z4)/2 + i(Z2 − Z3)/2. Take z ∈ Cn and write z = x + iy, where
x, y ∈ Rn. Then

ℜ
(

〈ψ(Y)z, z〉
)

=
〈Z1x, x〉+ 〈Z4y, y〉 − 〈Z2y, x〉 − 〈Z3x, y〉

2
+

〈Z1y, y〉+ 〈Z4x, x〉+ 〈Z2x, y〉+ 〈Z3y, x〉
2

=
1

2

〈

Z

(

x
−y

)

,

(

x
−y

)〉

+
1

2

〈

Z

(

y
x

)

,

(

y
x

)〉

.

Since ψ(Y) is Hermitian, it follows that ‖ψ(Y)‖ 6 ‖Z‖ 6 ‖Y‖.

Lemma 16. For every X ∈ Hn we have
∥

∥

( ℜX ℑX
−ℑX ℜX

)∥

∥ = ‖X‖.

Proof. Write Z =
( ℜX ℑX
−ℑX ℜX

)

∈ M2n(R). Since X is Hermitian, Z is symmetric. For every a, b ∈ Rn,

〈

Z

(

a
b

)

,

(

a
b

)〉

= 〈(ℜX)a, a〉 + 〈(ℑX)b, a〉 − 〈(ℑX)a, b〉+ 〈(ℜX)b, b〉

= ℜ (〈X(a − ib), a − ib〉) .

Since Z is symmetric and X is Hermitian, it follows that ‖Z‖ = ‖X‖.

4 Direct rounding in the real case

We now describe and analyze a different rounding procedure for the real case of the noncom-
mutative Grothendieck inequality. The argument is based on the proof of the noncommutative
Grothendieck inequality due to Kaijser [Kai83], which itself has a structure similar to the proof of
the classical Grothendieck inequality due to Krivine [Kri74] (see also [Jam85], the “Notes and Re-
marks” section of Chapter 1 of [DJT95], and the survey article [JL01]), and uses ideas from [Pis78]
to extend that proof to the non-commutative setting.
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Real rounding procedure

1. Let X, Y ∈ Mn(Rd) be given as input, and let ε ∈ {−1, 1}d be chosen uniformly at random.

2. Set Yε
def
= 〈ε, Y〉. Write the singular value decomposition of Yε as Yε = ∑

n
i=1 ti(ε) ui(ε)vi(ε)

∗,
where ti(ε) ∈ [0, ∞) and ui(ε), vi(ε) ∈ Rn. Define

(Yε)τ
def
=

n

∑
i=1

min{ti(ε), τ}ui(ε)vi(ε)
∗,

where τ
def
=

√
3/2.

3. Let X(ε) ∈ Mn(R) of norm at most 1 be such that

M(X(ε), (Yε)τ) = max
X∈Mn(R)
‖X‖61

|M(X, (Yε)τ)|.

4. Output the pair A = X(ε) and B = 1
τ (Yε)τ.

Figure 4: The real rounding algorithm takes as input X, Y ∈ Mn(Rd). It outputs two real matrices
A, B ∈ Mn(R) of norm at most 1.

Theorem 17. Given n ∈ N, M ∈ Mn(Mn(R)) and η ∈ (0, 1/2), suppose that X, Y ∈ On(Rd) are such
that

∣

∣M
(

X, Y
) ∣

∣ > (1 − η)SDPR(M), (59)

where SDPR(M) is defined in (12). Then the rounding procedure described in Figure 4 runs in time
polynomial in n and outputs a pair of real matrices A, B ∈ Mn(R) with norm at most 1 such that

E

[

∣

∣M
(

A, B
)
∣

∣

]

>
(1 − 2η)2

3
√

3
SDPR(M). (60)

Note that by Lemma 14 we can also efficiently convert the matrices A, B to orthogonal matrices
U, V ∈ On without changing the approximation guarantee.

The proof of Theorem 17 relies on two claims that are used to bound the error that results from
the truncation step (step 2) in the rounding procedure in Figure 4. The first claim plays the same
role as Claim 5 did in the complex case.

Claim 18. Fix X ∈ Mn(Rd) and let ε ∈ {−1, 1}d be chosen uniformly at random. Set Xε = 〈ε, X〉. Then

Eε

[

(XεX
∗
ε )

2
]

6 (XX∗)2 + 2‖X∗X‖XX∗,

Eε

[

(X∗
ε Xε)

2
]

6 (X∗X)2 + 2‖XX∗‖X∗X.

Proof. Define the symmetric real vector-valued matrix Z by

Z
def
=

(

0 X
X∗ 0

)

.
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Following the proof of Lemma 1.1 in [Pis78] (which establishes a bound analogous to the one
proved in Claim 8 for the case of i.i.d. {±1} random variables) and defining as usual Zr ∈ Mn(R)
by (Zr)ij = (Zij)r for every r ∈ {1, . . . , d}, we have

Eε

[

〈ε, Z〉4
]

=
d

∑
r=1

Z4
r + ∑

r,s∈{1,...,d}
r 6=s

(

Z2
r Z2

s + ZrZsZrZs + ZrZ2
s Zr

)

=
( d

∑
r=1

Z2
r

)2
+ ∑

r,s∈{1,...,d}
r<s

(

ZrZs + ZsZr

)2
. (61)

Using the inequality (A + B)(A + B)∗ 6 2(AA∗ + BB∗), which holds for all A, B ∈ Mn(R), we
can bound the second sum in (61) as follows.

∑
r,s∈{1,...,d}

r<s

(

ZrZs + ZsZr

)2
6 2

( d

∑
r=1

Zr

(

∑
s∈{1,...,d}

s>r

Z2
s

)

Zr +
d

∑
s=1

Zs

(

∑
r∈{1,...,d}

r<s

Z2
r

)

Zs

)

= 2
d

∑
r=1

Zr

(

∑
s∈{1,...,d}

s 6=r

Z2
s

)

Zr

6 2
d

∑
r=1

Zr

( d

∑
s=1

Z2
s

)

Zr.

Replacing Zr by its definition and using ABA∗ 6 ‖B‖AA∗, which holds true for every positive
semidefinite B ∈ Mn(R), we arrive at the following matrix inequality:

Eε

[

〈ε, Z〉4
]

=

(

Eε

[

(XεX
∗
ε )

2
]

0
0 Eε

[

(X∗
ε Xε)2

]

)

6

(

(XX∗)2 0
0 (X∗X)2

)

+ 2

(

‖X∗X‖ XX∗ 0
0 ‖XX∗‖ X∗X

)

.

The inequality above implies a separate matrix inequality for both diagonal blocks, proving the
claim.

The second claim appears as Lemma 2.3 in [Kai83] (in the complex case). We include a short
proof for the sake of completeness.

Claim 19. Let Y ∈ Mn(R). For any τ > 0, there exists a decomposition Y = Yτ + Yτ such that
‖Yτ‖∞ 6 τ and

Yτ(Yτ)∗ 6
1

(4τ)2
(YY∗)2 and (Yτ)∗Yτ

6
1

(4τ)2
(Y∗Y)2.

Proof. Define Yτ by “truncating” the singular values of Y at τ, as is done in step 2 of the rounding
procedure described in Figure 4, so that ‖Yτ‖ 6 τ. Define Yτ = Y − Yτ . By definition, Y, Yτ and
Yτ all have the same singular vectors, and the non-zero singular values of Yτ are of the form µ− τ,
where µ > τ is a singular value of Y. Using the bound |µ − τ| 6 µ2/(4τ) valid for any µ > τ, any
nonzero eigenvalue λ = (µ − τ)2 of Yτ(Yτ)∗ (resp. (Yτ)∗Yτ) satisfies λ 6 µ4/(4τ)2, which proves
the claim.
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Proof of Theorem 17. We shall continue using the notation introduced in Figure 4, Claim 18 and
Claim 19. Let X, Y ∈ On(Rd) satisfying (59). For every ε ∈ {−1, 1}d and any τ > 0 let

Yε = 〈ε, Y〉 = (Yε)τ + Yτ
ε

be the decomposition promised by Claim 19. Combining the bound from Claim 18 with the one
from Claim 19, we see that

∥

∥Eε

[

Yτ
ε (Y

τ
ε )

∗]∥
∥ 6

1

(4τ)2

(

‖YY∗‖2 + 2‖Y∗Y‖‖YY∗‖
)

=
3

(4τ)2
, (62)

where the final step of (62) follows from Y ∈ On(Rd), and the same bound holds on ‖Eε

[

(Yτ
ε )

∗Yτ
ε

]

‖.
We have

∣

∣M
(

X, Y
)
∣

∣ =
∣

∣Eε

[

M(Xε, Yε)
]
∣

∣ 6
∣

∣Eε

[

M(Xε, (Yε)τ)
]
∣

∣+
∣

∣Eε

[

M(Xε, Yτ
ε )
]
∣

∣

6
∣

∣Eε

[

M(Xε, (Yε)τ)
]∣

∣+

√
3

4τ
SDPR(M), (63)

where the last inequality in (63) follows from the definition of SDPR(M) and (62).
To bound the first term in (63), let Xε = ∑

n
i=1 si(ε)wi(ε)zi(ε)

∗, (Yε)τ = ∑
n
i=1 t′i(ε)ui(ε)vi(ε)

∗,
where si(ε), t′i(ε) > 0 and ui(ε), vi(ε), wi(ε), zi(ε) ∈ Rn, be the singular value decompositions of

Xε, (Yε)τ, respectively. Set Mi,j(ε)
def
= M(wi(ε)zi(ε)

∗, uj(ε)vj(ε)
∗). With these definitions,

∣

∣Eε [M(Xε, (Yε)τ)]
∣

∣ =
∣

∣

∣
Eε

[ n

∑
i,j=1

Mi,j(ε)si(ε)t
′
j(ε)
]∣

∣

∣
6 Eε

[ n

∑
i=1

si(ε)
∣

∣

∣

n

∑
j=1

Mi,j(ε)t
′
j(ε)
∣

∣

∣

]

6

(

Eε

[ n

∑
i=1

si(ε)
2
∣

∣

∣

n

∑
j=1

Mi,j(ε)t
′
j(ε)
∣

∣

∣

])1/2(

Eε

[ n

∑
i=1

∣

∣

∣

n

∑
j=1

Mi,j(ε)t
′
j(ε)
∣

∣

∣

])1/2
. (64)

Note that the rightmost term in (64) is at most
(

τEε

[

M(X(ε), B(ε))
])1/2

, where B(ε) = 1
τ (Yε)τ

and X(ε) is as defined in the rounding procedure in Figure 4. To bound the leftmost term in (64),

define Wε
def
= ∑

n
i=1(ri(ε)si(ε)

2)wi(ε)zi(ε)
∗, where ri(ε) is the sign of ∑

n
j=1 Mi,j(ε)t

′
j(ε), so that

n

∑
i=1

si(ε)
2|

n

∑
j=1

Mi,j(ε)t
′
j(ε)| = M(Wε, (Yε)τ).

Moreover, by definition WεW
∗
ε = (XεX

∗
ε )

2, so using Claim 18 we have
∥

∥Eε

[

W∗
ε Wε

]
∥

∥ =
∥

∥Eε

[

(X∗
ε Xε)

2
]
∥

∥ 6 ‖X∗X‖2 + 2‖XX∗‖‖X∗X‖ = 3,

and the same bound holds for ‖Eε

[

WεW
∗
ε

]

‖. By the definition of (Yε)τ we also have

max
{

∥

∥Eε [(Yε)
∗
τ(Yε)τ ]

∥

∥,
∥

∥Eε [(Yε)τ(Yε)
∗
τ]
∥

∥

}

6 τ2.

Hence

Eε

[ n

∑
i=1

si(ε)
2
∣

∣

∣

n

∑
j=1

Mi,j(ε)t
′
j(ε)
∣

∣

∣

]

=
√

3τ Eε

[

M
(Wε√

3
,
(Yε)τ

τ

)]

6
√

3τ SDPR(M),
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where we used the definition of SDPR(M). Finally, combining (63) and (64) with the bounds
shown above we obtain

(1 − η)SDPR(M)
(59)

6
∣

∣M
(

X, Y
)∣

∣ 6
4
√

3τ
√

SDPR(M) · Eε [M(X(ε), B(ε))] +

√
3

4τ
SDPR(M). (65)

Setting τ =
√

3/2 in (65) and simplifying leads to the desired bound (60).
All steps in the rounding procedure can be performed efficiently. The calculation of X(ε) in the

third step of Figure 4 can be expressed as a semidefinite program and solved in time polynomial
in n. Alternatively, one may directly compute X(ε) by writing the polar decomposition

Tr2(M∗(I ⊗ B)) = QP ∈ Mn(R),

where the partial trace is taken with respect to the second tensor, Q is an orthogonal matrix and P
is positive semidefinite, and taking X(ε) = Q∗.

5 Some applications

Before presenting the details of our applications of Theorem 1, we observe that the problem of
computing Opt

R
(M) is a rather versatile optimization problem, perhaps more so than what one

might initially guess from its definition. The main observation is that by considering matrices
M which only act non-trivially on certain diagonal blocks of the two variables U, V that appear
in the definition of Opt

R
(M), these variables can each be thought of as a sequence of multiple

matrix variables, possibly of different shapes but all with operator norm at most 1. This allows for
some flexibility in adapting the noncommutative Grothendieck optimization problem to concrete
settings, and we explain the transformation in detail next.

For every n, m > 1, let Mm,n(R) be the vector space of real m× n matrices. Given integers k, ℓ >
1 and sequences of integers (mi), (ni) ∈ Nk, (pj), (qj) ∈ Nℓ, we define BilR(k, ℓ; (mi), (ni), (pj), (qj)),
or simply BilR(k, ℓ) when the remaining sequences are clear from context, as the set of all

f :
(

k
⊕

i=1

Mmi,ni
(R)

)

×
(

ℓ
⊕

j=1

Mpj,q j
(R)

)

→ R

that are linear in both arguments. Concretely, f ∈ BilR(k, ℓ) if and only if there exists real coeffi-
cients αirs,juv such that for every (Ai) ∈

⊕k
i=1 Mmi,ni

(R) and (Bj) ∈
⊕ℓ

j=1 Mpj,q j
(R),

f
(

(Ai)i∈{1,...,k}, (Bj)j∈{1,...,ℓ}
)

=
k

∑
i=1

ℓ

∑
j=1

mi

∑
r=1

ni

∑
s=1

pj

∑
u=1

q j

∑
v=1

αirs,juv (Ai)rs(Bj)uv. (66)

For integers m, n > 1, let Om,n ⊂ Mm,n(R) denote the set of all m × n real matrices U such that
UU∗ = I if m 6 n and U∗U = I if m > n. If m = n then On,n = On is the set of orthogonal
matrices; On,1 is the set of all n-dimensional unit vectors; O1,1 is simply the set {−1, 1}. Given
f ∈ BilR(k, ℓ), consider the quantity

Opt
R
( f )

def
= sup

(Ui)∈
⊕k

i=1 Omi,ni

(Vj)∈
⊕ℓ

j=1 Opj,qj

f
(

(Ui), (Vj)
)

.
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Note that this definition coincides with the definition of Opt
R
( f ) given in the introduction when-

ever f ∈ BilR(1, 1; n, n, n, n). The proof of the following proposition shows that the new optimiza-
tion problem still belongs the framework of the noncommutative Grothendieck problem.

Proposition 20. There exists a polynomial time algorithm that takes as input k, ℓ ∈ N, (mi), (ni) ∈ Nk,
(pj), (qj) ∈ Nℓ and f ∈ BilR(k, ℓ; (mi), (ni), (pj), (qj)) and outputs (Ui) ∈ ⊕k

i=1 Omi,ni
and (Vj) ∈

⊕

ℓ
j=1 Opj,q j

such that

Opt
R
( f ) 6 O(1) · f

(

(Ui), (Vj)
)

.

Moreover, the implied constant in the O(1) term can be taken to be any number larger than 2
√

2.

Proof. Let k, ℓ ∈ N, (mi), (ni) ∈ Nk, (pj), (qj) ∈ Nℓ be given, and define

m
def
=

k

∑
i=1

mi, n
def
=

k

∑
i=1

ni, p
def
=

ℓ

∑
j=1

pj, q
def
=

ℓ

∑
j=1

qj,

and t
def
= max{m, n, p, q}. We first describe how

⊕k
i=1 Mmi,ni

(R) (respectively
⊕

ℓ
j=1 Mpj,q j

(R)) can

be identified with a subset of Mt(R) consisting of block diagonal matrices. For any i ∈ {1, . . . , k}
and r ∈ {1, . . . , mi}, s ∈ {1, . . . , ni}, let Fi

r,s ∈ Mt(R) be the matrix that has all entries equal to
0 except the entry in position (r + ∑j<i mj, s + ∑j<i nj), which equals 1. Similarly, for any j ∈
{1, . . . , ℓ} and u ∈ {1, . . . , pj}, v ∈ {1, . . . , qj} we let G

j
u,v ∈ Mt(R) be the matrix that has all entries

equal to 0 except the entry in position (u+∑i<j pi, v+∑i<j qi), which equals 1. Define linear maps

Φ :
⊕k

i=1 Mmi,ni
(R) → Mt(R) and Ψ :

⊕

ℓ
j=1 Mpj,q j

(R) → Mt(R) by

Φ
(

(Ai)
) def
=

k

∑
i=1

mi

∑
r=1

ni

∑
s=1

(Ai)r,s Fi
r,s and Ψ

(

(Bj)
) def
=

ℓ

∑
j=1

pj

∑
u=1

q j

∑
v=1

(Bj)u,v G
j
u,v.

From the definition, one verifies that

‖Φ((Ai))‖ = max
i∈{1,...,k}

‖Ai‖ and ‖Ψ((Bj))‖ = max
j∈{1,...,ℓ}

‖Bj‖. (67)

Let f ∈ BilR(k, ℓ) and (αirs,juv) real coefficients as in (66). Define M ∈ Mt(Mt(R)) by

M(Fi
r,s, G

j
u,v)

def
= αirs,juv,

and M(A, B)
def
= 0 if A or B are not in the linear span of the Fi

r,s or G
j
u,v respectively. (Recall that

the notation M(A, B) was introduced at the beginning of Section 2.) With this definition, for any
(Ai) ∈

⊕k
i=1 Mmi,ni

(R) and (Bj) ∈
⊕

ℓ
j=1 Mpj,q j

(R) we have

M
(

Φ((Ai)), Ψ((Bj))
)

= f
(

(Ai), (Bj)
)

.

We claim that Opt
R
( f ) = Opt

R
(M), where Opt

R
(M) is as defined in the Introduction. Indeed,

by (67) for any (Ui) ∈ ⊕k
i=1 Omi ,ni

and (Vj) ∈ ⊕ℓ
j=1 Opj,q j

we have ‖Φ((Ui))‖, ‖Ψ((Vj))‖ 6 1,
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hence Opt
R
( f ) 6 Opt

R
(M). Conversely, let U, V ∈ Ot be arbitrary, and U′, V ′ their orthogonal

projections on Im(Φ), Im(Ψ) respectively. Then M(U′, V ′) = M(U, V). Moreover, if

(U′
i) ∈

k
⊕

i=1

Mmi,ni
(R) and (V ′

j ) ∈
ℓ
⊕

j=1

Mpj,q j
(R)

are such that Φ((U′
i )) = U′ and Ψ((V ′

j )) = V ′ then by (67) maxi∈{1,...,k} ‖U′
i‖ = ‖U′‖ 6 ‖U‖ = 1,

and similarly maxj∈{1,...,ℓ} ‖V ′
j ‖ 6 1. As in the proof of Lemma 14, we may then argue that there

exists Ui ∈ Omi,ni
, Vj ∈ Opj,q j

such that

f ((Ui), (Vj)) > f ((U′
i ), (V

′
j )) = M(U′, V ′) = M(U, V),

proving the reverse inequality Opt
R
( f ) > Opt

R
(M).

To conclude the proof of Proposition 20 it remains to note that the algorithm of Theorem 1,
when applied to M, produces in polynomial time U, V ∈ Ot such that Opt

R
(M) 6 O(1) · M(U, V).

Arguing as in Lemma 14, (Ui) and (Vj) can be computed from U, V in polynomial time and con-
stitute the output of the algorithm.

5.1 Constant-factor algorithm for robust PCA problems

We start with the R1-PCA problem, as described in (3). Let a1, . . . , aN ∈ Rn be given, and define
f ∈ BilR(1, N; (K), (n), (1, . . . , 1), (K, . . . , K)) by

f
(

Y, (Z1, . . . , ZN)
) def
=

N

∑
i=1

K

∑
k=1

(Zi)1k

( n

∑
j=1

Ykj(ai)j

)

.

The condition Zi ∈ O1,K is equivalent to Zi being a unit vector, while Y ∈ OK,n is equivalent
to the K rows of Y being orthonormal. Using that the ℓ2 norm of a vector u ∈ RK is equal to
maxv∈SK−1〈u, v〉, the quantity appearing in (3) is equal to

sup
Y∈OK,n

Z1,...,ZN∈O1,K

f
(

Y, (Z1, . . . , ZN)
)

,

which by definition is equal to Opt
R
( f ). An approximation algorithm for the R1-PCA problem

then follows immediately from Proposition 20. The algorithm for L1-PCA follows similarly. Let-
ting g ∈ BilR(1, NK; (K), (n), (1, . . . , 1), (1, . . . , 1)) be defined as

g
(

Y, (Z1,1, . . . , ZN,K)
)

=
N

∑
i=1

K

∑
k=1

Zik

( n

∑
j=1

Ykj(ai)j

)

,

and using that Zik ∈ O1,1 is equivalent to Zik ∈ {−1, 1}, the quantity appearing in (4) is equal to

sup
Y∈OK,n

Z1,1 ,...,ZN,K∈O1,1

g
(

Y, (Z1,1, . . . , ZN,K)
)

= Opt
R
(g),

which again fits into the framework of Proposition 20.
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5.2 A constant-factor algorithm for the orthogonal Procrustes problem

The generalized orthogonal Procustes problem was described in Section (1.1.3). Continuing with
the notation introduced there, let A1, . . . , AK be d × n real matrices such that the i-th row of Ak is
the vector xk

i ∈ Rd. Our goal is then to efficiently approximate

P(A1, . . . AK)
def
= max

U1,...UK∈Od

∥

∥

∥

K

∑
k=1

Uk Ak

∥

∥

∥

2

2
= max

U1,...UK∈Od

K

∑
k,l=1

〈Uk Ak, Ul Al〉, (68)

where we set 〈A, B〉 def
= ∑

d
i=1 ∑

n
j=1 AijBij for every two d × n real matrices A, B. We first observe

that (68) is equal to

max
U1,...UK∈Od

max
V1 ,...VK∈Od

〈 K

∑
k=1

Uk Ak,
K

∑
l=1

Vl Al

〉

. (69)

It is clear that (69) is at least as large as (68). For the other direction, using Cauchy-Schwarz,

〈 K

∑
k=1

Uk Ak,
K

∑
l=1

Vl Al

〉

6

∥

∥

∥

K

∑
k=1

Uk Ak

∥

∥

∥

2
·
∥

∥

∥

K

∑
l=1

Vl Al

∥

∥

∥

2
,

so either U1, . . . , UK or V1, . . . , VK achieve a value in (68) that is at least as large as (69). The desired
algorithm now follows by noting that (69) falls into the framework of Proposition 20: it suffices to
define f ∈ BilR(K, K; (d, . . . , d), (d, . . . , d), (d, . . . , d), (d, . . . , d)) by

f
(

(U1, . . . , UK), (V1, . . . , VK)
)

=
〈 K

∑
k=1

Uk Ak,
K

∑
l=1

Vl Al

〉

.

Finally, from an assignment to (69) we can efficiently extract an assignment to (68) achieving at
least as high a value by choosing the one among the (Uk) or the (Vl) that leads to a higher value.

Comparison with previous work. To compare the approximation guarantee that we obtained
with the literature, we first note that P(A1, . . . , AK) is attained at U1, . . . , UK ∈ Od if and only if
U1, . . . , UK are maximizers of the following quantity over all V1, . . . , VK ∈ Od.

∑
k,l∈{1,...,K}

k 6=l

〈Vk Ak, Vl Al〉 (70)

Indeed, the diagonal term 〈Vk Ak, Vk Ak〉 = ‖Vk Ak‖2
2 equals ‖Ak‖2

2, since Vk is orthogonal. Con-
sequently, the quantity appearing in (70) differs from the quantity defining P(A1, . . . , AK) by an
additive term that does not depend on V1, . . . , VK. In the same vein, as already mentioned in Sec-
tion (1.1.3), P(A1, . . . , AK) is attained at U1, . . . , UK ∈ Od if and only if U1, . . . , UK are minimizers
of the following quantity over all V1, . . . , VK ∈ Od.

K

∑
k,l=1

‖Vk Ak − Vl Al‖2
2. (71)

While the optimization problems appearing in (68), (70) and (71) have the same exact solutions,
this is no longer the case when it comes to approximation algorithms. To the best of our knowl-
edge the polynomial time approximability of the minimization of the quantity appearing in (71)
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was not investigated in the literature. Nemirovski [Nem07] and So [So11] studied the polynomial
time approximability of the maximization of the quantity appearing in (70): the best known al-
gorithm for this problem [So11] has approximation factor O(log(n + d + K)). This immediately
translates to the same approximation factor for computing P(A1, . . . , AK), which was the previ-
ously best known algorithm for this problem. Our constant-factor approximation algorithm for
P(A1, . . . , AK) yields an approximation for the maximization of the quantity appearing in (70) that
has a better approximation factor than that of [So11] unless the additive difference ∑

K
k=1 ‖Ak‖2

2 is
too large. Precisely, our algorithm becomes applicable in this context as long as this term is at
most a factor (1 − 1/C) smaller than P(A1, . . . , AK). This will be the case for typical applications
in which one may think of each Ak as obtained from a common A by applying a small perturba-
tion followed by an arbitrary rotation: in that case it is reasonable to expect the optimal solution
to satisfy 〈Uk Ak, Ul Al〉 ≈ ‖A‖2 for every l, k ∈ {1, . . . , K}; see, e.g., [Nem07, Sec. 4.3].

5.3 An algorithmic noncommutative dense regularity lemma

Our goal here is to prove Theorem 3, but before doing so we note that it leads to a PTAS for
computing Opt

C
(M) whenever Opt

C
(M) > κn‖M‖2 for some constant κ > 0 (we shall use below

the notation introduced in the statement of Theorem 3).
The idea for this is exactly as in Section 3 of [FK99]. The main point is that given such an M

and ε ∈ (0, 1) the decomposition in Theorem 3 only involves T = O(1/(κε)2) terms, which can be
computed in polynomial time. Given such a decomposition, we will exhaustively search over a
suitably discretized set of values at, bt for Tr(AtX) and Tr(BtY) respectively. For each such choice
of values, verifying whether it is achievable using an X and Y of operator norm at most 1 can be
cast as a semidefinite program. The final approximation to Opt

C
(M) is given by the maximum

value of |∑
T
t=1 αtatbt|, among those sequences (at), (bt) that were determined to be feasible.

In slightly more detail, first note that for any X, Y of operator norm at most 1 the values of
Tr(AtX) and Tr(BtY) lie in the complex disc with radius n. Given our assumption on Opt

C
(M), the

bound on αt stated in Theorem 3 implies |αt| = O(Opt
C
(M)/(κn2)). Hence an approximation of

each Tr(AtX) and Tr(BtY) up to additive error εκn/T will translate to an additive approximation
error to M(X, Y) of O(εOpt

C
(M)). As a result, to obtain a multiplicative (1 ± ε) approximation to

Opt
C
(M) it will suffice to exhaustively enumerate among (O((n · T/(εκn))2))2T possible values

for the sequences (at), (bt).
Finally, to decide whether a given sequence of values can be achieved, it suffices to decide two

independent feasibility problems of the following form: given n × n complex matrices (At)T
t=1 of

norm at most 1 and (at)T
t=1 ∈ CT, does there exist X ∈ Mn(C) of norm at most 1 such that

max
t∈{1,...,T}

max{|Re(Tr(AtX)− at)|, |Im(Tr(AtX)− at)|} 6
εκn

T
?

This problem can be cast as a semidefinite program, and feasibility can be decided in time that is
polynomial in n and T.

Proof of Theorem 3. The argument is iterative. Assume that {At, Bt}τ−1
t=1 ⊆ Un have already been

constructed. Write M1
def
= M and

Mτ
def
= M −

τ−1

∑
t=1

αt(At ⊗ Bt).
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If Opt
C
(Mτ) 6 εOpt

C
(M) then we may stop the construction. Otherwise, by Theorem 1 and

multiplying by an appropriate complex phase if necessary, we can find Aτ, Bτ ∈ Un such that

Mτ(Aτ, Bτ) >

(1

2
− ε

2

)

Opt
C
(Mτ), (72)

with the left-hand side of (72) real. Set

ατ
def
=

Mτ(Aτ, Bτ)

‖Aτ‖2
2 · ‖Bτ‖2

2

,

and define Mτ+1
def
= Mτ − ατ(Aτ ⊗ Bτ). By expanding the square we have

∥

∥Mτ+1

∥

∥

2

2
=
∥

∥Mτ

∥

∥

2

2
− Mτ(Aτ, Bτ)2

‖Aτ‖2
2‖Bτ‖2

2

6
∥

∥Mτ

∥

∥

2

2
− (1 − ε)2

4n2
Opt

C
(Mτ)

2

6
∥

∥Mτ

∥

∥

2

2
− ε2(1 − ε)2

4n2
Opt

C
(M)2. (73)

It follows from (73) that as long as this process continues, ‖Mτ‖2
2 decreases by an additive term

of at least ε2(1 − ε)2Opt
C
(M)2/(4n2) at each step. This process must therefore terminate after at

most T 6 4n2‖M‖2
2/(ε(1 − ε)Opt

C
(M))2 steps.

The “moreover” part of Theorem 3 follows immediately by using the part of Theorem 1 per-
taining to Opt

R
(M) (note that the specific approximation factor does not matter here).

Acknowledgements. We thank Daniel Dadush and Raghu Meka for useful discussions.
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