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ABSTRACT
Treewidth is a graph parameter that plays a fundamental
role in several structural and algorithmic results. We study
the problem of decomposing a given graph G into node-
disjoint subgraphs, where each subgraph has sufficiently large
treewidth. We prove two theorems on the tradeoff between
the number of the desired subgraphs h, and the desired
lower bound r on the treewidth of each subgraph. The
theorems assert that, given a graph G with treewidth k,
a decomposition with parameters h, r is feasible whenever
hr2 ≤ k/poly log(k), or h3r ≤ k/poly log(k) holds. We
then show a framework for using these theorems to bypass
the well-known Grid-Minor Theorem of Robertson and Sey-
mour in some applications. In particular, this leads to sub-
stantially improved parameters in some Erdos-Pósa-type re-
sults, and faster running times for algorithms for some fixed-
parameter tractable problems.

1. INTRODUCTION
Let G = (V,E) be an undirected graph. We assume that the
reader is familiar with the notion of treewidth of a graph G,
denoted by tw(G). The main question considered in this
paper is the following. Given an undirected graph G, and
integer parameters h, r < tw(G), can G be partitioned into
h node-disjoint subgraphs G1, . . . , Gh such that for each i,
tw(Gi) ≥ r? It is easy to see that for this to be possible,
hr ≤ tw(G) must hold. Moreover, it is not hard to show
examples of graphs G (such as constant-degree expanders),
where even for r = 2, the largest number of node-disjoint
subgraphs of G with treewidth at least r = 2 is bounded
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by h = O
(

tw(G)
log(tw(G))

)
.1 In this paper we prove the follow-

ing two theorems, that provide sufficient conditions for the
existence of a decomposition with parameters h, r.

Theorem 1.1 Let G be any graph with tw(G) = k, and let
h, r be any integers with hr2 ≤ k/ poly log k. Then there is
an efficient2 algorithm to partition G into h node-disjoint
subgraphs G1, . . . , Gh such that tw(Gi) ≥ r for each i.

Theorem 1.2 Let G be any graph with tw(G) = k, and let
h, r be any integers with h3r ≤ k/ poly log k. Then there
is an efficient algorithm to partition G into h node-disjoint
subgraphs G1, . . . , Gh such that tw(Gi) ≥ r for each i.

We observe that the two theorems give different tradeoffs,
depending on whether r is small or large. It is particularly
useful in applications that the dependence is linear in one
of the parameters. We make the following conjecture, that
would strengthen and unify the preceding theorems.

Conjecture 1 Let G be any graph with tw(G) = k, and let
h, r be any integers with hr ≤ k/ poly log k. Then G can be
partitioned into h node-disjoint subgraphs G1, . . . , Gh such
that tw(Gi) ≥ r for each i.

Motivation and applications. The starting point for
this work is the observation that a special case of Theo-
rem 1.2, with h = Ω(log2 k), is a critical ingredient in re-
cent work on poly-logarithmic approximation algorithms for
routing in undirected graphs with constant congestion [8,
9, 5]. In particular, [8] developed such a decomposition
for edge-disjoint routing, and subsequently [5] extended it
to the node-disjoint case. However, in this paper, we are
motivated by a different set of applications, for which Theo-
rem 1.1 is more suitable. These applications rely on the sem-
inal work of Robertson and Seymour [32], who showed that
there is a large grid minor in any graph with sufficiently large
treewidth. The theorem below, due to Robertson, Seymour
and Thomas [31], gives an improved quantitative bound re-
lating the size of the grid minor and the treewidth.

1Consider a constant degree n-node expander G with girth
Ω(logn); the existence of such graphs can be shown by the
probabilistic method. Let G1, . . . , Gh be any collection of
node-disjoint subgraphs of G of treewidth at least 2 each.
Then each graph Gi must contain a cycle, and by the lower
bound on the girth of G, |V (Gi)| = Ω(log n), implying that
h = O(n/ logn). On the other hand tw(G) = Ω(n).
2In this paper we use the term efficient algorithm to refer
to an algorithm that runs in randomized polynomial-time.



Theorem 1.3 (Graph-Minor Theorem [31]) Let G be

any graph, and g any integer, such that tw(G) ≥ 202g5 .
Then G contains a g× g grid as a minor. Moreover, if G is
planar, then tw(G) ≥ 6g − 4 suffices.

Kawarabayashi and Kobayashi [21] obtained an improved

bound of 2O(g2 log g) on the treewidth required to ensure a
g × g grid minor, and a further improvement to a bound of
2O(g log g) was recently claimed by Seymour [33].
Notice that Theorem 1.3 guarantees a grid minor of size
sub-logarithmic in the treewidth k in general graphs, and
of size Ω(k) in planar graphs. Demaine and Hajiaghayi [11]
extended the linear relationship between the grid minor size
and the treewidth to graphs that exclude a fixed graph H
as a minor (the constant depends on the size of H, see [21]
for an explicit dependence). A g × g grid has treewidth g,
and it can be partitioned into h node-disjoint grids of size
r× r each, as long as r

√
h = O(g). Thus, in a general graph

G of treewidth k, the Grid-Minor Theorem currently only
guarantees that for any integers h, r with hr2 = O(log2/5 k),
there is a partition of G into h node-disjoint subgraphs of
treewidth at least r each. Robertson et al. [31] observed
that, in order for G to contain a g × g grid as a minor,
its treewidth may need to be as large as Ω(g2 log g), and
they suggest that this may be sufficient. Demaine et al. [12]
conjecture that the treewidth of Θ(g3) is both necessary and
sufficient.
The existence of a polynomial relationship between the grid-
minor size and the graph treewidth is a fundamental open
question, that appears to be technically very challenging to
resolve. Our work is motivated by the observation that the
Grid-Minor Theorem can be bypassed in various applica-
tions by using Theorems 1.1 and 1.2. We describe two gen-
eral classes of such applications below.

Bounds for Erdos-Pósa type results. The duality between
packing and covering plays a central role in graph theory
and combinatorial optimization. One central result of this
nature is Menger’s theorem, which asserts that for any graph
G, subsets S, T of its vertices, and an integer k, either G
contains k node-disjoint paths connecting the vertices of S
to the vertices of T , or there is a set X of at most k− 1 ver-
tices, whose removal disconnects all such paths. Erdos and
Pósa [16] proved that for every graph G, either G contains k
node-disjoint cycles, or there is a set X of O(k log k) nodes,
whose removal from G makes the graph acyclic. More gen-
erally, a family F of graphs is said to satisfy the Erdos-Pósa
property, iff there is an integer-valued function f , such that
for every graph G, either G contains k disjoint subgraphs
isomorphic to members of F , or there is a set S of f(k)
nodes, such that G− S contains no subgraph isomorphic to
a member of F . In other words, S is a cover, or a hitting
set, for F in G. Erdos-Pósa-type results provide relation-
ships between integral covering and packing problems, and
are closely related to fractional covering problems and the
integrality gaps of the corresponding LP relaxations.
As an illustrative example for the Erdos-Pósa-type results,
let Fm denote the family of all cycles of length 0 modulo
m. Thomassen [35] has proved an Erdos-Pósa-type result
for Fm, by showing that for each graph G, either G contains
k disjoint copies of cycles from Fm, or there is a subset S of
f(k) vertices, whose removal disconnects all such cycles in G

(here, f(k) = 22O(k)

, and m is considered to be a constant).

The proof consists of two steps. In the first step, a simple
inductive argument is used to show that for any graph G of
treewidth at most w, either G contains k disjoint copies of
cycles from Fm, or there is a subset S of O(kw) vertices,
whose removal from G disconnects all such cycles. The sec-
ond step is to show that if G has treewidth at least some
value g(k), then it must contain k disjoint copies of cycles
from Fm. Combining these two steps together, we obtain
that f(k) = O(k · g(k)). The second step uses Theorem 1.3

to show that, if tw(G) ≥ g(k) = 2m
O(k)

, then G contains a
grid minor of size k(2m)2k−1 × k(2m)2k−1. This grid minor
is then in turn used to find k disjoint copies of cycles from

Fm in G, giving f(k) = 2m
O(k)

.
Using Theorem 1.1, we can significantly strengthen this re-
sult, and obtain f(k) = Õ(k), as follows.3 Assume first that
we are given any graph G, with tw(G) ≥ f ′(m)k poly log k,
where f ′(m) is some function of m. Then, using Theo-
rem 1.1, we can partition G into k vertex-disjoint subgraphs
of treewidth at least f ′(m) each. Using known techniques
(such as, e.g., Theorem 1.3), we can then show that each
such subgraph must contain a copy of a cycle from Fm.
Therefore, if tw(G) ≥ f ′(m)k poly log k, then G contains k
disjoint copies of cycles from Fm. Combining this with Step
1 of the algorithm of Thomassen, we conclude that every
graph G either contains k copies of cycles from Fm, or there
is a subset S of f(k) = Õ(k2) vertices, whose removal from G

disconnects all such cycles; a stronger bound of f(k) = Õ(k)
can be obtained by refining the Step 1 argument using a
divide and conquer analysis [19].
There is a large body of work in graph theory and combi-
natorics on Erdos-Pósa-type results. Several of these rely
on the Grid-Minor Theorem, and consequently the function
f(k) is shown to be exponential (or even worse) in k. Some
fundamental results in this area can be improved to obtain
a bound polynomial in k, using Theorem 1.1 and the gen-
eral framework outlined above. For example, Robertson and
Seymour [32] derived the following as an important conse-
quence of the Grid-Minor Theorem. Given any fixed graph
H, let F(H) be the family of all graphs that contain H as
a minor. Then F(H) has the Erdos-Pósa property iff H is
planar. However, the bound they obtained for f(k) is ex-
ponential in k. Using the above general framework, we can
show that f(k) = O(k · poly log(k)) for any fixed H.

Improved running times for Fixed-Parameter Tractability.
The theory of bidimensionality [10] is a powerful methodol-
ogy in the design of fixed-parameter tractable (FPT) algo-
rithms. It led to sub-exponential (in the parameter k) time
FPT algorithms for bidimensional parameters (formally de-
fined in Section 4) in planar graphs, and more generally
graphs that exclude a fixed graph H as a minor. The theory
is based on the Grid-Minor Theorem. However, in general
graphs, the weak bounds of the Grid-Minor Theorem meant
that one could only derive FPT algorithms with running

time of the form 22O(k2.5)

nO(1), as shown by Demaine and
Hajiaghayi [14]. Our results lead to algorithms with run-

ning times of the form 2k poly log(k)nO(1) for the same class
of problems as in [14]. Thus, one can obtain FPT algo-
rithms for a large class of problems in general graphs via a
generic methodology, where the running time has a singly-

3Throughout the paper we use Õ notation to suppress poly-
logarithmic factors.



exponential dependence on the parameter k.

The thrust of this paper is to prove Theorems 1.1 and 1.2,
and to highlight their applicability as general tools. The
applications described in Section 4 are of that flavor; we
have not attempted to examine specific problems in depth.
We believe that the theorems, and the technical ideas in
their proofs, will have further applications.

Overview of techniques and discussion. A significant
contribution of this paper is the formulation of the decompo-
sition theorems for treewidth, and identifying their applica-
tions. The main new and non-trivial technical contribution
is the proof of Theorem 1.1. The proof of Theorem 1.2 is
similar in spirit to the recent work of [8] and [5], who ob-
tained a special case of Theorem 1.2 with h = poly log k,
and used it to design algorithms for low-congestion routing
in undirected graphs. We note that Theorem 1.1 gives a
substantially different tradeoff between the parameters h, r
and k, when compared to Theorem 1.2, and leads to the
improved results for the two applications we mentioned ear-
lier. Its proof uses new ingredients with a connection to
decomposing expanders as explained below.

Contracted graph, well-linked decomposition, and
expanders: The three key technical ingredients in the proof
of Theorem 1.1 are in the title of the paragraph. To illus-
trate some key ideas we first consider how one may prove
Theorem 1.1 if G is an n-vertex constant-degree expander,
which has treewidth Ω(n). At a high level, one can achieve
this as follows. We can take h disjoint copies of an expander
with Ω(r) nodes each (the expansion certifies that treewidth
of each copy is r), and “embed” them into G in a vertex-
disjoint fashion. This is roughly possible, modulo various
non-trivial technical issues, using short-path vertex-disjoint
routing in expanders [24]. Now consider a general graph
G. For instance it can be a planar graph on n nodes with
treewidth O(

√
n); note that the ratio of treewidth to the

number of nodes is very different than that in an expander.
Here we employ a different strategy, where we cut along a
small separator and retain large treewidth on both sides and
apply this iteratively until we obtain the desired number of
subgraphs. The non-trivial part of the proof is to be able
to handle these different scenarios. Another technical dif-
ficulty is the following. Treewidth of a graph is a global
parameter and there can be portions of the graph that can
be removed without changing the treewidth. It is not easy
to cleanly characterize the minimal subgraph of G that has
roughly the same treewidth as that of G. A key technical
ingredient here is borrowed from previous work on graph
decompositions [27, 8], namely, the notion of a contracted
graph. The contracted graph tries to achieve this minimal-
ity, by contracting portions of the graph that satisfy the
following technical condition: they have a small boundary
and the boundary is well-linked with respect to the con-
tracted portion. Finally, a recurring technical ingredient is
the notion of a well-linked decomposition. This allows us
to remove a small number of edges while ensuring that the
remaining pieces have good conductance. This high-level
clustering idea has been crucial in many applications.

Related work on grid-like minors and (perfect) bram-
bles: An important ingredient in the decomposition results
is a need to certify that the treewidth of a given graph
is large, say at least r. Interestingly, despite being NP-
Hard to compute, the treewidth of a graph G has an exact

min-max formula via the bramble number [34] (see Section
2). However, Grohe and Marx [20] have shown that there
are graphs G (in fact expanders) for which a polynomial-

sized bramble can only certify that treewidth of G is Ω(
√
k)

where k = tw(G); certifying that G has larger treewidth
would require super-polynomial sized brambles. Kreutzer
and Tamari [23], building on [20], gave efficient algorithms

to construct brambles of order Ω̃(
√
k). They also gave ef-

ficient algorithms to compute “grid-like” minors introduced
by Reed and Wood [30] where it is shown that G has a
grid-like minor of size ` as long as tw(G) = Ω(`4

√
log `). In

some applications it is feasible to use a grid-like minor in
place of a grid and obtain improved results. Kreutzer and
Tamari [23] used them to define perfect brambles and gave
a meta-theorem to obtain FPT algorithms, for a subclass
of problems considered in [14], with a single-exponential de-
pendence on the parameter k. Our approach in this paper
is different, and in a sense orthogonal, as we explain below.
First, a grid-like minor is a single connected structure that
does not allow for a decomposition into disjoint grid-like mi-
nors. This limitation means one needs a global argument to
show that a grid-like minor of a certain size implies a lower
bound on some parameter of interest. In contrast, our the-
orems are specifically tailored to decompose the graph and
then apply a local argument in each subgraph, typically to
prove that the parameter is at least one in each subgraph.
The advantage of our approach is that it is agnostic to how
one proves a lower bound in each subgraph; we could use
the Grid-Minor Theorem or the more efficient grid-like mi-
nor theorem in each subgraph. Kreutzer and Tazari [23]
derive efficient FPT algorithms for a subclass of problems
considered in [14] where the class is essentially defined as
those problems for which one can use a grid-like minor in
place of a grid in the global sense described above. In con-
trast, we can generically handle all the problems considered
in [14] as explained in Section 4.
Second, we discuss the efficiency gains possible via our ap-
proach. It is well-known that an α-approximation for sparse
vertex separators gives anO(α)-approximation for treewidth.

Feige et al. [17] obtain an O(
√

log tw(G))-approximation
for treewidth. Thus we can efficiently certify treewidth to
within a much better factor via separators than with bram-
bles. More explicitly, well-linked sets provide a compact
certificate for treewidth; informally, a set of vertices X is
well-linked in G if there are no small separators for X —
see Section 2 for formal definitions. The tradeoffs we ob-
tain through well-linked sets are stronger than via bram-
bles. In particular, the FPT algorithms that we obtain have
a running time 2k poly log(k)nO(1) where k is the parameter
of interest. In contrast the algorithms obtained via perfect
brambles in [23] have running times of the form 2poly(k)nO(1)

where the polynomial is incurred due to the inefficiency in
the relationship between treewidth and the size of a grid-
like minor. Although the precise dependence on k depends
on the parameter of interest, the current bounds require at
least a quadratic dependence on k.

Organization: Most of the proofs, and in particular, all
the details of proof of Theorem 1.2 are omitted due to space
constraints, and can be found in the full version of the paper.
Section 3 describes our proof of Theorem 1.1. Section 4
describes the applications and it relies only on the statement
of Theorem 1.1, and can be read independently.



2. PRELIMINARIES AND NOTATION
Given a graph G and a set of vertices A, we denote by
outG(A) the set of edges with exactly one end point in A
and by EG(A) the set of edges with both end points in A.
For disjoint sets of vertices A,B the set of edges with one
end point in A and the other in B is denoted by EG(A,B).
When clear from context, we omit the subscript G. All log-
arithms are to the base of 2. We use the following simple
claim several times.

Claim 2.1 Let {x1, . . . , xn} be a set of non-negative inte-
gers, with

∑
i xi = N , and xi ≤ 2N/3 for all i. Then we

can efficiently compute a partition (A,B) of {1, . . . , n}, such
that

∑
i∈A xi,

∑
i∈B xi ≥ N/3.

Graph partitioning. Suppose we are given any graph
G = (V,E) with a set T of vertices called terminals. Given
any partition (S, S) of V (G), the sparsity of the cut (S, S)

with respect to T is Φ(S, S) = |E(S,S)|
min{|T∩S|,|T∩S|} . The con-

ductance of the cut (S, S) is Ψ(S, S) = |E(S,S)|
min{|E(S)|,|E(S)|} .

We then denote: Φ(G) = minS⊂V {Φ(S, S)}, and Ψ(G) =
minS⊂V {Ψ(S, S)}. Arora, Rao and Vazirani [3] showed an
algorithm that, given a graph G with a set T of k termi-
nals, produces a cut (S, S) with Φ(S, S) ≤ αARV(k) · Φ(G),
where αARV(k) = O(

√
log k). Their algorithm can also be

used to find a cut (S, S) with Ψ(S, S) ≤ αARV(m) · Ψ(G),
where m = |E(G)|. We denote this algorithm by AARV, and
its approximation factor by αARV from now on.

Well-linkedness and treewidth. The treewidth of a graph
G = (V,E) is typically defined via tree decompositions. A
tree-decomposition forG consists of a tree T = (V (T ), E(T ))
and a collection of sets {Xv ⊆ V }v∈V (T ) called bags, such
that the following two properties are satisfied: (i) for each
edge ab ∈ E, there is some node v ∈ V (T ) with both a, b ∈
Xv and (ii) for each vertex a ∈ V , the set of all nodes of T
whose bags contain a form a connected subtree of T . The
width of a given tree decomposition is maxv∈V (T ) |Xv| − 1,
and the treewidth of a graph G, denoted by tw(G), is the
width of a minimum-width tree decomposition for G.
It is convenient to work with well-linked sets instead of
treewidth. We describe the relationship between them af-
ter formally defining the notion of well-linkedness that we
require.

Definition 2.1 We say that a set T of vertices is α-well-
linked4 in G, iff for any partition (A,B) of the vertices of G
into two subsets, |E(A,B)| ≥ α ·min{|A ∩ T |, |B ∩ T |}.

Definition 2.2 We say that a set T of vertices is node-well-
linked in G, iff for any pair (T1, T2) of equal-sized subsets
of T , there is a collection P of |T1| node-disjoint paths,
connecting the vertices of T1 to the vertices of T2. (Note
that T1, T2 are not necessarily disjoint, and we allow empty
paths).

4This notion of well-linkedness is based on edge-cuts and
we distinguish it from node-well-linkedness that is directly
related to treewidth. For technical reasons it is easier to
work with edge-cuts and hence we use the term well-linked
to mean edge-well-linkedness, and explicitly use the term
node-well-linkedness when necessary.

Lemma 2.1 (Reed [29]) Let k be the size of the largest
node-well-linked set in G. Then k ≤ tw(G) ≤ 4k.

We then obtain the following simple corollary, whose proof
appears in the full version.

Corollary 2.1 Let G be any graph with maximum vertex
degree at most ∆, and let T be any subset of vertices, such
that T is α-well-linked in G, for some 0 < α < 1. Then

tw(G) ≥ α·|T |
3∆
− 1.

Lemma 2.1 guarantees that any graph G of treewidth k con-
tains a set X of Ω(k) vertices, that is vertex-well-linked in
G. Kreutzer and Tazari [23] give a constructive version of
this lemma, obtaining a set X with slightly weaker proper-
ties. Below is a rephrasing of Lemma 3.7 in [23] in terms
convenient to us.

Lemma 2.2 There is a polynomial-time algorithm, that, given
a graph G of treewidth k, finds a set X of Ω(k) vertices,
such that X is α∗ = Ω(1/ log k)-well-linked in G. Moreover,
for any partition (X1, X2) of X into two equal-sized subsets,
there is a collection P of paths connecting every vertex of
X1 to a distinct vertex of X2, such that every vertex of G
participates in at most 1/α∗ paths in P.

Well-linked decompositions. Let S be any subset of ver-
tices in G. Informally, we say that S is α-good iff the subset
|out(S)| of edges is α-well-linked in the graph G[S]∪out(S).
Formally, S is α-good5, iff for any partition (A,B) of S,
|E(A,B)| ≥ α ·min{|out(A) ∩ out(S)|, |out(B) ∩ out(S)|}.
A set D : out(S) × out(S) → R+ of demands defines, for
every pair e, e′ ∈ out(S), a demand D(e, e′). We say that
D is a c-restricted set of demands, iff for every e ∈ out(S),∑
e′∈out(S) D(e, e′) ≤ c. Assume that S is an α-good subset

of vertices in G. From the duality of cuts and flows, and
from the known bounds on the flow-cut gap in undirected
graphs [25], if D is any set of c-restricted demands over
out(S), then it can be fractionally routed inside G[S] with
edge-congestion at most O(c log k′/α), where k′ = |out(S)|.
The following theorem, in its many variations, (sometimes
under the name of ”well-linked decomposition”) has been
used extensively in routing and graph decomposition (see
e.g. [27, 6, 7, 28, 2, 8, 9, 5]). The proof appears in the full
version.

Theorem 2.1 Let S be any subset of vertices of G, with
|out(S)| = k′, and let 0 < α < 1

8αARV(k′)·log k′ be a parameter.

Then there is an efficient algorithm to compute a partition
W of S, such that for each W ∈ W, |out(W )| ≤ k′ and W is
α-good. Moreover,

∑
W∈W |out(W )| ≤ k′(1+16α ·αARV(k′) ·

log k′) = k′(1 +O(α log3/2 k′)). The parameter αARV(k′) can
be set to 1 if the efficiency of the algorithm is not relevant.

Pre-processing to reduce maximum degree. Let G be
any graph with tw(G) = k. The proofs of Theorems 1.1 and
1.2 work with edge-well-linked sets instead of the node-well-
linked ones. In order to be able to translate between both
types of well-linkedness and the treewidth, we need to reduce

5The same property was called ”bandwidth property” in [27],
and in [8, 9], set S with this property was called α-well-
linked. We choose this notation to avoid confusion with
other notions of well-linkedness used in this paper.



the maximum vertex degree of the input graph G. Using the
cut-matching game of Khandekar, Rao and Vazirani [22],
one can reduce the maximum vertex degree to O(log3 k),
while only losing a poly log k factor in the treewidth, as was
noted in [5] (see Remark 2.2). We state the theorem formally
below. A brief proof sketch appears in the full version.

Theorem 2.2 Let G be any graph with treewidth k. Then
there is an efficient randomized algorithm to compute a sub-
graph G′ of G, with maximum vertex degree at most O(log3 k)
such that tw(G′) = Ω(k/ log6 k).

Remark 2.3 In fact a stronger result, giving a constant
bound on the maximum degree follows from the expander
embedding result in [5]. However, the bound on the treewidth
guaranteed is worse than in the preceding theorem by a (large)
polylogarithmic factor. For our algorithms, the polylogarith-
mic bound on the degree guaranteed by Theorem 2.2 is suf-
ficient.

3. PROOF OF THEOREM 1.1
We start with a graph G whose treewidth is at least k. For
our algorithm, we need to know the value of the treewidth
of G, instead of the lower bound on it. We can compute the
treewidth of G approximately, to within an O(log(tw(G)))-
factor, using the algorithm of Amir [1]. Therefore, we as-
sume that we are given a value k′ ≥ k, such that Ω(k′/ log k′) ≤
tw(G) ≤ k′.
We then apply Theorem 2.2, to obtain a subgraph G′ of G
of maximum vertex degree ∆ = O(log3 k′) and treewidth
treewidth Ω(k′/ log7 k′). Using Lemma 2.2, we compute a
subset T of Ω(k′/ log7 k′) vertices, such that T is Ω(1/ log k′)-
well-linked in G′.
In order to simplify the notation, we denote G′ by G and
|T | by k from now on. From the above discussion, tw(G) ≤
ck log7 k for some constant c, T is Ω(1/ log k)-well-linked in
G, and the maximum vertex degree in G is ∆ = O(log3 k);
we define the parameter α∗ to be Ω(1/ log k) which is the
well-linkedness guarantee given by Lemma 2.2. It is now
enough to find a collection G1, . . . , Gh of vertex-disjoint sub-
graphs of G, such that tw(Gi) ≥ r for each i. We use the
parameter r′ = c′∆2r log11 k, where c′ is a sufficiently large
constant. We assume without loss of generality that k is
large enough, so, for example, k ≥ c′′r log30 k, where c′′ is
a large enough constant. We also assume without loss of
generality that G is connected.

Definition 3.1 We say that a subset S of vertices in G is
an acceptable cluster, iff |out(S)| ≤ r′, |S ∩ T | ≤ |T |/2, and

S is αG-good, for αG = 1
256αARV(k) log k

= Θ
(

1
log1.5 k

)
.

Notice that since the maximum vertex degree inG is bounded
by ∆ < r′, if S consists of a single vertex, then it is an ac-
ceptable cluster. Given any partition C of the vertices of G
into acceptable clusters, we let HC be the contracted graph
associated with C. Graph HC is obtained from G by con-
tracting every cluster C ∈ C into a single vertex vC , that
we refer to as a super-node. We delete self-loops, but leave
parallel edges. Notice that the maximum vertex degree in
HC is bounded by r′. We denote by ϕ(C) the total number
of edges in HC . Below is a simple observation that follows

from the α∗-well-linkedness of T in G. The proof appears in
the full version of the paper.

Observation 3.1 Let C be any partition of the vertices of
G into acceptable clusters. Then ϕ(C) ≥ α∗k/3.

Throughout the algorithm, we maintain a partition C of
V (G) into acceptable clusters. At the beginning, C = {{v} |
v ∈ V (G)}. We then perform a number of iterations. In
each iteration, we either compute a partition of G into h
disjoint sub-graphs, of treewidth at least r each, or find a
new partition C′ of V (G) into acceptable clusters, such that
ϕ(C′) ≤ ϕ(C) − 1. The execution of each iteration is sum-
marized in the following theorem.

Theorem 3.1 There is an efficient algorithm, that, given a
partition C of V (G) into acceptable clusters, either computes
a partition of G into h disjoint subgraphs of treewidth at least
r each, or returns a new partition C′ of V (G) into acceptable
clusters, such that ϕ(C′) ≤ ϕ(C)− 1.

Clearly, after applying Theorem 3.1 at most |E(G)| times,
we obtain a partition of G into h disjoint subgraphs of
treewidth at least r each. From now on we focus on proving
Theorem 3.1. Given a current partition C of V (G) into ac-
ceptable clusters, let H denote the corresponding contracted
graph. We denote n = |V (H)|, m = |E(H)|. Notice that
from Observation 3.1, m ≥ α∗k/3. We now consider two
cases, and prove Theorem 1.1 separately for each of them.
The first case is when n ≥ k5.

3.1 Case 1: n ≥ k5

We note that n is large when compared to the treewidth and
hence we expect the graph H should have low expansion.
Otherwise, we get a contradiction by showing that tw(G) >
ck log7 k. The proof strategy in the low-expansion regime is
to repeatedly decompose along balanced partitions to obtain
h subgraphs with treewidth at least r each.
Let z = k5. The algorithm first chooses an arbitrary subset
Z of z vertices from H. Suppose we are given any subset
S of vertices of H. We say that a partition (A,B) of S is
γ-balanced (with respect to Z), iff min{|A ∩ Z|, |B ∩ Z|} ≥
γ|S ∩ Z|. We say that it is balanced iff it is γ-balanced for
γ = 1

4
. The following claim is central to the proof of the

theorem in Case 1.

Claim 3.1 Let S be any subset of vertices in H with |S ∩
Z| > 100, and let (A,B) a balanced partition of S (with
respect to Z), minimizing |EH(A,B)|. Then |EH(A,B)| ≤
k2.

The proof shows that if |EH(A,B)| > k2, then tw(G) >
ck log7 k, leading to a contradiction. We defer the proof to
the full version.
We now show an algorithm to find the desired collection
G1, . . . , Gh of subgraphs of G. We use the algorithm AARV

of Arora, Rao and Vazirani [3] to find a balanced partition of
a given set S of vertices of H; the algorithm is applied to G
with S∩Z as the terminals. Given any such set S of vertices,
the algorithm AARV returns a γARV-balanced partition (A,B)
of S, with |EH(A,B)| ≤ αARV(z) · OPT, where OPT is the
smallest number of edges in any balanced partition, and γARV

is some constant. In particular, from Claim 3.1, |E(A,B)| ≤
αARV(z) · k2, if |S ∩ Z| ≥ 100.



We start with S = {V (H)}, and perform h iterations. At
the beginning of iteration i, set S will contain i disjoint
subsets of vertices of H. An iteration is executed as follows.
We select a set S ∈ S, maximizing |Z ∩ S|, and compute
a γARV-balanced partition (A,B) of S, using the algorithm
AARV. We then remove S from S, and add A and B to
it instead. Let S = {X1, . . . , Xh+1} be the final collection
of sets after h iterations. From Claim 3.1, the increase in∑
X∈S |outH(X)| is bounded by k2αARV(z) in each iteration.

Therefore, throughout the algorithm,
∑
X∈S |outH(X)| ≤

k2αARV(z)h holds. In the following observation, whose proof
appears in the full version, we show that for each Xi ∈ S,
|Xi ∩ Z| ≥ γARV·z

2h
.

Observation 3.2 Consider some iteration i of the algo-
rithm. Let Si be the collection of vertex subsets at the begin-
ning of iteration i, let S ∈ Si be the set that was selected in
this iteration, and let Si+1 be the set obtained after replacing
S with A and B. Then |A∩Z|, |B ∩Z| ≥ γARV · |S ∩Z|, and
for each S′ ∈ Si+1, |S′ ∩ Z| ≥ γARV·z

2h
.

Among the sets X1, . . . , Xh+1, there can be at most one set

Xi, with |T ∩
(⋃

vC∈Xi
C
)
| > |T |/2. We assume without

loss of generality that this set is Xh+1, and we will ignore
it from now on. Consider now some set Xi, for 1 ≤ i ≤
h. Since graph H is connected, and Xi contains at least
γARV·z

2h
vertices (the vertices of Xi ∩ Z), while |outH(Xi)| ≤

k2hαARV(z), it follows that |EH(Xi)| ≥ 1
2

(
γARV·z

2h
− k2hαARV(z)

)
≥

γARV·z
8h

> 64|outH(Xi)|, as z = k5, and k is large enough.
Let X ′i be the subset of vertices obtained from Xi, by un-
contracting all super-nodes ofXi. Then |EG(X ′i)| ≥ |EH(Xi)| ≥
64|outH(Xi)| = 64|outG(X ′i)|.
Our next step is to compute a decomposition Wi of X ′i into
αG-good clusters, using Theorem 2.1. Notice that k′ =
|outG(X ′i)| ≤ k2hαARV(z) ≤ 5k2hαARV(k) < k4 since z = k5;
therefore the choice of αG = 1

256αARVk log k
< 1

8αARV(k′) log k′

satisfies the conditions of the theorem.
Assume first that for every cluster Ci ∈ Wi, |outG(Ci)| ≤
r′. Then we can obtain a new partition C′ of V (G) into
acceptable clusters with ϕ(C′) ≤ ϕ(C) − 1, as follows. We
add to C′ all clusters C ∈ C that are disjoint from X ′i, and
we add all clusters in Wi to it as well. Clearly, the resulting
partition C′ consists of acceptable clusters only. We now
show that ϕ(C′) ≤ ϕ(C)− 1. Indeed,

ϕ(C′) ≤ ϕ(C)− |outH(Xi)| − |EH(Xi)|+
∑
R∈Wi

|outG(R)|

From the choice of αG,
∑
R∈Wi

|outG(R)| < 3|outG(X ′i)| =

3|outH(Xi)| holds, while |EH(Xi)| ≥ 64|outH(Xi)|. There-
fore, ϕ(C′) ≤ ϕ(C)− 1.
Assume now that for each 1 ≤ i ≤ h, there is at least one
cluster Ci ∈ Wi with |outG(Ci)| ≥ r′. Let {C1, . . . , Ch} be
the resulting collection of clusters, where for each i, Ci ∈
Wi. For 1 ≤ i ≤ h, we now let Gi = G[Ci]. It is easy to
see that the graphs G1, . . . , Gh are vertex-disjoint. It now
only remains to show that each graph Gi has treewidth at
least r. Fix some 1 ≤ i ≤ h, and let Γi ⊆ Ci contain the
endpoints of edges in outG(Ci), that is, Γi = {v ∈ Ci | ∃e =
(u, v) ∈ outG(Ci)}. Then, since Ci is an αG-good set of
vertices, Γi is αG-well-linked in the graph Gi. Moreover,

|Γi| ≥ |out(Ci)|/∆ ≥ r′/∆. From Corollary 2.1, tw(Gi) ≥
αGr

′

3∆2 − 1 ≥ r.

3.2 Case 2: n < k5

Since vertex degrees in H are bounded by r′, m = O(k5r′) =
O(k6). The algorithm for Case 2 consists of two phases. In
the first phase, we partition V (H) into a number of disjoint
subsets X1, . . . , X`, where, on the one hand, for each Xi,
the conductance of H[Xi] is large, while, on the other hand,∑`
i=1 |out(Xi)| ≤ |E(H)|/10. We discard all clusters Xi

with |out(Xi)| ≥ |E(Xi)|/2, denoting by X the collection
of the remaining clusters, and show that

∑
Xi∈X |E(Xi)| =

Ω(α∗k). If any cluster X ∈ X has |E(X)| ≤ 2r′, then we
find a new partition C′ of the vertices of G into acceptable
clusters, with ϕ(C′) ≤ ϕ(C) − 1. Therefore, we can assume
that for every cluster X ∈ X , |E(X)| > 2r′. We then pro-
ceed to the second phase. Here, we take advantage of the
high conductance of each Xi ∈ X to show that Xi can be
partitioned into hi vertex-disjoint sub-graphs, such that we
can embed a large enough expander into each such subgraph.
The value hi is proportional to |E(Xi)|, and we ensure that∑
Xi∈X hi ≥ h to get the desired number of subgraphs. The

embedding of the expander into each sub-graph is then used
as a certificate that this sub-graph (or more precisely, a sub-
graph of G obtained after un-contracting the super-nodes)
has large treewidth.

Phase 1.
We use the following theorem, that allows us to decompose
any graph into a collection of high-conductance connected
components, by only removing a small fraction of the edges.
A similar procedure has been used in previous work, and can
be proved using standard graph decomposition techniques.
The proof is deferred to the full version.

Theorem 3.2 Let H be any connected n-vertex graph con-
taining m edges. Then there is an efficient algorithm to
compute a partition X1, . . . , X` of the vertices of H, such
that: (i) for each 1 ≤ i ≤ `, the conductance of graph H[Xi],

Ψ(H[Xi]) ≥ 1
160αARV(m) logm

; and (ii)
∑`
i=1 |out(Xi)| ≤ m/10.

The algorithm in phase 1 uses Theorem 3.2 to partition the
contracted graph H into a collection {X1, . . . , X`} of clus-
ters. Recall that m = |E(H)|, and n = |V (H)|. We are

guaranteed that
∑`
i=1 |E(Xi)| ≥ 0.9m and

∑`
i=1 |out(Xi)| ≤

0.1m from Theorem 3.2.
Let X ′ contain all clusters Xi with |out(Xi)| ≥ 1

2
|E(Xi)|,

and let X contain all remaining clusters. Notice that∑
Xi∈X ′ |E(Xi)| ≤ 2

∑
Xi∈X ′ |out(Xi)| ≤ 2

∑`
i=1 |out(Xi)|,

which is at most 0.2m. Therefore,
∑
Xi∈X |E(Xi)| ≥ 1

2
m ≥

α∗k
6

from Observation 3.1. From now on we only focus on
clusters in X .
Assume first that there is some clusterXi ∈ X , with |E(Xi)| ≤
2r′. We claim that in this case, we can find a new parti-
tion C′ of the vertices of G into acceptable clusters, with
ϕ(C′) ≤ ϕ(C)− 1. We first need the following simple obser-
vationwhose proof appears in the full version.

Observation 3.3 Assume that for some Xi ∈ X , |E(Xi)| ≤
2r′ holds. Let X ′ =

⋃
vC∈Xi

C. Then |X ′ ∩ T | < |T |/2.



Let X ′i be the set of vertices of G, obtained from Xi by un-
contracting the super-nodes of Xi. We apply Theorem 2.1
to the set X ′i of vertices, to obtain a partition Wi of X ′i
into αG-good clusters. It is easy to see that all clusters in
Wi are acceptable, since we are guaranteed that for each
R ∈ Wi, |out(R)| ≤ |out(X ′i)| ≤ r′, and |R ∩ T | < |T |/2.
The new partition C′ of the vertices of G into acceptable
clusters is obtained as follows. We include all clusters of
C that are disjoint from X ′i, and we additionally include
all clusters in Wi. From the above discussion, all clus-
ters in C′ are acceptable. It now only remains to bound
ϕ(C′). It is easy to see that ϕ(C′) ≤ ϕ(C) − |EH(Xi)| −
|outH(Xi)|+

∑
R∈Wi

|out(R)|. The choice of αG ensures that∑
R∈Wi

|out(R)| ≤ 1.25|outG(X ′i)| = 1.25|outH(Xi)|. Since

|EH(Xi)| > 2|outH(Xi)|, we get that ϕ(C′) ≤ ϕ(C)− 1.
From now on, we assume that for every cluster Xi ∈ X ,
|E(Xi)| ≥ 2r′.

Phase 2.
For convenience, we assume without loss of generality, that
X = {X1, . . . , Xz}. For 1 ≤ i ≤ z, let mi = |E(Xi)|. Recall
that from the above discussion, mi ≥ r′, and

∑z
i=1 mi ≥

α∗k/6. We set hi = d 6mih
α∗k e. Let X ′i =

⋃
vC∈Xi

C. In the
remainder of this section, we will partition, for each 1 ≤
i ≤ z, the graph G[X ′i] into hi vertex-disjoint subgraphs, of

treewidth at least r each. Since
∑z
i=1 hi ≥

∑z
i=1

6mih
α∗k ≥ h,

this will complete the proof of Theorem 1.1.
From now on, we focus on a specific graph H[Xi], and its
corresponding un-contracted graph G[X ′i]. Our algorithm
performs hi iterations. In the first iteration, we embed an
expander over r′′ = r poly log k vertices into H[Xi]. We then
partition H[Xi] into two sub-graphs: H1, containing all ver-
tices that participate in this embedding, and H ′1 contain-
ing all remaining vertices. Our embedding will ensure that∑
v∈V (H1) dH(v) ≤ r2 poly log k, or in other words, we can

obtain H ′1 from H[Xi] by removing only r2 poly log k edges
from it, and deleting isolated vertices. We then proceed to
the second iteration, and embed another expander over r′′

vertices into H ′1. This in turn partitions H ′1 into H2, that
contains the embedding of the expander, and H ′2, containing
the remaining edges. In general, in iteration j, we start with
a sub-graph H ′j−1 of H, and partition it into two subgraphs:
Hj containing the embedding of an expander, and H ′j that
becomes an input to the next iteration. Since we ensure
that for each graph Hj , the total out-degree of its vertices is
bounded by r2 poly log k, each residual graph H ′j is guaran-
teed to contain a large fraction of the edges of the original
graph H[Xi]. We show that this in turn guarantees that H ′j
contains a large sub-graph with a large conductance, which
will in turn allow us to embed an expander over a subset of
r′′ vertices into H ′j in the following iteration.
We start with the following theorem that forms the technical
basis for iteratively embedding multiple expanders of certain
size into a larger expander. The proof appears in the full
version.

Theorem 3.3 Let G be any graph with |E(G)| = m and
Ψ(G) ≥ γ, where γ ≤ 0.1. Let H be a sub-graph obtained
from G by removing some subset S0 of vertices and all their
adjacent edges, so H = G−S0. Assume further that |E(G)\
E(H)| ≤ γm/8. Then we can efficiently compute a subset S
of vertices in H, such that H[S] contains at least m/2 edges

and has conductance at least γ
4αARV(m)

.

The next theorem is central to the execution of Phase 2.
The theorem shows that, if we are given a sub-graph H ′ of
H that has a high enough conductance, and contains at least
r′ edges, then we can find a subset S of r′ vertices of H ′,
such that the following holds: if S′ =

⋃
vC∈S

C, and G′ =

G[S′], then tw(G′) ≥ r. In order to show this, we embed an
expander over a set of r′′ = r poly log k of vertices into H ′,
and define S to be the set of all vertices ofH ′ participating in
this embedding. The embedding of the expander into H ′[S]
is then used to certify that the treewidth of the resulting
graph G′ is at least r. The proof of the following theorem
appears in the full version.

Theorem 3.4 Let H ′ be any vertex-induced subgraph of H,
such that |E(H ′)| ≥ r′, and Ψ(H ′) ≥ 1

640α2
ARV(m) logm

. Then

there is an efficient algorithm to find a subset S of at most
r′ vertices of H ′, such that, if G′ is obtained from H ′[S] by
un-contracting the super-nodes in S, then tw(G′) ≥ r.

We are now ready to complete the description of the algo-
rithm for Phase 2. Our algorithm considers each one of the
subsets Xi ∈ X of vertices separately. Fix some 1 ≤ i ≤ z. If
hi = 1, then by Theorem 3.4, graph G[Xi] has treewidth at
least r. Otherwise, we perform hi iterations. At the begin-
ning of every iteration j, we are given some vertex-induced
subgraph Hj of H[Xi], with |E(Hj)| ≥ mi/2 and Ψ(Hj) ≥

1
640α2

ARV(m) logm
. At the beginning, H1 = H[Xi], and as ob-

served before, Ψ(H1) ≥ 1
160αARV(m) logm

≥ 1
640α2

ARV(m) logm
.

In order to execute the jth iteration, we apply Theorem 3.4
to graph H ′ = Hj , and compute a subset S of at most r′

vertices of H ′. We denote this set of vertices by Sij , and

we let Hi
j = H[Sij ]. We also let Gij be the sub-graph of G,

obtained by un-contracting the super-nodes of Hi
j . From

Theorem 3.4, tw(Gij) ≥ r. We then apply Theorem 3.3 to

graph G = H[Xi], set S0 =
⋃j
j′=1 S

i
j′ , and H = G \ S0, to

obtain the graph Hj+1 = H[S] that becomes an input to the
next iteration.
In order to show that we can carry this process out for hi
iterations, it is enough to prove that

∑hi
j=1

∑
v∈Si

j
dH(v) ≤

γmi/8, where γ = 1
160αARV(m) logm

. Indeed, since the vertex

degrees in H are bounded by r′,

hi∑
j=1

∑
v∈Si

j

dH(v) ≤
hi∑
j=1

r′·|Sij | ≤ (r′)2·hi ≤ O
(
mir

2h poly log k

α∗k

)
,

by substituting hi = d 6mih
α∗k e. Since we assume that r2h <

k/ poly log k, and m = O(k6), it follows that the sum is
bounded by mi

1280αARV(m) logm
, as required.

Our final collection of subgraphs is Π = {Gij | 1 ≤ i ≤ z, 1 ≤
j ≤ hi}. From the above discussion, Π contains

∑z
i=1 hi ≥ h

subgraphs of treewidth at least r each.

4. APPLICATIONS
We now describe two applications of Theorem 1.1. Consider
an integer-valued parameter P that associates a number
P (G) with each graph G. For instance, P (G) could be the



size of the smallest vertex cover of G, or it could be the maxi-
mum number of vertex-disjoint cycles in G. We say that P is
minor-closed if P (G) ≥ P (H) for any minor H of G, that is,
the value does not increase when deleting edges or contract-
ing edges. A number of interesting parameters are minor-
closed. Following [10], we say that P has the parameter-
treewidth bound, if there is some function f : Z+ → Z+

such that P (G) ≤ k implies that tw(G) ≤ f(k). In other
words, if the treewidth of G is large, then P (G) must also
be large. A minor-closed property P has the parameter-
treewidth bound iff it has the bound on the family of grids.
This is because an r× r grid has treewidth r, and the Grid-
Minor Theorem shows that sufficiently large treewidth im-
plies the existence of a large grid minor. This approach also
has the advantage that grids are simple and concrete graphs
to reason about. However, this approach for proving param-
eter treewidth bounds suffers from the (current) qunatitative
weakness in the Grid-Minor theorem. For a given parame-
ter P , one can of course focus on methods that are tailored
to it. Alternatively, good results can be obtained in spe-
cial classes of graphs such as planar graphs, and graphs that
exclude a fixed graph as a minor, due to the linear relation-
ship between the treewidth and the grid-minor size in such
graphs. Theorem 1.1 allows for a generic method to change
the dependence f(k) from exponential to polynomial, under
some mild restrictions. The following subsections describe
these applications.

4.1 FPT Algorithms in General Graphs
Let P be any minor-closed graph parameter, and consider
the decision problem associated with P : Given a graph G
and an integer k, is P (G) ≤ k? We say that parameter P
is fixed-parameter tractable, iff there is an algorithm for this
decision problem, whose running time is h(k) · nO(1) where
n is the size of G and h is a function that depends only on k.
There is a vast literature on Fixed-Parameter Tractability
(FPT), and we refer the reader to [15, 26, 18, 4].
Observe that for any minor-closed parameter P , and any
fixed integer k, the family F = {G | P (G) ≤ k} of graphs is
a minor-closed family. That is, if G ∈ F , and G′ is a minor of
G, then G′ ∈ F . Therefore, from the work of Robertson and
Seymour on graph minors and the proof of Wagner’s con-
jecture, there is a finite family HF of graphs, such that F is
precisely the set of all graphs that do not contain any graph
from HF as a minor. In particular, in order to test whether
P (G) ≤ k, we only need to check whether G contains a graph
from HF as a minor, and this can be done in time O(n3)
(where we assume that k is a constant), using the work of
Robertson and Seymour. However, even though the family
HF of graphs is known to exist, no explicit algorithms for
constructing it are known. The family HF of course depends
on P , and moreover, even for a fixed property P , it varies
with the parameter k. Therefore, the theory only guaran-
tees the existence of a non-uniform FPT algorithm for every
minor-closed parameter P . For this reason, it is natural to
consider various restricted classes of minor-closed parame-
ters. Motivated by the existence of sub-exponential time
algorithms on planar and H-minor-free graphs, a substan-
tial line of work has focused on bidimensional parameters
— see Demaine et al. [13], and the survey in [10]. Demaine
and Hajiaghayi [14] proved the following generic theorem on
Fixed-Parameter Tractability of minor-closed bidimensional
properties that satisfy some mild additional conditions.

Theorem 4.1 ([14]) Consider a minor-closed parameter P
that is positive on some g × g grid, is at least the sum over
the connected components of a disconnected graph, and can
be computed in h(w)nO(1) time given a width-w tree decom-
position of the graph. Then there is an algorithm that de-
cides whether P is at most k on a graph with n vertices in

[22O(g
√

k)5

+ h(2O(g
√
k)5)]nO(1) time.

The main advantage of the above theorem is its generality.
However, its proof uses the Grid-Minor Theorem, and hence
the running time of the algorithm is doubly exponential in
the parameter k. Demaine and Hajiaghayi also observed, in
the following theorem, that the running time can be reduced
to singly-exponential in k if the Grid-Minor Theorem can be
improved substantially.

Theorem 4.2 ([14]) Assume that every graph of treewidth
greater than Θ(g2 log g) has a g × g grid as a minor. Then
for every minor-closed parameter P satisfying the conditions
of Theorem 4.1, there is an algorithm that decides whether

P (G) ≤ k on any n-vertex graph G in [2O(g2k log(gk)) +

h(O(g2k log(gk)))]nO(1) time.

We show below that, via Theorem 1.1, we can bypass the
need to improve the Grid-Minor Theorem.

Theorem 4.3 Consider a minor-closed parameter P that
is positive on all graphs with treewidth ≥ p, is at least the
sum over the connected components of a disconnected graph,
and can be computed in h(w)nO(1) time given a width-w tree
decomposition of the graph. Then there is an algorithm that
decides whether P is at most k on a graph with n vertices

in [2Õ(p2k) + h(Õ(p2k))]nO(1) time.

Proof. Let k′ = Θ̃(p2k). If the given graph G has
treewidth greater than k′, then by Theorem 1.1 it can be
partitioned into k node-disjoint subgraphs G1, . . . , Gk where
tw(Gi) ≥ p for each i. Let G′ be obtained by the union
of these disconnected graphs (equivalently we remove the
edges that do not participate in the graphs Gi from G).
From the assumptions on P , P (Gi) ≥ 1 for each i, and
P (G′) ≥

∑
i P (Gi) ≥ k. Moreover, since P is minor-closed,

P (G) ≥ P (G′). Therefore, if tw(G) ≥ k′ = Ω̃(p2k) then
P (G) ≥ k must hold.
We use known algorithms, for instance [1], that, given a
graph G, either produce a tree decomposition of width at
most 4w or certify that tw(G) > w in 2O(w)nO(1) time.

Using such an algorithm we can detect in 2O(k′)nO(1) time
whether G has treewidth at least k′, or find a tree decom-
position of width at most 4k′.
If tw(G) ≥ k′, then, as we have argued above, P (G) ≥ k.
We then terminate the algorithm with a positive answer.
Otherwise, tw(G) < 4k′ and we can use the promised al-

gorithm that runs in time h(4k′) · nO(1) to decide whether
P (G) < k or not. The overall running time of the algorithm
is easily seen to be the claimed bound.

Remark 4.1 In the proof of Theorem 4.3 the assumption
on P being minor-closed is used only in arguing that P (G′) ≥
P (G). Thus, it suffices to assume that the parameter P
does not increase under edge deletions (in addition to the
assumption on P over disconnected components of a graph).



Note that the running time is singly-exponential in p and
k. How does one prove an upper bound on p, the min-
imum treewidth guaranteed to ensure that the parameter
value is positive? For some problems it may be easy to
directly obtain a good bound on p. The following corol-
lary shows that one can always use grid minors to obtain
a bound on p. The run-time dependence on the grid size
g is doubly exponential since we are using the Grid-Minor
Theorem, but it is only singly-exponential in the parame-
ter k. Thus, if g is considered to be a fixed constant, we
obtain singly-exponential Fixed-Parameter Tractability al-
gorithms in general graphs for all the problems that satisfy
the conditions in Theorem 4.1.

Corollary 4.1 Consider a minor-closed parameter P that
is positive on some g × g grid, is at least the sum over the
connected components of a disconnected graph, and can be
computed in h(w)nO(1) time given a width-w tree decom-
position of the graph. Then there is an algorithm that de-
cides whether P (G) ≤ k on a graph G with n vertices in

[2Õ(k·2O(g5)) + h(Õ(2O(g5)k))]nO(1) time.

Proof. If P is minor-closed and positive on some g × g
grid then it is positive on a graphG with treewidth p > 202g5

via Theorem 1.3. Plugging this value of p into the bound
from Theorem 4.3 gives the desired result.

Remark 4.2 The results in [30, 23] can be used to obtain a
singly exponential dependence on g as well, provided P can
be shown to be positive on a graph that contains a grid-like
minor of size g.

4.2 Bounds for Erdos-Pósa theorems
Let F be any family of graphs. Following the notation in
[29], we say that the F-packing number of G, denoted by
pF (G), is the maximum number of node-disjoint subgraphs
of G, each of which is isomorphic to a member of F . An F-
cover is a set X of vertices, such that pF (G−X) = 0; that is,
removing X ensures that there is no subgraph isomorphic to
a member of F in G. The F-covering number of G, denoted
by cF (G) is the minimum cardinality of an F-cover for G.
It is clear that pF (G) ≤ cF (G) always holds. A family F is
said to satisfy the Erdos-Pósa property if there is function
f : Z+ → Z+ such that cF (G) ≤ f(pF (G)) for all graphs G.
Erdos and Pósa [16] showed such a property when F is the
family of cycles, with f(k) = Θ(k log k).
There is an important connection between treewidth and
Erdos-Pósa property as captured by the following two lem-
mas. The proofs appear in the full version.

Lemma 4.3 Let F be any family of connected graphs, and
let hF be an integer-valued function, such that the following
holds. For any integer k, and any graph G with tw(G) ≥
hF (k), G contains k disjoint subgraphs G1, . . . , Gk, each of
which is isomorphic to a member of F . Then F has the
Erdos-Pósa property with fF (k) ≤ k · hF (k).

Lemma 4.4 Let F be any family of connected graphs, and
let hF be an integer-valued function, such that the following
holds. For any integer k, and any graph G with tw(G) ≥
hF (k), G contains k disjoint subgraphs G1, . . . , Gk, each of
which is isomorphic to a member of F . Moreover, suppose

that hF (·) is superadditive6 and satisfies the property that
hF (k+ 1) ≤ αhF (k) for all k ≥ 1 where α is some universal
constant. Then F has the Erdos-Pósa property with fF (k) ≤
βhF (k) log(k + 1) where β is a universal constant.

One way to prove that pF (G) ≥ k whenever tw(G) ≥ hF (k)
is via the following proposition, that is based on the Grid-
Minor Theorem. It is often implicitly used; see [29].

Proposition 4.1 Let F be any family of connected graphs,
and assume that there is an integer g, such that any graph
containing a g × g grid as a minor is guaranteed to contain
a sub-graph isomorphic to a member of F . Let h(g′) be the
treewidth that guarantees the existence of a g′×g′ grid minor
in any graph. Then fF (k) ≤ O(k · h(g

√
k)). In particular

fF (k) ≤ 2O(g5k2.5).

We improve the exponential dependence on k in the pre-
ceding proposition to near-linear. We state a more general
theorem, whose proof appears in the full version, and then
derive the improvement as a corollary.

Theorem 4.4 Let F be any family of connected graphs, and
assume that there is an integer r, such that any graph of
treewidth at least r is guaranteed to contain a sub-graph iso-
morphic to a member of F . Then fF (k) ≤ Õ(kr2).

Corollary 4.2 Let F be any family of connected graphs,
such that for some integer g, any graph containing a g × g
grid as a minor is guaranteed to contain a sub-graph isomor-

phic to a member of F . Then fF (k) ≤ 2O(g5)Õ(k).

Some concrete results: For a fixed graph H, let F(H) be
the family of all graphs that contain H as a minor. Robert-
son and Seymour [32], as one of the applications of their
Grid-Minor Theorem, showed that F(H) has the Erdos-Pósa
property iff H is planar. The if direction can be deduced as
follows. Every planar graph H is a minor of a g × g grid,
where g = O(|V (H)|2). We can then use Proposition 4.1
to obtain a bound on fF(H), which is super-exponential in
k. However, by directly applying Corollary 4.2, we get the
following improved near-linear dependence on k.

Theorem 4.5 For any fixed planar graph H, the family
F(H) of graphs has the Erdos-Pósa property with fF(H)(k) =
O(k · poly log(k)).

For any integer m > 0, let Fm be the family of all cycles
whose length is 0 modulo m. Thomassen [35] showed that

Fm has the Erdos-Pósa property, with fFm = 2m
O(k)

. We
can use Corollary 4.2 to obtain a bound of fFm = Õ(k) ·
2poly(m), using the fact that a graph containing a grid minor
of size 2poly(m) must contain a cycle of length 0 modulo m.
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6We say that an integer-valued function h is superadditive
if for all x, y ∈ Z+, h(x) + h(y) ≤ h(x+ y).
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Strengthening Erdos-Pósa property for minor-closed
graph classes. Journal of Graph Theory,
66(3):235–240, 2011.

[20] M. Grohe and D. Marx. On tree width, bramble size,
and expansion. J. Comb. Theory, Ser. B,
99(1):218–228, 2009.

[21] K. Kawarabayashi and Y. Kobayashi. Linear min-max
relation between the treewidth of H-minor-free graphs
and its largest grid minor. In Proc. of STACS, 2012.

[22] R. Khandekar, S. Rao, and U. Vazirani. Graph
partitioning using single commodity flows. J. ACM,
56(4):19:1–19:15, July 2009.

[23] S. Kreutzer and S. Tazari. On brambles, grid-like
minors, and parameterized intractability of monadic
second-order logic. In Proc. of ACM-SIAM SODA,
pages 354–364, 2010.

[24] F. T. Leighton and S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing
approximation algorithms. Journal of the ACM,
46:787–832, 1999.

[25] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic
applications. Combinatorica, 15:215–245, 1995.

[26] R. Niedermeier. Invitation to Fixed-Parameter
Algorithms. Oxford Lecture Series in Mathematics
And Its Applications. Oxford University Press, 2006.
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