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Abstract

Randomk-SAT is the single most intensely studied example of a randonstraint satisfaction problem. But
despite substantial progress over the past decade, ttehttdefor the existence of satisfying assignments is not
known precisely for anyc > 3. The best current results, based on the second moment mefiletdi upper and
lower bounds that differ by an additive- “‘72 a term that is unbounded in(Achlioptas, Peres: STOC 2003). The
basic reason for this gap is the inherent asymmetry of thdeBoovalue ‘true’ and ‘false’ in contrast to the perfect
symmetry, e.g., among the various colors in a graph colgoiofplem. Here we develop a hesgymmetric second
moment methothat allows us to tackle this issue head on for the first timéhentheory of random CSPs. This
technique enables us to compute tRBAT threshold up to an additiva 2 — % + O(1/k) =~ 0.19. Independently of
the rigorous work, physicists have developed a sophistichtit non-rigorous technique called the “cavity method”
for the study of random CSPs (Mézard, Parisi, Zecchinaer®a 2002). Our result matches the best bound that
can be obtained from the so-called “replica symmetric” igr®f the cavity method, and indeed our proof directly
harnesses parts of the physics calculations.

1 Introduction

Since the early 2000s physicists have developed a sotetidut highly non-rigorous technique called the “cavity
method” for the study of random constraint satisfactionbfgms. This method allowed them to put forward a very
detailedconjecturedpicture according to which various phase transitions affeth computational and structural
properties of random CSPs. In addition, the cavity methadihspired new message passing algorithms caled
lief/Survey Propagation guided decimatiddver the past few years there has been significant progréssiing bits
and pieces of the physics picture into rigorous theoremanttes include results on the interpolation method][2, 7]
or the geometry of the solution spatél[1] 28, 29] and thewritlymic implications[[3[ D].

In spite of this progress, substantial gaps remain. Peragsimportantly, in most random CSPs the threshold for
the existence of solutions is not known precisely. In thatietly simple case of the randokaANAESAT (“Not-All-
Equal-Satisfiability”) problem the difference betweenliest current lower and upper bounds is as ting &%) [11].

By contrast, in random graptcoloring, a problem already studied by Erdés and Rénshé1960s, the best current
bounds differ by9(In k) [5]. Hence, the difference isnboundedn terms of the number of colors. Even worse, in
randomk-SAT the gap is as big a&3(k) [6]. Yet randomk-SAT is probably the single most important example of a
random CSP, not least due to the great amount of experimamdalgorithmic work conducted on it (e.d.,[22] 24)).

The reason for the large gap in rand@r$AT is that the satisfiability problem lacks a certaymmetry property
This property is vital to the current rigorous proof methgaisrticularly thesecond moment methoah which most
of the previous work is based (e.d.| [4/5, 6]). More pregisiel random graph coloring the different colors all play
the exact same role: for any proper coloring of a graph, arqitoper coloring can be obtained by simply permuting
the color classes (e.g., color all red vertices blue andwérsa). Similarly, ink-NAESAT, where the requirement is
that in each clause at least one literal must be true and sttdee false, the binary inverse of any NAE-solution is a
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NAE-solution as well. By contrast, ik-SAT there is an inherent asymmetry between the Boolearesatwe’ and
‘false’.

As has been noticed in prior workl[4] 6], the second momentotkis fundamentally ill-posed to deal with
such asymmetries. Roughly speaking, the second momenbthitihased on the assumption that in a random CSP
instance, two randomly chosen solutions are perfectly uataied. But in random-SAT, this is simply not the case.
Indeed, suppose that a variabi@ppears much more often positively than negatively througthe formula. Then
it seems reasonable to expect that most satisfying assigsreetr to ‘true’, thereby satisfying all clauses where
appears positively. More generally, define thajority voteo,,,; to be the assignment that sets variable true if it
appears more often positively than negatively, and to falkerwise. Then we expect that the satisfying assignments
of a random formula “gravitate toward’,,,;. Unfortunately, the correlations among satisfying assignts induced
by this drift towards,,,; doom the second moment method. Previously this issue wastsjgpbed by symmetrizing
the problem artificially[[4,6]. But this inevitably leavesd k) gap.

The main contribution of the present work is a nesymmetric second moment metttlodt enables us to tackle
this problem head on. A key feature of this method is that wades the Belief Propagation calculation from physics,
called the “replica symmetric case” of the cavity methodliggics jargon. We are going to employ Belief Propagation
directly as an “educated guess” in the design the randorabarupon which our proof is based in order to quantify
how much a typical satisfying assignment leans toveayd; .

This is in contrast to most prior work on the subject, wheiiidual statements hypothesized on the basis of
physics arguments were proved via completely differenthoes (with the notable exception of the interpolation
techniquel[2, 17, 17]). Hence, we view the present work asatgistep in the long-term effort of providing a rigorous
foundation for the physicists’ cavity method. In fact, trengral approach developed here does not hinge on particular
properties of thé-SAT problem, and thus we expect that the technique willrekte other asymmetric problems as
well. Examples include not only other random CSPs that ammagetric per se, but also instances of random problems
that arise at intermediate steps of message passing algsrguch a8elief/Survey Propagation guided decimation
even if the initial problem is symmetric. In particular, welieve that getting a handle on asymmetric problems is a
necessary step to analyze such message passing algorgbunataly.

To state our results precisely, we let> 3,n > 0 be integers and we 18t = {1, ..., 2, } be a set of, Boolean
variables. Further, le® = ®,(n,m) denote a Boolean formula with. clauses of lengtlt over the variabled”
chosen uniformly at random among &)*™ such formulas. Let = m/n denote thalensity We say that an event
occurswith high probability(‘w.h.p.) if its probability tends tal asn — c.

Friedgut [18] showed that for anly > 3 there exists @hreshold sequenﬂek,SAT (n) such that for any (fixed)

e > 0w.h.p.® is satisfiable ifm/n < (1 — &)rx_sar(n), while form/n > (1 4 ¢)rr_sar(n) ® is unsatisfiable
w.h.p.
Upper bounds om;,_saT can be obtained via tHest moment methodhe best current onegs [17,123] are

ThoSAT < Tupper = 28 In2 — (1 +1n2) /2 + 05 (1), 1)

whereog (1) hides a term that tends tofor largek. The best prior lower bound is due to Achlioptas and Péres [6]
who used a “symmetric” second moment argument to show

In2 In2
Th-SAT = Thal = 2" In2 — k- HT - (1 + HT) + ox(1). (2

The boundd{1) and2) leave an additive gag oi”“T2 + % + 0x(1), i.e., the gap is unbounded in termskof

Theorem 1.1 There isc;, = ok (1) such that
3In2

Tr—saT > Tpp = 2" In2 — — €k. (3

Achlioptas and Peres asked whether theggp., — rx—sar is bounded by an absolute constant (independent of
k). Theoreni_ Il answers this question, reducing the gapao- % ~ 0.19. No attempt at optimizing the error term
e has been made, but our proofs yield rather directly that O(1/k).

Litis widely conjecture but as yet unproved that_gar(n) converges for ang > 3.



Apart from the quantitative improvement, the main pointlustpaper is that we manage to solve the problem
of asymmetry in random CSPs for the first time. To explain fosmt, we start by discussing what we mean by
asymmetry and how it derails the second moment method. Tisistso was already intuited inl[4}, 6]. In the next
section, we are going to verify and elaborate on those disouos.

2 Asymmetry and the second moment method

The second moment methoth general, the second moment method works as follows. SghatZ = Z(®) is a
non-negative random variable such tiat- 0 only if ® is satisfiable. Moreover, suppose that for some demsity0
there is a numbet’ = C'(k) > 0 that may depend ok but not onn such that

0<E[Z?]<C-E[Z]. )

We claim that them;,_gsaT > r. Indeed, thdaley-Zygmund inequality

P[Z>0] > B2

> 5177 ©)

implies thatP [® is satisfiable > P [Z > 0] > 1/C. Because the right hand side remains bounded away fras
n — oo, the following simple consequence of Friedgut's sharpshodd result implies, _sat > 7.

Lemma 2.1 ([18]) Letk > 3. If for somer we have

lim inf P [® is satisfiablé > 0,

n—oo
thenrk,SAT >r— 0(1)

Hence, we “just” need to find a random variable that satisfs (et S(®) denote the set of satisfying assign-
ments; then certainly = |S(®)| is the most obvious choice. However, this “vanilla” secormhment argument turns
out to fail spectacularly. We need to understand why.

Asymmetry and the majority voteThe origin of the problem is that-SAT is asymmetric in the following sense.
Suppose that all we know about the random formiles for each variable: the numbedl,, of times thatr appears
as a positive literal in the formula, and the numbeg of negative occurrences. Then our best stab at construating
satisfying assignment seems to be the “majority vote” assigo,,,,; where we set to true ifd, > d-, and to false
otherwise. Indeed, by maximizing the total number of trterdl occurrences, of which a satisfying assignment must
put one in every clause,,.; also maximizes the probability of being satisfiable.

Our proof of Theorerfi 111 allows us to formalize this obseoratthereby verifying a conjecture from![6]. Let
dist(-, -) denote the Hamming distance.

Corollary 2.2 There is a numbef = (k) > 0 such that fo2* /k < r < rgp w.h.p. we have

dist(o, oma;) 10\ .
> Sart=(z0) ©

oceS(P)

Hence, the average Hamming distancezoE S(®) from o,,,; is strictly smaller tham/2, i.e., the setS(®) is
“skewed toward’s,,,; w.h.p.
This asymmetry dooms the second moment method. To see why, le

max {d,,d-.}
km

Wiy = s (®) = 3

zeV

denote themajority weightof ®. Then the largetv,,,;, the more likelyo,,,; and assignments close to it are to be
satisfying. In effect, the bigger,,,;, the more satisfying assignments we expect to have. Thesqaesce of this



is that the numbefS(®)| of satisfying assignments behaves like a “lottery”: its @gation is driven up by a tiny
fraction of “lucky” formulas withw,,,; much bigger than expected.

Let us highlight this tradeoff, as it is characteristic oé tkind of trouble that asymmetry causes. Eor- 0
independent of but sufficiently small it turns out that for a certain constan- 0,

P [winaj ~ B [wmaj] + €] = exp [=(c&? + O(%))n] . @)

That is, the probability is exponentially small but, liketime Chernoff bound, the exponent isjaadraticfunction
of £. By comparison, increasing the majority weightppoosts the expected number of satisfying assignments by a
linear exponential factor: there i > 0 such that

E[|S(®)] | wimaj ~ B [wmaj] +&] = exp[((€+0(E))n] - E[|S(®)] | wmaj ~ E [wimaj]] - (8)

The exponent i {8) is linear because for a typical assigmmandistaan% —0)n from g,,,4; iINCcreasin@uma; by &
boosts the number of literals that are true undby 26¢ - km, a term that is linear ig.

Since the exponent is linear il (8) but quadratidin (7), ¢hisra (small but) strictly positivé > 0 such that the
“gain” exp [(c’¢ + O(£2))n] inthe expected number of satisfying assignments exceedpémalty”exp [—(c&? + O(¢%))n]
for deviating fromE [wma;]. With little extra work, this observation leads to

Lemma 2.3 For anyk > 3 andr > 2% /k we have
S(®)] < exp (~Q(47F)-n) -E[IS(@)]]  w.h.p.

LemmalZ.B entails rather easily that the “vanilla” secondmant argument fails dramatically. Indeed, as already
noticed in [4/6], we hav& [|S(®)|?] > exp(Q(n)) - E [|S(®)|*. Hence, we miss our mark](4) by an exponential
factor. But Lemm&2]3 is witness to an even worse failure:omb does[(%) fail to hold, but even the normally much
more dependablérst moment overshoots the “actual” number of satisfying asaigmts by an exponential factor!
(LemmalZ3B is an improvement of an observation froin [1], shgvthat|S(®)| < exp(—£&n)E [|S(®)|] w.h.p. for
some tiny¢ = £(k) > 0; we conjecture that thé~* term in Lemmd&213 is tight.)

In summary, the drift toward,,,; and the resulting fluctuations of the majority weight inda¢eemendous source
of variance, derailing the “vanilla” second moment argutmen

Balanced assignmentsA natural way to sidestep this issue is to work with a ‘symicesubset ofS(®). Perhaps
the most obvious choice is the s&{sr (@) of NAE-solutions. In a landmark paper, Achlioptas and Mddjeroved
that indeed there i€’ = C'(k) > 0 such that foiZxar = |Snar(®)| we have

E[Z%sg] <C-E[Znap]” forr <28 1In2— Ok (1). 9)

As we saw above (cf. Lemnia2.1), this implies thatsar > 2¥~11In2 — O(1). However, a simple (first moment)
calculation shows that for > 2*~11n2, the setSxagr(®) is empty w.h.p. Thus, the idea of working with NAE-
solutions stops working at~ 2¥~11n 2, about a factor of two below the satisfiability threshold.

Achlioptas and Pere5l[6] obtained a better bound by pretipg symmetry in a more subtle manner. Let us call
o € {0,1}" balancedif undero out of thekm literal occurrences i® exactly halfare true (i.e.,’“Tm +1). Thus,
balanced assignments are expressly forbidden from pawd&rir,,.;. Now, let Sy, (®) be the set of all balanced
satisfying assignments, and $&1,; = |Spa1(®)|. Achlioptas and Peres used a clever weighting scheme te phay

E[2%,] < C E|[Zva)’ forr < rpa (cf. @) (10)

As before, this implies that,_gat > 7. (LemmdZ.1).

Yet as in the case of NAE-solutions, balanced satisfyinggagssents cease to exist way before the satisfiability
threshold. Indeed, Achlioptas and Peres observedSihat®) = () for r > 2¥In2 — k“‘TQ w.h.p. In effect, to close in
further onr,_sar we will have to accommodate assignments that lean towgeg. How can this be accomplished?

A quick fix? We saw that to make an asymmetric second moment argumentwernkeed to rule out fluctuations of
the majority weight. A sensible way of implementing this isdxtually fixing the entire vectad = (d,,d-.)zev



that counts the positively/negatively occurrences of eactable. More precisely, given a non-negative integetarec
d = (dy,d-z)zcv With 3, d, + d-, = km let &4 denote a uniformly randorb-CNF in which each variable
appearsl, times positively andi-, times negatively. Then we can split the generation of a ranflsmula® into
two steps:

First, choose the occurrence vectbrandomly from the “correct” distributio.
Then, choose a random formuis;.

The “correct” D is as follows. Lete = (e,,e-.).cv be a family of independent Poisson variables with mean
kr/2 each. Moreover, lef be the event thazwev e; + e—, = km. Let D be the conditional distribution af given
£. Then standard arguments show that the outcome of first afpdsand then® 4 is exactly the uniformly random
P.

The point of generatin@ in two steps as above is that given the outcehué the first step, the majority weight is
fixed Hence, if we could show thafivena “typical” d, the second moment succeeds|®(®P ;)| we would obtain a
lower bound orry,_ g 4. Unfortunately, matters are not so simple.

Lemma 2.4 W.h.p. for a vectod chosen fromD we havel[|S(®4)|°] > exp (2(n)) - E[|S(®4)|]°.

Let us stress the two levels of randomness in Lerima 2.4., Bieste is the choice af. Then, for agivend, we
comparel[|S(®4)|°] andE [|S(®4)[]°. Of course, both of these quantities dependipand we find that w.h.pd is
such that the first exceeds the second by an exponentiat.facto

The explanation for this is that even if we fik various other types of fluctuations remain, turnj§g®4)| into
a “lottery”. For instance, even givedithe number of clauses that are unsatisfied uadgy; fluctuates. Hence, the
inherent asymmetry gf-SAT puts not only the majority weight but also various otharameters on a slippery slope.
What we need is a way of controlling all these fluctuationsdiameously. We will present our solution in Sectidn 5.

Catching thek-SAT threshold?Before we come to that, let us discuss what it would take tmiakte the (small but
non-zero) gap left by Theorelm 1.1, i.e., how far we are froatc¢hing” thek-SAT threshold. The physicists’ cavity
method comes in two installments. The (relatively speakangpler “replica symmetric” version is based on Belief
Propagation. Theorem 1.1 provides a rigorous proof of tiet pessible bound on thie SAT threshold that can be
obtained from this version of the cavity method (up to pdgdite precise error termy,) [25].

Unfortunately, forr > rgp the replica symmetric version (and in particular the Belebpagation predictions
that we depend upon) are conjectured to break down. Acoptdithe more sophisticated “1-step replica symmetry
breaking” (LRSB) version of the cavity method, the reasotHis is that at- ~ rgp a new type of correlation amongst
satisfying assignments arises. To deal with these coizaktthe physics methods replace Belief Propagation by the
muchmore intricate Survey Propagation technique.

In [11] we managed to prove rigorously that the 1RSB prediicfor the randonk-NAESAT threshold is correct
(up to an additive—(*)), However, [11] dependseavilyon the fact that-NAESAT is symmetric. While it would
be very interesting to combine the merits of the presentipajtk those of [11], this appears to be quite challenging.
Thus, putting the 1RSB calculation for rand@8AT on a rigorous foundation remains an important openlprab
That said, we believe that any such attempt would need td bipibn the techniques developed in this paper.

3 Related work

The interest in random-SAT originated largely from thexperimentabbservation that there seems to be a sharp
threshold for satisfiability and, moreover, that for cartdensitiesr < ri_gsar no polynomial time algorithm is
known to find a satisfying assignment w.h[p.1[22], 24]. Cuttyetthe precisek-SAT threshold is known (rigorously)
only in two cases. Chvatal and Reé&d [8] and Goerdt [21] pravdependently that, _sat = 1. Of course2-SAT

is special because there is a simple criterion for (un)&aidity, which enables the proofs dfl[8,121]. Unsurpriding
these methods do not extendito- 2. Additionally, the threshold is known precisely when- log, n, i.e., the clause
lengthdivergesas a function of: [20]. In this case, the problem of asymmetry evaporatesusecte majority weight

is sufficiently concentrated for the “vanilla” second mormerethod to succeed. (Note that Proposifiod 2.3 holds for



anyfixed k, but not fork = k(n) — oo.) The issue of asymmetry also disappears in the casérarigly regular
formulas [31] where for some fixetlwe haved, = d-, = dforallz € V.

Also in randomk-XORSAT (random linear equations mod 2) the threshold fergkistence of solutions is known
precisely [14]. The proof relies on computing the second moinof the number of solutions (after the instance has
been stripped down to a suitable core). In contrast to rantk®AT, the randonk-XORSAT problem is symmetric
(cf. RemarK5.b below), albeit in a more subtle way thaNAESAT.

Other problems where the second moment method succeedgnaneetric as well. Pioneering the use of the
second moment method in random CSPs, Achlioptas and Mbdreofputed the random-NAESAT threshold
within an additivel /2. By enhancing this argument with insights from physics g&ap can be narrowed to a mere
2—(k) [11,[12]. Moreover, the best current bounds on the randorpgi)graphk-colorability thresholds are based
on “vanilla” second moment arguments as well[[5, 15]. In suanmin all the previous second moment arguments,
the issue of asymmetry either did not appear at all by thereattithe problem]4,15, 11,12, 14,]15,120], or it was
sidestepped[6].

The best current algorithms for randdaSAT find satisfying assignments w.h.p. for densities up.&d7 - 2% /k
(better for smalk) resp.2* In(k) /k (better for largek) [91[19], a factor o9 (k/ In k) below the satisfiability threshold.
By comparison, the Lovasz Local Lemma and its algorithneision succeed up to= 0(2%/k?) [30].

Apart from experimental work[24], very little is known aliahe physics-inspired message passing algorithms
(“Belief/Survey Propagation guided decimatiori”) [27]. éTtmost basic variant of Belief Propagation guided decima-
tion is known to fail w.h.p. on random formulasif> c-2* /k for some constant > 0 [10]. However, it is conceivable
that Survey Propagation and/or other variants of BeliepBgation perform better.

4 Preliminaries

We shall make repeated use of the following local limit tregnifor the sums of independent random variables/see [16]

and [11].

Lemma 4.1 Let X4, ..., X, be independent random variables with suppor®™nwith probability generating func-

tion P(z). Lety = E[X;] ando? = Var[X;]. Assume thaP(z) is an entire and aperiodic function. Then, uniformly

forall Ty < a < T, WhereT,, = lim,_,,, %, asn — 0o

PiXs 00 X = an] = (1+01) o (TS) 1)

where¢ and¢ are the solutions to the equations

¢PQ) _ d?

PO and &= ] (In P(z) — alnz) e (12)
Moreover, there is @&, > 0 such that for all0 < |§| < §y the following holds. Itv = E[X;] 4 do, then
Pr[X;+ -+ X, = an] = (1 + O(6)) _ e(—0%/240(8%)n (13)

™™o

From this we can rather easily derive the following well-lumostatement about the rate function of the binomial
distribution.

Lemma 4.2 Let0 < p,q < 1. Let

v = (1) - a-om(1=2).

If p, ¢ remain fixed as1 — oo, then

P [Bin(n,p) = qn] = ©(n~"/?) exp [¢'(p, q)n] .



The following form of the chain rule will prove useful.

Lemma 4.3 Letg: R* — R’ andf : R” — R be of class”?, i.e, with continuous second derivatives. Then for any
xo € R® and withyy = g(x¢) we have for any, j € [a]

b af
_;8—%

Finally, we need the following version of the inverse fupatitheorem that states under which conditions a given
system of equations can be solved around a specific poifsitdetailed exposition can be found [n]32].

b
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Lemma 4.4 LetU C R" be open and lef € C'(U). Assume that € U and A > 0 are such that
{zeR": |z —ull, <A} CU

Let Df(x) be the Jacobian matrix of at z, id the identity matrix, and-|| denote the operator norm ovér (R").
Assume thaD f(u) = id and

|Df(z) —id|| < % forall x € R" such that||z — ul|, < A,

Then for eachy € R" such that||y — f(u)|| < A\/2 there is precisely one € R” such that||z — u|| < r and
f(z) = y. Furthermore, the inverse map ' is C* on {z € R" : ||z — u||, < A}, andDf~*(z) = (Df(x))~* on
this set.

Notation. We will generally assume that > ng, k > kg for certain large enough constanig, k,. We are going
to use the asymptotic symbol3(f(x)), Q(f(z)), etc. It is understood that the asymptotic is with respedh®
parameter: of the functionf (z). Thus, if f is a function ofn, then the asymptotic notation refers to the limit> oo,

and if f is a function ofk, then the notation refers fobeing large. We use the following convention for thenotation
in the case thaf is a constant: we leD(1) be a term that remains bounded in the limit of largeébut that may by
unbounded in terms df. By constrastO; (1) refers to a term that remains bounded both in the limit ofdar@nd
largen. Expressions such ag (1) are to be interpreted analogously. Generally, all asynggatreuniformin the

various other parameters (such as the degree seqdemice). For a functionf (k) > 0 use the symbotD(f(k)) to

denote a functiog (k) such that for some constant> 0 we haveg(k) = O(f(k) - In“ f(k)). For vectors, n we use
the symbol

n=¢
to denote the fact that — || < O(1/n).

LetV = {x1,...,2,} and letL = {x1,—x1,...,z,, 2, }. Foraliterall € L we let|l| denote the underlying
variable. Moreovesign(l) = 1 if [ is a positive literal, andign(!) = —1 otherwise. For &-CNF ® we let®; denote
theith clause ofb and®;; the jth literal of ®;.

From here on out, we let 5

r=2"FIn2—p with p:§ln2—5;C (24)

for some sequence, = o (1) that tends td sufficiently slowly.

5 The random variable

5.1 The construction

Our goal is to make the second moment method work for a randmmble that counts “asymmetric” satisfying
assignments. In this section, we develop this random Maridthe starting point, and the key ingredient, is simply a



mapp : Z — [0, 1]. For the sake of clarity, we start by setting up the frameworlgeneric mapg; below we will
use the Belief Propagation formalism to pick the “optimal”

The idea is thap prescribes how strongly the assignments that we work witn keward the majority vote.
Informally speaking, we are going to work with assignmentshsthat a variable that occursl,, times positively and
d-, times negatively has @(d.. — d-.) chance of being set to ‘true’. Before we give a formal defimtiwe need to
fix the number of times that each variable appears positwehegatively.

Fixing the majority weight.As we saw in Sectionl2, in order to make the second moment agunork, we need to
rule out fluctuations of the majority weight. To achieve thi® follow the strategy outlined in Sectibh 2. That is, we
are going to work with formula® 4 with a given vectod = (d,, d-.. )y Of occurrence counts, where each variable
2 appears precisely, times positively andi_, times negatively. As in Sectidd 2, we I denote the (conditional
Poisson) distribution over sequenaegsuch that first choosing from D and then generatin@, is equivalent to
choosing &-CNF ® uniformly at random.

Fixing the marginals. Now, fix one such vectod. Then the map : Z — [0, 1] induces a mapg4 from the set
L = {x,—x : x € V} of literals to[0, 1] in the natural way: we let

pd(x) = p(dz - dﬂz) andpd(—‘I) =1 —p(I). (15)

The idea is that, gived, we should set variable to ‘true’ with probability pq(z).
To formalize this, we calbs(1) thepg-typeof the literall. Let 7T = Tq = {pa(l) : | € L} be the set of all possible
pa-types. We say that : V' — {0, 1} haspg-marginalsif for any typet € 74 we have

Yo (e(l)—t)-di=0(1).

leL:pg(l)=t

i.e., among all occurrences of literals of typ@t fraction is true undes. This definition captures the above idea that
variablez has ap4(z) chance of being ‘true’.

Fixing the clause typesWe define theg-typeof a clause; V - - - V I, as thek-tuple (pg (11) .. . ., pa (i) € [0,1]"
comprising of the individual literal types. L&t = L4 = 7 be the set of all possible clause types. For eaehly
let Ms,(¢) be the set of indicese [m] such that théth clause of®4 has type/, and letma , (¢) = |Mas,(¢)|.

In addition to fluctuations of the majority weight, we alseedeo suppress fluctuations of the numbers, (¢).
We are going to use the same trick as in the case of the mayegight. Namely, we split the generation of a random
formula®4 into two steps:

First, choose a vecton = (m(¢))sc . from the “correct” distributionM 4.

Then, generate a formufhg ,,, uniformly at random in which each variableappears exactly, times posi-
tively and exactlyi-, times negatively and that has exactly/) clauses of typé forall ¢ € L.

Formally, the “correct’M 4 is just the distribution of the random vectots,, = (mas,(¢))ecc that counts the clauses
by types in the “unrestricted” formuléy. It is easily verified that the overall outcome of the abovpeziment is
identical to®4. From now on, we fix botll andm.

Givend, m there is a simple way of generating the random forndeia,,. Namely, creatéd; clones of each literal
[, and put all the clones of a giver-type on a pile. Then the formukg ., is simply the result of matching the
clones on the typepile randomly to all the clauses where a literal of type required.

An assignment with pg-marginals splits each pile into two subsets, namely theeddhat are true underand
those that are false. For each typamong the clones in the typgile, at-fraction are true, since haspg-marginals.
Therefore, we expect that under the random matching, fdr elatise typé = (¢1,...,¢;) and each indey, in an
¢;-fraction of clauses thgth literal is matched to a ‘true’ clone.

Judicious assignment. This observation motivates the following definition. We ghgt an assignment is pg-

judiciousin @ ,, if for all clause typed = ({1,...,¢;) € £ and allj € [k] we have
> o(@amis) =ml) L+ 0(1), (16)
iqu>dym(£)



where®4 ,,, ; ; denotes thgth literal of theith clause of®4 .,,, and the sum is over allsuch that théth clause has
typel. LetS,(®q.m ) be the set op-judicious satisfying assignments, and 8et® 4 ) = |Sp(Pa,m)|-

Given thato is p-judicious, in order folw to be satisfying we just need that for each typihe ‘true’ clones are
distributed so that each clause receives at least one. Thrigvent of being satisfying is merely a matter of how
exactly the ‘true’ clones are “shuffled” amongst the clawsfdgpe ¢, while for eachy the total number of ‘true’ clones
of type ¢; is fixed. In particular, this shuffling occurs independeriitly each clause type. Such random shuffling
problems tend to be amenable to the second moment methotkfdte it seems reasonable to expect that a second
moment argument succeeds (P4 .., ). This is indeed the case for< rgp — 1+ 1n2 ~ rgp — 0.3. However, to
actually reachzp we need to control one further parameter.

Fixing the cluster size. According to the physics predictions [25,127], fay., < r < rpp the set of satisfying
assignments decomposes into an exponential number ofsejdirated ‘clusters’. More precisely, we expect that
w.h.p. for any two satisfying, 7 either disto, 7) < 0.01n (if o, 7 belong to the same cluster), or distr) > 0.49n
(different clusters). Formally, we simply define ttlester ofo as

Co (D) = {T €S®@am) : dist(o, 7) ¢ % g2 k02, % i k22—k/2] } _

n

The intuitive reason why the second moment argumenffé® 4 .., ) breaks down for close torgp is that the cluster
sizes|C, (Paq.m)| fluctuate. A similar problem occurred in prior work on randbANAESAT [11,[12].
As in those papers, the problem admits a remarkably simf¢iso: let us call an assignmeatgoodin ®4 ,, if

|Cd(q’d-,m)| <E [Zp(q’d-,m)] . (17)
Let Sy good (Pa,m) be the set of all good € S,(Pq,m). To avoid fluctuations of the cluster size, we are just going
to work with Zp,good = |S ,good(q)d,m”-
The second moment boundle now face the task of estimating the first and the second moofi&Z,, ,o0d (P d,m.)-
The result can be summarized as follows.

Theorem 5.1 Suppose. < r < rgp. There exists® = C(k) and a mapp = pgp : Z — [0, 1] such that ford
chosen fromD and form chosen from\ ¢ w.h.p.

0<E [Zp,good(¢d,m)2} S C-E [Zp,good(i)dﬂn)]2 .
Together with Paley-Zygmun@dl(5), TheorEml5.1 shows that éithosen fromD andm chosen fromM 4 w.h.p.

o E[Zpg00d(®am)” _ 1
P[®, ., issatisfiable > P[Z, wood(®am) > 0] > P8 ' > . 18
[ d, @3 = [ p;g d( d, ) ] E [Zp,good(Qd,m)z] C ( )
The construction oD, M 4 ensures that choosing at random is the same as first pickidgrom D andm from
M4 and then generatin@®g,,,,. Therefore,[(IB) impliedim inf,,_,~, P [® is satisfiable > 0, so that Lemma=2]1

yieldsr,_sat > rgp. Hence, we are left to prove Theoréml5.1. We begin by contstigithe magpgp.
Guessing the marginalskor a sef) # S C {0, 1}V and a variable: we define the5-marginal of = as

ps(a) =3 % (19)

oc€eS

The definition of pg-judicious’ is guided by the idea that;(«) should prescribe the marginal ofin the set of all
pa-judicious satisfying assignments. Hence, in order to nthkeset ofp4-judicious assignments as good an approxi-
mation of theentire set of satisfying assignments as possible, we betterpgtkthatps(x) is a good approximation
to the actual marginaglks (s ,)(x) of x in the set ofall satisfying assignments. The problem is that, because of the
asymmetry of thé&-SAT problem, these marginals are highly non-trivial qitzeg. Indeed, on general formulésthe
marginalsuse) () are#t P-hard to compute.

However, according to the physicists’ cavity method, ordan formulas with density < rgp the marginals can
be computed by means of an efficient message passing alparitfedBelief Propagatiori25]. While the mechanics
of this are not important in our context, the result is.



Conjecture 5.2 Suppose that,,; < r < rgp. Letd be chosen fronD and letz be a variable. Then w.h.p.

1 dy—dy dy —d-p\ >
/Lg(q;d)(l') = 5 + 2k+1 + (@) ( 2k ) . (20)

We observe thaf(20) is in line with the notion th&i® 4) is “skewed towards,,,;. Indeed, the conjecture quantifies
how much so. Motivated by Conjectiire .2, we define

1 z .
5 + W if |Z| < 10vk2k1nk,

pBP(2) = (21)

1 .
3 otherwise.

Under the distributiorD, the random variables,, d—, are asymptotically independent Poisson with meaf2 (cf.
Sectiorf2). Therefore,
Eq [(dy — d-2)?] = kr < k2" In2,

and standard concentration inequalities show that w.hepetare no more thary k3° variablesr with (d, — d-)? >
100k2% In k. Hencepq = ppp 4 is (asymptotically) equal to the conjectured value on th& bfivariables w.h.p.

In summary, the problem with the “vanilla” second momentangnt is that the drift towardl,,.; induces correla-
tions amongst the satisfying assignments. Indeed, thegoarelated with the majority assignment and thus with each
other. We circumvent this problem by explicitly prescripithe marginal probability that each variable is set to ‘true
One could think of this as working with the intersectionSf®) with a particular “surface” within the Hamming cube
{0,1}", namely the assignments witly-marginals. Within this surface, all assignments are sthegually toward
omaj- The Belief Propagation-informed definition pfp is meant to ensure that the surface that we consider with is
(about) the most populous one, i.e., the one with the lamgastber of satisfying assignments in it. The core of our
argument will be to show thatith respect to the marginal distributignsp, i.e., within the surface thatgp defines,
two random elements &, (®4,,,) are typically uncorrelated. But before we come to that, wedrte compute the
“first moment”, i.e., the expected number of gaagl--judicious satisfying assignments.

Remark 5.3 Belief Propagation actually leads to a stronger predictithran Conjecturé 512. Namely, it yields a
conjecture forus(s,)(z) up to an additive error then tends tbasn — oo. However, (@) this stronger conjecture is
not in explicit form, and (b) it does not only dependdnd-., but also on various other parameters. In any case,
even a more accurate prediction would not yield a better tzmtsthan% In2in Theoreni L.

Remark 5.4 In the present framework, the notion of balanced satisfgisgignments from [6] simply corresponds to
working with the constant maggp,,; : Z — [0,1], z — % This hightlights that the improvement that we obtain here
stems from choosing the non-constant mgp inspired by Belief Propagation.

Remark 5.5 The definition[(19) of the marginal of a set gives rise to a famotion of ‘symmetric problem’. Namely,
we could call a (binary) random CS&mmetricif its setScgp (®) of solutions is such that for each variabten.h.p.
we haveu, (Scsp(®)) = % +o(1). Clearly,k-NAESAT passes this testasSxar (®)) = 4 for all z with certainty.
Similarly, the problem of having a balanced satisfying @ssient is symmetri€ [6], as is randdmXORSAT.

From here on out we keep the assumptions of Theorem3.1. In ptcular, we assumer,,; < r < rgp. Let d
be chosen fromD, and let m be chosen fromM 4. Let p = ppp be as in [21) andpg as in (I5).

5.2 Typical degree sequences

We need to collect a few basic properties of the sequéndeosen fromD. Let us call a sequeneg = (d;);cy, Of
non-negative integers such thay,_, d; = km asigned degree sequenc&or ak-CNF @ letd (®) = (d; (®))ier
denote the vector whose entiy(®) is equal to the number of times that litefadccurrs in®. ThenD = Dy (n,m)
is just the distribution of the signed degree sequei(@).

The signatureof a literall € L with respect to a signed degree sequedhi the triple(sign (1), dj, d-j;). We
omit the reference tal if it is clear from the context. Lefl’ = T'(d) be the set of all possible signatures. For
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each literall we let T'(1) denote its signature. Furthermore, for a signature (sign(l),d);,d-y;) € T we let
=6 = (—sign(l), dp|, d-p))-
Letd be a signed degree sequencek-ENF @ overV is d-compatibleif d(®) = d. Thus,

i’d:¢d71A-~'Aq}d7m

is a uniformly randomi-compatiblek-CNF.

Inthe sequel we are going to prove statements about themafatmula® 4 for a “typical” signed degree sequence
d. Formally, this means that we first choagérom the distributionD at random. Then, conditioning afi we will
study the random formulé@y. Thus, there aréwo levelsof randomness: the distribution dfand then, givenl, the
choice of the random formulé@,. When referring to the random choice éfwe use the notatioR 4 [-], Eq []. By
contrast, if we choos@, randomly ford fixed, then we us@ [-], E [-].

Lemma5.6 1. Let& be an event such thd& [® € £] = o(1). Then w.h.p. a signed degree sequedaghosen
from the distributionD is such tha? [®4 € £] = o(1). Conversely, if w.h.p. for a randodhchosen fromD
we haveP [®4 € £] = o(1), thenP [® € £] = o(1).

2. For any random variablél > 0 and any= > 0 we haveP4 [E [X (®4)] > E [X(®)] /¢] < e.

Proof. The first claim follows from Markov’s inequality & [® € £] = Eq4 [P [®4 € £]]. The second claim follows
from from Markov’s inequality as well becauBd X (®)] = Eq4 [E [X (®4)]]. O

Lemma 5.7 For d chosen fromD the following statements hold w.h.p.
1Y, ey (dy — doy)? ~ km.
2. LY,y ldo — d | = O(292).
3. LetM contain then literals of largest degree. Theg- 3, di = 3 + O(27%/2).

Proof. We use the following description of the distributidh. Lete = (e;);cr be a family of indepederio(kr/2)
variables. Moreover, lef be the eventtha} ,_; e; = km. Itis well known thate given & has distributionD.
Furthermore, a simple calculation based on Stirling’s falayields

P[] = O©(n~1/?). (22)

Leté; = min {el, In? n} Employing Stirling’s formula once more, we find thafe; # ¢;] < n='° forall I € L.
Hence, by the union bound,

PVMIeL:¢=¢]>1—-n"" (23)
Furthermore, as,, e—, are independent for anye V, we have
E [(és — é-5)?] = 2Var(é,) = 2Var(e,) + O(n™ ') = kr + O(n™"). (24)
Becausé&,; < In?n and the random variable{e{éz — éﬁm)Q}mev are mutually independent, Azuma'’s inequality yields
2 2 2/3 n'/ 10
P Cy — €oz)" — B Cr — €o3)°| > <2 - <n . 25
Z(e éz) Z(e éz) n exp[ 81n8n] n (25)
zeV xzeV
Combining [22)4(25), we find
Pd [ Z(dm - dﬁm)Q — km| > n3/4] = P l Z(em - eﬁm)z — km| > n2/3 51
zcV zcV
< O(mn'/?)pP Z(eaE —e_y)? — km| > n3/41
zeV
< o(1)+Om' PP I (br—é-0)* —E Y (60— é-n)’| > n2/3‘|

zeV zeV
= 0(1)7
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thereby proving the first claim. The second claim followsirthe first by means of the Cauchy-Schwarz inequality:
w.h.p.

2
% Z |d, — dﬁﬂ] < % Z(dw —dog)? ~ kr.

zeV zeV

Finally, the third assertion is immediate from the second. O
ForasetS C L we letVol(S) = Vola(S) = > ;e di-

Lemma 5.8 Letd be chosen fronD. Then w.h.p. the following is true.

For any setS C L of literals we havé/ol(S) < 10]S| max {kr,In(n/|S|)} . Furthermore, if (26)
|S| = n2708% thenVol(S) > 1|S|kr.

Proof. We use the alternative description bf from the proof of Lemm&35l7. That ig, = (e;);cr, is a family of
indepedenPo(kr/2) variables, and is the eventthap |, , e; = km. Let A = kr/2. For any fixed seb C L the
random variableXs = ), 5 e; has distributiorPo(|S|\) (because the sum of two independent Poisson variables is
Poisson). Therefore, letting = 10|.S| max {kr, In(n/|S|)}, we obtain from Stirling’s formula

AH
"~ plexp())

e

PIXs> 1 < O(AP[Xs = [4]] < O(/) <o(vm)- (;)“exm—n. @7)

Forl <s<2nletX, =35 g, Lxs>u Then [27) yields

2en

px. < o) (%) expl-a - < 0 (22) - exp(or - ) = o1/,

because: > 10s1n(n/s). Thus, the first claim follows froni{22) and the union bound.
To prove the second claim, we use Lenima 5.6. % ar L we letYs be the total number of occurrences of literals
from S in ®. ThenYs has distributiorBin(km, | S|/2n) with mean|S|kr/2. By the Chernoff bound,

(28)

P[Ys < kr|S|/3] < exp [—kf(l)?]

Hence, lettingYs = 3" 5/—, 1ys<kr|s|/3, We get from[(2B) fos > n2~0-8k

E[Y,] < (2:> exp [—%} < exp [5(2 + k) — ]f—g;] =o(n7?).

Thus, by the union bountl [Vs > n27%8% . Y, = 0] = 1 — o(1/n). Applying Lemmd5.6 completes the proof.0
For anyt € T we letn(t) be the number of variablese V such thapg(x) = t.

Lemma 5.9 Letd be chosen fronD. Then w.h.p. for any typee 7 we have
n(t) > 273K/ 4p,

Proof. We use the alternative description of the distributidrfrom the proof of Lemm&©5]7. That is, let= (e;)cr
be a family of indepederito(kr/2) variables, and be the event tha} ,_; e; = km. For anys, A let X (s, A)
denote the number of literalssuch thasign(l) = s ande;| — e_;;) = A. SinceVar(e;) = kr/2 = Qi (k2), for any
s € {£1} and anyA such thatA? < 100k2*In k we haveE [X (s, A)] > nk~¢ for some absolute constant> 0.
Furthermore, because the random variabdglc ;, are mutually independent, the Chernoff bound implies that

P|X (s,A) < %nkfc < exp(—Q(n)) provided thatA? < 100k2" In k. (29)
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Similarly, if we let X denote the number of literalssuch thasign(l) = s and|ej; — ey | > 100k2*Ink, then
E[X’ (s)] > nk~< for some absolute constatitand

P[X’(s)ﬁ%nk‘c/} < exp(—=Q(n)). (30)

Thus, the assertion follows by combiniig122).1(29) (30) O
For each € T we letr(t) denote the fraction of literal occurrencegsfypet, i.e.,

)= Y k%.
leL:pa(l)=t
For eacty € L let )
ve=_E [me, (€)] .
Lemma 5.10 Letd be chosen fronD. Then w.h.py, ~ Hle m(¢;) forall £ = (0q,...,4;) € L.

Proof. By the linearity of expectation, we just need to compute tiebability that the first claus@q ; has typef.
Since\Tfl(t)\ = Q(n) forall t € T, the types of the: literals of 4 ; are asymptotically independent. Thus, the
assertion follows from the fact tha{(¢,) equals the marginal probability that a random lityal hagtp O

Lemma 5.11 W.h.p. ford chosen fromD we haveP [/ € L : |mg,(¢) — ven| < n*?] =1 —o(1).

Proof. Fix a typel = (¢4,...,¢;). Because is a feasible marginal, for any € [k| there are2(n) literals with
p(l) = p(¢;). Therefore, a straightforward calculation shows that

P [®,,; has typel|®, ;, has typel] = P [®,; has typel] - (1 + O(1/n)) foranyi # h.
ConsequentlyWar(ms,(£)) ~ E [mae,(£)] = O(n). Hence, by Chebyshev’s inequality
P [Ima,(0) = Elma, (]| > n*/] = 0(n/%) = o(1). (31)

Since|£| = O(1) asn — oo by the construction of, the assertion follows froni (81) and the union bound. O

6 The first moment
6.1 Outline
Letp > 21n2be such that = 2¥In2 — p.

Proposition 6.1 W.h.p.d, m are such that

E[Zpgood(®a,m)] = exp [2% (P - 11172 + Ok(l)):| :

We begin by computing [Z,(®a4,)]. By definition, any assignment thatig-judicious hag4-marginals. Thus,
let?,(d) C {0, l}V denote the set of all assignments that hayenarginals. Then by the linearity of expectation,

E[Zy(@am)] = Y PloeS(@am). (32)
oc€EH,(d)

Hence, we need to compyt,(d)| and the probability [0 € S,(®4.m )] foranyo € H,(d). Using basic properties
of the entropy, we obtain
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Lemma 6.2 Letx(z) = —zlnz — (1 — 2) In(1 — z) denote the entropy function. Then w.kdgs such that

In[Hy(d)| ~n- Y x(p(x)):

zeV

Taylor expandingy(z) aroundz = 1/2 and plugging in the definitioi (21) of, we obtain that w.h.pd is such

that ) 1o
n _
—In |H,(d)| =In2 — ST+ ox(27F). (33)

As a next step, we compute the probabilityof S, (®qa,m ) for o € H,(d).
Lemma 6.3 W.h.p.d, m are such that for any € #,(d),

kIn2
2k+1

1 In2
LinPlo e 8y(@am) = 2t 2 ook [p—“?m(n] (34)

Let us defer the proof of Lemnia 6.3, which is the core of the firsment computation, for a little while. Com-
bining (32)3#), we see that w.h.p. over the choicd af. we have

InE [Z,(®qm) = In|Hy(d)|+InPo e Sp(Pam)]

~ 27k {p - 1%2 - ok(l)} n (35)

To obtain the expectation df, ,,04, We show the following.
Lemma 6.4 W.h.p. over the choice af m we have
E[Z) good(®d,m)] ~ E[Z,(®a,m)].
The proof of Lemma&6l4 is based on arguments developéd irofldrialyzing the geometry of the set of satisfying
assignments. Combining(35) and Lemimd 6.4 yields Propo§&i].
6.2 Proof of Lemma[6.3

For a sequencen = (m(¢)).c. Of non-negative integers we &%, denote the event thats,(¢) = m(¢) for all
¢ € L. Let us callm feasibleif P,, '] > 0 and|m(¢) — yen| < n?/3 forall £ € L. Let Z be the number of
pa-judicious satisfying assignments.

Proposition 6.5 Letd be chosen fronD. Then w.h.p. for any feasible = (m(¢)).c . the following statements hold.
1. We have

In2

_ In2 _ 1 B
2 k[p———k 9} S —IE[Z(®am)] <2 k[p— 5

k7?2 .
; i

2. Foranyt € T we have

Z & < 2kmm(t) .

l€L:pa(l)=t

3. Foranyo € {0, l}v with p-marginals we have

1 1 _
T Zdllg(l)zl = B +0(2 k).
leL
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The proof of Propositioh 615 consists of two steps. We défeiptroof of the following lemma to Sectibn 6.3.

Lemma 6.6 With the assumptions of Proposition16.5 and with’ defined by

(0 -3) = arp2® e

zeV
= 1 _ No—k
no= > (1= 2p(x))(de — d-s) = —(1 4 6)2
zeV
we have w.h.p.
!
CB[Z(@am) = 27 [p - 1“72] e (L‘S;,; g >) O,

Proof of Propositioi65Let A = 100k2%In k and lets, 6’ be as in LemmB®l6. Using the alternative description of
the distributionD from the proof of Lemm&517 and applying Azuma'’s inequabtye can easily verify that w.h.p.

S Lpdyzza - (do —dn)? > (1= k72 (dy — d-s)?. (36)

zeV zeV

Therefore, Lemm@Bbl 7 entails that w.h.p.

! Z<p(x)_l> 140k )Z(dz—dw) _ L+ Ok

km = 2 km = Ak+1 Ak+1
Consequently, w.h.p. we have
§ = Op(k™'2). (37)
Similarly, invoking [38) once more, we see that w.h.p.
5= o) = 1)de ) = o D Haatasa (e =) = LoD
whence
§ = Op(k™1?) (38)
w.h.p. Thus, Propositidn 8.5 is a direct consequence of Ladt® anf 616 and (B7]. (38). O

6.3 Proof of Lemmal6.6

We begin by determining the number € {0, l}V with p-marginals. The following is an easy consequence of

LemmdBG.2.

Corollary 6.7 W.h.p. ford chosen fromD we have

S| =2 -2 3 (o) - 5) + 0@,

zeV

15



Proof. This follows from Lemm&Z6]2 by Taylor expanding-) arounds. O

We need to compute the probability that an assignmeat {0, l}V with p-marginals is g-judicious satisfying
assignment. To this end, we introduce a new probabilityspacP). Letq = (qe,j) e, jc 1) e @ matrix with entries
in [0, 1]. The elements of our new probability spaeere all0/1 vectors

(045 (€))eec.icim(o),jeik-

The distributionP is such that the entries;;(¢) are mutually independent, and for eath= (¢y,...,4;) € L,
i€ [m(0)], j € [k] we leté;(¢) = Be(qe,;) be a Bernoulli random variable. (It may be helpful to thinksaf (¢) as
the truth value of thgth literal of theith clause of typé in a random formulab g ,,,.)
Forl = (¢1,...,4) € L et S;(¢) be the event that
ol =1
(the intuition is that this corresponds to the event thatciesei of type is satisfied). LetS(€) = (e Si(£)
andsS = (N, S(£). Moreover, forj € [k] let B(, j) be the event that

7 au(O =0,

ie[m(0)]

Let B(¢) = ﬂ;?:l B(¢,j) andB = (), B(¢). The connection between the probability sp&cand Lemm4&Bl6 is
as follows.

Lemma 6.8 Suppose that € {0, l}V hasp-marginals. LetS(o) be the event that is a satisfying assignment of
®4.m and letB(o) be the event that is pq-judicious. TherP [S(0)|B(0)] = P [S|B].

Proof. Note that inP [S(o')|B(c)] probability is taken over the choice of the random formilg,,, while in P [S|B]
probability is taken oveé chosen from the above distribution. Thus, we need to reffietévto probability spaces.
For anyd-compatible formulap € T',,, we can define a map
Voo
g E {0,1} — U“I? = (Gij(g)|q>)f€£,i€[m(f)],j€[k],
by letting 6;;(¢)|» be the truth value of théth literal of theith clause of type in ® undero. In other wordsg|e
is the string of truth values that we get by “plugging the gissiento into ®”. Theno is judicious iff 64 € B.
Furthermorey is satisfying iff6s < S. Finally, if o hasp-marginals, the|s, ,, becomes a random vector. Given
B(o) its distribution is identical to the conditional distrifn of & given B. O

Corollary 6.9 With the notation of Lemnia .8 we havéS(c) N B(c)] = P [S|B]exp(o(n)). Moreover, for anyr
with p-marginals we have [B(c)] = © (n{I71-kI£D/2),

Proof. Since the total numbeiZ| of clause types is bounded, the assertion follows from aatepleapplication of
Lemmd4.1 (the local limit theorem). O
Thus, we have reduced the proof of Lenima 6.6 to the computafi [S|B]. The benefit of the probability spafe
is thatS, B can be decomposed easily into independent events. Indeeahyf¢ € £ and anyi € [m(¢)] we have

k

13 [Sl(f)] =1- H 1-— qe,5,

J=1

because thé;;(¢) are independent. Moreover, due to independence and beeaissteasible,

k
WPS@O] =~ 3 WPS(0)] ~n [1-1‘[1_%]

1
n n .
i€[m(0)] j=1
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and thus

lel

k
%1n15[31~2w1n [1-1‘[1—%]. (39)
j=1

Similarly,
k

mP[B] = %ZInP[B(E)] - %ZZlnP[B(Z,j)]. (40)

Lel lel j=1

S|

A further benefit of the spade s that we are free to choose the veajas we please (subject only to the condition
thatP [B] > 0). To facilitate the computation df [S|B], we are going to choosgsuch that

P [B|S] = exp(o(n)). (41)
For if (41) holds, then )
P[9]
[S] ]_P[B]' p(o(n)),

whereP [S], P [B] can be calculated rather easily vial(39) ahd (40). Thus, asxastep we need to fing such
that [41) is true. To this end, we define

Gey = B[64(0)S:(0)] = ﬁ (CeL,je[k]). (42)
—llj=1 * T 4,

Lemma 6.10 There existg such thatj, ; = ¢; forall £ = (¢1,...,¢) € L, j € [k]. Furthermore, thigy satisfies

qe; =; — 2757 4 O(2734/2), (43)

Proof. For any/, j we have

9qe; 1—(1—2qe;) Hl;ﬁj 1 —qey

0qy.j 1—TL1—qeu)? ’

ey e [l 1—aea (h# )

9qe,n 1-J[1- Qg,l)2
Hence, fork large enough andl.01 < ¢; < 0.99 for all j, thek x k£ matrix Dq is close toid. In particular, this is true
for ¢; close tol /2. Therefore, the assertion follows from the inverse functieeorem (Lemm@a4.4). O

Corollary 6.11 With ¢ from Lemm&86.10 we hawe[B|S] = ©(n*£1/2) = exp(o(n)) and thus[{lL).

Proof. Equation [4R) shows that for the vectgrfrom Lemma .10 we have [6;(¢)|S;(¢)] = ¢, for all £, j, i.
Therefore, a repeated application of Lenima 4.1 yi#ldiB|S] = ©(n*I1£1/2) = exp(o(n)). O

From this point on we fixq as in Lemmd6.1P.

Lemma 6.12 Letting
1
Y= Z(l - 2pd(x))(dz - d—\m)a (44)

km
zeV

we havel InP [S] = ~In2+27% [p— B2 — kIn2] — kX In2 + O(2734/2).
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Proof. Starting from[[3P), we obtain

i k
Z Yeln |1 — H 1- QZ.,J} (45)
j=1

S

lel

- 2
k k
1 X o
= —ZW (Hl_W,j) t3 (Hl—fﬁz,j) +0(8M|,
el j=1 j=1

where we used the approximatibr{1 + z) = z — 2% + O(2*). Thus, Lemm&5.10 yields

k
%hlf) [S] = — Z"M [(H 1— qE,j> + % .4k 4 O(25k/2):|

leL j=1

= —= 4k+023k/2 TZH?T )L —qe)-

el j=1

Further, by[(4B)

InP[S] = —5 47k L O(273k/2) ZHﬁ Y1 —£; +27F7
el j=1

S|

k
—5 AT 0T =y lz m(t)(1—t+ 2—’f—1)1

teT

k
" i~k | Aro—3k/2 k—1
—§~4 +0(2 ) — [2 +§ 1—t]

teT

k
= _g AR 4R 4 02732 — lz T(t)(1 — t)]

teT

k
= —g~4k—kr-4k+0(23k/2)—1"[%—27r(t) (t—%)] .

Now, -
LT (t-3) - %j—;(pm—%) e (3- o)
- ﬁm;(dm t-a) (plo) - 5) = =572
Hence,
%11115[5] - —2-4_k—kr-4_k—r(#)k—ké@_%/?)

= 2P T 4T kxR 4 027 ),
Plugging inr = 2¥In2 — p, we get
1o 5 In2 -
—InP[S] = —Im2+27" [ - HT —kln 2} — kX In2 4+ O(273%/2),
n

as claimed. O
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Lemma 6.13 We havel In P [B] = — 4122 4 O(27-3%/2).
Proof. Due to [40) we just need to estimateP [B(/, ;)] forany/ = (¢1,...,4;) € £ andj € [k]. By construction,
P [B(t, )] = P [Bin(m(£), g 5) = £;m(0)].
By Lemmd6.ID we havgy ; = £; — 27 %~1 + O(27%/2) = 1 + O(27%/2). Hence, using Lemnia34.2, we find
1

) InP [B(L,j)] ~ ¥(q;,0) (46)
(e =) (4 —aeg)? K
B 2qe, 2(1—qe5) o)
- _M (L 1 ) —k
= 5 s + [y + O0r(87")

- (2 + 0(2"“/2)) (g0 — £5)?
1

= —(2+0@ ™) @+ 0?2 = (_

5+ 0(2—’f/2)) 272k,

Hence,[(4D) yields
k

ilnls[B] = —ZZM . |:% ,2—2/€+O(2—5k/2):|
" teci=1 "
1 - <o kln2 -
= —kr- |:§ .92k + 0(2 5k/2):| - _ SRt + 0(2 3k/2),
as claimed. .

Remark 6.14 In the second moment calculation we will need to know that

k k
InP [S|B] = > m(0) {m (1 - H 1- qe,j) - quz,j,ﬂj)}

el
which follows from[(45) and (46).
Corollary 6.15 Letd, d” > 0 be such that
1\° (14 6)km
> (pd(w) - 5) = T omhiz
zeV
Y = (1+46)27%  withX from @3).

Then withr = 2= %1n2 — ¢ we have

In |H(p)| + InP[S|B] " [p B 1n_2} Lo <k(5 + 5/)> 4 O3
n 2 2k ’

Proof. By the above,

%mp[s] = _ln2+2k(ﬂ—ln;—kln2>—k21n2+o(23k/2)
= —In2+427* (p— 1r172> + % +(~)(2—3k/2),

Lupp = -ER2 0@,

D) = w223 (pate) - 1) =ma - ER2 %2

zeV
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Summing up yields the result. O

Proof of Lemmé&®6leLemmd6.6 is a direct consequence of Corolldries6.7[ 619 #énd 6.15. O

6.4 Proof of Lemmal6.4

Assume thain is feasible. LetZ denote the number of gogdsatisfying assignments.

Proposition 6.16 Letd be chosen fronD and letm be chosen fronM 4. ThenE [Z(®4.m)] ~ E [Z(®a.m )] W.h.p.
The proof of Propositioh 6.16 is based on three lemmas.

Lemma 6.17 Letd be chosen fronD and letrm be chosen fromM 4.
1. Let& be an event such th&t[® € £] = o(1). ThenP [@q,m € £] = o(1).
2. For any random variablé& > 0 and any= > 0 we haveP g4, [E [X (®4)] > E[X(®)] /] < e.

Proof. This follows from a similar application of Markov’s ineqitglas in the proof of Lemm@a®5.6. O

Lemma 6.18 With the assumptions of Proposition 6.16 the random vaeiabl
Z'={oc € S(®am): [{T € S(®am) : distio,7) < 27°%n}| <E[Z(Pam)]}|
satisfiesE [Z(Pa,m)] ~ E [Z(®a,m )] W.h.p.
The proof of Lemm&6.18 can be found in Secfiod 6.5. Morednedectior] 6.6 we prove the following.
Lemma 6.19 Suppose that < 2 1In 2. Let¢ = k27%/2, Let Z” be the number of pairér, 7) € S(®)? such that

dist(o, 1) € [k2_k, 1]\ [% —¢, % +§} .

ThenE [Z"] = o(1).
Finally, Propositiof 6.6 follows immediately from Lemniag7[6.18 and 6.19.

6.5 Proof of Lemmal6.18

Let ® be ak-CNF ando € S(®). We say that a variableis ¢-rigid in (@, o) if for any 7 € S(®) with 7(x) # o(x)
we have digio, 7) > ¢&n. Let A = kr/(2% — 1).

Lemma6.20 1. The expected number efc S(®) in which more thank'22—*n variables support at most 12
clauses is< exp(—nk?/2F)E |S(®).

2. The expected number @fc S(®) in which more than(1 + 1/k?)2~*n variables support no clause at all is
< exp(—n/(k°2"))E|S(®)].

Proof. Fix an assignment € {0, 1}V, sayo = 1. Then the number of clauses supported by each V is
asymptotically Poisson with mean Let £, be the event that supports no more than 12 clauses. Then

P& < M2Pexp(=)) < %k”rk.

The eventsé,).cv are negatively correlated. Therefore, the total nundbef variablese € V' for which &, occurs
is stochastically dominated by a binomial variaBle (n, $k'227%). Hence, the first assertion follows from Chernoff
bounds.

With respect to the second assertion dete the event that supports no clause at all. Th@&,] < exp(—\).
Using negative correlation and Chernoff bounds once mamgetes the proof. O

Let us call a seb C V self-containedf each variable inS supports at least ten clauses that consist of variables in
S only. There is a simple process that yields a (possibly ejgatij-contained set.
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e For each variable that supports at least one clause, choose such a adgussdomly.
e Let R be the set of all variables that support at least 12 clauses.

e While there is a variable € R that supports fewer than ten clauses # C, that consist of variables a®
only, remover from R.

The clauseg’,, will play a special role later.

Lemma 6.21 The expected number of solutionss S(®) for which the above process yields a $20f size|R| <
(1 — k% /2F)n is bounded byxp(—nk3/2F)E |S(®)].

Proof. Leto € {0, 1}\/ be an assignment, say= 1. Let (@ be the set of all variables that support fewer than 12
clauses. By Lemmia6.20 we may condition|@) < k'227%n. Assume thatR| < (1 — k'°/2¥)n. Then there exists
asetS C V\ (RUQ) of sizeik'®n/2% < § < k'5n/2* such that each variable Bisupports ten clauses that contain
another variable fron§ U Q. With s = |S|/n the probability of this event is bounded by

m 21—k k2|SUQ|2 10sn ) 10
(lOsn) [1 o1k n2 ] < [46/{ s] )

Hence, the expected number of sefor which the aforementioned event occurs is bounded by

(s = [ wer]" o

which implies the assertion. O
Let us call a variable is attachedf x supports a clause whose otlier 1 variables belong t@.

Corollary 6.22 The expected number of € S(®) in which more tham/(k%2%) variablesz ¢ R that support at
least one clause are not attached is bounde@h§(®)| - exp(—n/(k52%)).

Proof.Let F = V' \ R. By Propositioi 6.21 we may assume thiat < nk'® /2%, Therefore, for each of the “special”
clauseC, that we reserved for eachthat supports at least one clause the probability of coimgia variable from
F\ {z} is bounded by
16

(1+ o (1))k - % < ?’2’“—k
Furthermore, these events are independent (becausetisesla were disregarded in the construction®)Y. Hence,
the number of variables ¢ R that support at least one clause but that are not attachediméted byBin(| F|, %,16).
The assertion thus follows from Chernoff bounds. O

Letus callS c V densdf each variable inS supports at least ten clauses and at 2éstlauses such that at least
ten of them feature another variable frgim

Lemma 6.23 For d chosen fromD, m chosen fromM 4 and anyo € {0, 1}V the following holds w.h.p. Letl be
the event that is a p-satisfying assignment @, ,,,. Then

P [®4m hasadensd C V, |S| < n27999% | A] = o(1).

Proof. We may assume that satisfies[(26); we emphasize that this is a property ohly, regardless ofn or the
eventA. LetD(S) be the eventtha§ C V is dense. We may fix (i.e., condition on) the specific clausppsrted by
each variable: € S. Letxz € S and leti € [m] be the index of a clause supportedhylet / be the type of clause
For eacht € T letV; be the set of literalg of typet. Then the probability that claugeontains another variable from
S'is bounded by

Vol(Vy, No=1(0) N S) Vol(V; N1 (0) N S)>

<k
S TVol(V, N 10)) - her < Vol(V; N o—1(0))
J
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Since|V;| > n27%8 for all t w.h.p. by Lemmd 519, we havéol(V;) > <kr|Vi| > 30 - 2°2*n. Furthermore,
Vol(V; N a1(0)) > +Vol(V;) by the choice op(t). Hence,[(2b) yields

Vol(V; NS Nna=1(0)) - Vol(S) - max {kr,In(n/|S|)} |S|
Vol(V; no=1(0)) ~ 3Vol(Vy) — 20-2kp, '

Due to negative correlation, in total we obtain

151 10/5]|
P [®qm € D(S)A] < (2k) . (kmax{kr,ln(n/|5|)}|5|) .

10 20.2kp

(The factor(f’g) 5l accounts for the number of ways to chodseout of the at mos2k clauses that each variable$h
supports.)
For0 < s < 1/k let X, be the number of set$ of size|S| = sn for whichD(S) occurs. Then

E[X.|4] <2) (2’“)'5' <kmax{kn In(n/|S])} |S|>1°S _ [ (2 max{kr,—ln(S)}s)wrn

10 20-2kp s4k

ek max {s%(kr)'°, s n'%(s) } o
There are two cases to consider. Firsts i< In(n)/n, then the term in the brackets is cleadyl). Second, if

s > In(n)/n, then we have the following bound. Singe< s, = 27%9% and asr — = In'? z is monotonically
increasing forr < 0.1, we have

s° lnlo(s) <s?  In'0 s < 87

10 10k—8.91k __ ¢1.09k
max — max(kr) S 2 =2 .

Hence, the entire bracket is boundedXy/2. Summing over all possibleand using Markov’s inequality completes
the proof. O

Let us call a variable € V ¢-rigid in o € S(®) if for any 7 € S(®) with 7(z) # o(x) we have difte, 7) > ¢n.

Corollary 6.24 W.h.p. ford chosen fromD and form chosen fromM 4 the following is true. Let € {0, 1}V and
let A be the event that is a p-satisfying assignment @ .,,. Moreover, letY” be the number of variables that are
not2~999%rigid. Then

PY(®am) < 142k )2 n| Al =1—o(1).

Proof. Let ¢ = 27099 \We condition on the event. Consider a variable that is either attached or iR. Let
7 € 8(®a.m) be such that(z) # o(x) and disto, 7) < n/299°%, Because is attached or iR, the set

A={zeR:7(x) #0(x)}

is non-empty. Moreover is dense by the construction &. Thus, Lemm&6.23 shows that distr) > |A]| >
n/2%99% w.h.p. Hence, w.h.p. all that are either attached or R are¢-rigid.
Further, letR be the event that

e no more thar{1 + 1/k?)2~*n variables support no clause at all and
e at mostn/(k%2*) variablesr ¢ R that support at least one clause are not attached
Then Lemm&6.20 and Corolldry 6122 imply together with Prijpan[6.5 that
P[®gmcR|A =1-o0(1).
Hence, the total number of vertices that either do not suppefause or that are not attached is bounded1by

2/k?)27Fn O
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Proof of Lemm&6.18Suppose that = 2¥ In 2 — ¢. By Propositiofl 6.6 we have
LB [2(@gm)] > 27 <c - 1%2 + ok(1)>
n

w.h.p. Now, assume that in € S(®4.,,,) all but at most(1 + 2k~2)2~*n variables arg-rigid with ¢ = 27099 |f
T € §(®a.m) is such that digt, 7) < &n, theno, T agree on alE-rigid variables ofr. Hence,

%hl {1 € S(®am) :disto,7) <én} < (1+2k72)27% = (1 +0x(1))2 ¥ In2.

Asc— 12 4 0,(1) > (14 0x(1))In2for ¢ > 21n2 + ¢ andk large enough, the assertion follows. O

6.6 Proof of Lemmal6.19

By Markov’s inequality, it suffices to bound the expected tamof paris(o,7) € S(®) at the given Hamming
distances. More precisely, |I&f, be the number of pairér, 7) € S(®) such that digo, 7)/n = x. Leth(x) =
—zlnz — (1 —z)In(l — x) and set

g(z) =7 -In(1—2""F 42771 —2)k).
Then )
—InE[Z;] <In2+ h(z) + q(z). 47)
n
We consider several cases.

Case 1:k27%F <z < (2k)~L. We have

h(z) 4+ g(x) + In2 In2+2(l—Inz)+r(-2""% +27%1 - 2)¥)

In2+a2(l—Inz)+ 22 (-2""% +275(1 — 2)%) + 2" [asr =2FIn2 -]
z(1—Inz) —In2+ (1 —2)*In2

z(1—Inz) —In24 (1 — kx + k*2?)In2

z(l—Inz) —kr+k*2® =z [1 —Inz — k + k’z] .

(VAN VAN VANRR VAN VAN

If k2% < 2 < k=2, thenl —Inz — k+ k%r < 1 —1Ink + 1 < 0. Moreover, ifk=2 < z < (2k)~!, then
1—lnx—k+k2:v§1+21nk—%k<0.

Case 2:(2k)~! < x < 0.01. We have

h(z) + q(x) +In2 2+ z(1 —Inz) +r(=217% + 275 (1 — 2)k)

IN

r T
%—_1 + 2_k exp(—kx)

IN

In2+z(1l—Inzx) —
z(l—Inz)—In2+ 216% + exp(—kx)In2

+ (exp(—1/2) —1)In2

IN

IN

C

The last expression is negative fox: 0.05 (andk not too small).

Case 3:0.01 < z < 3 — k27%/2. We have

W(z) = —Inz+In(l—x),
r(l —xz)F? r(l— )kt
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Hence, for0.01 < = < 1 — k=2 we havel/(z) + ¢/(z) > 0. Thus,h(z) + ¢(z) + In2 is monotonically

increasing in this interval. Now, let= 4 — ¢ for k=2 < e < k27%/2. Then

=
2

S—
Il

In2 — 2% + 0(e?),
gx) = (2"n2-o) <—2” 4212 4ok @ - ) + ow)
= 22+ 2% (c+1n2)+O0@4F).
Consequently,
h(z) +q(z) +In2 = —22+0()+0(27) <o.

Case 4:1 + k27%/2 < z < 1. The functionh(z) satisfiesh(1 — y) = h(y) for 0 < y < 1/2. Furthermoreg(z) is
monotonically decreasing. Therefore, for any % + k27%/2 we have

1 1
In2+h(z) +q(z) <In2+h (5 —k2—k) +q (5 —k2"“) <0.

In each case we have 2 + h(x) + g(x) < 0. Thus, the assertion follows frof (47) and Markov’s inedyal

7 The second moment

Throughout this section we assume that 2=%1n2 — p with p = %1n2 — ¢, for some sequencs, = o (1) that
tends to0 sufficiently slowly. We also assume tlkat- k, for a large enough constary > 3. We letd denote a
signed degree sequendechosen fromD and we letm denote a vector chosen froM 3. By Lemma5.11 we may
assume thatm(£) — yen| < n?3 forall (. Leto, T € {0,1}" denote a pair of assignments chosen uniformly and
independently from the set of all assignments witharginals. Finally, lett = k2—%/8,

7.1 Outline

Theoverlapof two assignments, 7 € {0, l}v is the vector

1
O(o,7) = T (@) Z di - 1oy=1 " 171)=1
IeLipa(h=t T

In words, O(o, ) captures the fraction of occurrences of literals of eacle tyfhat are true under both, 7. Since
o, T are independent and hayanarginals, we have
E[O(o,7)] = [tQ}teT‘

SetO* =[],
(S
Let Z” be the number of pairsr, 7) of pq-judicious satisfying assignments @; ,,, such that

. 1 1
dist(o,7) € |5 - K227k/2, 5+ k227k/2| (48)

Moreover, letZ’ be the number of pairsr, 7) of p4-judicious satisfying assignments @, ,,, such that
[0(e,7) = Ol <&.

Proposition 7.1 W.h.p.d, m are such thak [Z" (®4.m)] < E[Z'(®a,m)] + o(1).
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The proof of Proposition 711 can be found in Secfion 7.2. ZLelenote the number gfsatisfying assignments & .
Furthermore, leg signify the number of goog-satisfying assignments @ . In Sectior 8 we are going to establish
the following.

Proposition 7.2 W.h.p.d, m are such thakl [Z'(®4.m)] < C - E[Z(®4.m)]* .

Corollary 7.3 W.h.p.d, m are such thak [Z22(®4.m)] < C' - E[Z(®a.m)]’ .

Proof. Let Y be the number of pairsr, 7) of goodp-satisfying assignments @, ,,, such that

dist(o, 7) & % — K227k, % + K227k (49)

By definition, for any good there are at modt [Z(® 4., )] p-satisfyingr such that[(4P) holds. Therefore,
E[Y (®am)] <E[Z(®am)’. (50)
Combining [50) with Propositidn 4.1 ahd 7.2, we obtaindarhosen fromD w.h.p.

E[2*(®am)] < E[Y+2")(®am)]
< EB(Y +Z)(®am)] +0(1) < (C+1DE[Z(®a.m)]” +o(1). (51)

By Propositio 65 we hav& [Z(®g4,m)] = exp(Q(n)). Furthermore, Propositidn 6116 yields[Z (P g m )] ~
E [Z(®4,m)]. Consequently(31) implieB [22(®a,m)] < (C + 2)E[Z2(®a,m)]°, as desired. O
The second part of Theordmb.1 follows directly from Congi[&3.

7.2 Proof of Proposition[7.1

We begin by relating the overlap to the Hamming distance.

Lemma 7.4 W.h.p.d, m are such that for all pairsr, 7 € {0, 1}V satisfying[[4B) we have

_ 1 1 R
O(o,7) = T Zdlla(l):llr(l):l =31t O(27+/2),
leL
Proof. By Lemmd5.Y w.h.p.
0 = Y5 + Ol ~d )
= o 22 3 Le@=r(@) a —dy
eV
~ 1 d
— —k/2 - el
= 0™+ 3 Flo@=rw
zeV
~ 1 d 1~
= —k/2y . Gz _ 2 —k/2
O@27%%) + = 5 =17" O(27%%),
zeM
as claimed. O

Lemma 7.5 W.h.p.d, m are such that for any, 7 € {0,1}" that satisfy[[4B) and that hayemarginals we have

Lip [0,7 € S(®4)] < —2In2 + O(k27F).
n
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Proof. Much as in the first moment calculation in Seciion 6.3, heiedbnvenient to work with a different probability
space. Namely, we l&€? be the set of all vectorsr;;, 7i; )icim),je[x) Of 0/1 pairs. We define a probability distribution

on (2 in which thepairs (G4, Tij)ie[m),jex) @re mutually independent random variables. Foriaaym], j € [k] we
let P [(6:5,7:;) = (a,b)] = ¢°°, where the parameteq&” are chosen so that the following equations hold:

¢t = Olo,),
10 _ ql
1
' +q"0 = %Zdllg(n:h
leL
1
> =
a,b=0

Let (¢, 7) denote a random pair chosen from this distribution.
Propositiol 6.6 and Lemnia¥.4 ensure that w.d.js.such that

gt = i +O0@27*?), M +g = % +0(27"). (52)

Thus, we may assume thif{52) holds.
Let B be the event that

Zaw—zdl (=1, ZT”—Zdl (=1 and ZU”T”—kmO(UT)

leL leL i,
In addition, letS be the event thahax;c ) 6i; = max;c ) 745 for all i € [m]. We claim that
Plo,7 € S(®q)] =P[S|B]. (53)

Indeed, anyi-compatible formulad induces a paifé|s, 7|s) € Q defined bysi;le = o(Py;), Tijle = 7(Pyj).
Clearly, the distribution of the random pd#|s,, 7|+, ) is identical to the distribution dfe, 7) givenB
Due to independence, the probability of the evénis easy to compute. Indeed, with= ¢'° + ¢'! inclu-
sion/exclusion yields
P[S]=[1-2¢"+(1—2¢+¢'")*]™

FurthermoreP [B] = exp(o(n)) by the local limit theorem for the multinomial distributioRence, [5B) yields

A 1, P8 gy Lhs
InP[S|B] <o(1) + 1P[B]_ (1)+n1 P[S]

~ rin[1-2¢" + (1 - 29+ ¢")*] < —r [2¢" — (1 - 2¢ + ¢*})*].

%lnP [o,7 € S(®q)] =

:I*—‘

Using [52) and simplifying completes the proof. |

Lemma 7.6 Let A > 2% andt € 7. For d chosen fromD the following is true w.h.p. Le}”” be the set of all pairs
o,7 € {0,1}" such thatO,(c,7) — 1/4| > X. Then

A2n(t)
" o< ogn _ )
[H"] < 4™ exp [ B }

Proof. Let ", 7" € {0,1}" be chosen uniformly and independently. THefO, (¢, 7")] = 1. Furthermore(,
satisfies the following Lipschitz condition.
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It o', 7", 0", 7" € {0,1}" are such that there is a litediglwith 7 (Io) = ¢ suchthat” (1) = o’ (1), 7" (I) =
7/(1) forall I & {ly, —lp}, then

2d,
00,7 = Oulo',7)| < s

Therefore, by Azuma’s inequality for any> 0 we have

2 2 2
PHOt(UH,TH)_l‘ >)\] < exp _)\(km—ﬂ—(t))z < exp [_/\ n(t):| ’
4 9X:leL:T(l):t dl

where the last step follows from part 2 of Proposifion 6.5. O
Proof of Propositio 7]1Let H” be the set of pairés, 7) such that

e o, 7 satisfy [48) and have-marginals, and
* [|O(o,7) = O] > &
Then by Lemm@a7]6 and the second part of Propoditidn 6.5 wdwvpr the choice ofl) we have

En(t) k*n
" < n _ < 4" — — | .
|[H"| < 4"exp { 36| S 4™ exp 36 2 (54)
Furthermore, by Lemnia4.5 w.h.p. (again over the choia#) efe have
Plo,7 € §(®4)] < 4 "ex Otk) forany(o,7) € H” (55)
, d < P oF y(o, T .

Combining [G%) and{35), we obtain that w.hdpis such that

BI(Z'-2)(®a)] < 3 Plores@al <l en| G2 <o)
(o,7)EH"

Therefore, the definition of the distributiaWl 4 entails that w.h.pd is such that
Em [E[(Z" = Z')(®am)]| =E[(Z" = Z)(®a)] = o(1).

Thus, the assertion follows from Markov’s inequality. O

8 Proof of Proposition[7.2

We keep the notation and the assumptions of Section 7.

8.1 Overview

For two assignments, = and a formulab with signed degree distributiodhwe define a matrix

w(o,7,®) = (W,j(aa Taq)))feﬂ,je[k]

by letting w, (o, 7, ®) be equal to the fraction of clauses of typavhosejth literal is true under botlr, 7. We
call wg j(o, 7, @) the overlap matrixof o, 7 in ®. Recalling thatr, = denote two independent uniformly distributed
assignments witp-marginals, we defines = w(o, 7, ®4.m); thus,w is a random matrix. We use the symboto
denote (fixed, non-random) matrices= (w ;)ser je[r) With entries in[0, 1]. Furthermore, we lety = (we,j) je(x
denote thé-row of such a matrix. Finally, letw* = (w; ;) be the matrix with entries; ; = ¢3 for all /, ;.
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In addition, letS(¢) be the event that boid, 7 satisfy all clauses of typeof @4 ,,. LetS =, S(¢). Further,
let B(¢, j) be the event that under both

1 .
— Z 0 (Pam,ij)T(®dm.ij) =)
mE) s 0

g q>d,m

i.e., the fraction of clauses of tygenvhosejth literal is true equalg; + O(1/n). Let

B= (1 B(.j)

LeL, jelk]
In Sectior® we are going to prove the following.

Proposition 8.1 W.h.p.d, m are such that the following holds. L&t C £ be a set of clause types and &t =
Mecr S(O).-

1. Forallw = (wy ;) such thatiw, ; — w; ;| < k12 forall £ € £/, j € [k] we have the bound

PlS|lw=w,B < P[S|w=w", Blexp

O(4™*) Y m(t) |we — wz‘Igl :

LeL’

2. We have

P[Slw=w" B < P[§|w=uw" Blexp |:—®(2_k) Z m(ﬂ)] :
gL

3. For any assignmernt with p-marginals we have

P[Sjw =w*, B] < O(1) P[0 € Sy(®am)|o is p-judicious”.

Forw = (wy,;) defineO(w) € [0, 1]7 by letting

m(Ll)we,;
o =3 5 I

CeL jelk]:b =t

We also letv denote the matrix with entries, ; = Oy, (w) for all £, j. We say thatv is compatiblewith O < [0, 1"
if O = O(w). In Sectio 8.2 we are going to prove the following.

Proposition 8.2 W.h.p.d has the following property. For any = (wy,;) such that|O(w) — $1|| _ < 2¢ we have

Plw=w|l0w)=0(W),B] < Plw=o0w)=0(w), Blexp

— Q% (1) > m(0) [|lwe — wdi] :

tec
Recall thatO* = (t?);c7. In Sectiod 8.8 we will prove the following.

Corollary 8.3 W.h.p.d, m are such that the following holds. For ay = (O;)ic7 such that|O — ;1| _ < 2¢ we
have

P[S|O(e,7)=0,B] < O(1) -P[S|w=w", Blexp [n-027%)> n(t)(0; — O])?

teT
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In Sectiorf 8.4 we will show the following.

Proposition 8.4 There exists a constant> 0 such that w.h.pd, m are such that the following holds. For al? with
|0 — 11| < 2¢we have

P[B|O(e,7) =0] < n-P[B|O(c,T)=0"].
Furthermore,P [B|O(a, T) = O*] = ©(nlTI=FI£]),
Recall thatu(¢) is the number of variables of tyge= 7. In Sectiori.ID we are going to prove the following.

Proposition 8.5 W.h.p.d, m are such that the following holds. For all vectaks= (\;).c7 With |||, < 1/8 we
have

PVt e T:|0o,7) = Of| > N] < exp|—n-Q(1)> w(H)A7|.
teT
Proof of Propositiof.ZI2Suppose that € [0,1]” satisfies|O — 0*||, < &. By Propositio 8.4 w.h.p.

P[S,B|O(e,7) =0O] = PI[S|B,0(o,7)=0O]P[B|O(c,T) = O]
< n-P[S|B,O(o,7) =O]|P[B|O(c,T) = OF]. (56)

Furthermore, by Corollafy 8.3 w.h.p.

P[S|0(e,7) = 0,8] < O(1) -P[Slw =w",Blexp [nO(27") Y w(t)(O, — O;)* (57)
teT
Combining [56) and(37), we see that
P[S,B|0(c,7) = 0] < O(1)-P[S|B,w=w*]-P[B|O(a,7) = O]
cexp [nO(27%) Y " x(t)(0, - 0;)? (58)
teT
For an assignment with p-marginals let
b =P [0 is p-judicious in® g . ], s =Plo € S(Pa,m)|o isp-judicious iN®g ., ] -
Then by part 3 of Propositidn 8.1, CorolldryB.4 and Corgllaud we have
P[S|B.w = w*] - P[B|O(c,7) = 0] < O(1) - (bs)*.
Therefore,[(BB) yields
P[S,B|O(c,7) = 0] < O(1)-(bs)*exp [nO(27%) Y x(t)(Or — OF)*| . (59)

teT
For avecton\ = (A¢):c7 let
h(\) =P ¥t e T : |0y, 7) - O > A

Moreover, forc = ¢(k) > 0 a sufficiently large number let = \/LE ;0 be the positive] -dimensional grid scaled

by a factor ofc/\/n. In addition, leth be the number of assignmeniswith p-marginals. Then by Proposition 8.5
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and [59) there is a numbeér= ((k) > 0 such that

B2/ (®4.m)] B2 @am)] _ Y I
m < 0(1) (bhs)? <0(1) %h(/\) p [nO(2 ); )\ + /\/_)]
< 0(1)- Y h(Nexp [nO27%) Y w(t)A]
AEA teT
< O(l)-Zexp[ 3 w()A [O(Q—k)_ﬂk(1)]
A€EA teT
< O0(1)- Y exp [—n- (1)) w(t)X] 1) exp [~¢n Al
AEA teT AEA
[T]
< O(1)- ) exp [—écQHZIlg} Zexp CCZZZ] =0(1),
zezl
as desired. O

Notation for the proofs of Propositions[8.1£8.4. It will be convenient to work with a different probability ape.
Namely, letQ be the set of all pair&s, 7) of 0/1 vectors

(6,7) = (6i;(€), 755 (£) e icim(e),jelk) -

Let By ; C  be the event that
1

— 6i;(0)=¢; and —— 7i;(0) = ¢;

m(ﬁ) . Z J J m( ) Z J J

i€[m(0)]
foralll € £,j € [k]. Let By = ;o Be; and letB =, . Be.
To define a measuie on (), letq = (qgf;.)aybe{o_,1}165_’3-6[,6] be a vector with entries iff), 1] such that

1
St =1, @@ =q (60)
a,b=0
forall ¢, j. Define
_ 11 10
qej =405 T 5 (61)
so that
a2 =1—2q0; + ¢tk (62)

We define a measuiie = P, on (2 as follows.

Foranyl = ((1,...,4;) € L,i € [m(f)] andj € [k] independently we choose a pair of values
(6:5(£),74;(0)) € {0,1}” such that

P((64(0),7i;(0)) = (a,b)] = ¢"
foranya,b € {0,1}.
This probability space induces a random madbix= (w,_;),,; With entries
. 1 . .
Grj=— Y Gi(0F5(0).
M iefmon

We will use the probability spac(@, 15) several times in the proof of the various propositions beleith various
choices ofg.
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8.2 Proof of Proposition[8.2

Consider anys = (wy,;) such that| O(w) — 1|| _ < 2¢. We use the probability spad€?, P) with the vectorg
defined by

ql}.,lj = Wy, qe,j :Ej for aIIE,j;
the remaining entries af are determined by (60}=(62). Then the following is immealfabm the construction.
Fact 8.6 We haveP [w = w|O(w) = O(w), B] =P [@ = w|O(w) = O(w), BJ.

Now,
. iy e _ Plw=w, 0W)=0(w), B] . Plw =w, B]
Plo=wl0@) =0W). Bl = —55@=0w). Bl POw@) =0Ww), B
B P [Blw = ] ot
= PlOw) < 0Ww). B " ¥
P [Blw = &] -
= WP o). B T
The last step follows from the local limit theorem for the tmdmial distribution because
E { > 6450 w;@} =E [ > #i5(0) a_w} =m(l) - ¢
i€[m(£)] i€[m(£)]

forall ¢, j. Hence,
Ow) =Ow), B] _ Plw=u]
Plw=w|l0w)=0(w),B] — Plo=uv]
Foreachl € L, j € [k] the sum}_, () 74;(£)7i;(¢) has a binomial distributioin(m(¢),we,;). Furthermore,
these random variables are mutually independent. Thexg@drernoff bounds yield

i{: z :} = e [_Q’“(l) > D ml)(we — w,j)zl ,

LeL je(k]
whence the assertion follows.

8.3 Proof of Corollary 8.3

Letw be an overlap matrix such th& = O(w). Let £’ = £'(w) be the set of all € £ such thatw, ; —1/4| < & for
all j € [k]. LetS" = (N, S(£). Then
Pw) = P[S, w=w|Ow)=0, B
P[S'|w =w, B] -Pw = w|O(w) = O, B.
Let

P = PlS|w=w", B Plw=w0w)=0, B|;
observe thaP depends oi© but not on the specific choice af Then by Propositioris 8.1 ahd B.2

Plw) < Poxp |3 ml0) 1“/-O(ﬂ)||w—wz‘|§—ﬂk<1>|m—we|§}]

< Prexp |SomlO) [teee - O@™) (e — well} + e — wi I3) = (1) e —weui]]
Leel )
< Peoexp | m(0) _0(47'“) loe — will; — Qw(1) | - wz||§w :
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By the second part of Propositibn B.1,

Ly, PlSlw =, B K m(f) m(l) 5 1 m(l) , 5
—In e = P N2 o 2 NT I 5, .
n I P[S|w = w*, B] oe™) ZL/ n é;/ § [[we — well;

Hence, letting? = P [S|w = w*, B] - P [w = @|O(w) = O, B], we obtain

P(w) < Pexp |04 m(0) @ —will; = > Q(1)m(e) [lor — wel3 | -
el el

To proceed, we note that

dYomO)llwe—wil® =YY m)(0; - Or)

tec jE[k] LeL
S 3) 3D DEUCIT I NI WY it
teT LeL je(k] teT

Thus,

P(w) < Pexp

nO@27%)Y " x(t)(O 2= (1)m(e) [lae — wﬁ].

teT el
Summing over all possible overlap matricesf assignments with-marginals, we get
P = 3 Pw=P[S0Ow) =0, 8 >P[S|0w) =0, 5],
w:0(w)=0

which we can bound by

P < P-exp TLO~(2—IC)Z?T(lf)((’);K —Ot)z Z exp[ Zﬂk 0) ||we — o.)g”%]
teT w:0(w)=0 Lel
= P[S|w=w*, Blexp |nO(27F) Z 7(t)(OF — 0y)*
teT
>, exp [ > Q)m) o~ wellﬁ] Plw =w[0(w) =0, B]
w:0(w)=0 LeL

IN

0(1) - P [S|w = w*, Blexp |nO(27F) Z 7(t)(OF — Oy)?

teT

)

as desired.

8.4 Proof of Proposition[8.4

Letw be such that) = O(w) and |lw — ||, < n~!/3. We are going to work with the probability spa(@, P)
defined by letting
(Jz%lj = we j, qej =4;.

We claim that there exist numbeis< ¢, < ¢}, (independent ofs) such that w.h.pd is such that

cr < nP[By|lw=w] < forall ¢, ;. (63)
J k
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Indeed, giverv, ; = wy,; the total number of indicese [m(¢)] such thai(é;;(¢), 7:;(¢)) = (1, 0) has distribution

Bin <(1 — wi)m(0), M) .

1 — Wy,

Therefore, the probability that the total number of stieuals its expectationiis in the inter\{a}cﬂlrfl/Q, cmn*/ﬂ
for certaincy,» > ¢1 > 0. Furthermore, given this event, the numbei ef [m(¢)] such tha{é;;(¢), 7:;(¢)) = (0,1)
has distribution
. fj — Wy,
Bin { (1 —¢;)m(l), — |.
: 1-— éj
Once more, the conditional probability that this randonialale equals its expectation lies joy, 5n1/2, ¢j, an=1/?]
for certaincy 4 > ¢35 > 0. Hence, setting;, = ¢ 1¢,3 andc), = cx 2¢x,4, We obtain[6B).
Summing[(6B) over all (finitely many) possiblewith P [w = @] > 0 andO(w) = O and invoking Propositidn 8.2,
we find that w.h.p. over the choice df

P[B;|0(@) = 0] [Bej|w = w] P& = w]

|
-

w

o(1/n) + > P[By|& = w]P @ = w]

willw—a|| <n-1/3

< o(1/n) + ¢, /n < 2¢,./n.

IN

A similar calculation show® [By ;|O(&) = O] > ici/n. As ¢y, ¢}, are independent of the specific vectdr the
assertion follows.

9 Proof of Proposition[8.1

We keep the notation and the assumptions of Section 7.

9.1 Outline

In Sectiorf 9. we will establish the following.
Proposition 9.1 There exisC?-functionsP,(-) that range over matrices = (wy,;)se ., jex) SUch that
we —will, < k2 forall rer

with the following properties.

1. For all suchw we have

P[S'|w =w, Bl =exp |O(1) + Z m (L) - Pe(we)
cec
2. For eacht, Py is a function of the row, only.
We need to analyse the functioRs from Propositiof 9J1. Crucially,* turns out to be a stationary point.

Proposition 9.2 The differentials of the functior®, from Propositiod 9.1 satisfPP, (w;) = 0 for all ¢.

The proof of Propositioh 912 can be found in Secfiod 9.3. lmrhore, in Sectioh 9.4 we derive the following
bound on the second derivatives/f.
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Proposition 9.3 The functions?, from Propositiod 9.1 have the following property. For ajy’, £ we have
%P,

Deor0n gy <0

on the entire domain dP,.

Corollary 9.4 For anyw in the domain of® we have
Pe(we) < P(w;p) + O(47) lwe — wi ;-

Proof. This follows directly from Propositioris 9.2 ahd P.3 and Taid formula. O

Finally, in Sectiofi 96 we will show of Propositibn 8.1 folis from Proposition 9]1 and Corolldry 9.4.

9.2 Proof of Proposition[9.1

To construct the function®,, we are going to work with the probability spa(fé, 15) from Sectior.8 once more; we
are going to define the vectgrthat determines the measu?eso as to facilitate the definition &%, in due course. Fix
w = (wg,j)rec,jepr) SUch thatjw, —wj || < k~**forall¢ € L. Let B’ =, ., By. Further, for! € £ andj € [k]
let C,; be the event thab, ; = wy,;. LetCy = ;¢ Cr; and letC” = (e, C;. Finally, letS” = (N, S(€).

The following two facts are direct consequences of the difimbf P.
Fact 9.5 If ¢ is such thal [B’ N C’] > 0, thenP [-| B’ N ("] is the uniform distribution over the s&' N C".

Fact 9.6 Suppose thaiy is such that the conditional distributioR [-|B’ N €] is uniform. TherP [S’|B’, C'] =
P[S|w=w, B].

Thus, our goal is pick such thalP [S|B’, C'] is easy to compute. Roughly speaking, we are going to acdsimpl
this by choosingg so thatP [B’, C'[S'] is as big as possible. To implement this, we first need to deter the
unconditional probabilitie® [S’], P [B’, C'] as functions of;.

Lemma 9.7 Suppose thag is such thaty ; € (0,1) forall ¢ € £/, j € [k]. Then

k k
PSi(O)=1-2]](0 —aey) + [T — 240 + ai}) (64)
j=1 j=1
forall ¢ € £',i € [m({)],and
1. m(l) k k
~mP[s] = > — {12 10 =)+ ][0 —200; + @)
Lel Jj=1 j=1

Proof. The first statement follows by inclusion/exclusion. Thelbility thatmax ;¢ x) 65 (£) = 0 equals]_[ljzl(l —
q¢,j) as the components;; (¢) are the results of independdb(q,, ;) experiments. For the evemiax e 7i;(¢) = 0
we get the exact same expression. Furthermore, the prabalfiimax;c(;) 6;(£) = max;cp 745 (£) = 0 equals
H;?:l(l — 2q¢,; + q; ;) To see this, note that for each individyake have

Pl6;(0) = 7i5(0) = 0] =1 —2q0; + q;

by inclusion/exclusion, and these events are independeyité [k]. The second one is due to independence éver
ands. O
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Lemma 9.8 For anyq and any/, j we have
P [Cy;] = P [Bin(m(0), ¢;;) = weym(€) + O(1)] . (65)

Furthermore, ifg*1(¢,7) < 1 then

= m(ﬁ)(l — 2£j + (Ugyj)

. . 1—2q0; +qit
P[BeyICy) = @(n-”?wP[Bm <(1—wz,j)m(€)7w>

1—q}
Proof. Recall thatCy ; is the event that

D 60 - Fi(0) = wem(0) + O(1),

i€[m(f)]

By construction, the random variablés; (/) - 7i;(¢) are independeriBe(q; ;) variables, and thus their sum has
distributionBin(m(¢), ¢; ;). Hence we gef(85).

Furthermore, once we condition on the evéft;, the remaining1 — wy ;)m(¢) pairs(é;(¢), 7:,;(¢)) are chosen
conditional on the outcome being different frdi 1). Hence, by construction each such pair takes the v@u@
M independently (with the numerator resulting frdml(62))effect, the probability that the

total number of 0, O)s equaISn(é)(l — 20 + wy ;) Is just

with probability

1—2qe; + 7

p
1—q}

Bin ((1 —we,j)m(?), ) =m(l)(1 —2¢; +we ;) +O(1)

Now, given that both this event artty ; occur, the remaining(¢; — w)m(¢) pairs(&,(¢), 7:;(¢£)) come up either
(1,0) or (0, 1) with probability1/2. By Stirling’s formula, the probability that both outcomescur an equal number
of times is©(n~1/2). m

Note that
R k
P[B HP HNCE) = HH B(tj, ) N C(t;,0)] (66)
eL’ eL’ j=1

because undét the components of the vecttd;; (), 7i;(¢))¢..,; are independent.

Lemma 9.9 There exists a vectay such that
P e — (ae5 = 4 5) Ty (1 — ae.n) 67)
i = % % ’
1 =2, (T —qen) + TThoy (1 — 2qen + qzllh)
qll.
Wg,j = T 2] T T (68)
1=21[=1 (X —qen) + [ 1oy (T — 2q0,n + q43,)

forall ¢ € L', j € [k]. This vectorg satisfies

qr;=40; —27 k=1 0(2 3k/2) anqu G =W+ 0(24“).
Proof. This follows from applying the inverse function theorem isimilar way as in the proof of Lemnia 6]10. O

In the rest of this section, we fixy as in Lemmd3.D.
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Lemma 9.10 Let

k k
Piw) = In [1 —2JJ(0—aey) + [T — 240, + ‘le.,lj)]
=1

j=1
1—2q05 +qp5 1205 +wi
— Z [ qé-],ng (1—00[,7)’(/1 ( 1_q11 ’-7, 1_Jw : J .
JeE(K] b o
Furthermore, let
m(¥)
= 7 . 69
P(w) EZLj i) (69)

Then R
P[S'|B',C'] = exp [nP(w) + O(1)].

Proof. The choice ofy ensures that for anfand;,
B m(f)qp;
1- 2HZ:1(1 = qe,n) + Hﬁzl(l —2qe,n + qz},lh)

indeed, by[([64) the denominator in the middle term equalgptbbability of the evens;(¢). Furthermore, by con-
struction for anyi, 7, £ we have

Pl6ij(6) = 1,7i;(6) = 0,5,(0)] = 41 (1 -JIa- qm)) = (q0.; — ;) (1 -IIa- qe,j)) :

h#j h#j

E [ Z &Zj(é) . +ZJ(€)‘SI - wf,jm(g); (70)
i€[m(0)]

As a consequencé, (67) ensures that

. . qej — (qe — a4 5) Tz (1= an)
E Z Uij(é”‘gl = k 7 - L k o 11 - éjm(é)' (71)
i€[m(0)] 1=2]To (1 —qen) + IThe (1 = 2qem + Qe,h)

By inclusion/exclusion, we obtain fror (I70) aid71) that

i€[m(0)]

1D [ > (1=65(0) - (1—745(0) S'} = (1 =2 +we5)m(L). (72)

Due to [70) and{72), a repeated application of Lerhmh 4.1l¢ike limit theorem) yields
P[B,C'|S'] = ©n L2, (73)

Invoking Lemmd 9.8 and using the large deviations principtethe binomial distribution (Lemma4.2), we can
easily determine thenconditionalprobability of B’ N C’: we have

HP CM BM'CM]

= 6(n7k\£ /2 HP B1n m(é),q}).lj) = o.)g,jm(é)}

]

15 = m(é)(l — 2fj + Wg)j)

Bin ((1 — wy,j)m(L),

1=2q;+qih 1—20; +wp ;i
1/}((][1,]35wl,j) + (1 - wf,j)w < ! 11 - ) J J .

1—2q0; + qp}
L= az;

1—q£7j 1—wyg;

@(n_3k|£/|/2) exp [Z m(¢)

4,3
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Thus,

DICNDIR (V<

WP, ] = In|EIPIBL NS
P[B',C"]
= 0O(1)+mP[9]
1=2q0;+q5 1—20; +wp
S R = ||
] - q[_’j — Wy j
The assertion follows by plugging in the expressionttdt’| from Lemmd9.V7. 0

Finally, Propositioi 91 follows from Fact 9.6 and Lemima®.1

9.3 Proof of Proposition[9.2

We start with the following observation.

Lemma 9.11 Let q be the solution td{87) an@{68) far = w*. There isy = v(k) > 0 such that for any > 0 and
any/ € £’ we have

exp(—ye?n + o(n)) and (74)
exp(—ye®n + o(n)). (75)

P(ll@r — wille >e|S, Bl <
Pl —wille >elBd <

Proof. Equation[(7B) from the proof of Lemmia9]10 shows that
P [B¢|Si] = exp(o(n)). (76)

Therefore, it is going to be sufficient to estimﬁé”&.:g —wj ||, > €] Se]. If we just condition on the evert;, then
the k-tuples (&, (¢), 7i;(£))jerx Of 0/1 pairs are mutually independent for allc [m(£)]. Furthermore, givers,
modifying just one sucli-tuple can alter any entrgp, ; by at mostc/n, for some numbet = ¢(k) > 0. Therefore,
Azuma’s inequality yields A

Plloe; —El@e;]| > €]Si]) < 2exp(—ye?n), (77)

for somey = (k) > 0. Since [68) ensures thBt[w,|S,| = w;, (74) follows from [78),[[7I7) and the union bound.
To obtain [75), leiy’ be the vector with entrieg, ; = p(¢;) forall £, 5. Then

Py [Bi] = exp(o(n)). (78)
Furthermore, applying Azuma'’s inequality just as in thevras paragraph, we find that
Py [|@r; —E ;]| > €] < 2exp(—e°n) (79)

for somey = (k) > 0. Moreover,E, [&,] = w; by the choice ofy’. Thus, [75) follows from[{78)[{79) and the
union bound. O

Proof of Propositioi3RLet ¢ € £'. Letq be the solution td{87) anf(68) far = w*. ThenP |- |B’] is the uniform
distribution over pairgs,7) € Q such thats,7) € B’. Indeed, fow = w* the solutiong to (67) and[(EB) satisfies
45 = q; ; forall ¢, j. Therefore, for anys, 7) € 2 we have

f) [a. _ (5’, 5= 7;] — qz:jl,i,j &i,j(f)Jrf'i,j(e)(l _ qe,j)kmiz[‘i’j Gi,5 (0)+7i,;(€) (80)

Since the sum§_, ; - & ;(¢) + 7; ;(£) coincide for allé, 7 € B', (80) shows thaP [-|B'] is uniform.
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Let H(w) be the number of pair@, 7) € 2 such(6,7) € B’ and& (4, 7) = w. We claim that
lDlnH(w*) =o(1). (81)
n

This can be verified either by representiigw) as a product of binomial coefficients and applying Stirlifgsnula
or, alternatively, by using (I5). Indeed, assume {hat 813lse. Then for small enough> 0 there isj > 0 such that
for somew’ with |w" — w*|| ~ € we have

In H(w') > én + max In H(w) (82)

willw—w[l<e/2

(with bothe, § possibly dependent dnbut not onn). Letting

(6,7)eB’
we obtain from[(7b) that
N 1
1 ~ Pllo—-w, <e/2|B]= T Z Lyo(6,4)—w || <e/2 " Hao )
(6,7)eB’
= exp(o(n)) - max H(w)/H. (83)

willw—w* ||, <e/2
However, combinind{82) anf{B3) we get
Pllo—wll >e/20B] 2 HW)/H 2 expln) | max  Hw)/H
> exp(dn — o(n)P & — |, < /2B > 1,
which is a contradiction. Hencé, (81) follows.
Now, assume for contradiction thatP,(w*) # 0. Because the functioR,(-) remains fixed ag — oo, there

exists a fixed’ > 0 such that| DP,(w*)| .. > €’. Therefore,[(8l) entails that for amy> 0 small enough exist’,
d > 0 such that|w" — w*||, ~ ¢ and

InHW)+n-Pw) > dn+ max In H(w) +n - Pe(w), (84)

- willw—w*|| <e/2

oo

with €, 6 independent of.. Let
Hy= Y H(@(5,7))exp [nPy((6,7))].
(6,7)€B’
Then by [74),
1~ Pll@r—wille <e/2Se, B
1 NS
= Y L -w<e/2 - Hago.r) exp [nPe(@(5,7)) + O(1)]
(6,#)EB’
= exp(o(n)) - max H(w) exp(nPe(w))/Hp. (85)

wi|lw—w*|| <e/2

However, combinind(84) anf (B5) we get

H(w")exp [nPe(w') + O(1)]

P lle —willy, > /215, B = =
4
> exp(dn) | mahx /zH(w) exp(nPe(w))/He
wilw—w* || <€
> exp(dn — o(n))P [[|& — w*||, < ¢/2|Se, B'] > 1.
This contradiction shows thd@P,(w*) = 0 for all ¢. O
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9.4 Proof of Proposition[9.3

We need to compute the second derivativéPpf In particular, we also need to differentiaje= g(w) the solution
to (€4)-168). Furthermore, we fix some type L for the rest of this section. Léd, denote the set of all vectoss
such thafwy ; — 2| < k= for all j € [k]. In Sectioi 9.b we are going to establish the following.

Lemma 9.12 On W, we have

o) P
=1 I —s TO R
awg i h=i F O( )7 8w,i6w,3,j O( )’
Oqn A %qun = ok
Owe,i =0@™), Owe,;0we, o@™)

foranyh,i,j € [k].
We split the functiorP, into a sum of various contributions: let

k

¢e(q) = In|1-2 H —qe;)+ [ - 2q0; +})| and
Jj=1
Ye(w,q) = Z Yo (@, q) + e (w,q)  with
JE[K]
Gej(w.q) = »(ary,wes),

1- 2‘]2,]’ + Q%}j 1-— 2@7' + we j
L-aqpy '

U j(w,q) = (1—sz,j)¢<

1— We, 5
Lemma 9.13 OnW, we have

<047 %) forall h,j e [K].

Proof. By Lemm&9.9 for ally € W, we havelq, ; — 1/2| < 1/k* and|q;}; — 1/4| < 1/k*for all j € [k]. For such
vectorsg, we obtain the bounds

(oloY, %y oo ~

= 0027,
9905 qe,j0qen’ 045 50qun @)
a(bf 62¢é Noo—k
s — @)
8q11 9q; 50457,
for all i, 4, h € [k]. Therefore, the assertion follows from Lemimal 4.3 (the chalie) and LemmBA9.12. O

Lete > 0. We say thatl € C?((0,1)?,R) ise-tameon) C (0, 1)? if the following conditions hold:
T1. Forally € (0,1) we have¥ (y,y) = 0.

T2. OnY we have‘zZ 1 a

T3. On) we have‘zw . aizazj <2,
T4. On) we have|6 | <100 foranyi,j =1,2.

Let f : (0,1)* — R2?, (21,...,2x) = (fi(z1,...,28), f2(z1,...,2x)) be aC?-function. We say thaff is
e-benignon WV if the following statements are true of:
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Bl |98 — S| <.

B2. | 2L /= 1,2and| 9% < 100,
2. .

B3. 5555 (h.4) # (1. 1).
2

B4. |G&

Lemma 9.14 There is an absolute consta@t > 0 such that the following is true. Assume tlfais e-benign on\v
and thatU is e-tame onf (W). Then oV we have

2
%{;f <Ce*  foranyi,j € [k].

Proof. By Lemmd4.B (the chain rule), we have

2

920 o f Z ov Phh OV 8fu O
02,0z 8yh (“)zlazj o DyaOyp 0z; 0z

Since byT4 and Taylor’s formula we havgy% = Ox/(e), B3implies that for(s, j) # (1,1)

2
ov 9*f, 9
g Oyp 020z Or(€").

Furthermore, ag>. = Oj(¢), B4 yields

2 2 2 2
oV 92 f, ov ov [9%fy  02f1 ov 2 2
- = 2= =0:(1) Y 2= 4 04(e2) = Ok(eY):;
Zayh 072 %Za Za [ 32%} ’“()Zath“ k(%) k(%)
h=1 =1 =1 h=1
the last step follows frorf2 and Taylor’s formula.
To deal with the second sum, we consider four cases.
Casel:ii#1,j+# 1. ByB2we have%afb < O (e?), and thus
PV Af, df,
aYlo _ 19) 2
0YaOyy 0z; 0z; k()
by T4.
Case 2:i =1,j # 1. We have
22: 0°0 0f 0fy i%i 92T 8fa|izio (5>22: 9% Of,
0YaOyp 021 8zj N = 0z ‘o OyaOyp 021 Pt b ot YOy 021
2 2
BL, T4 oy, Of1 o}
= Ot g, ;Ok( ); OyaOyy
2 2
B2 9 oV 12 9
= O(e’) + Op(e =
k(€%) bz:; k();ayaayb (€7)

Case 3:i # 1,j = 1. The same argument as in case 2 applies.
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Case 4:i = j = 1. We have

22: IR 22: 02
0yaOyp 0z1 021 821 (?ya(?yb 8ya8yb

a,b=1 a,b=1

0fs 0fs (%)
821 821 821
2

2
B2,T3 Or(e?) + Z v of, [(“)fb 8f1] n 0% % {(r“)fa (9f1]
a,b=1

S OYaOyp 021 | 021 Oz 0YyaOyp 021 | 0z1 0=z
2 2 2
B1 020 df, PPV Of
- )" Z Onle Z 1 0YyaOyp 021 az:: Oxle Z Dyadyy Dz1
2 2
B1 O*V df1 1 2 20 (2
= )+ Oy ( ) + O ( = .
E:kzw%% “);kgﬂwb )

Hence, in all cases we obtain a boundf(s?).

Lemma 9.15 The functiongy1, y2) — ¥ (y1, y2) and (y1, y2) — (1 — y1)¥(y1,y=2) are O(Q"“)—tame on

Y= {00 € 0.0y = el < 927, ol =1/ < 1712

Proof. It is straightforward to work out the differentials ¢f we have

oY y2 11—y oY 1—2
A - I FIn (%),
oy v 1—w 3y2 y1 11—

(’“)21/1__2_ 11—y 0% _i 1 ('“)%/J__i_ 1
Oy1? n?  (1—y)? 0y10y2 v 11—y’ Oyo? yv2  1—y2
Differentiating once more with respect o, we get
Fuo e 2-w) O _ 11 v,
oy} yi (—w1)® Oyidy:  vi (1—w)? Oydys
Therefore, ay; = y» + € the second derivatives work out to be
0% 1 1 ( 1 1 )
- (2 + ¢, = —- +2(— - —— ) +0(?),
dyt B2+ &) v -y \p? (I—p)? )
921 1 1 ( 1 1 )
———(y2 + ¢, = —+ te|l-——S5+—= ] +0(),
0y10y2 2+, 32) v -y O\ p? (1—y2)? )
0% 1 1
- + , — P .
By2? (yz € yz) 2 1o
Hencey is tame. Furthermore, differentiatiig; , y2) — (1 — y2)¥(y1, y2) yields
O bl = (- 1)y, p2)
A Y2 )P Y1, Y2 Y2 Do Y1,92),
O bl = (- )y, ) — Bl )
E Y2 )P Y1, Y2 Y2 E Y1,Y2 Y1,92),
0? 0?
Ty%(l — )y, y2) = (1—y2)55 o7 5 (Y1,92),
D ) = (- ) vy ) — 2w, 1)
3y§ Y2)P Y1, Y2 Y2 8y2 Y1,Y2 o Y1,92),
O (i) = ()b te) — ti(in, )
D102 Y2)P Y1, Y2 Y2 9910y Y1, Y2 E Y1,92)-
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Hence, the fact thatl — y2)¢(y1, y2) is e-tame follows from the fact that is. O
Lemma 9.16 With g = g(w) the functions

&y wer (a0 we) s

)
1-— q}}j 1—wej

1—2q0;+qth 120 +w,
Coj + w (CegsCoeg) = ( . ——

are O(27%)-benign onW = {w : [lw — 11| < &4}

Proof. The fact that, ; is benign follows directly from Lemn{fa9.]12. With respecttg we have

OGu; _ 20-6) PGy A1 —1)
Dwe (1 —we )% owi; (1 —wey)®
02,5 0?Cop g .
20— S LISV h
8&)@7}1 ’ 8&)&}18&}@@ ( # 3)7
9ap - gL At
6(17573‘ . (1 B ql}lj) _2833,; + 623,]]- + BZiY,Jj (1 - 2q£,j + ql}lj) . 2(1 — C]gd‘) n O(Q_k)
Owy,j (1—q;})? (1—qp})? ’
&Cie,j A0 =qej) | Aok
SO 2T ok,
Ow; ; (1—qe;)* @5
0C1e,j S ok 0%*Ciej Sk .
SLL (2 O O(2 h# j).
Since|qe,; — £;] < O(27%) and|g}}; — we ;| < O(27%) by Lemmd3.D, the assertion follows. O

Finally, Propositiof 913 follows directly from Lemmas 9, B314[9.16 and 9.16.

9.5 Proof of Lemma9.1?
Let
i — (e — a15) Tz (1 = qen)

k k ’
1=21[= (T =qen) + [Th=1 (1 — 20, + qzllh)
11
9e,5
1= 2T (1= gen) + TThoy (1 — 200n + qf)

A straightforward calculation shows that feisuch thatq, ; — 1/2| < 1/k* and|q;}; — 1/4 < 1/k* we have

Pg_’j g

Qg}j g

OF; Nro—k 0Py S o—k
2 =1._, + 0O(2 , J — O(2 ,
8(]2,}1 j=h ( ) 8(]})1;1 ( )
69[7 ~ —k anJ ~ —k
Pg _ Ok, L =1, +0(2
31]2.,}1 ) 8q%71h j=h ( )

(Py,j (Q))je[k]
(Qf,j (q))je[k]

(%) (aPm)
Aqe,n he[k]’ 8‘11},1’1 helk] J€[k]

DF =
(%) (aPm)
Aqe,n he[k]’ 8‘11},1’1 helk] J€[k]
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foranyj, h € [k]. LetF : g — ( ). Then the differential of" satisfies

=id+0(27 M), (86)




whereid is the matrix with ones on the diagonal and zeros elsewhadkl aignifies the matrix with all entries equal
to one. By the inverse function theorem, we hawg" ') = (DF)~!. Furthermore, by[(86) and Cramer’s rule,

(DF)~' =id+ O(27")1. (87)

; ; ; _ (&) v Daen
Sinceg(w) is the solution toF'(q) = ((”MZ ])JJ;[: ), (81) yields the assertions on the first derlvat|\5§% aff[’ in
Lemmd9.1p.

Proceeding to the second derivative, we highlight the Vathg (folklore) fact.

Lemma 9.17 Lete, § = exp(—(k)). LetA be the set of alk x k matrices4A = (4,;) suchthafA;, — 1| < ¢ for all
iand|A;;| < é forall i # j. ThenA is regular and the operatamnv : A € A+ A~! = (invg A)s 11, 5 Satisfies

Oinv | _ O(6) = Limjmst(1 + O(e)) foranyi,j, s, t € [k].

3@1-3- A

Proof. This is a simple consequence of Cramer’s rule. Indeedilebe the matrix obtained from by omitting row
7 and columny. Then

det A}
. _(__1\S+t ts
invg A= (-1) ot A
Thus, we need to differentiatet A}, anddet A. For anyi # j we have
O deta — [T ann +0(5) =1+ 0(e) + 0(5), O qet A = 0(6).
Oai; hti daij
Similarly, fori # j ands # t we have
0 ’ _ 2 0 / I A
P det Ay, = 1ix - (1+0(e)), Er det A}, = O(9), Jas det A;, = O(9).
Thus, the assertion follows from the quotient rule. O

A direct calculation shows that farsuch thafq, ; — 1/2| < 1/k* and|q;}; — 1/4| < 1/k* we have
o2p,;  0*P,;  0°P,

= 02,
Aqe,n0qei” dqendqy’ 0q;5,0q; @)
2Q) Q Qp i ~
Py O, 1 i —de = 027"
dqe, haQZ i 0q0n0qp s’ 093,09,
foranyh,i,j € [k]. Thus, ~
|D*F|_ <0@2™"). (88)

Because by the chain rule(inv o DF') = (Dinv) o (D?F), the assertion on the second derivatives follows from

Lemmd3.1V [(87) and(B8).

9.6 Completing the proof of Proposition[ 8.1

The first assertion is a direct consequence of Propoéitibared Corollarf 9}4. Similarly, the second assertion foow
from Propositio 911 becaug® (w) < —€2(27F) for all 4.

Finally, letw = w*. Itis straightforward to verify that by letting ; be as in Lemm&®6.10 and by settia]ﬂ@. = qf_’j
we obtain the unique solution 0 (67)=[68). We need to pliggblution intoP(w): we have

k k k k
In 1—2H(1—Qz.,j)+H(1—2Qz.,j+q}.,1j)] In [1—21_[(1—% 110 =g ]
=1 j j=1

=1 J=1

j=1

k
= 2In (1-1‘[1—%). (89)
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Moreover,

0. 1— /2
Blalbwey) = wmﬁ,j,@):—z@m(—ﬂ)—<1—f5>1n( )

qe.5 1—(1%
— —22?111(&)—(1—8?)[1D<1_@)—i—ln(l—i_gj )} (90)
' qe,j ' 1—qe; 1+qe;
Further,
1=2q0+ a5 1—20; +wp (1—qu;)? (1—1¢5)?
1_€2¢ > -,J’ J 5J _ 1_€2w »J , J
=6 ( =g o, S 2 N i
1—Qg‘ 1—f‘
= -y | —=L, —2
( J)w(l—l-qg,j 1+£J)
= —(1-4;)?In 1-4 —(1-¢)In Lty —20,(1—¢;)In 4 (91)
a J 1-— qe,j J 1+ éj J J qe,j '

Summing up[(89)+£(31), we find

n7>2(w) = Zm@) lln (1 - 1;[1 1- (Je,j) - Z]lﬁ(%,jafj)] :

el j€k

Therefore, the third assertion follows from Remark 6.14.

10 Enumeration of Assignments withp-Marginals

In this section we will prove Lemnia 8.2 and Proposifiod 8.6fdBe we present the actual details we will introduce an
appropriate framework, which will enable us to perform themeration of assignments withmarginals, and pairs
of such assignments with a given overlap.

In Sectiorlb we said that an assignmerg {0, 1}V haspg-marginalsif for any typet € 7 we have

Z 10(1)21 . ﬁ = p(t)ﬂ'(t).

km
leL:T(l)=t

In words, the fraction of literal occurrences of typéhat are true undes equalsp(t) up to an error ofO(1/n).
However, due to technical reasons and because it simpldieg ©f our calculations significantly, we will actually
work with a slightly refined definition. Let us say that a sigme (s,d*,d™~) is good if d™,d~ < 3kr/4 and
0 < (dt — d)? < 100k2*In k. Instead of requiring that the fraction of literal occurcen of typet equalsp(t), we

require that this is true fagvery good signatureThat is, we say that an assignment {0, l}v haspq-marginalsif
for any goods € T'
dl dl
Z Lo=1-7 - = p(s) Z T
leL:T(l)=s leL:T(l)=s
and moreover, that fraction of literal occurrences of dilestvariables id /2, i.e.,
d; 1 d
D i D Dl v
leL:p(l)=1/2 leL:p(l)=1/2

We are going to prove Lemnia 6.2 and Proposilion 8.5 with thislified definition. It is easily checked that this
modification does not affect any of the arguments in the prey/sections.
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Let s € T be any signature and sé, = {¢{ € L : T({) = s}. Moreover, denote by, = {|¢| : ¢ € L;}
and observe thdt; = V_,. For anyo € {0,1}" let us denote by the-weightw,(c) the number of satisfied literal
occurrences, where only literals of signatdr@re considered, i.e.,

ws(a) = Z l[g(g)zl]dg.

leL,

Let us also define similar quantities with respect to thesypett € 7 and set, as previously,, = {¢ € L: T({) =
t}. Denote byt € T the type satisfying(—t) = 1 — p(t). Note that-t¢ exists, and we havé_;, = {—¢: ¢ € L,}.
Moreover, note that ip(¢) # 1/2 we haveL, N L, = (), andL, = L, otherwise. Finally, se¥; = {|¢| : £ € L;} =
{|¢| : ¢ € L-:}. In accordance with the case of signatures, let us foraary{0, 1}" denote by the-weightw; (o)
the number of satisfied literal occurrences, where onlydigeof typet are considered, i.e.,

wt(a) = Z 1[a(g):1]dg.

yasym
Lett,, be the type such thait, ) = 1/2. SinceLy, ,, = L, , it follows that in this special case
Wty /g (U) = Z 1[d(v):1]dv + 1[0(@):0]dﬁv- (92)
UGth/z

With the above notation, an assignmertiasp-marginals if and only if
1
Vs € T\t1/2 : ws(o) =p(s)n(s)km and we, (o) = §7T(t1/2)km.

The next proposition is the first step towards the estimaticthe total number of assignments wjtimarginals, c.f.
Lemmd®6.2. We denote b (z) = —x Inz— (1 —=z) In(1 —z) the entropy of:, and with[2"] f(z) then-th coefficient
in the Taylor series expansion of an analytic functfoaround 0.

Proposition 10.1 W.h.p.d chosen fromD has the following property. There is a constart> 0 such that if we
denote byS the set of signatures € T with the propertyp(s) > 1/2, then

1] = (C +o(1))n V2 exp {Z IVSIH(p(S))} [emtakm 2 T (et 4 2), (93)

sES vthlm

Proof. First of all, note that if for an assignmesmtand a signature € 7" with p(s) > 1/2 we havew, (o) = n(s)km,
then the fraction of variables Wi, that are set to true ig(s). Thus, the fraction of variables set to falsd is p(s) =
p(—s), and we infer that

w-s(0) = D Lp=yde = Y Lig(w)—0jd-v = p(=s)m(=s)km.
el veVy

Consequently, for any suchthe number of partial assignments: V; — {0, 1}, with the property that the fraction
of satisfied variables is(s) is

( |Vl ): 1 IVl H(p(s))
pIVsl) /2mp(s) (1 = p(s))[Vi]

Since w.h.pd is such thatV,| = (1 + o(1))asn for somea, = a,(k), this provides the exponential terms[in}(93).
It remains to bound the number of partial assignmentsV;, , — {0, 1} such thatw;, , = $7(t,2)km. Define
the generating function
HOEIED I

U/:W1/2—>{O,l}
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By definition, the sought quantity [s™(*1/2)*™/2] F'(»). Moreover, the definition of(z) and [92) imply that

Fz)= ) T Qow=uz* + L=z

U’:W1/2—>{O,l} ’UEth/z

The assertion follows. O
Lemmd®&.2 follows immediately from the next statement, Wliscshown in Section 10.1.

Proposition 10.2 W.h.p.d chosen fronD has the following property. There is a constaht= C'(k) > 0 such that is
we write N = [V;, ,|, then

[ (tr2lkm/2] T (2% 4 2%0) = (C + o(1)) N~ 1/22N.
vEth/z

We proceed with the proof of Propositibn B.5, i.e., we wangéiamerate pairs of assignments witimarginals that
have a specific overlap. Lete T be a signature. For any, 7 € {0, 1}" denote the by the-overlapos(c, 7) the
number of literal occurrences that are satisfied in lsofimd, where we consider only literals of signatué.e.,

os(0,7) = Z Lo (0)=r(t)=1)de-
teL,

Similarly, for any typet € 7 we denote by (o, 7) the number of satisfied literal occurrences in betindr, where
only literals of typet are considered. Note that(o,7) = O(o, 7).7(¢t)km, whereQ is defined in Sectioh 711. For
the special case= t, , it follows

015 (0.7) = D Lo(w)=r(0)=118v + Ljo(ww)=r(~v)=0]- (94)
vEVt1/2

Let us begin with a simple observation. Lete ¢ such thatp(s) > 1/2, and leto, 7 be two assignments witp-
marginals. Note that ifvs (o, 7) = (1+ 0)p(s)?n(s)km, for somes > —1, then the fraction of variables ivi that are
set to true i andr is (1 + §)p(s)?. Consequently, the number of variables that are set to ifalseth assignments
is (1 p(s))[Va| — (p(s)|Va| — (1 + 6)p(s)?|V]), and therefore

wos(o,7) = (1 = p(s))w(—s)km — (p(s)w(ﬁs)km —(1+ 5)p(s)27r(ﬁs)km)

O o) WV
- (168G oo

In words, the overlap ir determines the overlap ins. However, note that th&-overlap, for anys’ # s, —s, is not
affected by the quantities; (o, 7) andw-s (o, 7).

Lett € 7 be a type. With the previous observation at hand we are abéstimate the number of pairs of
p-satisfying assignments with a givenand—t-overlap. The proof can be found in Section 10.2.

Proposition 10.3 There is ac > 0 such that the following is true. Lets’ > 0. Lett € T be a type such that
p(t) # 1/2. Denote byH7? _, (¢, ') the set of pairs, T of assignments with-marginals, such that

lwi(o,7) — p(t)2m(t)km| > ep(t)*n(t)km and  |w-¢(o,7) — p(=t)*n(=t)km| > &'p(=t)*n(=t)km.

Then,
[Hi(e,€)| < [H|? - exp {—cn (*7(t) + n (1)) } .

What remains is to enumerate pairsebatisfying assignments with a given,,-overlap. The next proposition
provides this number as the coefficient of an appropriatefindd generating function.
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Proposition 10.4 Lete € (—1/4,1/4). LetHf/Q(s) denote the set of pairs’, 7’ of assignments to the variables in
V4, ,, such that

1
01, ,,(0",7") = (Z + E) m(ty2)km
and
wt1/2 (OJ) = wt1/2 (U/) = W(tl/ka)/z
Thean/Q(s) = [(wy)7(tr/2)km/2 ()4t e)m(tay2)bm) B (g 4y 4), where

F(z,y,u) = H ((zyw)™ + (zyu)®r + a®ytr + a@ry®).
UGth/z

o’ 7"

Proof. Assign to a pair of assignments, 7 to the variables iV, , the weightz""1/2 (@) g wiay2 (7 g 0t €
Then, by using[(92) an@ (P4)

> gh72(7) iy (7 g 0t (17
U’,T’:th/zﬁ{o,l}
= Z H Lio()=r(v)=1] (zyu)™ + 1io(0)=r(v)=0] (wyu)®-

U’,T’:W1/2—>{O,l} ’UEth/z
+ 1o )=1,7(0)=01 2" Y + Lig(0)=0,r (=17 Y™
Summing this expression up yields the claimed statement. O

The next statement provides the asymptotic value of thetgaagfficients ofF'(z, y, u) from the previous propo-
sition. The proof can be found in Section 70.3.

Proposition 10.5 W.h.p.d chosen fronD has the following property. There is a consté@ht= C'(k, ) > 0 such that
if we write N = [V;, | and M = 7(t,/5)km, then

[(wy) M2 MRy, u) = (C +o(1)) - E- N79/2,

where
E:p7(1745)M/2 H (2+2pdu+dﬂu) (95)
'UEth/2

andp is the solution to the equation

dy + d—y
UGth/z

In order to complete the proof of Proposition]8.5 we will estte the exponential term in the previous statement as a
function ofs. Note that ife = 0, then clearlyp = 1 andE = 4. Let|¢| < 1/100. We begin with providing bounds
for the value ofp from Equation[(3b). Leff,(p) = g/(2 + 2p?), whereg > 3. Thenf,(1) = g/4, f;(1) = —¢*/8
and
() = 9% (9p*9 72 = gp? > +p? 2 +p*97?)
g 2(1 4 p9)°

Note that if0 < p < 1, then, with room to spare/; (p)| < ¢g°. Moreover, ifp > 1, then we may estimatg/ as
follows:

9° ((g+1)p*92 +gp" > +p77?)
2p39

<L < g

3
g

£ (p)] <

e
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Let us writep = 1+ 4. Taylor's theorem then implies thgt, (p) — (g/4 — g%§/8)| < g?62. By writing g, = d,, + d—,,
and recalling thal/ = >~ . , 9o e infer from [96)
1/2

S S

—5— — %285 <eM < —6% +6%S5, where S; = Z g., foriec{23}.

UGth/z

In view of these inequalities we might expect that whenevsmot too large, then ~ —e8M /Ss. This can be made
precise as follows. By solving the quadratic equationsieitjyl we infer thaté satisfies

1 =Sy + /52 — 25683e M s 1 —S2 + /5% + 256S53e M

16 Ss 16 Ss

Note thatd is such that w.h.pS; = ©(krM) andSs = M). Thus, for sufficiently largé:

2568eM _ | 1288=M 26212
\/S2 + 256556 M = Sy |1+ 56?;’5 8535 +0 (*9323 )
2

The square-root with the minus sign can be estimated anasbgd/Ne infer that

p=1+4, where §= —585,%+O(( r)~te?). 97)
2

With the approximate value gf at hand we can proceed with estimating the exponential ter@3). First of, we
rearrange terms to obtain

E— p—(1—45)]\4/2 H (2+2pdu+dﬁv) _ 4N_p25]\4. H (p—gu/2 +pgu/2)/2. (98)
vEVpl/2 UEVt1/2

The bounds omp imply that

8M M M?2
M = (1 eg-+ O((kr)~ 152)) < exp {—16525— + 0(53(kr)1M)} . (99)
2 2
Regarding the last term involving the product[inl(98), we it by the following probabilistic considerations. Note
that
[T (o 472 = )Y 2N pH/2E e,
vEVt1/2 (su):vEVt1/2,sU€{—l,+l}

Let (SU)UGth/2 be a family of independent random variables, which are umfpdistributed in{—1, +1}. Then the
last expression in the previous display is equal to the erge@lue ofp {—1/23 " s,g.}. We obtain

_1 ZU Sv o
w:=E [p 2 ey O ] < QZP | Z Sugol =t| (02 +p7?)
t>0 vthlm

Note that since eithes'/2 > 1 or p~*/2 > 1 we may assume without loss of generality that 1. The advantage
of the above formulation is that we can estimate rathere#ésd probability for a large deviation of the sush=
>, Svgs. Indeed, if we change the value of afy to obtain a new sun$’, then|S — S| = 2g¢,. By applying
Azuma-Hoeffding we obtain

P [' Z Svgv| = t] < eXp{_2t2/Z(2gv)2} = exp{—t2/252}.

'UEth/2
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Thus, by using[{97) and noting that 0 due to our assumption> 1 we obtain the bound

t/2 2
~12/25, | 1/2 225, (1 _ M _A M
p<ad e 22 <ay e 2 (1 e <4) exp 282+|e| 5 [

>0 >0 2 >0

Since the exponent is convexinit can easily be seen that it is maximized at 4M ||, where its value equals

2 2
UMED | AMOMIel) _ oM
2.5, So So

2 2
Thus,u = O(VN)e™ %2, and by combinind(98) anf(P9) we infer tHat< v/Ne *° % . ButsinceS, = O (krM)
andM = ©(krN), this is at most/Ne—="V  for somec > 0.
Propositiod 8.6 then follows immediately from Proposisfi0.3-10.b, and the (aforementioned) observation that
thet- andt’-overlap ofo, T are independent far#£ t/, —t.

10.1 Proof of Proposition10.P

SetM = n(t1/2)km. By the virtue of Cauchy’s integral formula we obtain
1
I:=[MP2F(z) = —f F(z)2~M/271¢z,
211 C

SinceF is analytic inC, C can be any curve enclosing the origin. To estimate the iatege will use the saddle point
method, which is commonly used to determine the asymptetiabior of integrals that involve a large parameter,
and are simultaneously subject to huge variations. For aellext overview and numerous applications we refer the
reader to[[15].

The main idea is to chooge such that the integrand 'peaks’ at a unique point, so thatiie contribution to the
integral comes from a small neighborhood of this maximum.ciMeoseC' to be the unit circle centered at the origin,
i.e.,C = {e?: —w < 0 < 7w}. Moreover, letdy = y(n) = N=2/°, and writeCy = {e'? : |0| < 6y(n)} for the
restriction ofC to the segment withd| < 6y(n). Then we may writd = Iy + I, where

1 1
Iy = — F(2)z~M/27 14z and I, = — F(z)z~ M2z,
27 Ch 211 C\Co
By changing variables, the first integral becomes
1 0o . . )
Iy=— H(0)do, where H(0) =e M. [ ("% +¢f). (100)
2 —0o

'UEth/z
Moreover, by using the trivial bound for complex integratslahe factz| = 1 on C' we obtain

I <27+ sup |F(2)] (101)
zeC\Co

Our subsequent proof strategy is as follows. We will first poie the asymptotic value of the integral over the 'central
region’; in particular, we show that
Iy = (¢4 o(1))N~1/22N (102)

for an appropriate > 0. Then, by usingl{Z01) we show that = o(Iy). The two statements combined yield then
immediately the conclusion of the proposition.

We proceed with showing (ID2). Recall that < #, = N —2/%, and note that for any, d’, by applying Taylor's
Theorem

e 4 i — 9 1 i(d+d)o— %(cﬂ A0+ 0((1 i) (d®+ d’3)93) uniformly for all d, d’ € N, |8] < 6.
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Let us write

Z d2+d?, + (dy+d-p)? and S;= > (d+d,). forj>3.
vGth/z VEVL )y
Observe thad is w.h.p. such thas; = (1 + o(1))c; N for somec; = ¢;(k) > 0, where2 < j < 9. Using [100) we
infer that the integrand satisfies
HO)=c M2 T (2+i(d+d)o - %(df, T d?,)0% + O((l i) (dB + div)93)>
UGth/z
Nexp {—920% + O ((141)(9360° + S40* + - + S967)) }
= (1+o0(1))2¥ eXp{ - S202}, sincef) < N~2/5,

Thus,
90 00 Py
(2m) Iy = H(0)do = (1+0(1))2N/ e 529" dp
—90 —90
QN pvENYT 2N
= (14001 “dr = (14 0(1)) —m——=-.
(1+ o ))\/CQ—N _ﬁNmoe z = (1+ o ))\/m

This proves[(102). To complete the proof we will show thab. . ¢, |F'(z)| is asymptotically negligible com-
pared toly. First, for anyv € Vi

fo(0) :=|e? 4 e = /2 42 cos (0 (d, — d-y))
Let us collect some basic propertiesfof Note that ifd, = d—.,, thenf,(8) = 2 forany —7 < 6 < 7. Otherwise f

is maximized for any
) 2 . dy — d—y
HEMdu—dw:{]w 4 |Z|]|<| 5 |},

wheref(0) = 2.
For a pair(d,,d_) € N* letVy, 4_ C V;, , denote the set of variablessuch thatl, = d; andd-, = d_, and
write Ng, 4 = |Va, a_|. Then,

H fv(e): H (2+2COS(6‘(d+_d_)))Ns/2.
UGth/z s=(dy,d_)

Note that) (dy,d_yNs = N. Thus, |F(ei?)| < 2N for all §. However, this bound is achieved only if all factors are
maximized 5|multaneously We will argue in the sequel thit|ic (6y, 7), then a linear (inV) fraction of the factors
is < 2 — O(N—*/°). It follows for somea > 0 that

|F(ei9)| < 2(17a)N . (2 _ O(Nf4/5))aN _ 2N . 6*0(N1/5) _ 0(N71/22N) _ O(Io).

To see the claim, consider the specific palf ,d’ ) = (kr,kr — 1), and note that ifc is sufficiently large, then

kr —1 > kr/2 +10Vk2*Ink. So, indeed/y, 4 C V;,,,. Furthermored is such that w.h.p. there is a constant
a = a(k) > 0suchthatNg, 4 > aN. It follows that for all variables € Vi, .o

Ju(0) = /2 + 2cos(0).

It can easily be verified that, is monotone increasing fermr < 6 < 0 and decreasing fdr < # < 7. Thus, for any
10| € (00, 7) we havef,(0) < max{f,(0o), fo(—00)}. By using the Taylor series expansion of the cosine and the
square root we obtain that
2
— — 4+ 0(6*), uniformlyforall — 7 <6 < 7.

fole) =2 1

We conclude thaf, (f) < 2 — O(n~*/%) for at leasio N variablesy, and the proof is completed.
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10.2 Proof of Proposition 10.B

We will exploit a concentration inequality due to McDiarn{26]. We present it here in a simplified form that is
appropriate for our purpose. Given a finite non-empty/3etve denote bySym(B) the set of all| B|! permutations
of the elements oB. Let By, ..., By be a family of finite non-empty sets, and denotefby= Sym(B;) x - -- X
Sym(By). Moreover, letr = (71,...,7n) be a family of independent random permutations, wheris drawn
uniformly from Sym(B;).

Theorem 10.6 Letc andr be positive constants. Suppose that? — R is such that for anyr € Q the following
conditions are satisfied.

e If 7/ can be obtained from by swapping two elements, thgr{r) — h(n')| < c.

o If h(m) > s, then there is a set of at most coordinates such that(n’) > s for anyn’ € Q that agrees withr
on these coordinates.

LetZ = h(m) and letm be the median of. Then, for any > 0

t2
PllZ —m|>t] <4exp < 16rc2(m+t)> .

Let us proceed with the proof of Proposition 10.3. We willlass without loss of generality thatis such that
p(t) > 1/2. We will abbreviatep = p(t), ¢ = p(—t). Leto be an arbitrary assignment withmarginals. Moreover,
denote byr an assignment that is obtained by selecting for any sigeatdr ¢ uniformly at randonyp|V;| variables
from V; and setting them to true, and setting all other variable¥"ij V; arbitrarily so thatr hasp-marginals.
Equivalently, we may generateby permuting the variables ivi, randomly, and setting the firgtV;| variables in that
permutation to true, for al € ¢. With this notation we obtain

|H?ﬁt(575/)| <|H]*-P [|wt(cr, T) — p*r(t)km| > aw(t)km}
The latter probability can be estimated with TheofemI1hBekd, note that
e if 7,7/ havep-marginals and can be obtained by swapping the truth assighof two variables, then

lwi (o, 7) — wi(o,7")] < 2m3‘9(dv < 4kr.
veVy

e if wy(o,7) > s, then there is a st of < s/ min, ey, d, < 2s/kr variables that are set to true, and anyvith
p-marginals that sets all variablesigo true satisfiesv; (o, 7') > s.

We thus may apply Theordm 10.6 with= 4kr andr = 2/kr. Moreover, triviallyE [w; (o, 7)] < 7(t)km. We infer

that 22 , 2

Exactly the same argument, where we interchange the rolearaf—t, shows that also

< dexp (-@(1)

|HE (e, )
|H[?

(e'm(=t)km)?

e - ) =4exp (—O(1) e’n(—t)n) .

< dexp (_@(1)

The claim follows.
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10.3 Proof of Proposition 10.b
SetM = n(t,/2)km. By applying Cauchy’s integral formula we obtain

1
I:= [(fy)M/Q U(1/4+5)M]F($ayau) = ch 7{0 ]{c F(:v,y,u)(xy)7M/Qfluf(l/“‘i)M*1dudyd:v.
1 2 o

The functionF is analytic inC?, implying thatC;, Cs, C,, can be any curves enclosing the origin. We choose
Ci={pe 0] <m}, Co={pe":|p| <7}, Co={p 2V : |y <},

wherep is the solution to the Equatiof (96). Some remarks are ingphare. The choice of the integration paths
may seem arbitrary at this point. Note, however, thas symmetric with respect to andy, and thus it is natural
to assume similar integration curves for them. Moreoves,dhoice ofp is guided by the general principles of the
saddle-point method and is such that the integrand has aemaximum até, ¢, v) = (0,0, 0). Indeed, as we will
show subsequently, the integrand is arotind, 0) of elliptic type; this allows us to reduce the estimationted tain
terms to the evaluation of a 3-dimensional Gaussian inktegra

Denote byC the restriction of the circle§, Cs, C, to a small region around the origin, i.e.,

C = {pei? 6] < N72/5} x {pe'® : |p| < N72/5) x {p~2e' : || < N~2/5}.
Then we may writd = Iy + I, where

1

Iy= 7o f F(z,y,u) (zy) M2~ WML gz dydy,
(271'1) I

andI; is the integral ovefC; x Cy x C,) \ C. By changing variables we obtain

1 —ac . .
o= Gy H (8, ¢, 9)dbdodd, whereH = p= =5 ¢ #5550 /AaM  TT (9, ,40),
7T
[-N~—2/5 N—2/5]3 UGVt]/z
(103)
and
ho(0, 0, 0) = i (0+e+v)dy + i (0+o+)d—y +pdv+dwei9dv+iapdw +pdv+dwei0dw+iapdv'
Regarding/;, we will use the trivial bound
I < (2n)3 sup |H(x,y,u)| (104)

(z,y,u)€(C1xC2xCu)\C

to show thatl; = o(Iy).
We begin with estimatind, by providing an appropriate asymptotic expansion of it foings around the origin.
First of all, note that for any € V;, , we haveh, (0,0,0) = 2 + 2p?»td-v and thus

H(0,0,0) = p~(1=4e)M/2 H (2 + 2pt+d) = B

ve Vi,
Moreover,
ghv(o, 0,0) = 2hv(o, 0,0) = (2 + 2p» =) i(dv +d-,), and ihv(o, 0,0) = i(dy + d-v).
90 dp 2 np
The second derivatives &1, 0,0) are given by
= st =~ + )1+ ), and by = (4,
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Furthermore, the mixed second derivatives are

32
960

0? 0?

hy = —(d? + d2,, + 2dyd—ppP T d —h, = —h,

We will also need crude bounds for the third-order derivegtiin order to establish an accurate approximatiorffor
around the origin. Note thdt, linearly exponential irf, ¢, andd,,d-,. Thus, every time we take a derivative
with respect to some variable, the norm of each single terthenexpression ok, can increase by at most, =
max{d,,,d-,}. Thus, uniformly for(6, p, ) € [-N?/5 N?/5] we have that
Lh <201+ pttdy(d, +d-,)3, where &,&, 65 € {0, 0,0}
851652853 vl > v —v) 562963 s .

By using the uniform estimate+ z = ¢*~*°/2+9(=") where we set + x = h, (6, ¢, 1) /h,(0,0,0) we infer that

h”U(ea 2 1/’) i . dy+dy
In———2> = —(d, +d-,)(0 _
B 0.0,0) ~ 2 T d)0+90) +isTH

1 + 2nd order+ error, (105)
where the 2nd order terms are

(dy — d—y)® + 2p™ 00 (d2 4 d2,)
2(2 + 2pdvtd-v)2

_ (dv B dﬁv)2
8

(dy — dﬁv)z(pdv—kdw - 1)9 (dy — dﬁv)2

92 2\ 2 —
(0°+9¢7) Loy 2(2 + 2pdtdn) P apditds

(0+p)1).

Finally, since(d, o, ¢) € [-N?/5 N2/5] the error term is of order at mo&i, + d-,,)> N~5/5. In order to obtain an
approximation forH we form the product over alf € V;, ,. Observe that the (linear in the variables) exponential

factore 1 (0+¢)M/2—1p(1/4+e)M cancels exactly with the first order terms[in (JL05). By ablarting

dy — d-)? d, — d_y)? + 2p% e (@2 4 &2,
Soo= 3 o=do)] g 3 ( )? +2p ( )

2(2 + 2pt )2 ’
vEVpl/2 8 UEVt1/2 ( t2p )

and

(dy — dﬁv)z(pdv—kdw -1) (dy — dﬁv)Q 3
So.6 = Z 4 + 4pdvtdov » S = Z 4+ 4pdotd-n’ 3 = Z (dv +d-v)
vGthm vthl/z vGthm

we obtain uniformly for any6, ¢, ) € [-N~2/5, N=2/5]3
H 2 2 2 —6/5
In{ % | = =500(6" +¢7) = Sy.p” + 50,609 — So.p (0 + )t + O(S3N™/7).
Observe thad is such that w.h.p. all quantities = and.Ss are linear inV. Thus, we are left with computing

Iy =(1+0(1)E- 50,007 +0) = S0 sV +50.680= 50,0 (0+€)V Gy 4.
[-N-2/5 N-2/5)3

In order to compute this integral we rescale each variabfle Wi-'/2. By writing s__for S_ /N we obtain

In=(1+0(1))E- N-3/2. / 6—89,9(92+¢2)—8w,ww2+89,¢9¢—Se,w(9+<ﬂ)wd¢ds@d9.
[_N1/107N1/10]3

A termwise comparison and elementary algebraic maniguriatyield that

4392_’9 — 592_#, >0 and 2S¢7¢S979 — 892-#’ — SﬂJﬂ/JSG-,«P >0
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Thus, the squares can be completed and the integral in thve alzspression equals a constant depending on the family
s..; this shows that asymptotically is proportional taV —3/2 . E.

In order to complete the proof we will uge (104) to show thas asymptotically negligible compared ig. Recall
the definition ofH from (I03). It follows that the absolute value Hfis given by

pmTOME T fu(0,0,9), where [f,(6,0,¢) = [hy(0, 0, 9)].

UGth/z

Let us abbreviatd, = d, — d—,. A lengthy calculation, which can be performed easily with help of MAPLE,
yields that

Fol(0, 0, 10)? = 2+ 2p*(dvtd=0) 1 9 cos (Do(0+ ¢ +v)) + 2p?(dvtd=v) cos (Dy(0 — ¢))
+ 2pd“+‘7lw (cos (Dvgo + dvz/J) + cos (DUH + de) + cos (DUG - dﬁvw) + cos (Dvcp - dwz/J)) .

Note that we can get an upper bound frif we replace all terms involving a cosine by one; this implibat
|H| < p~(—49M/2TT (2 + 2pdvtd-v) = E. Moreover, the bound is achieved only if all factors are mzed
simultaneously, and this happens for example when we ch@gse ) = (0,0,0). We will argue in the sequel
that if (6, ¢,v) € (C1 x Cy x C,) \ C, i.e., at least one of the variablésy, ) is assigned a value not lying in
[—N~2/5 N~=2/5], then there is a subset of variables C V;, , such thatV’| > aN for somea > 0 and for all

v € V'itholds f,(0,0,0) < f,(0,0,0) — O(N~*/°). Indeed, if this is true, then

|H| < p—(l—4a)M/2 H (2 + deu‘f-dw) H (2 + 2pdv+dw _ O(N_4/5)).
VEVe, , \V eV’

Sincep is bounded and is such that w.h.pi, + d—,, = o(log n), it follows that| H | smaller thatt’ by an exponential
factor, which shows witH{104) thd; = o(Iy).

To see that a sdt’ with the desired properties exists, let us assume that sitdea off, ¢, 1 is in absolute value
at leastN —2/°. For a pair(d+,d_) € N2 letVy, 4 C Vi, ,, denote the set of variablessuch thatl, = d, and
d-y, = d_, and writeNg, 4 = |Vy, q4_|. Consider the specific pairl;,d_) = (kr,kr — 1), and note that for
all such variables we hav®, = 1. Furthermored is such that w.h.p. there is a consta@nt 5(k) > 0 such that
N4, .a_ > BN. Then we may assume that

forallv € Nu, a_: folf,,0) > (242071 — O(N—*/%Y),

as otherwise there is nothing to show. This impliesthat tharaents of all cosines appearing in the expressiof), of
are close to multiples dfr, and in particular,

0+o+9, [0—¢l, |p+dy|=0N"?%) (mod 2r); (106)

this follows directly from the series expansion of the cesamound integer multiples @fr, which lack a linear term.
Next, consider the paiid’,,d’_) = (kr, kr — 2); againd is such that w.h.p. there is a constgt= 5’(k) > 0 such
thatNd/PdL > ' N. Note that for these variables we halbe = 2. Then, as previously, we may also assume that

forallv € N, ar @ fu(0,0,90) > (242072 —O(N~*/?)),
But then, by the same argument as abd®e,+ d, v| = O(N~2/%) (mod 2m). Sinced; = d, and, by assumption,
l¢| < 7, by combining this with the third term ifi.{ID6), we infer tHa{ = O(N~2/%). In turn, together with the

second term in(Z106), this implies that algp = O(N~2/%). Finally, the factf + o + | = O(N~2/%) (mod 27)
from (108) then also implies thaf| = O(N~2/°). Everything together yields th&d, ¢, 1)) € C, a contradiction.
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11 Proof of Corollary

As a direct consequence of our second moment argument, kg-Peggmund inequality, and a concentration result
on the number of satisfying assignments fromn [1] we obtagrftfiowing.

Proposition 11.1 For r as in (I4) we haveS(®)| > E [S(®)| - exp [— 55 | w.h.p.

We consider the following “planted model”: 1t = Aj(n,m) be the the of all pairé®, o) of k-CNFs® over
V with m clauses and satisfying assignmeatss S(®). Let P, signify the uniform distribution oven; P, is
sometimes called thglanted model Moreover, letP s be the distribution o\ obtained by first choosing a random
formula® and then a uniformly random € S(®) (provided tha#® is satisfiable)P is sometimes called th@ibbs
distribution Combining Proposition 171.1 with an argument from [], weadbthe following “transfer result”.

Corollary 11.2 ForanyB C A the following is true. I [B] < exp [— &% |, thenP¢ [B] = o(1).

Thus, in order to show that some ‘bad’ eveitis unlikely underPs, we “just” need to show thaP, [B] <
exp [— 74 ] is exponentially small.

Lemma 11.3 There is a numbef = §(k) > 0 such that

P |dist(o, 0maj) > % — 5] < exp {—%} .
Proof. We can generate a pdi®, o) from the planted model as follows: first, choases {0, l}V uniformly; then,
generaten clauses that are satisfied undeuniformly and independently. Without loss of generalitg, may assume
thato = 1 is the all-true assignment. We need to study the distribufie= (d;);<, of literal degrees. To this end, let
(e1)1er be a family of independent Poisson variables suchiifat] = E [d;] for all I. It is easily verified that there is
¢ = ©(27%) such that
_kr _kr

Eld] = 5 (1+¢), Eldul =510 (107)

for all » € V. Furthermore, if we le€ be the eventtha} ., e; = km, thene = (e;)icr given& has the same
distribution asd. Moreover,

P[&] = Q(n~Y/?). (108)
Let

1 1
Y =— D lese, + 5 lea=en
zeV

Viewing the difference, — e_, as a random walk of lengfPo(%kr) and using limit theorems for resulting distribution
(the Skellam distribution), we obtain from (107) thafy| > % + Q(vVkr/2%). Further, applying Chernoff bounds to
Y (which is a sum of independent contributions), we find thasfoertains = Q(v/kr/2F)

P [Y < % + 5} < exp [—Q(\/ﬁ/?k)Qn} < exp [—%] . (109)

Finally, the assertion follows frond (1D8) arid (109). O

12 Proof of Lemmal2.3

The expected majority weight i is easily computed. Ii®, for eachz the numbersl,., d—, of positive/negative
occurrences are asymptotically independently Poissdmnmwéankr /2. Therefore, for anyl = ©(kr) we obtain

E(lds — doo| |dy + dy = d] = \/2d/7 + Ox(1).
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In effect,

E [wna; (®)] ~ % + % + Op(1/kr). (110)

By comparison, given that, say, the all-true assignmenatisfging, the numbed,. of positive occurrences has
distributionPo((1+1/(2%—1))kr/2), while d-, has distributioPo((1—1/(2%—1))kr/2). The normal approximation
to the Poisson distribution yields fdr= ©(kr),

E[ldy —d-y| |1 € S(®),dy + d-y = d] = \/2d/7 + O(47Fd%/?) + Ox(1).

for a certain constant > 0. Consequently,

E (Wi (®) |1 € S(P)] ~ % + ,/% + 047 (kr)'/?). (111)

Both with and without conditioning ot € S(®), wmq; enjoys the following Lipschitz property: changing one
single clause can alter the valuewf,,; by at mostk/(km) = 1/(rn). Therefore, Azuma’s inequality yields

(ran)? rAn
P [|wmaj — E [wmas]] > A] < 2exp {— o | = 2exp |— 5|
rA%n
P [|wmaj — E [wima]| > A1 € S(®)] < 2exp |— .
In effect, for a certain constagt> 0 we have
P | Wmaj > L ,/i + ¢4 k)2 < exp [ (k/4F) 0], (112)
2 wkr
P |wpaj < % - \/% + a7 R k)21 e S(@)| < exp [0 (k/4%)n]. (113)
e

Combining [IIR) and {11 3) with a simple counting argumealdd Lemma 2 from the extended abstract.
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