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Abstract

Randomk-SAT is the single most intensely studied example of a randomconstraint satisfaction problem. But
despite substantial progress over the past decade, the threshold for the existence of satisfying assignments is not
known precisely for anyk ≥ 3. The best current results, based on the second moment method, yield upper and
lower bounds that differ by an additivek · ln 2

2
, a term that is unbounded ink (Achlioptas, Peres: STOC 2003). The

basic reason for this gap is the inherent asymmetry of the Boolean value ‘true’ and ‘false’ in contrast to the perfect
symmetry, e.g., among the various colors in a graph coloringproblem. Here we develop a newasymmetric second
moment methodthat allows us to tackle this issue head on for the first time inthe theory of random CSPs. This
technique enables us to compute thek-SAT threshold up to an additiveln 2− 1

2
+O(1/k) ≈ 0.19. Independently of

the rigorous work, physicists have developed a sophisticated but non-rigorous technique called the “cavity method”
for the study of random CSPs (Mézard, Parisi, Zecchina: Science 2002). Our result matches the best bound that
can be obtained from the so-called “replica symmetric” version of the cavity method, and indeed our proof directly
harnesses parts of the physics calculations.

1 Introduction

Since the early 2000s physicists have developed a sophisticated but highly non-rigorous technique called the “cavity
method” for the study of random constraint satisfaction problems. This method allowed them to put forward a very
detailedconjecturedpicture according to which various phase transitions affect both computational and structural
properties of random CSPs. In addition, the cavity method has inspired new message passing algorithms calledBe-
lief/Survey Propagation guided decimation. Over the past few years there has been significant progress in turning bits
and pieces of the physics picture into rigorous theorems. Examples include results on the interpolation method [2, 7]
or the geometry of the solution space [1, 28, 29] and their algorithmic implications [3, 9].

In spite of this progress, substantial gaps remain. Perhapsmost importantly, in most random CSPs the threshold for
the existence of solutions is not known precisely. In the relatively simple case of the randomk-NAESAT (“Not-All-
Equal-Satisfiability”) problem the difference between thebest current lower and upper bounds is as tiny as2−Ω(k) [11].
By contrast, in random graphk-coloring, a problem already studied by Erdős and Rényi inthe 1960s, the best current
bounds differ byΘ(ln k) [5]. Hence, the difference isunboundedin terms of the number of colors. Even worse, in
randomk-SAT the gap is as big asΘ(k) [6]. Yet randomk-SAT is probably the single most important example of a
random CSP, not least due to the great amount of experimentaland algorithmic work conducted on it (e.g., [22, 24]).

The reason for the large gap in randomk-SAT is that the satisfiability problem lacks a certainsymmetry property.
This property is vital to the current rigorous proof methods, particularly thesecond moment method, on which most
of the previous work is based (e.g., [4, 5, 6]). More precisely, in random graph coloring the different colors all play
the exact same role: for any proper coloring of a graph, another proper coloring can be obtained by simply permuting
the color classes (e.g., color all red vertices blue and viceversa). Similarly, ink-NAESAT, where the requirement is
that in each clause at least one literal must be true and at least one false, the binary inverse of any NAE-solution is a
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NAE-solution as well. By contrast, ink-SAT there is an inherent asymmetry between the Boolean values ‘true’ and
‘false’.

As has been noticed in prior work [4, 6], the second moment method is fundamentally ill-posed to deal with
such asymmetries. Roughly speaking, the second moment method is based on the assumption that in a random CSP
instance, two randomly chosen solutions are perfectly uncorrelated. But in randomk-SAT, this is simply not the case.
Indeed, suppose that a variablex appears much more often positively than negatively throughout the formula. Then
it seems reasonable to expect that most satisfying assignments setx to ‘true’, thereby satisfying all clauses wherex
appears positively. More generally, define themajority voteσmaj to be the assignment that sets variablex to true if it
appears more often positively than negatively, and to falseotherwise. Then we expect that the satisfying assignments
of a random formula “gravitate toward”σmaj . Unfortunately, the correlations among satisfying assignments induced
by this drift towardσmaj doom the second moment method. Previously this issue was sidestepped by symmetrizing
the problem artificially [4, 6]. But this inevitably leaves aΘ(k) gap.

The main contribution of the present work is a newasymmetric second moment methodthat enables us to tackle
this problem head on. A key feature of this method is that we harness the Belief Propagation calculation from physics,
called the “replica symmetric case” of the cavity method in physics jargon. We are going to employ Belief Propagation
directly as an “educated guess” in the design the random variable upon which our proof is based in order to quantify
how much a typical satisfying assignment leans towardσmaj .

This is in contrast to most prior work on the subject, where individual statements hypothesized on the basis of
physics arguments were proved via completely different methods (with the notable exception of the interpolation
technique [2, 7, 17]). Hence, we view the present work as a pivotal step in the long-term effort of providing a rigorous
foundation for the physicists’ cavity method. In fact, the general approach developed here does not hinge on particular
properties of thek-SAT problem, and thus we expect that the technique will extend to other asymmetric problems as
well. Examples include not only other random CSPs that are asymmetric per se, but also instances of random problems
that arise at intermediate steps of message passing algorithms such asBelief/Survey Propagation guided decimation,
even if the initial problem is symmetric. In particular, we believe that getting a handle on asymmetric problems is a
necessary step to analyze such message passing algorithms accurately.

To state our results precisely, we letk ≥ 3, n > 0 be integers and we letV = {x1, . . . , xn} be a set ofn Boolean
variables. Further, letΦ = Φk(n,m) denote a Boolean formula withm clauses of lengthk over the variablesV
chosen uniformly at random among all(2n)km such formulas. Letr = m/n denote thedensity. We say that an event
occurswith high probability(‘w.h.p.’) if its probability tends to1 asn→ ∞.

Friedgut [18] showed that for anyk ≥ 3 there exists athreshold sequence1 rk−SAT(n) such that for any (fixed)
ε > 0 w.h.p.Φ is satisfiable ifm/n < (1 − ε)rk−SAT(n), while form/n > (1 + ε)rk−SAT(n) Φ is unsatisfiable
w.h.p.

Upper bounds onrk−SAT can be obtained via thefirst moment method. The best current ones [17, 23] are

rk−SAT ≤ rupper = 2k ln 2− (1 + ln 2) /2 + ok(1), (1)

whereok(1) hides a term that tends to0 for largek. The best prior lower bound is due to Achlioptas and Peres [6],
who used a “symmetric” second moment argument to show

rk−SAT ≥ rbal = 2k ln 2− k · ln 2
2

−
(

1 +
ln 2

2

)

+ ok(1). (2)

The bounds (1) and (2) leave an additive gap ofk · ln 2
2 + 1

2 + ok(1), i.e., the gap is unbounded in terms ofk.

Theorem 1.1 There isεk = ok(1) such that

rk−SAT ≥ rBP = 2k ln 2− 3 ln 2

2
− εk. (3)

Achlioptas and Peres asked whether the gaprupper − rk−SAT is bounded by an absolute constant (independent of
k). Theorem 1.1 answers this question, reducing the gap toln 2 − 1

2 ≈ 0.19. No attempt at optimizing the error term
εk has been made, but our proofs yield rather directly thatεk = O(1/k).

1It is widely conjecture but as yet unproved thatrk−SAT(n) converges for anyk ≥ 3.

2



Apart from the quantitative improvement, the main point of this paper is that we manage to solve the problem
of asymmetry in random CSPs for the first time. To explain thispoint, we start by discussing what we mean by
asymmetry and how it derails the second moment method. That this is so was already intuited in [4, 6]. In the next
section, we are going to verify and elaborate on those discussions.

2 Asymmetry and the second moment method

The second moment method.In general, the second moment method works as follows. Suppose thatZ = Z(Φ) is a
non-negative random variable such thatZ > 0 only if Φ is satisfiable. Moreover, suppose that for some densityr > 0
there is a numberC = C(k) > 0 that may depend onk but not onn such that

0 < E
[

Z2
]

≤ C · E [Z]2 . (4)

We claim that thenrk−SAT ≥ r. Indeed, thePaley-Zygmund inequality

P [Z > 0] ≥ E [Z]
2

E [Z2]
(5)

implies thatP [Φ is satisfiable] ≥ P [Z > 0] ≥ 1/C. Because the right hand side remains bounded away from0 as
n→ ∞, the following simple consequence of Friedgut’s sharp threshold result impliesrk−SAT ≥ r.

Lemma 2.1 ([18]) Letk ≥ 3. If for somer we have

lim inf
n→∞

P [Φ is satisfiable] > 0,

thenrk−SAT ≥ r − o(1).

Hence, we “just” need to find a random variable that satisfies (5). LetS(Φ) denote the set of satisfying assign-
ments; then certainlyZ = |S(Φ)| is the most obvious choice. However, this “vanilla” second moment argument turns
out to fail spectacularly. We need to understand why.

Asymmetry and the majority vote.The origin of the problem is thatk-SAT is asymmetric in the following sense.
Suppose that all we know about the random formulaΦ is for each variablex the numberdx of times thatx appears
as a positive literal in the formula, and the numberd¬x of negative occurrences. Then our best stab at constructinga
satisfying assignment seems to be the “majority vote” assigmentσmaj where we setx to true ifdx > d¬x and to false
otherwise. Indeed, by maximizing the total number of true literal occurrences, of which a satisfying assignment must
put one in every clause,σmaj also maximizes the probability of being satisfiable.

Our proof of Theorem 1.1 allows us to formalize this observation, thereby verifying a conjecture from [6]. Let
dist(·, ·) denote the Hamming distance.

Corollary 2.2 There is a numberδ = δ(k) > 0 such that for2k/k < r < rBP w.h.p. we have

∑

σ∈S(Φ)

dist(σ, σmaj)
|S(Φ)| ≤

(

1

2
− δ

)

· n. (6)

Hence, the average Hamming distance ofσ ∈ S(Φ) from σmaj is strictly smaller thann/2, i.e., the setS(Φ) is
“skewed toward”σmaj w.h.p.

This asymmetry dooms the second moment method. To see why, let

wmaj = wmaj(Φ) =
∑

x∈V

max {dx, d¬x}
km

denote themajority weightof Φ. Then the largerwmaj, the more likelyσmaj and assignments close to it are to be
satisfying. In effect, the biggerwmaj , the more satisfying assignments we expect to have. The consequence of this
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is that the number|S(Φ)| of satisfying assignments behaves like a “lottery”: its expectation is driven up by a tiny
fraction of “lucky” formulas withwmaj much bigger than expected.

Let us highlight this tradeoff, as it is characteristic of the kind of trouble that asymmetry causes. Forξ > 0
independent ofn but sufficiently small it turns out that for a certain constant c > 0,

P [wmaj ∼ E [wmaj] + ξ] = exp
[

−(cξ2 +O(ξ3))n
]

. (7)

That is, the probability is exponentially small but, like inthe Chernoff bound, the exponent is aquadraticfunction
of ξ. By comparison, increasing the majority weight byξ boosts the expected number of satisfying assignments by a
linear exponential factor: there isc′ > 0 such that

E
[

|S(Φ)|
∣

∣ wmaj ∼ E [wmaj] + ξ
]

= exp
[

(c′ξ +O(ξ2))n
]

· E
[

|S(Φ)|
∣

∣wmaj ∼ E [wmaj]
]

. (8)

The exponent in (8) is linear because for a typical assignment τ at distance(12 − δ)n from σmaj increasingwmaj by ξ
boosts the number of literals that are true underτ by 2δξ · km, a term that is linear inξ.

Since the exponent is linear in (8) but quadratic in (7), there is a (small but) strictly positiveξ > 0 such that the
“gain” exp

[

(c′ξ +O(ξ2))n
]

in the expected number of satisfying assignments exceeds the “penalty”exp
[

−(cξ2 +O(ξ3))n
]

for deviating fromE [wmaj]. With little extra work, this observation leads to

Lemma 2.3 For anyk ≥ 3 andr > 2k/k we have

|S(Φ)| ≤ exp
(

−Ω(4−k) · n
)

· E [|S(Φ)|] w.h.p.

Lemma 2.3 entails rather easily that the “vanilla” second moment argument fails dramatically. Indeed, as already
noticed in [4, 6], we haveE

[

|S(Φ)|2
]

≥ exp(Ω(n)) · E [|S(Φ)|]2. Hence, we miss our mark (4) by an exponential
factor. But Lemma 2.3 is witness to an even worse failure: notonly does (4) fail to hold, but even the normally much
more dependablefirst moment overshoots the “actual” number of satisfying assignments by an exponential factor!
(Lemma 2.3 is an improvement of an observation from [1], showing that|S(Φ)| ≤ exp(−ξn)E [|S(Φ)|] w.h.p. for
some tinyξ = ξ(k) > 0; we conjecture that the4−k term in Lemma 2.3 is tight.)

In summary, the drift towardσmaj and the resulting fluctuations of the majority weight inducea tremendous source
of variance, derailing the “vanilla” second moment argument.

Balanced assignments.A natural way to sidestep this issue is to work with a ‘symmetric’ subset ofS(Φ). Perhaps
the most obvious choice is the setSNAE(Φ) of NAE-solutions. In a landmark paper, Achlioptas and Moore[4] proved
that indeed there isC = C(k) > 0 such that forZNAE = |SNAE(Φ)| we have

E
[

Z2
NAE

]

≤ C · E [ZNAE]
2 for r ≤ 2k−1 ln 2−Ok(1). (9)

As we saw above (cf. Lemma 2.1), this implies thatrk−SAT ≥ 2k−1 ln 2 − O(1). However, a simple (first moment)
calculation shows that forr > 2k−1 ln 2, the setSNAE(Φ) is empty w.h.p. Thus, the idea of working with NAE-
solutions stops working atr ∼ 2k−1 ln 2, about a factor of two below the satisfiability threshold.

Achlioptas and Peres [6] obtained a better bound by precipitating symmetry in a more subtle manner. Let us call
σ ∈ {0, 1}n balancedif underσ out of thekm literal occurrences inΦ exactly halfare true (i.e.,km2 ± 1). Thus,
balanced assignments are expressly forbidden from pandering toσmaj . Now, letSbal(Φ) be the set of all balanced
satisfying assignments, and setZbal = |Sbal(Φ)|. Achlioptas and Peres used a clever weighting scheme to prove that

E
[

Z2
bal

]

≤ C · E [Zbal]
2 for r ≤ rbal (cf. (2)). (10)

As before, this implies thatrk−SAT ≥ rbal (Lemma 2.1).
Yet as in the case of NAE-solutions, balanced satisfying assignments cease to exist way before the satisfiability

threshold. Indeed, Achlioptas and Peres observed thatSbal(Φ) = ∅ for r > 2k ln 2− k ln 2
2 w.h.p. In effect, to close in

further onrk−SAT we will have to accommodate assignments that lean towardσmaj . How can this be accomplished?

A quick fix? We saw that to make an asymmetric second moment argument work, we need to rule out fluctuations of
the majority weight. A sensible way of implementing this is by actually fixing the entire vectord = (dx, d¬x)x∈V
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that counts the positively/negatively occurrences of eachvariable. More precisely, given a non-negative integer vector
d = (dx, d¬x)x∈V with

∑

x∈V dx + d¬x = km let Φd denote a uniformly randomk-CNF in which each variablex
appearsdx times positively andd¬x times negatively. Then we can split the generation of a random formulaΦ into
two steps:

First, choose the occurrence vectord randomly from the “correct” distributionD.

Then, choose a random formulaΦd.

The “correct”D is as follows. Lete = (ex, e¬x)x∈V be a family of independent Poisson variables with mean
kr/2 each. Moreover, letE be the event that

∑

x∈V ex + e¬x = km. LetD be the conditional distribution ofe given
E . Then standard arguments show that the outcome of first choosing d and thenΦd is exactly the uniformly random
Φ.

The point of generatingΦ in two steps as above is that given the outcomed of the first step, the majority weight is
fixed. Hence, if we could show thatgivena “typical” d, the second moment succeeds for|S(Φd)| we would obtain a
lower bound onrk−SAT . Unfortunately, matters are not so simple.

Lemma 2.4 W.h.p. for a vectord chosen fromD we haveE[|S(Φd)|2] ≥ exp (Ω(n)) · E [|S(Φd)|]2.

Let us stress the two levels of randomness in Lemma 2.4. First, there is the choice ofd. Then, for agivend, we
compareE[|S(Φd)|2] andE [|S(Φd)|]2. Of course, both of these quantities depend ond, and we find that w.h.p.d is
such that the first exceeds the second by an exponential factor.

The explanation for this is that even if we fixd, various other types of fluctuations remain, turning|S(Φd)| into
a “lottery”. For instance, even givend the number of clauses that are unsatisfied underσmaj fluctuates. Hence, the
inherent asymmetry ofk-SAT puts not only the majority weight but also various otherparameters on a slippery slope.
What we need is a way of controlling all these fluctuations simultaneously. We will present our solution in Section 5.

Catching thek-SAT threshold?Before we come to that, let us discuss what it would take to eliminate the (small but
non-zero) gap left by Theorem 1.1, i.e., how far we are from “catching” thek-SAT threshold. The physicists’ cavity
method comes in two installments. The (relatively speaking) simpler “replica symmetric” version is based on Belief
Propagation. Theorem 1.1 provides a rigorous proof of the best possible bound on thek-SAT threshold that can be
obtained from this version of the cavity method (up to possibly the precise error termεk) [25].

Unfortunately, forr > rBP the replica symmetric version (and in particular the BeliefPropagation predictions
that we depend upon) are conjectured to break down. According to the more sophisticated “1-step replica symmetry
breaking” (1RSB) version of the cavity method, the reason for this is that atr ∼ rBP a new type of correlation amongst
satisfying assignments arises. To deal with these correlations, the physics methods replace Belief Propagation by the
muchmore intricate Survey Propagation technique.

In [11] we managed to prove rigorously that the 1RSB prediction for the randomk-NAESAT threshold is correct
(up to an additive2−Ω(k)). However, [11] dependsheavilyon the fact thatk-NAESAT is symmetric. While it would
be very interesting to combine the merits of the present paper with those of [11], this appears to be quite challenging.
Thus, putting the 1RSB calculation for randomk-SAT on a rigorous foundation remains an important open problem.
That said, we believe that any such attempt would need to build upon the techniques developed in this paper.

3 Related work

The interest in randomk-SAT originated largely from theexperimentalobservation that there seems to be a sharp
threshold for satisfiability and, moreover, that for certain densitiesr < rk−SAT no polynomial time algorithm is
known to find a satisfying assignment w.h.p. [22, 24]. Currently, the precisek-SAT threshold is known (rigorously)
only in two cases. Chvatal and Reed [8] and Goerdt [21] provedindependently thatr2−SAT = 1. Of course,2-SAT
is special because there is a simple criterion for (un)satisfiability, which enables the proofs of [8, 21]. Unsurprisingly,
these methods do not extend tok > 2. Additionally, the threshold is known precisely whenk > log2 n, i.e., the clause
lengthdivergesas a function ofn [20]. In this case, the problem of asymmetry evaporates because the majority weight
is sufficiently concentrated for the “vanilla” second moment method to succeed. (Note that Proposition 2.3 holds for
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any fixedk, but not fork = k(n) → ∞.) The issue of asymmetry also disappears in the case ofstrongly regular
formulas [31] where for some fixedd we havedx = d¬x = d for all x ∈ V .

Also in randomk-XORSAT (random linear equations mod 2) the threshold for the existence of solutions is known
precisely [14]. The proof relies on computing the second moment of the number of solutions (after the instance has
been stripped down to a suitable core). In contrast to randomk-SAT, the randomk-XORSAT problem is symmetric
(cf. Remark 5.5 below), albeit in a more subtle way thank-NAESAT.

Other problems where the second moment method succeeds are symmetric as well. Pioneering the use of the
second moment method in random CSPs, Achlioptas and Moore [4] computed the randomk-NAESAT threshold
within an additive1/2. By enhancing this argument with insights from physics thisgap can be narrowed to a mere
2−Ω(k) [11, 12]. Moreover, the best current bounds on the random (hyper)graphk-colorability thresholds are based
on “vanilla” second moment arguments as well [5, 15]. In summary, in all the previous second moment arguments,
the issue of asymmetry either did not appear at all by the nature of the problem [4, 5, 11, 12, 14, 15, 20], or it was
sidestepped [6].

The best current algorithms for randomk-SAT find satisfying assignments w.h.p. for densities up to1.817 · 2k/k
(better for smallk) resp.2k ln(k)/k (better for largek) [9, 19], a factor ofΘ(k/ lnk) below the satisfiability threshold.
By comparison, the Lovász Local Lemma and its algorithmic version succeed up tor = Θ(2k/k2) [30].

Apart from experimental work [24], very little is known about the physics-inspired message passing algorithms
(“Belief/Survey Propagation guided decimation”) [27]. The most basic variant of Belief Propagation guided decima-
tion is known to fail w.h.p. on random formulas ifr > c·2k/k for some constantc > 0 [10]. However, it is conceivable
that Survey Propagation and/or other variants of Belief Propagation perform better.

4 Preliminaries

We shall make repeated use of the following local limit theorem for the sums of independent random variables, see [16]
and [11].

Lemma 4.1 LetX1, . . . , Xn be independent random variables with support onN0 with probability generating func-
tionP (z). Letµ = E[X1] andσ2 = Var[X1]. Assume thatP (z) is an entire and aperiodic function. Then, uniformly

for all T0 < α < T∞, whereTx = limz→x
zP ′(z)
P (z) , asn→ ∞

Pr[X1 + · · ·+Xn = αn] = (1 + o(1))
1

ζ
√
2πnξ

(

P (ζ)

ζα

)n

, (11)

whereζ andξ are the solutions to the equations

ζP ′(ζ)

P (ζ)
= α and ξ =

d2

dz2
(lnP (z)− α ln z)

∣

∣

∣

z=ζ
. (12)

Moreover, there is aδ0 > 0 such that for all0 ≤ |δ| ≤ δ0 the following holds. Ifα = E[X1] + δσ, then

Pr[X1 + · · ·+Xn = αn] = (1 +O(δ))
1√
2πnσ

e(−δ
2/2+O(δ3))n. (13)

From this we can rather easily derive the following well-known statement about the rate function of the binomial
distribution.

Lemma 4.2 Let0 < p, q < 1. Let

ψ(p, q) = −q ln
(

q

p

)

− (1− q) ln

(

1− q

1− p

)

,

If p, q remain fixed asn→ ∞, then

P [Bin(n, p) = qn] = Θ(n−1/2) exp [ψ(p, q)n] .
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The following form of the chain rule will prove useful.

Lemma 4.3 Letg : Ra → R
b andf : Rb → R be of classC2, i.e, with continuous second derivatives. Then for any

x0 ∈ R
a and withy0 = g(x0) we have for anyi, j ∈ [a]

∂2f ◦ g
∂xi∂xj

∣

∣

∣

∣

x0

=

b
∑

k=1

∂f

∂yk

∣

∣

∣

∣

y0

∂2gk
∂xi∂xj

∣

∣

∣

∣

x0

+

b
∑

k,l=1

∂2f

∂yk∂yl

∣

∣

∣

∣

y0

∂gk
∂xi

∣

∣

∣

∣

x0

∂gl
∂xj

∣

∣

∣

∣

x0

.

Finally, we need the following version of the inverse function theorem that states under which conditions a given
system of equations can be solved around a specific pointu. A detailed exposition can be found in [32].

Lemma 4.4 LetU ⊂ R
h be open and letf ∈ C1(U). Assume thatu ∈ U andλ > 0 are such that

{

x ∈ R
h : ‖x− u‖2 ≤ λ

}

⊂ U.

LetDf(x) be the Jacobian matrix off at x, id the identity matrix, and‖·‖ denote the operator norm overL2(Rh).
Assume thatDf(u) = id and

‖Df(x)− id‖ ≤ 1

3
for all x ∈ R

h such that‖x− u‖2 ≤ λ,

Then for eachy ∈ R
h such that‖y − f(u)‖ ≤ λ/2 there is precisely onex ∈ R

h such that‖x− u‖ ≤ r and
f(x) = y. Furthermore, the inverse mapf−1 is C1 on

{

x ∈ R
h : ‖x− u‖2 < λ

}

, andDf−1(x) = (Df(x))−1 on
this set.

Notation. We will generally assume thatn > n0, k > k0 for certain large enough constantsn0, k0. We are going
to use the asymptotic symbolsO(f(x)), Ω(f(x)), etc. It is understood that the asymptotic is with respect tothe
parameterx of the functionf(x). Thus, iff is a function ofn, then the asymptotic notation refers to the limitn→ ∞,
and iff is a function ofk, then the notation refers tok being large. We use the following convention for theO-notation
in the case thatf is a constant: we letO(1) be a term that remains bounded in the limit of largen, but that may by
unbounded in terms ofk. By constrast,Ok(1) refers to a term that remains bounded both in the limit of largek and
largen. Expressions such asok(1) are to be interpreted analogously. Generally, all asymptotics areuniform in the
various other parameters (such as the degree sequenced or r). For a functionf(k) > 0 use the symbol̃O(f(k)) to
denote a functiong(k) such that for some constantc > 0 we haveg(k) = O(f(k) · lnc f(k)). For vectorsξ, η we use
the symbol

η
.
= ξ

to denote the fact that‖ξ − η‖∞ ≤ O(1/n).
Let V = {x1, . . . , xn} and letL = {x1,¬x1, . . . , xn,¬xn}. For a literall ∈ L we let |l| denote the underlying

variable. Moreover,sign(l) = 1 if l is a positive literal, andsign(l) = −1 otherwise. For ak-CNFΦ we letΦi denote
theith clause ofΦ andΦij thejth literal ofΦi.

From here on out, we let

r = 2−k ln 2− ρ with ρ =
3

2
ln 2− εk (14)

for some sequenceεk = ok(1) that tends to0 sufficiently slowly.

5 The random variable

5.1 The construction

Our goal is to make the second moment method work for a random variable that counts “asymmetric” satisfying
assignments. In this section, we develop this random variable. The starting point, and the key ingredient, is simply a
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mapp : Z → [0, 1]. For the sake of clarity, we start by setting up the frameworkfor generic mapsp; below we will
use the Belief Propagation formalism to pick the “optimal”p.

The idea is thatp prescribes how strongly the assignments that we work with lean toward the majority vote.
Informally speaking, we are going to work with assignments such that a variablex that occursdx times positively and
d¬x times negatively has ap(dx − d¬x) chance of being set to ‘true’. Before we give a formal definition, we need to
fix the number of times that each variable appears positivelyor negatively.

Fixing the majority weight.As we saw in Section 2, in order to make the second moment argument work, we need to
rule out fluctuations of the majority weight. To achieve this, we follow the strategy outlined in Section 2. That is, we
are going to work with formulasΦd with a given vectord = (dx, d¬x)x∈V of occurrence counts, where each variable
x appears preciselydx times positively andd¬x times negatively. As in Section 2, we letD denote the (conditional
Poisson) distribution over sequencesd such that first choosingd from D and then generatingΦd is equivalent to
choosing ak-CNFΦ uniformly at random.

Fixing the marginals. Now, fix one such vectord. Then the mapp : Z → [0, 1] induces a mappd from the set
L = {x,¬x : x ∈ V } of literals to[0, 1] in the natural way: we let

pd(x) = p(dx − d¬x) andpd(¬x) = 1− p(x). (15)

The idea is that, givend, we should set variablex to ‘true’ with probabilitypd(x).
To formalize this, we callpd(l) thepd-typeof the literall. LetT = Td = {pd(l) : l ∈ L} be the set of all possible

pd-types. We say thatσ : V → {0, 1} haspd-marginalsif for any typet ∈ Td we have
∑

l∈L:pd(l)=t
(σ(l) − t) · dl = O(1).

i.e., among all occurrences of literals of typet, at fraction is true underσ. This definition captures the above idea that
variablex has apd(x) chance of being ‘true’.

Fixing the clause types.We define thepd-typeof a clausel1 ∨ · · · ∨ lk as thek-tuple(pd (l1) , . . . , pd (lk)) ∈ [0, 1]
k

comprising of the individual literal types. LetL = Ld = T k
d be the set of all possible clause types. For eachℓ ∈ Ld

letMΦd
(ℓ) be the set of indicesi ∈ [m] such that theith clause ofΦd has typeℓ, and letmΦd

(ℓ) = |MΦd
(ℓ)|.

In addition to fluctuations of the majority weight, we also need to suppress fluctuations of the numbersmΦd
(ℓ).

We are going to use the same trick as in the case of the majorityweight. Namely, we split the generation of a random
formulaΦd into two steps:

First, choose a vectorm = (m(ℓ))ℓ∈L from the “correct” distributionMd.

Then, generate a formulaΦd,m uniformly at random in which each variablex appears exactlydx times posi-
tively and exactlyd¬x times negatively and that has exactlym(ℓ) clauses of typeℓ for all ℓ ∈ L.

Formally, the “correct”Md is just the distribution of the random vectormΦd
= (mΦd

(ℓ))ℓ∈L that counts the clauses
by types in the “unrestricted” formulaΦd. It is easily verified that the overall outcome of the above experiment is
identical toΦd. From now on, we fix bothd andm.

Givend,m there is a simple way of generating the random formulaΦd,m. Namely, createdl clones of each literal
l, and put all the clones of a givenpd-type on a pile. Then the formulaΦd,m is simply the result of matching the
clones on the typet pile randomly to all the clauses where a literal of typet is required.

An assignmentσ with pd-marginals splits each pile into two subsets, namely the clones that are true underσ and
those that are false. For each typet, among the clones in the typet pile, at-fraction are true, sinceσ haspd-marginals.
Therefore, we expect that under the random matching, for each clause typeℓ = (ℓ1, . . . , ℓk) and each indexj, in an
ℓj-fraction of clauses thejth literal is matched to a ‘true’ clone.

Judicious assignment.This observation motivates the following definition. We saythat an assignmentσ is pd-
judicious in Φd,m if for all clause typesℓ = (ℓ1, . . . , ℓk) ∈ L and allj ∈ [k] we have

∑

i∈MΦ
d,m

(ℓ)

σ(Φd,m,i,j) = m(ℓ) · ℓj +O(1), (16)
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whereΦd,m,i,j denotes thejth literal of theith clause ofΦd,m, and the sum is over alli such that theith clause has
typeℓ. LetSp(Φd,m) be the set ofp-judicious satisfying assignments, and setZp(Φd,m) = |Sp(Φd,m)|.

Given thatσ is p-judicious, in order forσ to be satisfying we just need that for each typeℓ the ‘true’ clones are
distributed so that each clause receives at least one. Thus,the event of being satisfying is merely a matter of how
exactly the ‘true’ clones are “shuffled” amongst the clausesof typeℓ, while for eachj the total number of ‘true’ clones
of type ℓj is fixed. In particular, this shuffling occurs independentlyfor each clause type. Such random shuffling
problems tend to be amenable to the second moment method. Therefore, it seems reasonable to expect that a second
moment argument succeeds forZp(Φd,m). This is indeed the case forr < rBP − 1 + ln 2 ≈ rBP − 0.3. However, to
actually reachrBP we need to control one further parameter.

Fixing the cluster size. According to the physics predictions [25, 27], forrbal < r < rBP the set of satisfying
assignments decomposes into an exponential number of well-separated ‘clusters’. More precisely, we expect that
w.h.p. for any two satisfyingσ, τ either dist(σ, τ) < 0.01n (if σ, τ belong to the same cluster), or dist(σ, τ) > 0.49n
(different clusters). Formally, we simply define thecluster ofσ as

Cσ(Φ) =
{

τ ∈ S(Φd,m) :
dist(σ, τ)

n
6∈
[

1

2
− k22−k/2,

1

2
+ k22−k/2

]}

.

The intuitive reason why the second moment argument forZp(Φd,m) breaks down forr close torBP is that the cluster
sizes|Cσ(Φd,m)| fluctuate. A similar problem occurred in prior work on randomk-NAESAT [11, 12].

As in those papers, the problem admits a remarkably simple solution: let us call an assignmentσ goodin Φd,m if

|Cσ(Φd,m)| ≤ E [Zp(Φd,m)] . (17)

Let Sp,good(Φd,m) be the set of all goodσ ∈ Sp(Φd,m). To avoid fluctuations of the cluster size, we are just going
to work withZp,good = |Sp,good(Φd,m)|.
The second moment bound.We now face the task of estimating the first and the second moment of Zp,good(Φd,m).
The result can be summarized as follows.

Theorem 5.1 Supposerbal < r < rBP. There existsC = C(k) and a mapp = pBP : Z → [0, 1] such that ford
chosen fromD and form chosen fromMd w.h.p.

0 < E
[

Zp,good(Φd,m)2
]

≤ C · E [Zp,good(Φd,m)]2 .

Together with Paley-Zygmund (5), Theorem 5.1 shows that withd chosen fromD andm chosen fromMd w.h.p.

P [Φd,m is satisfiable] ≥ P [Zp,good(Φd,m) > 0] ≥ E [Zp,good(Φd,m)]
2

E [Zp,good(Φd,m)2]
≥ 1

C
. (18)

The construction ofD, Md ensures that choosingΦ at random is the same as first pickingd from D andm from
Md and then generatingΦd,m. Therefore, (18) implieslim infn→∞ P [Φ is satisfiable] > 0, so that Lemma 2.1
yieldsrk−SAT ≥ rBP. Hence, we are left to prove Theorem 5.1. We begin by constructing the mappBP.

Guessing the marginals.For a set∅ 6= S ⊂ {0, 1}V and a variablex we define theS-marginal of x as

µS(x) =
∑

σ∈S

σ(x)

|S| . (19)

The definition of ‘pd-judicious’ is guided by the idea thatpd(x) should prescribe the marginal ofx in the set of all
pd-judicious satisfying assignments. Hence, in order to makethe set ofpd-judicious assignments as good an approxi-
mation of theentireset of satisfying assignments as possible, we better pickp so thatpd(x) is a good approximation
to the actual marginalµS(Φd)(x) of x in the set ofall satisfying assignments. The problem is that, because of the
asymmetry of thek-SAT problem, these marginals are highly non-trivial quantities. Indeed, on general formulasΦ the
marginalsµS(Φ)(x) are#P -hard to compute.

However, according to the physicists’ cavity method, on random formulas with densityr < rBP the marginals can
be computed by means of an efficient message passing algorithm calledBelief Propagation[25]. While the mechanics
of this are not important in our context, the result is.
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Conjecture 5.2 Suppose thatrbal < r < rBP. Letd be chosen fromD and letx be a variable. Then w.h.p.

µS(Φd)(x) =
1

2
+
dx − d¬x
2k+1

+O

(

dx − d¬x
2k

)2

. (20)

We observe that (20) is in line with the notion thatS(Φd) is “skewed toward”σmaj . Indeed, the conjecture quantifies
how much so. Motivated by Conjecture 5.2, we define

pBP(z) =











1

2
+

z

2k+1
if |z| ≤ 10

√
k2k ln k,

1

2
otherwise.

(21)

Under the distributionD, the random variablesdx, d¬x are asymptotically independent Poisson with meankr/2 (cf.
Section 2). Therefore,

Ed

[

(dx − d¬x)
2
]

= kr ≤ k2k ln 2,

and standard concentration inequalities show that w.h.p. there are no more thann/k30 variablesx with (dx− d¬x)2 >
100k2k ln k. Hence,pd = pBP,d is (asymptotically) equal to the conjectured value on the bulk of variables w.h.p.

In summary, the problem with the “vanilla” second moment argument is that the drift towardσmaj induces correla-
tions amongst the satisfying assignments. Indeed, they arecorrelated with the majority assignment and thus with each
other. We circumvent this problem by explicitly prescribing the marginal probability that each variable is set to ‘true’.
One could think of this as working with the intersection ofS(Φ) with a particular “surface” within the Hamming cube
{0, 1}n, namely the assignments withpd-marginals. Within this surface, all assignments are slanted equally toward
σmaj . The Belief Propagation-informed definition ofpBP is meant to ensure that the surface that we consider with is
(about) the most populous one, i.e., the one with the largestnumber of satisfying assignments in it. The core of our
argument will be to show thatwith respect to the marginal distributionpBP, i.e., within the surface thatpBP defines,
two random elements ofSp(Φd,m) are typically uncorrelated. But before we come to that, we need to compute the
“first moment”, i.e., the expected number of goodpBP -judicious satisfying assignments.

Remark 5.3 Belief Propagation actually leads to a stronger predictionthan Conjecture 5.2. Namely, it yields a
conjecture forµS(Φd)(x) up to an additive error then tends to0 asn → ∞. However, (a) this stronger conjecture is
not in explicit form, and (b) it does not only depend ondx, d¬x, but also on various other parameters. In any case,
even a more accurate prediction would not yield a better constant than3

2 ln 2 in Theorem 1.1.

Remark 5.4 In the present framework, the notion of balanced satisfyingassignments from [6] simply corresponds to
working with the constant mappbal : Z → [0, 1] , z 7→ 1

2 . This hightlights that the improvement that we obtain here
stems from choosing the non-constant mappBP inspired by Belief Propagation.

Remark 5.5 The definition (19) of the marginal of a set gives rise to a formal notion of ‘symmetric problem’. Namely,
we could call a (binary) random CSPsymmetricif its setSCSP(Φ) of solutions is such that for each variablex w.h.p.
we haveµx(SCSP(Φ)) = 1

2 +o(1). Clearly,k-NAESAT passes this test asµx(SNAE(Φ)) = 1
2 for all x with certainty.

Similarly, the problem of having a balanced satisfying assignment is symmetric [6], as is randomk-XORSAT.

From here on out we keep the assumptions of Theorem 5.1. In particular, we assumerbal < r < rBP. Let d
be chosen fromD, and letm be chosen fromMd. Let p = pBP be as in (21) andpd as in (15).

5.2 Typical degree sequences

We need to collect a few basic properties of the sequenced chosen fromD. Let us call a sequenced = (dl)l∈L of
non-negative integers such that

∑

l∈L dl = km a signed degree sequence. For ak-CNFΦ let d (Φ) = (dl (Φ))l∈L
denote the vector whose entrydl (Φ) is equal to the number of times that literall occurrs inΦ. ThenD = Dk(n,m)
is just the distribution of the signed degree sequenced(Φ).

Thesignatureof a literal l ∈ L with respect to a signed degree sequenced is the triple(sign(l), d|l|, d¬|l|). We
omit the reference tod if it is clear from the context. LetT = T (d) be the set of all possible signatures. For
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each literall we let T (l) denote its signature. Furthermore, for a signatureθ = (sign(l), d|l|, d¬|l|) ∈ T we let
¬θ = (−sign(l), d|l|, d¬|l|).

Let d be a signed degree sequence. Ak-CNFΦ overV is d-compatibleif d(Φ) = d. Thus,

Φd = Φd,1 ∧ · · · ∧Φd,m

is a uniformly randomd-compatiblek-CNF.
In the sequel we are going to prove statements about the random formulaΦd for a “typical” signed degree sequence

d. Formally, this means that we first choosed from the distributionD at random. Then, conditioning ond, we will
study the random formulaΦd. Thus, there aretwo levelsof randomness: the distribution ofd and then, givend, the
choice of the random formulaΦd. When referring to the random choice ofd we use the notationPd [·], Ed [·]. By
contrast, if we chooseΦd randomly ford fixed, then we useP [·], E [·].
Lemma 5.6 1. LetE be an event such thatP [Φ ∈ E ] = o(1). Then w.h.p. a signed degree sequenced chosen

from the distributionD is such thatP [Φd ∈ E ] = o(1). Conversely, if w.h.p. for a randomd chosen fromD
we haveP [Φd ∈ E ] = o(1), thenP [Φ ∈ E ] = o(1).

2. For any random variableX ≥ 0 and anyε > 0 we havePd [E [X(Φd)] > E [X(Φ)] /ε] ≤ ε.

Proof. The first claim follows from Markov’s inequality asP [Φ ∈ E ] = Ed [P [Φd ∈ E ]]. The second claim follows
from from Markov’s inequality as well becauseE [X(Φ)] = Ed [E [X(Φd)]]. ✷

Lemma 5.7 For d chosen fromD the following statements hold w.h.p.

1.
∑

x∈V (dx − d¬x)2 ∼ km.

2. 1
n

∑

x∈V |dx − d¬x| = Õ(2k/2).

3. LetM contain then literals of largest degree. Then1km
∑

l∈M dl =
1
2 + Õ(2−k/2).

Proof. We use the following description of the distributionD. Let e = (el)l∈L be a family of indepedentPo(kr/2)
variables. Moreover, letE be the event that

∑

l∈L el = km. It is well known thate given E has distributionD.
Furthermore, a simple calculation based on Stirling’s formula yields

P [E ] = Θ(n−1/2). (22)

Let êl = min
{

el, ln
2 n
}

. Employing Stirling’s formula once more, we find thatP [êl 6= el] ≤ n−10 for all l ∈ L.
Hence, by the union bound,

P [∀l ∈ L : êl = el] ≥ 1− n−9. (23)

Furthermore, asex, e¬x are independent for anyx ∈ V , we have

E
[

(êx − ê¬x)
2
]

= 2Var(êx) = 2Var(ex) +O(n−1) = kr +O(n−1). (24)

Becausêel ≤ ln2 n and the random variables
{

(êx − ê¬x)2
}

x∈V are mutually independent, Azuma’s inequality yields

P

[∣

∣

∣

∣

∣

∑

x∈V
(êx − ê¬x)

2 − E
∑

x∈V
(êx − ê¬x)

2

∣

∣

∣

∣

∣

> n2/3

]

≤ 2 exp

[

− n1/3

8 ln8 n

]

≤ n−10. (25)

Combining (22)–(25), we find

Pd

[∣

∣

∣

∣

∣

∑

x∈V
(dx − d¬x)

2 − km

∣

∣

∣

∣

∣

> n3/4

]

= P

[∣

∣

∣

∣

∣

∑

x∈V
(ex − e¬x)

2 − km

∣

∣

∣

∣

∣

> n2/3

∣

∣

∣

∣

E
]

≤ Θ(n1/2)P

[∣

∣

∣

∣

∣

∑

x∈V
(ex − e¬x)

2 − km

∣

∣

∣

∣

∣

> n3/4

]

≤ o(1) + Θ(n1/2)P

[∣

∣

∣

∣

∣

∑

x∈V
(êx − ê¬x)

2 − E
∑

x∈V
(êx − ê¬x)

2

∣

∣

∣

∣

∣

> n2/3

]

= o(1),
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thereby proving the first claim. The second claim follows from the first by means of the Cauchy-Schwarz inequality:
w.h.p.

[

1

n

∑

x∈V
|dx − d¬x|

]2

≤ 1

n

∑

x∈V
(dx − d¬x)

2 ∼ kr.

Finally, the third assertion is immediate from the second. ✷

For a setS ⊂ L we letVol(S) = Vold(S) =
∑

l∈S dl.

Lemma 5.8 Letd be chosen fromD. Then w.h.p. the following is true.

For any setS ⊂ L of literals we haveVol(S) ≤ 10|S|max{kr, ln(n/|S|)} . Furthermore, if
|S| ≥ n2−0.8k, thenVol(S) ≥ 1

3 |S|kr.
(26)

Proof. We use the alternative description ofD from the proof of Lemma 5.7. That is,e = (el)l∈L is a family of
indepedentPo(kr/2) variables, andE is the event that

∑

l∈L el = km. Let λ = kr/2. For any fixed setS ⊂ L the
random variableXS =

∑

l∈S el has distributionPo(|S|λ) (because the sum of two independent Poisson variables is
Poisson). Therefore, lettingµ = 10|S|max{kr, ln(n/|S|)}, we obtain from Stirling’s formula

P [XS > µ] ≤ O(
√
n)P [XS = ⌈µ⌉] ≤ O(

√
n) · λµ

µ! exp(λ)
≤ O(

√
n) ·

(

eλ

µ

)µ

exp(−λ). (27)

For1 ≤ s ≤ 2n letXs =
∑

S:|S|=s 1XS>µ. Then (27) yields

EXs ≤ O(
√
n)

(

2n

s

)

· exp(−λ− µ) ≤ O(
√
n)

(

2en

s

)s

· exp(−λ− µ) = o(1/n2),

becauseµ ≥ 10s ln(n/s). Thus, the first claim follows from (22) and the union bound.
To prove the second claim, we use Lemma 5.6. ForS ⊂ L we letYS be the total number of occurrences of literals

fromS in Φ. ThenYS has distributionBin(km, |S|/2n) with mean|S|kr/2. By the Chernoff bound,

P [YS < kr|S|/3] ≤ exp

[

−kr|S|
100

]

. (28)

Hence, lettingYs =
∑

S:|S|=s 1YS<kr|S|/3, we get from (28) fors ≥ n2−0.8k

E [Ys] ≤
(

2n

s

)

exp

[

−krs
100

]

≤ exp

[

s(2 + k)− krs

100

]

= o(n−2).

Thus, by the union boundP
[

∀s ≥ n2−0.8k : Ys = 0
]

= 1− o(1/n). Applying Lemma 5.6 completes the proof.✷

For anyt ∈ T we letn(t) be the number of variablesx ∈ V such thatpd(x) = t.

Lemma 5.9 Letd be chosen fromD. Then w.h.p. for any typet ∈ T we have

n(t) ≥ 2−3k/4n.

Proof. We use the alternative description of the distributionD from the proof of Lemma 5.7. That is, lete = (el)l∈L
be a family of indepedentPo(kr/2) variables, andE be the event that

∑

l∈L el = km. For anys,∆ let X (s,∆)

denote the number of literalsl such thatsign(l) = s ande|l| − e¬|l| = ∆. SinceVar(el) = kr/2 = Ωk(k2
k), for any

s ∈ {±1} and any∆ such that∆2 ≤ 100k2k ln k we haveE [X (s,∆)] ≥ nk−c for some absolute constantc > 0.
Furthermore, because the random variables(el)l∈L are mutually independent, the Chernoff bound implies that

P

[

X (s,∆) ≤ 1

2
nk−c

]

≤ exp(−Ω(n)) provided that∆2 ≤ 100k2k ln k. (29)
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Similarly, if we letX ′
s denote the number of literalsl such thatsign(l) = s and |e|l| − e¬|l|| > 100k2k ln k, then

E [X ′ (s)] ≥ nk−c
′

for some absolute constantc′ and

P

[

X ′ (s) ≤ 1

2
nk−c

′

]

≤ exp(−Ω(n)). (30)

Thus, the assertion follows by combining (22), (29) and (30). ✷

For eacht ∈ T we letπ(t) denote the fraction of literal occurrences ofp-typet, i.e.,

π(t) =
∑

l∈L:pd(l)=t

dl
km

.

For eachℓ ∈ L let

γℓ =
1

n
E [mΦd

(ℓ)] .

Lemma 5.10 Letd be chosen fromD. Then w.h.p.γℓ ∼
∏k
j=1 π(ℓj) for all ℓ = (ℓ1, . . . , ℓk) ∈ L.

Proof. By the linearity of expectation, we just need to compute the probability that the first clauseΦd,1 has typeℓ.
Since

∣

∣T −1(t)
∣

∣ = Ω(n) for all t ∈ T , the types of thek literals ofΦd,1 are asymptotically independent. Thus, the
assertion follows from the fact thatπ(ℓj) equals the marginal probability that a random lityal has typeℓj . ✷

Lemma 5.11 W.h.p. ford chosen fromD we haveP
[

∀ℓ ∈ L : |mΦd
(ℓ)− γℓn| ≤ n2/3

]

= 1− o(1).

Proof. Fix a typeℓ = (ℓ1, . . . , ℓj). Becausep is a feasible marginal, for anyj ∈ [k] there areΩ(n) literals l with
p(l) = p(ℓj). Therefore, a straightforward calculation shows that

P [Φd,i has typeℓ|Φd,h has typeℓ] = P [Φd,i has typeℓ] · (1 +O(1/n)) for anyi 6= h.

Consequently,Var(mΦd
(ℓ)) ∼ E [mΦd

(ℓ)] = O(n). Hence, by Chebyshev’s inequality

P
[

|mΦd
(ℓ)− E [mΦd

(ℓ)] | > n2/3
]

= O(n−1/3) = o(1). (31)

Since|L| = O(1) asn→ ∞ by the construction ofp, the assertion follows from (31) and the union bound. ✷

6 The first moment

6.1 Outline

Let ρ > 3
2 ln 2 be such thatr = 2k ln 2− ρ.

Proposition 6.1 W.h.p.d,m are such that

E [Zp,good(Φd,m)] = exp

[

n

2k

(

ρ− ln 2

2
+ ok(1)

)]

.

We begin by computingE [Zp(Φd,m)]. By definition, any assignment that ispd-judicious haspd-marginals. Thus,
let Hp(d) ⊂ {0, 1}V denote the set of all assignments that havepd-marginals. Then by the linearity of expectation,

E [Zp(Φd,m)] =
∑

σ∈Hp(d)

P [σ ∈ Sp(Φd,m)] . (32)

Hence, we need to compute|Hp(d)| and the probabilityP [σ ∈ Sp(Φd,m)] for anyσ ∈ Hp(d). Using basic properties
of the entropy, we obtain
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Lemma 6.2 Letχ(z) = −z ln z − (1− z) ln(1− z) denote the entropy function. Then w.h.p.d is such that

ln |Hp(d)| ∼ n ·
∑

x∈V
χ(p(x)).

Taylor expandingχ(z) aroundz = 1/2 and plugging in the definition (21) ofp, we obtain that w.h.p.d is such
that

1

n
ln |Hp(d)| = ln 2− k ln 2

2k+1
+ ok(2

−k). (33)

As a next step, we compute the probability ofσ ∈ Sp(Φd,m) for σ ∈ Hp(d).

Lemma 6.3 W.h.p.d, m are such that for anyσ ∈ Hp(d),

1

n
ln P [σ ∈ Sp(Φd,m)] = − ln 2 +

k ln 2

2k+1
+ 2−k

[

ρ− ln 2

2
+ ok(1)

]

. (34)

Let us defer the proof of Lemma 6.3, which is the core of the first moment computation, for a little while. Com-
bining (32)–(34), we see that w.h.p. over the choice ofd,m we have

ln E [Zp(Φd,m)] = ln |Hp(d)|+ lnP [σ ∈ Sp(Φd,m)]

∼ 2−k
[

ρ− ln 2

2
+ ok(1)

]

· n (35)

To obtain the expectation ofZp,good, we show the following.

Lemma 6.4 W.h.p. over the choice ofd,m we have

E [Zp,good(Φd,m)] ∼ E [Zp(Φd,m)] .

The proof of Lemma 6.4 is based on arguments developed in [1] for analyzing the geometry of the set of satisfying
assignments. Combining (35) and Lemma 6.4 yields Proposition 6.1.

6.2 Proof of Lemma 6.3

For a sequencem = (m(ℓ))ℓ∈L of non-negative integers we letΓm denote the event thatmΦd
(ℓ) = m(ℓ) for all

ℓ ∈ L. Let us callm feasibleif Pm [Γm] > 0 and |m(ℓ) − γℓn| ≤ n2/3 for all ℓ ∈ L. Let Z be the number of
pd-judicious satisfying assignments.

Proposition 6.5 Letd be chosen fromD. Then w.h.p. for any feasiblem = (m(ℓ))ℓ∈L the following statements hold.

1. We have

2−k
[

ρ− ln 2

2
− k−9

]

≤ 1

n
ln E [Z(Φd,m)] ≤ 2−k

[

ρ− ln 2

2
+ k−9

]

.

2. For anyt ∈ T we have
∑

l∈L:pd(l)=t
d2l ≤

2kmπ(t)

n(t)
.

3. For anyσ ∈ {0, 1}V with p-marginals we have

1

km

∑

l∈L
dl1σ(l)=1 =

1

2
+O(2−k).
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The proof of Proposition 6.5 consists of two steps. We defer the proof of the following lemma to Section 6.3.

Lemma 6.6 With the assumptions of Proposition 6.5 and withδ, δ′ defined by

1

km

∑

x∈V

(

p(x)− 1

2

)2

= (1 + δ) 2−2k−2 and

Σ =
1

km

∑

x∈V
(1− 2p(x))(dx − d¬x) = −(1 + δ′)2−k

we have w.h.p.

1

n
ln E [Z(Φd,m)] = 2−k

[

ρ− ln 2

2

]

+O

(

k(δ + δ′)

2k

)

+ Õ(2−3k/2).

Proof of Proposition 6.5.Let ∆ = 100k2k ln k and letδ, δ′ be as in Lemma 6.6. Using the alternative description of
the distributionD from the proof of Lemma 5.7 and applying Azuma’s inequality,one can easily verify that w.h.p.

∑

x∈V
1(dx−d¬x)2≤∆ · (dx − d¬x)

2 ≥ (1 − k−12)
∑

x∈V
(dx − d¬x)

2. (36)

Therefore, Lemma 5.7 entails that w.h.p.

1

km

∑

x∈V

(

p(x) − 1

2

)2

=
1 +Ok(k

−12)

km

∑

x∈V

(dx − d¬x)2

4k+1
=

1 +Ok(k
−12)

4k+1
.

Consequently, w.h.p. we have

δ = Ok(k
−12). (37)

Similarly, invoking (36) once more, we see that w.h.p.

−Σ =
1

km

∑

x∈V
(2p(x)− 1)(dx − d¬x) =

1

2kkm

∑

x∈V
1(dx−d¬x)2≤∆ · (dx − d¬x)

2 =
1 +Ok(k

−12)

2k
,

whence

δ′ = Ok(k
−12) (38)

w.h.p. Thus, Proposition 6.5 is a direct consequence of Lemmas 5.9 and 6.6 and (37), (38). ✷

6.3 Proof of Lemma 6.6

We begin by determining the numberσ ∈ {0, 1}V with p-marginals. The following is an easy consequence of
Lemma 6.2.

Corollary 6.7 W.h.p. ford chosen fromD we have

1

n
ln |H(p)| = ln 2− 2

n

∑

x∈V

(

p(x) − 1

2

)2

+ Õ(2−3k/2).
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Proof. This follows from Lemma 6.2 by Taylor expandingχ(·) around1
2 . ✷

We need to compute the probability that an assignmentσ ∈ {0, 1}V with p-marginals is ap-judicious satisfying
assignment. To this end, we introduce a new probability space (Ω̂, P̂). Letq = (qℓ,j)ℓ∈L,j∈[k] be a matrix with entries

in [0, 1]. The elements of our new probability spaceΩ̂ are all0/1 vectors

(σ̂ij(ℓ))ℓ∈L,i∈[m(ℓ)],j∈[k].

The distributionP̂ is such that the entrieŝσij(ℓ) are mutually independent, and for eachℓ = (ℓ1, . . . , ℓk) ∈ L,
i ∈ [m(ℓ)], j ∈ [k] we letσ̂ij(ℓ) = Be(qℓ,j) be a Bernoulli random variable. (It may be helpful to think ofσ̂ij(ℓ) as
the truth value of thejth literal of theith clause of typeℓ in a random formulaΦd,m.)

Forℓ = (ℓ1, . . . , ℓk) ∈ L let Si(ℓ) be the event that

max
j∈[k]

σ̂ij(ℓ) = 1

(the intuition is that this corresponds to the event that theclausei of typeℓ is satisfied). LetS(ℓ) =
⋂

i∈[m(ℓ)] Si(ℓ)

andS =
⋂

ℓ∈L S(ℓ). Moreover, forj ∈ [k] letB(ℓ, j) be the event that

1

m(ℓ)

∑

i∈[m(ℓ)]

σ̂ij(ℓ)
.
= p(t).

LetB(ℓ) =
⋂k
j=1B(ℓ, j) andB =

⋂

ℓ∈LB(ℓ). The connection between the probability spaceΩ̂ and Lemma 6.6 is
as follows.

Lemma 6.8 Suppose thatσ ∈ {0, 1}V hasp-marginals. LetS(σ) be the event thatσ is a satisfying assignment of
Φd,m and letB(σ) be the event thatσ is pd-judicious. ThenP [S(σ)|B(σ)] = P̂ [S|B] .

Proof. Note that inP [S(σ)|B(σ)] probability is taken over the choice of the random formulaΦd,m, while in P̂ [S|B]
probability is taken over̂σ chosen from the above distribution. Thus, we need to relate the two probability spaces.

For anyd-compatible formulaΦ ∈ Γm we can define a map

σ ∈ {0, 1}V 7→ σ̂
∣

∣

Φ
=
(

σij(ℓ)
∣

∣

Φ

)

ℓ∈L,i∈[m(ℓ)],j∈[k],

by letting σ̂ij(ℓ)|Φ be the truth value of thejth literal of theith clause of typeℓ in Φ underσ. In other words,̂σ|Φ
is the string of truth values that we get by “plugging the assignmentσ into Φ”. Then σ is judicious iff σ̂Φ ∈ B.
Furthermore,σ is satisfying iff σ̂Φ ∈ S. Finally, if σ hasp-marginals, then̂σ|Φd,m

becomes a random vector. Given
B(σ) its distribution is identical to the conditional distribution of σ̂ givenB. ✷

Corollary 6.9 With the notation of Lemma 6.8 we haveP [S(σ) ∩ B(σ)] = P̂ [S|B] exp(o(n)). Moreover, for anyσ
with p-marginals we haveP [B(σ)] = Θ

(

n(|T |−k|L|)/2).

Proof. Since the total number|L| of clause types is bounded, the assertion follows from a repeated application of
Lemma 4.1 (the local limit theorem). ✷

Thus, we have reduced the proof of Lemma 6.6 to the computation of P̂ [S|B]. The benefit of the probability spacêΩ
is thatS,B can be decomposed easily into independent events. Indeed, for anyℓ ∈ L and anyi ∈ [m(ℓ)] we have

P̂ [Si(ℓ)] = 1−
k
∏

j=1

1− qℓ,j ,

because thêσij(ℓ) are independent. Moreover, due to independence and becausem is feasible,

1

n
ln P̂ [S(ℓ)] =

1

n

∑

i∈[m(ℓ)]

ln P̂ [Si(ℓ)] ∼ γℓ ln



1−
k
∏

j=1

1− qℓ,j
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and thus

1

n
ln P̂ [S] ∼

∑

ℓ∈L
γℓ ln



1−
k
∏

j=1

1− qℓ,j



 . (39)

Similarly,

1

n
ln P̂ [B] =

1

n

∑

ℓ∈L
ln P̂ [B(ℓ)] =

1

n

∑

ℓ∈L

k
∑

j=1

ln P̂ [B(ℓ, j)] . (40)

A further benefit of the spacêΩ is that we are free to choose the vectorq as we please (subject only to the condition
thatP̂ [B] > 0). To facilitate the computation of̂P [S|B], we are going to chooseq such that

P̂ [B|S] = exp(o(n)). (41)

For if (41) holds, then

P̂ [S|B] =
P̂ [S]

P̂ [B]
· exp(o(n)),

whereP̂ [S], P̂ [B] can be calculated rather easily via (39) and (40). Thus, as a next step we need to findq such
that (41) is true. To this end, we define

q̂ℓ,j = Ê [σ̂ij(ℓ)|Si(ℓ)] =
qℓ,j

1−∏k
l=1 1− qℓ,l

(ℓ ∈ L, j ∈ [k]). (42)

Lemma 6.10 There existsq such that̂qℓ,j = ℓj for all ℓ = (ℓ1, . . . , ℓk) ∈ L, j ∈ [k]. Furthermore, thisq satisfies

qℓ,j = ℓj − 2−k−1 + Õ(2−3k/2). (43)

Proof. For anyℓ, j we have

∂q̂ℓ,j
∂qℓ,j

=
1− (1− 2qℓ,j)

∏

l 6=j 1− qℓ,l

(1−∏l 1− qℓ,l)
2 ,

∂q̂ℓ,j
∂qℓ,h

= −
qℓ,j

∏

l 6=h 1− qℓ,l

(1−∏l 1− qℓ,l)
2 (h 6= j).

Hence, fork large enough and0.01 < qj < 0.99 for all j, thek × k matrixDq̂ is close toid. In particular, this is true
for qj close to1/2. Therefore, the assertion follows from the inverse function theorem (Lemma 4.4). ✷

Corollary 6.11 Withq from Lemma 6.10 we havêP [B|S] = Θ(n−k|L|/2) = exp(o(n)) and thus (41).

Proof. Equation (42) shows that for the vectorq from Lemma 6.10 we havêE [σ̂ij(ℓ)|Si(ℓ)] = ℓj for all ℓ, j, i.
Therefore, a repeated application of Lemma 4.1 yieldsP̂ [B|S] = Θ(n−k|L|/2) = exp(o(n)). ✷

From this point on we fixq as in Lemma 6.12.

Lemma 6.12 Letting

Σ =
1

km

∑

x∈V
(1− 2pd(x))(dx − d¬x), (44)

we have1
n ln P̂ [S] = − ln 2 + 2−k

[

ρ− ln 2
2 − k ln 2

]

− kΣ ln 2 + Õ(2−3k/2).
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Proof. Starting from (39), we obtain

1

n
ln P̂ [S] ∼

∑

ℓ∈L
γℓ ln



1−
k
∏

j=1

1− qℓ,j



 (45)

= −
∑

ℓ∈L
γℓ











k
∏

j=1

1− qℓ,j



+
1

2





k
∏

j=1

1− qℓ,j





2

+ Õ(8−k)






,

where we used the approximationln(1 + x) = x− 1
2x

2 +O(x3). Thus, Lemma 5.10 yields

1

n
ln P̂ [S] = −

∑

ℓ∈L
γℓ









k
∏

j=1

1− qℓ,j



+
1

2
· 4−k + Õ(2−5k/2)





= − r
2
· 4−k + Õ(2−3k/2)− r

∑

ℓ∈L

k
∏

j=1

π(ℓj)(1 − qℓ,j).

Further, by (43)

1

n
ln P̂ [S] = − r

2
· 4−k + Õ(2−3k/2)− r

∑

ℓ∈L

k
∏

j=1

π(ℓj)(1 − ℓj + 2−k−1)

= − r
2
· 4−k + Õ(2−3k/2)− r

[

∑

t∈T
π(t)(1 − t+ 2−k−1)

]k

= − r
2
· 4−k + Õ(2−3k/2)− r

[

2−k−1 +
∑

t∈T
π(t)(1 − t)

]k

= − r
2
· 4−k − kr · 4−k + Õ(2−3k/2)− r

[

∑

t∈T
π(t)(1 − t)

]k

= − r
2
· 4−k − kr · 4−k + Õ(2−3k/2)− r

[

1

2
−
∑

t∈T
π(t)

(

t− 1

2

)

]k

.

Now,
∑

t∈T
π(t)

(

t− 1

2

)

=
∑

x∈V

dx
km

(

p(x) − 1

2

)

+
d¬x
km

(

1

2
− p(x)

)

=
1

km

∑

x∈V
(dx − d¬x)

(

p(x)− 1

2

)

= −Σ/2.

Hence,

1

n
ln P̂ [S] = − r

2
· 4−k − kr · 4−k − r

(

1 + Σ

2

)k

+ Õ(2−3k/2)

= −r · 2−k − r

2
· 4−k − kr · 4−k − krΣ2−k + Õ(2−3k/2).

Plugging inr = 2k ln 2− ρ, we get

1

n
ln P̂ [S] = − ln 2 + 2−k

[

ρ− ln 2

2
− k ln 2

]

− kΣ ln 2 + Õ(2−3k/2),

as claimed. ✷
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Lemma 6.13 We have1n ln P̂ [B] = −k ln 2
2k+1 + Õ(2−3k/2).

Proof. Due to (40) we just need to estimateln P̂ [B(ℓ, j)] for anyℓ = (ℓ1, . . . , ℓk) ∈ L andj ∈ [k]. By construction,

P̂ [B(t, ℓ)] = P [Bin(m(ℓ), qℓ,j) = ℓjm(ℓ)] .

By Lemma 6.10 we haveqℓ,j = ℓj − 2−k−1 + Õ(2−3k/2) = 1
2 + Õ(2−k/2). Hence, using Lemma 4.2, we find

1

m(ℓ)
ln P̂ [B(ℓ, j)] ∼ ψ(qℓ,j , ℓj) (46)

= − (qℓ,j − ℓj)
2

2qℓ,j
− (ℓj − qℓ,j)

2

2(1− qℓ,j)
+Ok(8

−k)

= − (qℓ,j − ℓj)
2

2

(

1

qℓ,j
+

1

1− qℓ,j

)

+Ok(8
−k)

= −
(

2 + Õ(2−k/2)
)

(qℓ,j − ℓj)
2

= −
(

2 + Õ(2−k/2)
)

(2−k−1 + Õ(2−3k/2))2 = −
(

1

2
+ Õ(2−k/2)

)

2−2k.

Hence, (40) yields

1

n
ln P̂ [B] = −

∑

ℓ∈L

k
∑

j=1

m(ℓ)

n
·
[

1

2
· 2−2k + Õ(2−5k/2)

]

= −kr ·
[

1

2
· 2−2k + Õ(2−5k/2)

]

= −k ln 2
2k+1

+ Õ(2−3k/2),

as claimed. ✷

Remark 6.14 In the second moment calculation we will need to know that

ln P̂ [S|B] =
∑

ℓ∈L
m(ℓ)



ln



1−
k
∏

j=1

1− qℓ,j



−
k
∑

j=1

ψ(qℓ,j , ℓj)





which follows from (45) and (46).

Corollary 6.15 Let δ, δ′ > 0 be such that

∑

x∈V

(

pd(x) −
1

2

)2

=
(1 + δ)km

22k+2
,

Σ = (1 + δ′)2−k with Σ from (44).

Then withr = 2−k ln 2− c we have

ln |H(p)|+ ln P̂ [S|B]

n
= 2−k

[

ρ− ln 2

2

]

+O

(

k(δ + δ′)

2k

)

+ Õ(2−3k/2).

Proof. By the above,

1

n
ln P̂ [S] = − ln 2 + 2−k

(

ρ− ln 2

2
− k ln 2

)

− kΣ ln 2 + Õ(2−3k/2)

= − ln 2 + 2−k
(

ρ− ln 2

2

)

+
kδ′ ln 2

2k
+ Õ(2−3k/2),

1

n
ln P̂ [B] = −k ln 2

2k+1
+ Õ(2−3k/2),

1

n
ln |H(p)| = ln 2− 2

n

∑

x∈V

(

pd(x) −
1

2

)2

= ln 2− k ln 2

2k+1
− δk ln 2

2k+1
.
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Summing up yields the result. ✷

Proof of Lemma 6.6.Lemma 6.6 is a direct consequence of Corollaries 6.7, 6.9, 6.11 and 6.15. ✷

6.4 Proof of Lemma 6.4

Assume thatm is feasible. LetZ denote the number of goodp-satisfying assignments.

Proposition 6.16 Letd be chosen fromD and letm be chosen fromMd. ThenE [Z(Φd,m)] ∼ E [Z(Φd,m)] w.h.p.

The proof of Proposition 6.16 is based on three lemmas.

Lemma 6.17 Letd be chosen fromD and letm be chosen fromMd.

1. LetE be an event such thatP [Φ ∈ E ] = o(1). ThenP [Φd,m ∈ E ] = o(1).

2. For any random variableX ≥ 0 and anyε > 0 we havePd,m [E [X(Φd)] > E [X(Φ)] /ε] ≤ ε.

Proof. This follows from a similar application of Markov’s inequality as in the proof of Lemma 5.6. ✷

Lemma 6.18 With the assumptions of Proposition 6.16 the random variable

Z ′ =
∣

∣

{

σ ∈ S(Φd,m) :
∣

∣

{

τ ∈ S(Φd,m) : dist(σ, τ) < 2−0.99kn
}∣

∣ ≤ E [Z(Φd,m)]
}∣

∣

satisfiesE [Z ′(Φd,m)] ∼ E [Z(Φd,m)] w.h.p.

The proof of Lemma 6.18 can be found in Section 6.5. Moreover,in Section 6.6 we prove the following.

Lemma 6.19 Suppose thatr ≤ 2k ln 2. Letξ = k2−k/2. LetZ ′′ be the number of pairs(σ, τ) ∈ S(Φ)2 such that

dist(σ, τ) ∈
[

k2−k, 1
]

\
[

1

2
− ξ,

1

2
+ ξ

]

.

ThenE [Z ′′] = o(1).

Finally, Proposition 6.16 follows immediately from Lemmas6.17, 6.18 and 6.19.

6.5 Proof of Lemma 6.18

Let Φ be ak-CNF andσ ∈ S(Φ). We say that a variablex is ξ-rigid in (Φ, σ) if for any τ ∈ S(Φ) with τ(x) 6= σ(x)
we have dist(σ, τ) ≥ ξn. Letλ = kr/(2k − 1).

Lemma 6.20 1. The expected number ofσ ∈ S(Φ) in which more thank122−kn variables support at most 12
clauses is≤ exp(−nk9/2k)E |S(Φ)|.

2. The expected number ofσ ∈ S(Φ) in which more than(1 + 1/k2)2−kn variables support no clause at all is
≤ exp(−n/(k62k))E |S(Φ)|.

Proof. Fix an assignmentσ ∈ {0, 1}V , sayσ = 1. Then the number of clauses supported by eachx ∈ V is
asymptotically Poisson with meanλ. LetEx be the event thatx supports no more than 12 clauses. Then

P [Ex] ≤ λ12 exp(−λ) ≤ 1

2
k122−k.

The events(Ex)x∈V are negatively correlated. Therefore, the total numberX of variablesx ∈ V for whichEx occurs
is stochastically dominated by a binomial variableBin(n, 12k

122−k). Hence, the first assertion follows from Chernoff
bounds.

With respect to the second assertion, letE ′
x be the event thatx supports no clause at all. ThenP [Ex] ≤ exp(−λ).

Using negative correlation and Chernoff bounds once more completes the proof. ✷

Let us call a setS ⊂ V self-containedif each variable inS supports at least ten clauses that consist of variables in
S only. There is a simple process that yields a (possibly empty) self-contained setS.
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• For each variablex that supports at least one clause, choose such a clauseCx randomly.

• LetR be the set of all variables that support at least 12 clauses.

• While there is a variablex ∈ R that supports fewer than ten clausesΦi 6= Cx that consist of variables ofR
only, removex fromR.

The clausesCx will play a special role later.

Lemma 6.21 The expected number of solutionsσ ∈ S(Φ) for which the above process yields a setR of size|R| ≤
(1− k15/2k)n is bounded byexp(−nk3/2k)E |S(Φ)|.

Proof. Let σ ∈ {0, 1}V be an assignment, sayσ = 1. LetQ be the set of all variables that support fewer than 12
clauses. By Lemma 6.20 we may condition on|Q| ≤ k122−kn. Assume that|R| ≤ (1 − k15/2k)n. Then there exists
a setS ⊂ V \ (R∪Q) of size 1

2k
15n/2k ≤ S ≤ k15n/2k such that each variable inS supports ten clauses that contain

another variable fromS ∪Q. With s = |S|/n the probability of this event is bounded by

(

m

10sn

)[

21−k

1− 21−k
· k

2|S ∪Q|2
n2

]10sn

≤
[

4ek2s
]10sn

.

Hence, the expected number of setS for which the aforementioned event occurs is bounded by
(

n

s

)

[

4ek2s
]10sn ≤

[e

s
· (4ek2s)2

]sn

≤ exp(−sn),

which implies the assertion. ✷

Let us call a variablex is attachedif x supports a clause whose otherk − 1 variables belong toR.

Corollary 6.22 The expected number ofσ ∈ S(Φ) in which more thann/(k22k) variablesx 6∈ R that support at
least one clause are not attached is bounded byE |S(Φ)| · exp(−n/(k62k)).

Proof. LetF = V \R. By Proposition 6.21 we may assume that|F | ≤ nk15/2k. Therefore, for each of the “special”
clauseCx that we reserved for eachx that supports at least one clause the probability of containing a variable from
F \ {x} is bounded by

(1 + ok(1))k ·
|F |
n

≤ 3k16

2k
.

Furthermore, these events are independent (because the clausesCx were disregarded in the construction ofR). Hence,
the number of variablesx 6∈ R that support at least one clause but that are not attached is dominated byBin(|F |, 3k162k ).
The assertion thus follows from Chernoff bounds. ✷

Let us callS ⊂ V denseif each variable inS supports at least ten clauses and at most2k clauses such that at least
ten of them feature another variable fromS.

Lemma 6.23 For d chosen fromD, m chosen fromMd and anyσ ∈ {0, 1}V the following holds w.h.p. LetA be
the event thatσ is ap-satisfying assignment ofΦd,m. Then

P
[

Φd,m has a denseS ⊂ V , |S| ≤ n2−0.99k | A
]

= o(1).

Proof. We may assume thatd satisfies (26); we emphasize that this is a property ofd only, regardless ofm or the
eventA. LetD(S) be the event thatS ⊂ V is dense. We may fix (i.e., condition on) the specific clauses supported by
each variablex ∈ S. Let x ∈ S and leti ∈ [m] be the index of a clause supported byx. Let ℓ be the type of clausei.
For eacht ∈ T let Vt be the set of literalsl of typet. Then the probability that clausei contains another variable from
S is bounded by

∑

j∈[k]

Vol(Vℓj ∩ σ−1(0) ∩ S)
Vol(Vℓj ∩ σ−1(0))

≤ kmax
t∈T

(

Vol(Vt ∩ σ−1(0) ∩ S)
Vol(Vt ∩ σ−1(0))

)

.
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Since |Vt| ≥ n2−0.8k for all t w.h.p. by Lemma 5.9, we haveVol(Vt) ≥ 1
3kr|Vt| ≥ 30 · 20.2kn. Furthermore,

Vol(Vt ∩ σ−1(0)) ≥ 1
3Vol(Vt) by the choice ofp(t). Hence, (26) yields

Vol(Vt ∩ S ∩ σ−1(0))

Vol(Vt ∩ σ−1(0))
≤ Vol(S)

1
3Vol(Vt)

≤ max {kr, ln(n/|S|)} |S|
20.2kn

.

Due to negative correlation, in total we obtain

P [Φd,m ∈ D(S)|A] ≤
(

2k

10

)|S|
·
(

kmax {kr, ln(n/|S|)} |S|
20.2kn

)10|S|
.

(The factor
(

2k
10

)|S|
accounts for the number of ways to choose10 out of the at most2k clauses that each variable inS

supports.)
For0 < s ≤ 1/k5 letXs be the number of setsS of size|S| = sn for whichD(S) occurs. Then

E [Xs|A] ≤
(

n

sn

)(

2k

10

)|S|(
kmax {kr, ln(n/|S|)} |S|

20.2kn

)10|S|
≤
[

e
(

k2 max {kr,− ln(s)} s
)10

s4k

]sn

=

[

ek20max
{

s9(kr)10, s9 ln10(s)
}

4k

]sn

.

There are two cases to consider. First, ifs ≤ ln(n)/n, then the term in the brackets is clearlyo(1). Second, if
s ≥ ln(n)/n, then we have the following bound. Sinces ≤ smax = 2−0.99k and asx 7→ x9 ln10 x is monotonically
increasing forx < 0.1, we have

s9 ln10(s) ≤ s9max ln
10 smax ≤ s9max(kr)

10 ≤ 210k−8.91k = 21.09k.

Hence, the entire bracket is bounded by2−k/2. Summing over all possibles and using Markov’s inequality completes
the proof. ✷

Let us call a variablex ∈ V ξ-rigid in σ ∈ S(Φ) if for any τ ∈ S(Φ) with τ(x) 6= σ(x) we have dist(σ, τ) ≥ ξn.

Corollary 6.24 W.h.p. ford chosen fromD and form chosen fromMd the following is true. Letσ ∈ {0, 1}V and
let A be the event thatσ is a p-satisfying assignment ofΦd,m. Moreover, letY be the number of variables that are
not2−0.99k-rigid. Then

P
[

Y (Φd,m) ≤ (1 + 2k−2)2−kn | A
]

= 1− o(1).

Proof. Let ξ = 2−0.99k. We condition on the eventA. Consider a variablez that is either attached or inR. Let
τ ∈ S(Φd,m) be such thatτ(z) 6= σ(x) and dist(σ, τ) < n/20.99k. Becausez is attached or inR, the set

∆ = {x ∈ R : τ(x) 6= σ(x)}

is non-empty. Moreover,∆ is dense by the construction ofR. Thus, Lemma 6.23 shows that dist(σ, τ) ≥ |∆| ≥
n/20.99k w.h.p. Hence, w.h.p. allz that are either attached or inR areξ-rigid.

Further, letR be the event that

• no more than(1 + 1/k2)2−kn variables support no clause at all and

• at mostn/(k22k) variablesx 6∈ R that support at least one clause are not attached

Then Lemma 6.20 and Corollary 6.22 imply together with Proposition 6.5 that

P [Φd,m ∈ R | A] = 1− o(1).

Hence, the total number of vertices that either do not support a clause or that are not attached is bounded by(1 +
2/k2)2−kn ✷
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Proof of Lemma 6.18.Suppose thatr = 2k ln 2− c. By Proposition 6.5 we have

1

n
ln E [Z(Φd,m)] ≥ 2−k

(

c− ln 2

2
+ ok(1)

)

w.h.p. Now, assume that inσ ∈ S(Φd,m) all but at most(1 + 2k−2)2−kn variables areξ-rigid with ξ = 2−0.99k. If
τ ∈ S(Φd,m) is such that dist(σ, τ) ≤ ξn, thenσ, τ agree on allξ-rigid variables ofσ. Hence,

1

n
ln {τ ∈ S(Φd,m) : dist(σ, τ) ≤ ξn} ≤ (1 + 2k−2)2−k = (1 + ok(1))2

−k ln 2.

As c− ln 2
2 + ok(1) > (1 + ok(1)) ln 2 for c > 3

2 ln 2 + ε andk large enough, the assertion follows. ✷

6.6 Proof of Lemma 6.19

By Markov’s inequality, it suffices to bound the expected number of paris(σ, τ) ∈ S(Φ) at the given Hamming
distances. More precisely, letZx be the number of pairs(σ, τ) ∈ S(Φ) such that dist(σ, τ)/n = x. Let h(x) =
−x lnx− (1− x) ln(1− x) and set

q(x) = r · ln
(

1− 21−k + 2−k(1 − x)k
)

.

Then
1

n
ln E [Zx] ≤ ln 2 + h(x) + q(x). (47)

We consider several cases.

Case 1:k2−k ≤ x ≤ (2k)−1. We have

h(x) + q(x) + ln 2 ≤ ln 2 + x(1− lnx) + r
(

−21−k + 2−k(1− x)k
)

≤ ln 2 + x(1− lnx) + 2k ln 2
(

−21−k + 2−k(1− x)k
)

+ c21−k [asr = 2k ln 2− c]

≤ x(1− lnx)− ln 2 + (1− x)k ln 2

≤ x(1− lnx)− ln 2 + (1− kx+ k2x2) ln 2

≤ x(1− lnx)− kx+ k2x2 = x
[

1− lnx− k + k2x
]

.

If k2−k ≤ x ≤ k−2, then1 − lnx − k + k2x ≤ 1 − ln k + 1 < 0. Moreover, ifk−2 ≤ x ≤ (2k)−1, then
1− lnx− k + k2x ≤ 1 + 2 lnk − 3

4k < 0.

Case 2:(2k)−1 < x < 0.01. We have

h(x) + q(x) + ln 2 ≤ ln 2 + x(1− lnx) + r
(

−21−k + 2−k(1− x)k
)

≤ ln 2 + x(1− lnx)− r

2k−1
+

r

2k
exp(−kx)

≤ x(1− lnx)− ln 2 +
c

2k−1
+ exp(−kx) ln 2

≤ x(1− lnx) +
c

2k−1
+ (exp(−1/2)− 1) ln 2

The last expression is negative forx < 0.05 (andk not too small).

Case 3:0.01 < x < 1
2 − k2−k/2. We have

h′(x) = − lnx+ ln(1− x),

q′(x) = − kr(1 − x)k−1

2k − 2 + (1− x)k
≥ −kr(1− x)k−1

2k − 2
= exp(−Ω(k)).
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Hence, for0.01 ≤ x < 1
2 − k−2 we haveh′(x) + q′(x) > 0. Thus,h(x) + q(x) + ln 2 is monotonically

increasing in this interval. Now, letx = 1
2 − ε for k−2 ≤ ε ≤ k2−k/2. Then

h(x) = ln 2− 2ε2 +O(ε3),

q(x) = (2k ln 2− c)

(

−21−k + 21−2k + 2−k
(

1

2
− ε

)k

+ Õ(8−k
)

= −2 ln 2 + 21−k (c+ ln 2) + Õ(4−k).

Consequently,

h(x) + q(x) + ln 2 = −2ε2 +O(ε3) +O(2−k) < 0.

Case 4: 12 + k2−k/2 ≤ x < 1. The functionh(x) satisfiesh(1 − y) = h(y) for 0 < y < 1/2. Furthermore,q(x) is
monotonically decreasing. Therefore, for anyx ≥ 1

2 + k2−k/2 we have

ln 2 + h(x) + q(x) ≤ ln 2 + h

(

1

2
− k2−k

)

+ q

(

1

2
− k2−k

)

< 0.

In each case we haveln 2 + h(x) + q(x) < 0. Thus, the assertion follows from (47) and Markov’s inequality.

7 The second moment

Throughout this section we assume thatr = 2−k ln 2 − ρ with ρ = 3
2 ln 2 − εk for some sequenceεk = ok(1) that

tends to0 sufficiently slowly. We also assume thatk ≥ k0 for a large enough constantk0 > 3. We letd denote a
signed degree sequenced chosen fromD and we letm denote a vector chosen fromMd. By Lemma 5.11 we may
assume that|m(ℓ) − γℓn| ≤ n2/3 for all ℓ. Letσ, τ ∈ {0, 1}V denote a pair of assignments chosen uniformly and
independently from the set of all assignments withp-marginals. Finally, letξ = k2−k/8.

7.1 Outline

Theoverlapof two assignmentsσ, τ ∈ {0, 1}V is the vector

O(σ, τ) =





1

kmπ(t)

∑

l∈L:pd(l)=t
dl · 1σ(l)=1 · 1τ(l)=1





t∈T

.

In words,O(σ, τ) captures the fraction of occurrences of literals of each type t that are true under bothσ, τ . Since
σ, τ are independent and havep-marginals, we have

E [O(σ, τ )] =
[

t2
]

t∈T .

SetO∗ =
[

t2
]

t∈T .
LetZ ′′ be the number of pairs(σ, τ) of pd-judicious satisfying assignments ofΦd,m such that

dist(σ, τ) ∈
[

1

2
− k22−k/2,

1

2
+ k22−k/2

]

. (48)

Moreover, letZ ′ be the number of pairs(σ, τ) of pd-judicious satisfying assignments ofΦd,m such that

‖O(σ, τ) −O∗‖∞ ≤ ξ.

Proposition 7.1 W.h.p.d,m are such thatE [Z ′′(Φd,m)] ≤ E [Z ′(Φd,m)] + o(1).
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The proof of Proposition 7.1 can be found in Section 7.2. LetZ denote the number ofp-satisfying assignments ofΦd.
Furthermore, letZ signify the number of goodp-satisfying assignments ofΦd. In Section 8 we are going to establish
the following.

Proposition 7.2 W.h.p.d,m are such thatE [Z ′(Φd,m)] ≤ C · E [Z(Φd,m)]
2
.

Corollary 7.3 W.h.p.d,m are such thatE
[

Z2(Φd,m)
]

≤ C′ · E [Z(Φd,m)]
2
.

Proof. Let Y be the number of pairs(σ, τ) of goodp-satisfying assignments ofΦd,m such that

dist(σ, τ) 6∈
[

1

2
− k22−k,

1

2
+ k22−k

]

. (49)

By definition, for any goodσ there are at mostE [Z(Φd,m)] p-satisfyingτ such that (49) holds. Therefore,

E [Y (Φd,m)] ≤ E [Z(Φd,m)]
2
. (50)

Combining (50) with Proposition 7.1 and 7.2, we obtain ford chosen fromD w.h.p.

E
[

Z2(Φd,m)
]

≤ E [(Y + Z ′′)(Φd,m)]

≤ E [(Y + Z ′)(Φd,m)] + o(1) ≤ (C + 1)E [Z(Φd,m)]
2
+ o(1). (51)

By Proposition 6.5 we haveE [Z(Φd,m)] = exp(Ω(n)). Furthermore, Proposition 6.16 yieldsE [Z(Φd,m)] ∼
E [Z(Φd,m)]. Consequently, (51) impliesE

[

Z2(Φd,m)
]

≤ (C + 2)E [Z(Φd,m)]
2, as desired. ✷

The second part of Theorem 5.1 follows directly from Corollary 7.3.

7.2 Proof of Proposition 7.1

We begin by relating the overlap to the Hamming distance.

Lemma 7.4 W.h.p.d,m are such that for all pairsσ, τ ∈ {0, 1}V satisfying (48) we have

Ō(σ, τ) =
1

km

∑

l∈L
dl1σ(l)=11τ(l)=1 =

1

4
+ Õ(2−k/2).

Proof. By Lemma 5.7 w.h.p.

O =
1

km

∑

x∈V

dx
2
1σ(x)=τ(x) +O(|d+x − d−x |)

= Õ(2−k/2) +
1

km

∑

x∈V

dx
2
1σ(x)=τ(x)

= Õ(2−k/2) +
1

km

∑

x∈M

dx
2

=
1

4
+ Õ(2−k/2),

as claimed. ✷

Lemma 7.5 W.h.p.d,m are such that for anyσ, τ ∈ {0, 1}V that satisfy (48) and that havep-marginals we have

1

n
ln P [σ, τ ∈ S(Φd)] ≤ −2 ln 2 +O(k2−k).
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Proof. Much as in the first moment calculation in Section 6.3, here itis convenient to work with a different probability
space. Namely, we let̂Ω be the set of all vectors(σ̂ij , τ̂ij)i∈[m],j∈[k] of 0/1 pairs. We define a probability distribution

on Ω̂ in which thepairs (σ̂ij , τ̂ij)i∈[m],j∈[k] are mutually independent random variables. For anyi ∈ [m] , j ∈ [k] we

let P̂ [(σ̂ij , τ̂ij) = (a, b)] = qab, where the parametersqab are chosen so that the following equations hold:

q11 = Ō(σ, τ),

q10 = q01,

q11 + q10 =
1

km

∑

l∈L
dl1σ(l)=1,

1
∑

a,b=0

qab = 1.

Let (σ̂, τ̂ ) denote a random pair chosen from this distribution.
Proposition 6.5 and Lemma 7.4 ensure that w.h.p.d is such that

q11 =
1

4
+ Õ(2−k/2), q11 + q10 =

1

2
+O(2−k). (52)

Thus, we may assume that (52) holds.
LetB be the event that

∑

i,j

σ̂ij =
∑

l∈L
dl1σ(l)=1,

∑

i,j

τ̂ ij =
∑

l∈L
dl1τ(l)=1 and

∑

i,j

σ̂ij τ̂ ij = kmŌ(σ, τ).

In addition, letS be the event thatmaxj∈[k] σ̂ij = maxj∈[k] τ̂ ij for all i ∈ [m]. We claim that

P [σ, τ ∈ S(Φd)] = P [S|B] . (53)

Indeed, anyd-compatible formulaΦ induces a pair(σ̂|Φ, τ̂ |Φ) ∈ Ω̂ defined byσ̂ij |Φ = σ(Φij), τ̂ij |Φ = τ(Φij).
Clearly, the distribution of the random pair(σ̂|Φd

, τ̂ |Φd
) is identical to the distribution of(σ̂, τ̂ ) givenB.

Due to independence, the probability of the eventS is easy to compute. Indeed, withq = q10 + q11 inclu-
sion/exclusion yields

P̂ [S] =
[

1− 2qk + (1 − 2q + q11)k
]m

Furthermore,̂P [B] = exp(o(n)) by the local limit theorem for the multinomial distribution. Hence, (53) yields

1

n
ln P [σ, τ ∈ S(Φd)] =

1

n
ln P̂ [S|B] ≤ o(1) +

1

n
ln

P̂ [S]

P̂ [B]
= o(1) +

1

n
ln P̂ [S]

∼ r ln
[

1− 2qk + (1 − 2q + q11)k
]

≤ −r
[

2qk − (1− 2q + q11)k
]

.

Using (52) and simplifying completes the proof. ✷

Lemma 7.6 Letλ > 2−k andt ∈ T . For d chosen fromD the following is true w.h.p. LetH′′ be the set of all pairs
σ, τ ∈ {0, 1}V such that|Ot(σ, τ) − 1/4| > λ. Then

|H′′| ≤ 4n exp

[

−λ
2n(t)

18

]

.

Proof. Let σ′′, τ ′′ ∈ {0, 1}V be chosen uniformly and independently. ThenE [Ot(σ
′′, τ ′′)] = 1

4 . Furthermore,Ot

satisfies the following Lipschitz condition.

26



If σ′, τ ′′, σ′′, τ ′′ ∈ {0, 1}V are such that there is a literall0 with T (l0) = t such thatσ′′(l) = σ′(l), τ ′′(l) =
τ ′(l) for all l 6∈ {l0,¬l0}, then

|Ot(σ
′′, τ ′′)−Ot(σ

′, τ ′)| ≤ 2dl0
kmπ(t)

.

Therefore, by Azuma’s inequality for anyλ > 0 we have

P

[∣

∣

∣

∣

Ot(σ
′′, τ ′′)− 1

4

∣

∣

∣

∣

> λ

]

≤ exp

[

− λ2(kmπ(t))2

9
∑

l∈L:T (l)=t d
2
l

]

≤ exp

[

−λ
2n(t)

18

]

,

where the last step follows from part 2 of Proposition 6.5. ✷

Proof of Proposition 7.1.LetH ′′ be the set of pairs(σ, τ) such that

• σ, τ satisfy (48) and havep-marginals, and

• ‖O(σ, τ) −O∗‖∞ > ξ.

Then by Lemma 7.6 and the second part of Proposition 6.5 w.h.p. (over the choice ofd) we have

|H ′′| ≤ 4n exp

[

−ξ
2n(t)

36

]

≤ 4n exp

[

− k2n

36 · 2k
]

. (54)

Furthermore, by Lemma 7.5 w.h.p. (again over the choice ofd) we have

P [σ, τ ∈ S(Φd)] ≤ 4−n exp

[

O(k)

2k

]

for any(σ, τ) ∈ H ′′. (55)

Combining (54) and (55), we obtain that w.h.p.d is such that

E [(Z ′′ − Z ′)(Φd)] ≤
∑

(σ,τ)∈H′′

P [σ, τ ∈ S(Φd)] ≤ |H ′′| 4−n exp
[

O(k)

2k

]

= o(1).

Therefore, the definition of the distributionMd entails that w.h.p.d is such that

Em [E [(Z ′′ − Z ′)(Φd,m)]] = E [(Z ′′ − Z ′)(Φd)] = o(1).

Thus, the assertion follows from Markov’s inequality. ✷

8 Proof of Proposition 7.2

We keep the notation and the assumptions of Section 7.

8.1 Overview

For two assignmentsσ, τ and a formulaΦ with signed degree distributiond we define a matrix

ω(σ, τ,Φ) = (ωℓ,j(σ, τ,Φ))ℓ∈L,j∈[k]

by letting ωℓ,j(σ, τ,Φ) be equal to the fraction of clauses of typeℓ whosejth literal is true under bothσ, τ . We
call ωℓ,j(σ, τ,Φ) theoverlap matrixof σ, τ in Φ. Recalling thatσ, τ denote two independent uniformly distributed
assignments withp-marginals, we defineω = ω(σ, τ ,Φd,m); thus,ω is a random matrix. We use the symbolω to
denote (fixed, non-random) matricesω = (ωℓ,j)ℓ∈L,j∈[k] with entries in[0, 1]. Furthermore, we letωℓ = (ωℓ,j)j∈[k]

denote theℓ-row of such a matrixω. Finally, letω∗ = (ω∗
ℓ,j) be the matrix with entriesω∗

ℓ,j = ℓ2j for all ℓ, j.
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In addition, letS(ℓ) be the event that bothσ, τ satisfy all clauses of typeℓ of Φd,m. LetS =
⋂

ℓ∈L S(ℓ). Further,
let B(ℓ, j) be the event that under both

1

m(ℓ)

∑

i∈MΦ
d,m

(ℓ)

σ(Φd,m,i,j)τ (Φd,m,i,j)
.
= ℓj,

i.e., the fraction of clauses of typeℓ whosejth literal is true equalsℓj +O(1/n). Let

B =
⋂

ℓ∈L, j∈[k]

B(ℓ, j).

In Section 9 we are going to prove the following.

Proposition 8.1 W.h.p.d,m are such that the following holds. LetL′ ⊂ L be a set of clause types and letS ′ =
⋂

ℓ∈L′ S(ℓ).

1. For all ω = (ωℓ,j) such that|ωℓ,j − ω∗
ℓ,j

∣

∣ ≤ k−12 for all ℓ ∈ L′, j ∈ [k] we have the bound

P [S ′|ω .
= ω, B] ≤ P [S ′|ω .

= ω∗, B] exp
[

Õ(4−k)
∑

ℓ∈L′

m(ℓ) ‖ωℓ − ω∗
ℓ ‖22

]

.

2. We have

P [S|ω .
= ω∗, B] ≤ P [S ′|ω .

= ω∗, B] exp



−Θ(2−k)
∑

ℓ 6∈L′

m(ℓ)



 .

3. For any assignmentσ with p-marginals we have

P [S|ω .
= ω∗, B] ≤ O(1) · P [σ ∈ Sp(Φd,m)|σ is p-judicious]2 .

Forω = (ωℓ,j) defineO(ω) ∈ [0, 1]T by letting

Ot(ω) =
∑

ℓ∈L

∑

j∈[k]:ℓj=t

m(ℓ)ωℓ,j
kmπ(t)

.

We also let̄ω denote the matrix with entries̄ωℓ,j = Oℓj (ω) for all ℓ, j. We say thatω is compatiblewith O ∈ [0, 1]
T

if O = O(ω). In Section 8.2 we are going to prove the following.

Proposition 8.2 W.h.p.d has the following property. For anyω = (ωℓ,j) such that
∥

∥O(ω)− 1
41
∥

∥

∞ ≤ 2ξ we have

P [ω
.
= ω|O(ω)

.
= O(ω), B] ≤ P [ω

.
= ω̄|O(ω)

.
= O(ω), B] exp

[

−Ωk (1) ·
∑

ℓ∈L
m(ℓ) ‖ωℓ − ω̄ℓ‖22

]

.

Recall thatO∗ = (t2)t∈T . In Section 8.3 we will prove the following.

Corollary 8.3 W.h.p.d,m are such that the following holds. For anyO = (Ot)t∈T such that
∥

∥O − 1
41
∥

∥

∞ ≤ 2ξ we
have

P [S|O(σ, τ )
.
= O, B] ≤ O(1) · P [S|ω .

= ω∗, B] exp
[

n · Õ(2−k)
∑

t∈T
π(t)(Ot −O∗

t )
2

]

.
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In Section 8.4 we will show the following.

Proposition 8.4 There exists a constantη > 0 such that w.h.p.d,m are such that the following holds. For allO with
∥

∥O − 1
41
∥

∥

∞ ≤ 2ξ we have

P [B|O(σ, τ )
.
= O] ≤ η · P [B|O(σ, τ )

.
= O∗] .

Furthermore,P [B|O(σ, τ ) = O∗] = Θ(n|T |−k|L|).

Recall thatn(t) is the number of variables of typet ∈ T . In Section 10 we are going to prove the following.

Proposition 8.5 W.h.p.d,m are such that the following holds. For all vectorsλ = (λt)t∈T with ‖λ‖∞ ≤ 1/8 we
have

P [∀t ∈ T : |Ot(σ, τ )−O∗
t | ≥ λt] ≤ exp

[

−n · Ωk(1)
∑

t∈T
π(t)λ2t

]

.

Proof of Proposition 7.2.Suppose thatO ∈ [0, 1]T satisfies‖O −O∗‖∞ ≤ ξ. By Proposition 8.4 w.h.p.

P [S,B|O(σ, τ )
.
= O] = P [S|B,O(σ, τ )

.
= O] P [B|O(σ, τ )

.
= O]

≤ η · P [S|B,O(σ, τ )
.
= O] P [B|O(σ, τ )

.
= O∗] . (56)

Furthermore, by Corollary 8.3 w.h.p.

P [S|O(σ, τ )
.
= O,B] ≤ O(1) · P [S|ω .

= ω∗,B] exp
[

nÕ(2−k)
∑

t∈T
π(t)(Ot −O∗

t )
2

]

. (57)

Combining (56) and (57), we see that

P [S,B|O(σ, τ )
.
= O] ≤ O(1) · P [S|B,ω .

= ω∗] · P [B|O(σ, τ )
.
= O∗]

· exp
[

nÕ(2−k)
∑

t∈T
π(t)(Ot −O∗

t )
2

]

. (58)

For an assignmentσ with p-marginals let

b = P [σ is p-judicious inΦd,m] , s = P [σ ∈ Sp(Φd,m)|σ is p-judicious inΦd,m] .

Then by part 3 of Proposition 8.1, Corollary 8.4 and Corollary 6.9 we have

P [S|B,ω .
= ω∗] · P [B|O(σ, τ )

.
= O∗] ≤ O(1) · (bs)2.

Therefore, (58) yields

P [S,B|O(σ, τ )
.
= O] ≤ O(1) · (bs)2 exp

[

nÕ(2−k)
∑

t∈T
π(t)(Ot −O∗

t )
2

]

. (59)

For a vectorλ = (λt)t∈T let

h(λ) = P [∀t ∈ T : |Ot(σ, τ )−O∗
t | ≥ λt] .

Moreover, forc = c(k) > 0 a sufficiently large number letΛ = c√
n
Z
T
≥0 be the positiveT -dimensional grid scaled

by a factor ofc/
√
n. In addition, leth be the number of assignmentsσ with p-marginals. Then by Proposition 8.5
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and (59) there is a numberζ = ζ(k) > 0 such that

E [Z ′(Φd,m)]

E [Z(Φd,m)]
2 ≤ O(1) · E [Z ′(Φd,m)]

(bhs)2
≤ O(1) ·

∑

λ∈Λ

h(λ) exp

[

nÕ(2−k)
∑

t∈T
π(t)(λt + c/

√
n)2

]

≤ O(1) ·
∑

λ∈Λ

h(λ) exp

[

nÕ(2−k)
∑

t∈T
π(t)λ2t

]

≤ O(1) ·
∑

λ∈Λ

exp

[

n
∑

t∈T
π(t)λ2t

[

Õ(2−k)− Ωk(1)
]

]

≤ O(1) ·
∑

λ∈Λ

exp

[

−n · Ωk(1)
∑

t∈T
π(t)λ2t

]

≤ O(1) ·
∑

λ∈Λ

exp
[

−ζn ‖λ‖22
]

≤ O(1) ·
∑

z∈Z
T
≥0

exp
[

−ζc2 ‖z‖22
]

= O(1)

[ ∞
∑

z=0

exp
[

−ζc2z2
]

]|T |

= O(1),

as desired. ✷

Notation for the proofs of Propositions 8.1–8.4. It will be convenient to work with a different probability space.
Namely, letΩ̂ be the set of all pairs(σ̂, τ̂ ) of 0/1 vectors

(σ̂, τ̂) = (σ̂ij(ℓ), τ̂ij(ℓ))ℓ∈L,i∈[m(ℓ)],j∈[k].

LetBℓ,j ⊂ Ω̂ be the event that

1

m(ℓ)

∑

i∈[m(ℓ)]

σ̂ij(ℓ)
.
= ℓj and

1

m(ℓ)

∑

i∈[m(ℓ)]

τ̂ij(ℓ)
.
= ℓj

for all ℓ ∈ L, j ∈ [k]. LetBℓ =
⋂

j∈[k]Bℓ,j and letB =
⋂

ℓ∈LBℓ.

To define a measurêP on Ω̂, let q = (qabℓ,j)a,b∈{0,1},ℓ∈L,j∈[k] be a vector with entries in[0, 1] such that

1
∑

a,b=0

qabℓ,j = 1, q01ℓ,j = q10ℓ,j (60)

for all ℓ, j. Define
qℓ,j = q11ℓ,j + q10ℓ,j (61)

so that
q00ℓ,j = 1− 2qℓ,j + q11ℓ,j. (62)

We define a measurêP = P̂q on Ω̂ as follows.

For anyℓ = (ℓ1, . . . , ℓk) ∈ L, i ∈ [m(ℓ)] and j ∈ [k] independently we choose a pair of values
(σ̂ij(ℓ), τ̂ ij(ℓ)) ∈ {0, 1}2 such that

P̂ [(σ̂ij(ℓ), τ̂ ij(ℓ)) = (a, b)] = qabℓ,j

for anya, b ∈ {0, 1}.

This probability space induces a random matrixω̂ = (ω̂ℓ,j)ℓ,j with entries

ω̂ℓ,j =
1

m(ℓ)

∑

i∈[m(ℓ)]

σ̂ij(ℓ)τ̂ ij(ℓ).

We will use the probability space(Ω̂, P̂) several times in the proof of the various propositions below, with various
choices ofq.
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8.2 Proof of Proposition 8.2

Consider anyω = (ωℓ,j) such that
∥

∥O(ω)− 1
41
∥

∥

∞ ≤ 2ξ. We use the probability space(Ω̂, P̂) with the vectorq
defined by

q11ℓ,j = ω̄ℓ,j, qℓ,j = ℓj for all ℓ, j;

the remaining entries ofq are determined by (60)–(62). Then the following is immediate from the construction.

Fact 8.6 We haveP [ω
.
= ω|O(ω)

.
= O(ω), B] = P [ω̂

.
= ω|O(ω̂)

.
= O(ω), B] .

Now,

P [ω̂
.
= ω|O(ω̂)

.
= O(ω), B] =

P [ω̂
.
= ω, O(ω̂)

.
= O(ω), B]

P [O(ω̂)
.
= O(ω), B]

.
=

P [ω̂
.
= ω, B]

P [O(ω̂)
.
= O(ω), B]

=
P [B|ω̂ .

= ω]

P [O(ω̂)
.
= O(ω), B]

· P [ω̂
.
= ω]

≤ O(1) · P [B|ω̂ .
= ω̄]

P [O(ω̂)
.
= O(ω̄), B]

· P [ω̂
.
= ω] ,

The last step follows from the local limit theorem for the multinomial distribution because

E





∑

i∈[m(ℓ)]

σ̂ij(ℓ)

∣

∣

∣

∣

ω̂
.
= ω̄



 = E





∑

i∈[m(ℓ)]

τ̂ ij(ℓ)

∣

∣

∣

∣

ω̂
.
= ω̄



 = m(ℓ) · ℓj

for all ℓ, j. Hence,

P [ω̂
.
= ω|O(ω̂)

.
= O(ω), B]

P [ω̂
.
= ω̄|O(ω̂)

.
= O(ω), B]

≤ P [ω̂
.
= ω]

P [ω̂
.
= ω̄]

.

For eachℓ ∈ L, j ∈ [k] the sum
∑

i∈[m(ℓ)] σ̂ij(ℓ)τ̂ ij(ℓ) has a binomial distributionBin(m(ℓ), ω̄ℓ,j). Furthermore,
these random variables are mutually independent. Therefore, Chernoff bounds yield

P [ω̂
.
= ω]

P [ω̂
.
= ω̄]

≤ exp



−Ωk(1)
∑

ℓ∈L

∑

j∈[k]

m(ℓ)(ωℓ,j − ω̄ℓ,j)
2



 ,

whence the assertion follows.

8.3 Proof of Corollary 8.3

Letω be an overlap matrix such thatO .
= O(ω). LetL′ = L′(ω) be the set of allℓ ∈ L such that|ωℓ,j − 1/4| ≤ ξ for

all j ∈ [k]. LetS ′ =
⋂

ℓ∈L′ S(ℓ). Then

P (ω) = P [S ′, ω
.
= ω|O(ω)

.
= O, B]

= P [S ′|ω .
= ω, B] · P [ω

.
= ω|O(ω)

.
= O, B] .

Let

P̄ = P [S ′|ω .
= ω∗, B] · P [ω

.
= ω̄|O(ω)

.
= O, B] ;

observe that̄P depends onO but not on the specific choice ofω. Then by Propositions 8.1 and 8.2

P (ω) ≤ P̄ · exp
[

∑

ℓ∈L
m(ℓ)

[

1ℓ∈L′ · Õ(4−k) ‖ωℓ − ω∗
ℓ‖22 − Ωk(1) ‖ω̄ℓ − ωℓ‖22

]

]

≤ P̄ · exp
[

∑

ℓ∈L
m(ℓ)

[

1ℓ∈L′ · Õ(4−k)
(

‖ω̄ℓ − ωℓ‖22 + ‖ω̄ℓ − ω∗
ℓ ‖22
)

− Ωk(1) ‖ω̄ℓ − ωℓ‖22
]

]

≤ P̄ · exp
[

∑

ℓ∈L
m(ℓ)

[

Õ(4−k) ‖ω̄ℓ − ω∗
ℓ ‖22 − Ωk(1) ‖ω̄ℓ − ωℓ‖22

]

]

.
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By the second part of Proposition 8.1,

1

n
ln

P [S ′|ω .
= ω∗, B]

P [S|ω .
= ω∗, B] = Θ(2−k)

∑

ℓ 6∈L′

m(ℓ)

n
≤
∑

ℓ 6∈L′

m(ℓ)

kn
ξ2 ≤ 1

k

∑

ℓ 6∈L′

m(ℓ)

n
‖ω̄ℓ − ωℓ‖22 .

Hence, lettingP̃ = P [S|ω .
= ω∗, B] · P [ω

.
= ω̄|O(ω)

.
= O, B] , we obtain

P (ω) ≤ P̃ exp

[

Õ(4−k)
∑

ℓ∈L
m(ℓ) ‖ω̄ℓ − ω∗

ℓ‖22 −
∑

ℓ∈L
Ωk(1)m(ℓ) ‖ω̄ℓ − ωℓ‖22

]

.

To proceed, we note that

∑

ℓ∈L
m(ℓ) ‖ω̄ℓ − ω∗

ℓ‖2 =
∑

j∈[k]

∑

ℓ∈L
m(ℓ)(O∗

ℓj −Oℓj )
2

=
∑

t∈T

∑

ℓ∈L

∑

j∈[k]

m(ℓ)(O∗
t −Ot)

2 · 1ℓj=t = km
∑

t∈T
π(t)(O∗

t −Ot)
2.

Thus,

P (ω) ≤ P̃ exp

[

nÕ(2−k)
∑

t∈T
π(t)(O∗

t −Ot)
2 −

∑

ℓ∈L
Ωk(1)m(ℓ) ‖ω̄ℓ − ωℓ‖2

]

.

Summing over all possible overlap matricesω of assignments withp-marginals, we get

P =
∑

ω:O(ω)
.
=O

P (ω) = P [S ′|O(ω)
.
= O, B] ≥ P [S|O(ω)

.
= O, B] ,

which we can bound by

P ≤ P̃ · exp
[

nÕ(2−k)
∑

t∈T
π(t)(O∗

t −Ot)
2

]

∑

ω:O(ω)
.
=O

exp

[

−
∑

ℓ∈L
Ωk(1)m(ℓ) ‖ω̄ℓ − ωℓ‖22

]

= P [S|ω .
= ω∗, B] exp

[

nÕ(2−k)
∑

t∈T
π(t)(O∗

t −Ot)
2

]

·
∑

ω:O(ω)
.
=O

exp

[

−
∑

ℓ∈L
Ω(1)m(ℓ) ‖ω̄ℓ − ωℓ‖22

]

P [ω
.
= ω̄|O(ω)

.
= O, B]

≤ O(1) · P [S|ω .
= ω∗, B] exp

[

nÕ(2−k)
∑

t∈T
π(t)(O∗

t −Ot)
2

]

,

as desired.

8.4 Proof of Proposition 8.4

Let ω be such thatO .
= O(ω) and‖ω − ω̄‖∞ ≤ n−1/3. We are going to work with the probability space(Ω̂, P̂)

defined by letting
q11ℓ,j = ωℓ,j, qℓ,j = ℓj .

We claim that there exist numbers0 < ck < c′k (independent ofω) such that w.h.p.d is such that

ck ≤ nP [Bℓ,j|ω̂ .
= ω] ≤ c′k for all ℓ, j. (63)
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Indeed, given̂ωℓ,j
.
= ωℓ,j the total number of indicesi ∈ [m(ℓ)] such that(σ̂ij(ℓ), τ̂ ij(ℓ)) = (1, 0) has distribution

Bin

(

(1− ωℓ,j)m(ℓ),
ℓj − ωℓ,j
1− ωℓ,j

)

.

Therefore, the probability that the total number of suchi equals its expectation is in the interval
[

ck,1n
−1/2, ck,2n

−1/2
]

for certainck,2 > ck,1 > 0. Furthermore, given this event, the number ofi ∈ [m(ℓ)] such that(σ̂ij(ℓ), τ̂ ij(ℓ)) = (0, 1)
has distribution

Bin

(

(1− ℓj)m(ℓ),
ℓj − ωℓ,j
1− ℓj

)

.

Once more, the conditional probability that this random variable equals its expectation lies in
[

ck,3n
−1/2, ck,4n

−1/2
]

for certainck,4 > ck,3 > 0. Hence, settingck = ck,1ck,3 andc′k = ck,2ck,4, we obtain (63).
Summing (63) over all (finitely many) possibleω withP [ω

.
= ω̂] > 0 andO(ω)

.
= O and invoking Proposition 8.2,

we find that w.h.p. over the choice ofd,

P [Bℓ,j |O(ω̂)
.
= O] =

∑

ω

P [Bℓ,j |ω̂ .
= ω] P [ω̂

.
= ω]

≤ o(1/n) +
∑

ω:‖ω−ω̄‖∞≤n−1/3

P [Bℓ,j|ω̂ .
= ω] P [ω̂

.
= ω]

≤ o(1/n) + c′k/n ≤ 2c′k/n.

A similar calculation showsP [Bℓ,j|O(ω̂)
.
= O] ≥ 1

2ck/n. As ck, c′k are independent of the specific vectorO, the
assertion follows.

9 Proof of Proposition 8.1

We keep the notation and the assumptions of Section 7.

9.1 Outline

In Section 9.2 we will establish the following.

Proposition 9.1 There existC2-functionsPℓ(·) that range over matricesω = (ωℓ,j)ℓ∈L,j∈[k] such that

‖ωℓ − ω∗
ℓ ‖∞ < k−12 for all ℓ ∈ L′

with the following properties.

1. For all suchω we have

P [S ′|ω .
= ω, B] = exp

[

O(1) +
∑

ℓ∈L′

m(ℓ) · Pℓ(ωℓ)
]

.

2. For eachℓ, Pℓ is a function of the rowωℓ only.

We need to analyse the functionsPℓ from Proposition 9.1. Crucially,ω∗ turns out to be a stationary point.

Proposition 9.2 The differentials of the functionsPℓ from Proposition 9.1 satisfyDPℓ (ω∗
ℓ ) = 0 for all ℓ.

The proof of Proposition 9.2 can be found in Section 9.3. Furthermore, in Section 9.4 we derive the following
bound on the second derivatives ofPℓ.
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Proposition 9.3 The functionsPℓ from Proposition 9.1 have the following property. For anyj, j′, ℓ we have

∂2Pℓ
∂ωℓ,j∂ωℓ,j′

≤ Õ(4−k)

on the entire domain ofPℓ.

Corollary 9.4 For anyω in the domain ofP we have

Pℓ(ωℓ) ≤ P(ω∗
ℓ ) + Õ(4−k) ‖ωℓ − ω∗

ℓ ‖22 .

Proof. This follows directly from Propositions 9.2 and 9.3 and Taylor’s formula. ✷

Finally, in Section 9.6 we will show of Proposition 8.1 follows from Proposition 9.1 and Corollary 9.4.

9.2 Proof of Proposition 9.1

To construct the functionsPℓ, we are going to work with the probability space(Ω̂, P̂) from Section 8 once more; we
are going to define the vectorq that determines the measureP̂ so as to facilitate the definition ofPℓ in due course. Fix
ω = (ωℓ,j)ℓ∈L,j∈[k] such that‖ωℓ − ω∗

ℓ ‖∞ < k−12 for all ℓ ∈ L′. LetB′ =
⋂

ℓ∈L′ Bℓ. Further, forℓ ∈ L andj ∈ [k]
let Cℓ,j be the event that̂ωℓ,j

.
= ωℓ,j. LetCℓ =

⋂

j∈[k] C
′
ℓ,j and letC′ =

⋂

ℓ∈L′ C′
ℓ. Finally, letS′ =

⋂

ℓ∈L′ S(ℓ).

The following two facts are direct consequences of the definition of P̂.

Fact 9.5 If q is such that̂P [B′ ∩ C′] > 0, thenP̂ [·|B′ ∩ C′] is the uniform distribution over the setB′ ∩C′.

Fact 9.6 Suppose thatq is such that the conditional distribution̂P [·|B′ ∩ C′] is uniform. ThenP̂ [S′|B′, C′] =
P [S ′|ω .

= ω, B] .

Thus, our goal is pickq such that̂P [S′|B′, C′] is easy to compute. Roughly speaking, we are going to accomplish
this by choosingq so thatP̂ [B′, C′|S′] is as big as possible. To implement this, we first need to determine the
unconditional probabilitieŝP [S′], P̂ [B′, C′] as functions ofq.

Lemma 9.7 Suppose thatq is such thatqℓ,j ∈ (0, 1) for all ℓ ∈ L′, j ∈ [k]. Then

P̂ [Si(ℓ)] = 1− 2

k
∏

j=1

(1 − qℓ,j) +

k
∏

j=1

(1− 2qℓ,j + q11ℓ,j) (64)

for all ℓ ∈ L′, i ∈ [m(ℓ)], and

1

n
ln P̂ [S′] =

∑

ℓ∈L

m(ℓ)

n
ln



1− 2

k
∏

j=1

(1− qℓ,j) +

k
∏

j=1

(1− 2qℓ,j + q11ℓ,j)



 .

Proof. The first statement follows by inclusion/exclusion. The probability thatmaxj∈[k] σ̂ij(ℓ) = 0 equals
∏k
j=1(1−

qℓ,j) as the componentŝσij(ℓ) are the results of independentBe(qℓ,j) experiments. For the eventmaxj∈[k] τ̂ ij(ℓ) = 0
we get the exact same expression. Furthermore, the probability of maxj∈[k] σ̂ij(ℓ) = maxj∈[k] τ̂ ij(ℓ) = 0 equals
∏k
j=1(1 − 2qℓ,j + q11ℓ,j). To see this, note that for each individualj we have

P [σ̂ij(ℓ) = τ̂ ij(ℓ) = 0] = 1− 2qℓ,j + q11ℓ,j

by inclusion/exclusion, and these events are independent for j ∈ [k]. The second one is due to independence overℓ
andi. ✷
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Lemma 9.8 For anyq and anyℓ, j we have

P̂ [Cℓ,j ] = P̂
[

Bin(m(ℓ), q11ℓ,j) = ωℓ,jm(ℓ) +O(1)
]

. (65)

Furthermore, ifq11(ℓ, j) < 1 then

P̂ [Bℓ,j |Cℓ,j] = Θ(n−1/2) · P̂
[

Bin

(

(1− ωℓ,j)m(ℓ),
1− 2qℓ,j + q11ℓ,j

1− q11ℓ,j

)

= m(ℓ)(1− 2ℓj + ωℓ,j)

]

.

Proof. Recall thatCℓ,j is the event that

∑

i∈[m(ℓ)]

σ̂ij(ℓ) · τ̂ ij(ℓ) = ωℓ,jm(ℓ) +O(1).

By construction, the random variableŝσij(ℓ) · τ̂ ij(ℓ) are independentBe(q11ℓ,j) variables, and thus their sum has
distributionBin(m(ℓ), q11ℓ,j). Hence we get (65).

Furthermore, once we condition on the eventCℓ,j , the remaining(1−ωℓ,j)m(ℓ) pairs(σ̂ij(ℓ), τ̂ ij(ℓ)) are chosen
conditional on the outcome being different from(1, 1). Hence, by construction each such pair takes the value(0, 0)

with probability
1−2qℓ,j+q

11
ℓ,j

1−q11ℓ,j
independently (with the numerator resulting from (62)). Ineffect, the probability that the

total number of(0, 0)s equalsm(ℓ)(1− 2ℓj + ωℓ,j) is just

P

[

Bin

(

(1− ωℓ,j)m(ℓ),
1− 2qℓ,j + q11ℓ,j

1− q11ℓ,j

)

= m(ℓ)(1− 2ℓj + ωℓ,j) +O(1)

]

.

Now, given that both this event andCℓ,j occur, the remaining2(ℓj − ω)m(ℓ) pairs(σ̂ij(ℓ), τ̂ ij(ℓ)) come up either
(1, 0) or (0, 1) with probability1/2. By Stirling’s formula, the probability that both outcomesoccur an equal number
of times isΘ(n−1/2). ✷

Note that

P̂ [B′, C′] =
∏

ℓ∈L′

P̂ [B(ℓ) ∩C(ℓ)] =
∏

ℓ∈L′

k
∏

j=1

P̂ [B(tj , ℓ) ∩ C(tj , ℓ)] (66)

because under̂P the components of the vector(σ̂ij(ℓ), τ̂ ij(ℓ))ℓ,i,j are independent.

Lemma 9.9 There exists a vectorq such that

ℓj =
qℓ,j − (qℓ,j − q11ℓ,j)

∏

h 6=j(1− qℓ,h)

1− 2
∏k
h=1(1− qℓ,h) +

∏k
h=1(1− 2qℓ,h + q11ℓ,h)

, (67)

ωℓ,j =
q11ℓ,j

1− 2
∏k
h=1(1− qℓ,h) +

∏k
h=1(1− 2qℓ,h + q11ℓ,h)

. (68)

for all ℓ ∈ L′, j ∈ [k]. This vectorq satisfies

qℓ,j = ℓj − 2−k−1 + Õ(2−3k/2) andq11ℓ,j = ωℓ,j +O(2−k).

Proof. This follows from applying the inverse function theorem in asimilar way as in the proof of Lemma 6.10. ✷

In the rest of this section, we fixq as in Lemma 9.9.
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Lemma 9.10 Let

Pℓ(ω) = ln



1− 2
k
∏

j=1

(1− qℓ,j) +
k
∏

j=1

(1− 2qℓ,j + q11ℓ,j)





−
∑

j∈[k]

[

ψ(q11ℓ,j , ωℓ,j) + (1 − ωℓ,j)ψ

(

1− 2qℓ,j + q11ℓ,j
1− q11ℓ,j

,
1− 2ℓj + ωℓ,j

1− ωℓ,j

)]

.

Furthermore, let

P(ω) =
∑

ℓ∈L′

m(ℓ)

n
Pℓ(ω). (69)

Then
P̂ [S′|B′, C′] = exp [nP(ω) +O(1)] .

Proof. The choice ofq ensures that for anyℓ andj,

Ê





∑

i∈[m(ℓ)]

σ̂ij(ℓ) · τ̂ ij(ℓ)
∣

∣

∣

∣

S′



 =
m(ℓ)q11ℓ,j

1− 2
∏k
h=1(1− qℓ,h) +

∏k
h=1(1− 2qℓ,h + q11ℓ,h)

= ωℓ,jm(ℓ); (70)

indeed, by (64) the denominator in the middle term equals theprobability of the eventSi(ℓ). Furthermore, by con-
struction for anyi, j, ℓ we have

P̂ [σ̂ij(ℓ) = 1, τ̂ ij(ℓ) = 0, Si(ℓ)] = q10ℓ,j



1−
∏

h 6=j
(1− qℓ,j)



 = (qℓ,j − q11ℓ,j)



1−
∏

h 6=j
(1− qℓ,j)



 .

As a consequence, (67) ensures that

Ê





∑

i∈[m(ℓ)]

σ̂ij(ℓ)|S′



 =
qℓ,j − (qℓ,j − q11ℓ,j)

∏

h 6=j(1− qh)

1− 2
∏k
h=1(1− qℓ,h) +

∏k
h=1(1− 2qℓ,h + q11ℓ,h)

= ℓjm(ℓ). (71)

By inclusion/exclusion, we obtain from (70) and (71) that

Ê





∑

i∈[m(ℓ)]

(1− σ̂ij(ℓ)) · (1− τ̂ ij(ℓ))

∣

∣

∣

∣

S′



 = (1− 2ℓj + ωℓ,j)m(ℓ). (72)

Due to (70) and (72), a repeated application of Lemma 4.1 (thelocal limit theorem) yields

P̂ [B′, C′|S′] = Θ(n−3k|L′|/2). (73)

Invoking Lemma 9.8 and using the large deviations principlefor the binomial distribution (Lemma 4.2), we can
easily determine theunconditionalprobability ofB′ ∩ C′: we have

P̂ [B′, C′] =
∏

ℓ,j

P̂
[

C′
ℓ,j

]

P̂
[

B′
ℓ,j|C′

ℓ,j

]

= Θ(n−k|L′|/2)
∏

ℓ,j

P̂
[

Bin(m(ℓ), q11ℓ,j) = ωℓ,jm(ℓ)
]

·P̂
[

Bin

(

(1 − ωℓ,j)m(ℓ),
1− 2qℓ,j + q11ℓ,j

1− q11ℓ,j

)

= m(ℓ)(1 − 2ℓj + ωℓ,j)

]

= Θ(n−3k|L′|/2) exp





∑

ℓ,j

m(ℓ)

[

ψ(q11ℓ,j , ωℓ,j) + (1− ωℓ,j)ψ

(

1− 2qℓ,j + q11ℓ,j
1− q11ℓ,j

,
1− 2ℓj + ωℓ,j

1− ωℓ,j

)]



 .
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Thus,

ln P̂ [S′|B′, C′] = ln

(

P̂ [S′] P̂ [B′, C′|S′]

P̂ [B′, C′]

)

= O(1) + ln P̂ [S′]

−
∑

ℓ,j

m(ℓ)

[

ψ(q11ℓ,j , ωℓ,j) + (1− ωℓ,j)ψ

(

1− 2qℓ,j + q11ℓ,j
1− q11ℓ,j

,
1− 2ℓj + ωℓ,j

1− ωℓ,j

)]

.

The assertion follows by plugging in the expression forP [S′] from Lemma 9.7. ✷

Finally, Proposition 9.1 follows from Fact 9.6 and Lemma 9.10.

9.3 Proof of Proposition 9.2

We start with the following observation.

Lemma 9.11 Letq be the solution to (67) and (68) forω = ω∗. There isγ = γ(k) > 0 such that for anyε > 0 and
anyℓ ∈ L′ we have

P̂ [‖ω̂ℓ − ω∗
ℓ‖∞ > ε |Sℓ, Bℓ] ≤ exp(−γε2n+ o(n)) and (74)

P̂ [‖ω̂ℓ − ω∗
ℓ ‖∞ > ε |Bℓ] ≤ exp(−γε2n+ o(n)). (75)

Proof. Equation (73) from the proof of Lemma 9.10 shows that

P̂ [Bℓ|Sℓ] = exp(o(n)). (76)

Therefore, it is going to be sufficient to estimateP̂
[

‖ω̂ℓ − ω∗
ℓ ‖∞ > ε |Sℓ

]

. If we just condition on the eventSℓ, then
the k-tuples(σ̂ij(ℓ), τ̂ ij(ℓ))j∈[k] of 0/1 pairs are mutually independent for alli ∈ [m(ℓ)]. Furthermore, givenSℓ
modifying just one suchk-tuple can alter any entrŷωℓ,j by at mostc/n, for some numberc = c(k) > 0. Therefore,
Azuma’s inequality yields

P̂ [|ω̂ℓ,j − E [ω̂ℓ,j] | > ε|Sℓ] ≤ 2 exp(−γε2n), (77)

for someγ = γ(k) > 0. Since (68) ensures thatÊ [ω̂ℓ|Sℓ] = ω∗
ℓ , (74) follows from (76), (77) and the union bound.

To obtain (75), letq′ be the vector with entriesq′
ℓ,j = p(ℓj) for all ℓ, j. Then

P̂q′ [Bℓ] = exp(o(n)). (78)

Furthermore, applying Azuma’s inequality just as in the previous paragraph, we find that

P̂q′ [|ω̂ℓ,j − E [ω̂ℓ,j] | > ε] ≤ 2 exp(−γε2n) (79)

for someγ = γ(k) > 0. Moreover,Êq′ [ω̂ℓ] = ω∗
ℓ by the choice ofq′. Thus, (75) follows from (78), (79) and the

union bound. ✷

Proof of Proposition 9.2.Let ℓ ∈ L′. Let q be the solution to (67) and (68) forω = ω∗. ThenP̂ [ · |B′] is the uniform
distribution over pairs(σ̂, τ̂ ) ∈ Ω such that(σ̂, τ̂) ∈ B′. Indeed, forω = ω∗ the solutionq to (67) and (68) satisfies
q11ℓ,j = q2ℓ,j for all ℓ, j. Therefore, for any(σ̂, τ̂ ) ∈ Ω we have

P̂ [σ̂ = σ̂, τ̂ = τ̂ ] = q
∑
ℓ,i,j σ̂i,j(ℓ)+τ̂i,j(ℓ)

ℓ,j (1− qℓ,j)
km−

∑
ℓ,i,j σ̂i,j(ℓ)+τ̂i,j(ℓ) (80)

Since the sums
∑

ℓ,i,j σ̂i,j(ℓ) + τ̂i,j(ℓ) coincide for allσ̂, τ̂ ∈ B′, (80) shows that̂P [ · |B′] is uniform.
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LetH(ω) be the number of pairs(σ̂, τ̂ ) ∈ Ω̂ such(σ̂, τ̂) ∈ B′ andω̂(σ̂, τ̂ ) = ω. We claim that

1

n
D lnH(ω∗) = o(1). (81)

This can be verified either by representingH(ω) as a product of binomial coefficients and applying Stirlingsformula
or, alternatively, by using (75). Indeed, assume that (81) is false. Then for small enoughε > 0 there isδ > 0 such that
for someω′ with ‖ω′ − ω∗‖∞ ∼ ε we have

lnH(ω′) ≥ δn+ max
ω:‖ω−ω∗‖∞<ε/2

lnH(ω) (82)

(with bothε, δ possibly dependent onk but not onn). Letting

H̄ =
∑

(σ̂,τ̂)∈B′

H(ω̂(σ̂, τ̂)),

we obtain from (75) that

1 ∼ P̂ [‖ω̂ − ω∗‖∞ < ε/2|B′] =
1

H̄

∑

(σ̂,τ̂)∈B′

1‖ω̂(σ̂,τ̂)−ω∗‖∞<ε/2 ·Hω̂(σ̂,τ̂)

= exp(o(n)) · max
ω:‖ω−ω∗‖∞<ε/2

H(ω)/H̄. (83)

However, combining (82) and (83) we get

P̂ [‖ω̂ − ω∗‖∞ > ε/2|B′] ≥ H(ω′)/H̄ ≥ exp(δn) max
ω:‖ω−ω∗‖∞<ε/2

H(ω)/H̄

≥ exp(δn− o(n))P̂ [‖ω̂ − ω∗‖∞ < ε/2|B′] > 1,

which is a contradiction. Hence, (81) follows.
Now, assume for contradiction thatDPℓ(ω∗) 6= 0. Because the functionPℓ( · ) remains fixed asn → ∞, there

exists a fixedε′ > 0 such that‖DPℓ(ω∗)‖∞ > ε′. Therefore, (81) entails that for anyε > 0 small enough existω′,
δ > 0 such that‖ω′ − ω∗‖∞ ∼ ε and

lnH(ω′) + n · Pℓ(ω′) ≥ δn+ max
ω:‖ω−ω∗‖∞<ε/2

lnH(ω) + n · Pℓ(ω), (84)

with ε, δ independent ofn. Let

H̄ℓ =
∑

(σ̂,τ̂)∈B′

H(ω̂(σ̂, τ̂)) exp [nPℓ(ω̂(σ̂, τ̂))] .

Then by (74),

1 ∼ P̂ [‖ω̂ℓ − ω∗
ℓ ‖∞ < ε/2|Sℓ, B′]

=
1

H̄

∑

(σ̂,τ̂)∈B′

1‖ω̂(σ̂,τ̂)−ω∗‖∞<ε/2
·Hω̂(σ̂,τ̂) exp [nPℓ(ω̂(σ̂, τ̂ )) +O(1)]

= exp(o(n)) · max
ω:‖ω−ω∗‖∞<ε/2

H(ω) exp(nPℓ(ω))/H̄ℓ. (85)

However, combining (84) and (85) we get

P̂ [‖ω̂ℓ − ω∗
ℓ ‖∞ > ε/2|Sℓ, B′] ≥ H(ω′) exp [nPℓ(ω′) +O(1)]

H̄ℓ

≥ exp(δn) max
ω:‖ω−ω∗‖∞<ε/2

H(ω) exp(nPℓ(ω))/H̄ℓ

≥ exp(δn− o(n))P̂ [‖ω̂ − ω∗‖∞ < ε/2|Sℓ, B′] > 1.

This contradiction shows thatDPℓ(ω∗) = 0 for all ℓ. ✷
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9.4 Proof of Proposition 9.3

We need to compute the second derivative ofPℓ. In particular, we also need to differentiateq = q(ω) the solution
to (67)–(68). Furthermore, we fix some typeℓ ∈ L for the rest of this section. LetWℓ denote the set of all vectorsωℓ
such that

∣

∣ωℓ,j − 1
4

∣

∣ ≤ k−4 for all j ∈ [k]. In Section 9.5 we are going to establish the following.

Lemma 9.12 OnWℓ we have

∂q11ℓ,h
∂ωℓ,i

= 1h=i + Õ(2−k),
∂2q11ℓ,h

∂ωℓ,i∂ωℓ,j
= Õ(2−k),

∂qℓ,h
∂ωℓ,i

= Õ(2−k),
∂2qℓ,h

∂ωℓ,i∂ωℓ,j
= Õ(2−k).

for anyh, i, j ∈ [k].

We split the functionPℓ into a sum of various contributions: let

φℓ(q) = ln



1− 2

k
∏

j=1

(1− qℓ,j) +

k
∏

j=1

(1 − 2qℓ,j + q11ℓ,j)



 and

ψℓ(ω, q) =
∑

j∈[k]

ψℓ,j(ω, q) + ψ̃ℓ,j(ω, q) with

ψℓ,j(ω, q) = ψ(q11ℓ,j , ωℓ,j),

ψ̃ℓ,j(ω, q) = (1 − ωℓ,j)ψ

(

1− 2qℓ,j + q11ℓ,j
1− q11ℓ,j

,
1− 2ℓj + ωℓ,j

1− ωℓ,j

)

.

Lemma 9.13 OnWℓ we have
∂2φℓ(q)

∂ωℓ,h ∂ωℓ,j
≤ Õ(4−k) for all h, j ∈ [k] .

Proof. By Lemma 9.9 for allω ∈ Wℓ we have|qℓ,j − 1/2| ≤ 1/k2 and|q11ℓ,j − 1/4| ≤ 1/k2 for all j ∈ [k]. For such
vectorsqℓ we obtain the bounds

∂φℓ
∂qℓ,j

,
∂2φℓ

∂qℓ,j∂qℓ,h
,

∂2φℓ
∂q11ℓ,j∂qℓ,h

= Õ(2−k),

∂φℓ
∂q11ℓ,j

,
∂2φℓ

∂q11ℓ,j∂q
11
ℓ,h

= Õ(4−k)

for all i, j, h ∈ [k]. Therefore, the assertion follows from Lemma 4.3 (the chainrule) and Lemma 9.12. ✷

Let ε > 0. We say thatΨ ∈ C2((0, 1)2,R) is ε-tameonY ⊂ (0, 1)2 if the following conditions hold:

T1. For ally ∈ (0, 1) we haveΨ(y, y) = 0.

T2. OnY we have
∣

∣

∣

∑2
i=1

∂2Ψ
∂zi∂zj

∣

∣

∣ ≤ ε for anyj = 1, 2.

T3. OnY we have
∣

∣

∣

∑2
i,j=1

∂2Ψ
∂zi∂zj

∣

∣

∣
≤ ε2.

T4. OnY we have| ∂2Ψ
∂zi∂zj

| ≤ 100 for anyi, j = 1, 2.

Let f : (0, 1)k → R
2, (z1, . . . , zk) 7→ (f1(z1, . . . , zk), f2(z1, . . . , zk)) be aC2-function. We say thatf is

ε-benignonW if the following statements are true onW :
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B1.
∣

∣

∣

∂f1
∂z1

− ∂f2
∂z1

∣

∣

∣
< ε.

B2.
∣

∣

∣

∂fi
∂zj

∣

∣

∣ < ε for any1 < j ≤ k andi = 1, 2 and
∣

∣

∣

∂fi
∂z1

∣

∣

∣ ≤ 100.

B3.
∣

∣

∣

∂2fi
∂zh∂zj

∣

∣

∣ < ε for anyi and(h, j) 6= (1, 1).

B4.
∣

∣

∣

∂2f1
∂z21

− ∂2f2
∂z21

∣

∣

∣ < ε and|∂2f1
∂z21

| ≤ 100.

Lemma 9.14 There is an absolute constantC > 0 such that the following is true. Assume thatf is ε-benign onW
and thatΨ is ε-tame onf(W). Then onW we have

∂2Ψ ◦ f
∂zi∂zj

≤ Cε2 for anyi, j ∈ [k].

Proof. By Lemma 4.3 (the chain rule), we have

∂2Ψ ◦ f
∂zi∂zj

=

2
∑

h=1

∂Ψ

∂yh

∂2fh
∂zi∂zj

+

2
∑

a,b=1

∂2Ψ

∂ya∂yb

∂fa
∂zi

∂fb
∂zj

.

Since byT4 and Taylor’s formula we have∂Ψ∂yh = Ok(ε), B3 implies that for(i, j) 6= (1, 1)

2
∑

h=1

∂Ψ

∂yh

∂2fh
∂zi∂zj

= Ok(ε
2).

Furthermore, as∂Ψ∂yh = Ok(ε), B4 yields

2
∑

h=1

∂Ψ

∂yh

∂2fh
∂z21

=
∂2f1
∂z21

2
∑

h=1

∂Ψ

∂yh
+

2
∑

h=1

∂Ψ

∂yh

[

∂2fh
∂z21

− ∂2f1
∂z21

]

= Ok(1)

2
∑

h=1

∂Ψ

∂yh
+Ok(ε

2) = Ok(ε
2);

the last step follows fromT2 and Taylor’s formula.
To deal with the second sum, we consider four cases.

Case 1:i 6= 1, j 6= 1. By B2 we have∂fa∂zi

∂fb
∂zj

≤ Ok(ε
2), and thus

∂2Ψ

∂ya∂yb

∂fa
∂zi

∂fb
∂zj

= Ok(ε
2)

by T4.

Case 2:i = 1, j 6= 1. We have

2
∑

a,b=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

∂fb
∂zj

=

2
∑

b=1

∂fb
∂zj

2
∑

a=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

B2
=

2
∑

b=1

Ok(ε)

2
∑

a=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

B1, T4
= Ok(ε

2) +
∂f1
∂z1

2
∑

b=1

Ok(ε)

2
∑

a=1

∂2Ψ

∂ya∂yb

B2
= Ok(ε

2) +

2
∑

b=1

Ok(ε)

2
∑

a=1

∂2Ψ

∂ya∂yb

T2
=Ok(ε

2).

Case 3:i 6= 1, j = 1. The same argument as in case 2 applies.
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Case 4:i = j = 1. We have

2
∑

a,b=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

∂fb
∂z1

=

(

∂f1
∂z1

)2 2
∑

a,b=1

∂2Ψ

∂ya∂yb
+

2
∑

a,b=1

∂2Ψ

∂ya∂yb

[

∂fa
∂z1

∂fb
∂z1

−
(

∂f1
∂z1

)2
]

B2, T3
= Ok(ε

2) +

2
∑

a,b=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

[

∂fb
∂z1

− ∂f1
∂z1

]

+

2
∑

a,b=1

∂2Ψ

∂ya∂yb

∂f1
∂z1

[

∂fa
∂z1

− ∂f1
∂z1

]

B1
= Ok(ε

2) +

2
∑

b=1

Ok(ε)

2
∑

a=1

∂2Ψ

∂ya∂yb

∂fa
∂z1

+

2
∑

a=1

Ok(ε)

2
∑

b=1

∂2Ψ

∂ya∂yb

∂f1
∂z1

B1
= Ok(ε

2) +

2
∑

a=1

Ok(ε)

2
∑

b=1

∂2Ψ

∂ya∂yb

∂f1
∂z1

B1
=Ok(ε

2) +

2
∑

a=1

Ok(ε)

2
∑

b=1

∂2Ψ

∂ya∂yb

T2
=Ok(ε

2).

Hence, in all cases we obtain a bound ofOk(ε
2). ✷

Lemma 9.15 The functions(y1, y2) 7→ ψ(y1, y2) and(y1, y2) 7→ (1− y1)ψ(y1, y2) are Õ(2−k)-tame on

Y =

{

(y1, y2) ∈ (0, 1)2 : |y1 − y2| ≤ k32−k, max
i=1,2

|yi − 1/4| ≤ 1/k2
}

.

Proof. It is straightforward to work out the differentials ofψ: we have

∂ψ

∂y1
=
y2
y1

− 1− y2
1− y1

,
∂ψ

∂y2
= − ln

(

y2
y1

)

+ ln

(

1− y2
1− y1

)

,

∂2ψ

∂y12
= − y2

y12
− 1− y2

(1− y1)2
,

∂2ψ

∂y1∂y2
ψ =

1

y1
+

1

1− y1
,

∂2ψ

∂y22
= − 1

y2
− 1

1− y2
.

Differentiating once more with respect toy1, we get

∂3ψ

∂y31
=

2y2
y31

− 2(1− y2)

(1− y1)3
,

∂3ψ

∂y21∂y2
= − 1

y21
+

1

(1 − y1)2
,

∂3ψ

∂y1∂y22
= 0.

Therefore, aty1 = y2 + ε the second derivatives work out to be

∂2ψ

∂y21
(y2 + ε, y2) = − 1

y2
− 1

1− y2
+ 2ε

(

1

y22
− 1

(1 − y2)2

)

+O(ε2),

∂2ψ

∂y1∂y2
(y2 + ε, y2) =

1

y2
+

1

1− y2
+ ε

(

− 1

y22
+

1

(1− y2)2

)

+O(ε2),

∂2ψ

∂y22
(y2 + ε, y2) = − 1

y2
− 1

1− y2
.

Hence,ψ is tame. Furthermore, differentiating(y1, y2) 7→ (1− y2)ψ(y1, y2) yields

∂

∂y1
(1− y2)ψ(y1, y2) = (1− y2)

∂

∂y1
ψ(y1, y2),

∂

∂y2
(1− y2)ψ(y1, y2) = (1− y2)

∂

∂y2
ψ(y1, y2)− ψ(y1, y2),

∂2

∂y21
(1− y2)ψ(y1, y2) = (1− y2)

∂2

∂y21
ψ(y1, y2),

∂2

∂y22
(1− y2)ψ(y1, y2) = (1− y2)

∂2

∂y22
ψ(y1, y2)− 2

∂

∂y2
ψ(y1, y2),

∂2

∂y1∂y2
(1− y2)ψ(y1, y2) = (1− y2)

∂2

∂y1∂y2
ψ(y1, y2)−

∂

∂y1
ψ(y1, y2).
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Hence, the fact that(1 − y2)ψ(y1, y2) is ε-tame follows from the fact thatψ is. ✷

Lemma 9.16 Withq = q(ω) the functions

ξℓ,j : ω 7→
(

q11ℓ,j, ωℓ,j
)

,

ζℓ,j : ω 7→ (ζ1,ℓ,j , ζ2,ℓ,j) =

(

1− 2qℓ,j + q11ℓ,j
1− q11ℓ,j

,
1− 2ℓj + ωℓ,j

1− ωℓ,j

)

are Õ(2−k)-benign onW =
{

ω :
∥

∥ω − 1
41
∥

∥

∞ ≤ k−4
}

.

Proof. The fact thatξℓ,j is benign follows directly from Lemma 9.12. With respect toζℓ,j we have

∂ζ2,ℓ,j
∂ωℓ,j

=
2(1− ℓj)

(1− ωℓ,j)2
,

∂2ζ2,ℓ,j
∂ω2

ℓ,j

=
4(1− ℓj)

(1− ωℓ,j)3
,

∂ζ2,ℓ,j
∂ωℓ,h

= 0,
∂2ζ2,ℓ,j
∂ωℓ,h∂ωℓ,i

= 0 (h 6= j),

∂ζ1,ℓ,j
∂ωℓ,j

=
(1− q11ℓ,j)

[

−2
∂qℓ,j
∂ωℓ,j

+
∂q11ℓ,j
∂ωℓ,j

]

+
∂q11ℓ,j
∂ωℓ,j

(1− 2qℓ,j + q11ℓ,j)

(1− q11ℓ,j)
2

=
2(1− qℓ,j)

(1− q11ℓ,j)
2
+ Õ(2−k),

∂2ζ1,ℓ,j
∂ω2

ℓ,j

=
4(1− qℓ,j)

(1− qℓ,j)4
+ Õ(2−k),

∂ζ1,ℓ,j
∂ωℓ,h

= Õ(2−k),
∂2ζ1,ℓ,j
∂ωℓ,h∂ωℓ,i

= Õ(2−k) (h 6= j).

Since|qℓ,j − ℓj | ≤ Õ(2−k) and|q11ℓ,j − ωℓ,j| ≤ Õ(2−k) by Lemma 9.9, the assertion follows. ✷

Finally, Proposition 9.3 follows directly from Lemmas 9.13, 9.14, 9.15 and 9.16.

9.5 Proof of Lemma 9.12

Let

Pℓ,j : q 7→
qℓ,j − (qℓ,j − q11ℓ,j)

∏

h 6=j(1− qℓ,h)

1− 2
∏k
h=1(1− qℓ,h) +

∏k
h=1(1− 2qℓ,h + q11ℓ,h)

,

Ωℓ,j : q 7→
q11ℓ,j

1− 2
∏k
h=1(1− qℓ,h) +

∏k
h=1(1− 2qℓ,h + q11ℓ,h)

.

A straightforward calculation shows that forq such that|qℓ,j − 1/2| ≤ 1/k2 and|q11ℓ,j − 1/4| ≤ 1/k2 we have

∂Pℓ,j
∂qℓ,h

= 1j=h + Õ(2−k),
∂Pℓ,j
∂q11ℓ,h

= Õ(2−k),

∂Ωℓ,j
∂qℓ,h

= Õ(2−k),
∂Ωℓ,j
∂q11ℓ,h

= 1j=h + Õ(2−k)

for anyj, h ∈ [k]. LetF : q 7→
((Pℓ,j(q))j∈[k]

(Ωℓ,j(q))j∈[k]

)

. Then the differential ofF satisfies

DF =









(

(

∂Pℓ,j
∂qℓ,h

)

h∈[k]
,
(

∂Pℓ,j
∂q11ℓ,h

)

h∈[k]

)

j∈[k]
(

(

∂Pℓ,j
∂qℓ,h

)

h∈[k]
,
(

∂Pℓ,j
∂q11ℓ,h

)

h∈[k]

)

j∈[k]









= id + Õ(2−k)1, (86)
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whereid is the matrix with ones on the diagonal and zeros elsewhere, and1 signifies the matrix with all entries equal
to one. By the inverse function theorem, we haveD(F−1) = (DF )−1. Furthermore, by (86) and Cramer’s rule,

(DF )−1 = id + Õ(2−k)1. (87)

Sinceq(ω) is the solution toF (q) =
((p(ℓj))j∈[k]

(ωℓ,j)j∈[k]

)

, (87) yields the assertions on the first derivatives
∂q11ℓ,h
∂ωℓ,i

, ∂qℓ,h∂ωℓ,i
in

Lemma 9.12.
Proceeding to the second derivative, we highlight the following (folklore) fact.

Lemma 9.17 Letε, δ = exp(−Ω(k)). LetA be the set of allk× k matricesA = (Aij) such that|Aii− 1| < ε for all
i and|Aij | < δ for all i 6= j. ThenA is regular and the operatorinv : A ∈ A 7→ A−1 = (invstA)s,t=1,...,k satisfies

∂invst
∂aij

∣

∣

∣

∣

A

≤ Õ(δ)− 1i=j=s=t(1 + Õ(ε)) for anyi, j, s, t ∈ [k].

Proof. This is a simple consequence of Cramer’s rule. Indeed, letA′
ij be the matrix obtained fromA by omitting row

i and columnj. Then

invstA = (−1)s+t
detA′

ts

detA
.

Thus, we need to differentiatedetA′
ts anddetA. For anyi 6= j we have

∂

∂aii
detA =

∏

h 6=i
ahh + Õ(δ) = 1 + Õ(ε) + Õ(δ),

∂

∂aij
detA = Õ(δ).

Similarly, for i 6= j ands 6= t we have

∂

∂aii
detA′

tt = 1i6=t · (1 + Õ(ε)),
∂

∂aii
detA′

ts = Õ(δ),
∂

∂aij
detA′

ts = Õ(δ).

Thus, the assertion follows from the quotient rule. ✷

A direct calculation shows that forq such that|qℓ,j − 1/2| ≤ 1/k2 and|q11ℓ,j − 1/4| ≤ 1/k2 we have

∂2Pℓ,j
∂qℓ,h∂qℓ,i

,
∂2Pℓ,j

∂qℓ,h∂q11ℓ,i
,
∂2Pℓ,j

∂q11ℓ,h∂q
11
ℓ,i

= Õ(2−k),

∂2Ωℓ,j
∂qℓ,h∂qℓ,i

,
∂2Ωℓ,j

∂qℓ,h∂q11ℓ,i
,
∂2Ωℓ,j

∂q11ℓ,h∂q
11
ℓ,i

= Õ(2−k)

for anyh, i, j ∈ [k]. Thus,
∥

∥D2F
∥

∥

∞ ≤ Õ(2−k). (88)

Because by the chain ruleD(inv ◦ DF ) = (Dinv) ◦ (D2F ), the assertion on the second derivatives follows from
Lemma 9.17, (87) and (88).

9.6 Completing the proof of Proposition 8.1

The first assertion is a direct consequence of Proposition 9.1 and Corollary 9.4. Similarly, the second assertion follows
from Proposition 9.1 becausePℓ(ω) ≤ −Ωk(2

−k) for all ℓ.
Finally, letω = ω∗. It is straightforward to verify that by lettingqℓ,j be as in Lemma 6.10 and by settingq11ℓ,j = q2ℓ,j

we obtain the unique solution to (67)–(68). We need to plug this solution intoP(ω): we have

ln



1− 2

k
∏

j=1

(1− qℓ,j) +

k
∏

j=1

(1 − 2qℓ,j + q11ℓ,j)



 = ln



1− 2

k
∏

j=1

(1− qℓ,j) +

k
∏

j=1

(1− qℓ,j)
2





= 2 ln



1−
k
∏

j=1

1− qℓ,j



 . (89)
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Moreover,

ψ(q11ℓ,j , ωℓ,j) = ψ(q2ℓ,j , ℓ
2
j) = −2ℓ2j ln

(

ℓj
qℓ,j

)

− (1− ℓ2j) ln

(

1− ℓ2j
1− q2ℓ,j

)

= −2ℓ2j ln

(

ℓj
qℓ,j

)

− (1− ℓ2j)

[

ln

(

1− ℓj
1− qℓ,j

)

+ ln

(

1 + ℓj
1 + qℓ,j

)]

. (90)

Further,

(1− ℓ2j)ψ

(

1− 2qℓ,j + q11ℓ,j
1− q11ℓ,j

,
1− 2ℓj + ωℓ,j

1− ωℓ,j

)

= (1 − ℓ2j)ψ

(

(1 − qℓ,j)
2

1− q2ℓ,j
,
(1− ℓj)

2

1− ℓ2j

)

= (1− ℓ2j)ψ

(

1− qℓ,j
1 + qℓ,j

,
1− ℓj
1 + ℓj

)

= −(1− ℓj)
2 ln

(

1− ℓj
1− qℓ,j

)

− (1− ℓ2j) ln

(

1 + qℓj
1 + ℓj

)

− 2ℓj(1− ℓj) ln

(

ℓj
qℓ,j

)

. (91)

Summing up (89)–(91), we find

nP(ω)

2
=

∑

ℓ∈L
m(ℓ)



ln



1−
k
∏

j=1

1− qℓ,j



−
∑

j∈[k]

ψ(qℓ,j , ℓj)



 .

Therefore, the third assertion follows from Remark 6.14.

10 Enumeration of Assignments withp-Marginals

In this section we will prove Lemma 6.2 and Proposition 8.5. Before we present the actual details we will introduce an
appropriate framework, which will enable us to perform the enumeration of assignments withp-marginals, and pairs
of such assignments with a given overlap.

In Section 5 we said that an assignmentσ ∈ {0, 1}V haspd-marginalsif for any typet ∈ T we have

∑

l∈L:T (l)=t

1σ(l)=1 ·
dl
km

.
= p(t)π(t).

In words, the fraction of literal occurrences of typet that are true underσ equalsp(t) up to an error ofO(1/n).
However, due to technical reasons and because it simplifies some of our calculations significantly, we will actually
work with a slightly refined definition. Let us say that a signature (s, d+, d−) is good, if d+, d− < 3kr/4 and
0 < (d+ − d)2 ≤ 100k2k ln k. Instead of requiring that the fraction of literal occurrences of typet equalsp(t), we
require that this is true forevery good signature. That is, we say that an assignmentσ ∈ {0, 1}V haspd-marginalsif
for any goods ∈ T

∑

l∈L:T (l)=s

1σ(l)=1 ·
dl
km

= p(s)
∑

l∈L:T (l)=s

dl
km

,

and moreover, that fraction of literal occurrences of all other variables is1/2, i.e.,

∑

l∈L:p(l)=1/2

1σ(l)=1 ·
dl
km

=
1

2

∑

l∈L:p(l)=1/2

dl
km

.

We are going to prove Lemma 6.2 and Proposition 8.5 with this modified definition. It is easily checked that this
modification does not affect any of the arguments in the previous sections.
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Let s ∈ T be any signature and setLs = {ℓ ∈ L : T (ℓ) = s}. Moreover, denote byVs = {|ℓ| : ℓ ∈ Lt}
and observe thatVs = V¬s. For anyσ ∈ {0, 1}n let us denote by thes-weightws(σ) the number of satisfied literal
occurrences, where only literals of signatures are considered, i.e.,

ws(σ) =
∑

ℓ∈Ls
1[σ(ℓ)=1]dℓ.

Let us also define similar quantities with respect to the types. Lett ∈ T and set, as previously,Lt = {ℓ ∈ L : T (ℓ) =
t}. Denote by¬t ∈ T the type satisfyingp(¬t) = 1 − p(t). Note that¬t exists, and we haveL¬t = {¬ℓ : ℓ ∈ Lt}.
Moreover, note that ifp(t) 6= 1/2 we haveLt ∩ L¬t = ∅, andLt = L¬t otherwise. Finally, setVt = {|ℓ| : ℓ ∈ Lt} =
{|ℓ| : ℓ ∈ L¬t}. In accordance with the case of signatures, let us for anyσ ∈ {0, 1}n denote by thet-weightwt(σ)
the number of satisfied literal occurrences, where only literals of typet are considered, i.e.,

wt(σ) =
∑

ℓ∈Lt
1[σ(ℓ)=1]dℓ.

Let t1/2 be the type such thatp(t1/2) = 1/2. SinceLt1/2 = L¬t1/2 it follows that in this special case

wt1/2(σ) =
∑

v∈Vt1/2

1[σ(v)=1]dv + 1[σ(v)=0]d¬v. (92)

With the above notation, an assignmentσ hasp-marginals if and only if

∀s ∈ T \ t1/2 : ws(σ) = p(s)π(s)km and wt1/2(σ) =
1

2
π(t1/2)km.

The next proposition is the first step towards the estimationof the total number of assignments withp-marginals, c.f.
Lemma 6.2. We denote byH(x) = −x lnx−(1−x) ln(1−x) the entropy ofx, and with[zn]f(z) then-th coefficient
in the Taylor series expansion of an analytic functionf around 0.

Proposition 10.1 W.h.p.d chosen fromD has the following property. There is a constantC > 0 such that if we
denote byS the set of signaturess ∈ T with the propertyp(s) > 1/2, then

|H| = (C + o(1))n−|S|/2 exp

{

∑

s∈S
|Vs|H(p(s))

}

· [zπ(t1/2)km/2]
∏

v∈Vt1/2

(zdv + zd¬v). (93)

Proof. First of all, note that if for an assignmentσ and a signatures ∈ T with p(s) > 1/2 we havews(σ) = π(s)km,
then the fraction of variables inVs that are set to true isp(s). Thus, the fraction of variables set to false is1− p(s) =
p(¬s), and we infer that

w¬s(σ) =
∑

ℓ∈L¬s

1[σ(ℓ)=1]dℓ =
∑

v∈Vs
1[σ(v)=0]d¬v = p(¬s)π(¬s)km.

Consequently, for any suchs the number of partial assignmentsσs : Vs → {0, 1}, with the property that the fraction
of satisfied variables isp(s) is

( |Vs|
p(s)|Vs|

)

=
1

√

2πp(s)(1 − p(s))|Vs|
e|Vs|H(p(s)).

Since w.h.p.d is such that|Vs| = (1 + o(1))αsn for someαs = αs(k), this provides the exponential terms in (93).
It remains to bound the number of partial assignmentsσ′ : Vt1/2 → {0, 1} such thatwt1/2 = 1

2π(t1/2)km. Define
the generating function

F (z) =
∑

σ′:Vt1/2→{0,1}
z
wt1/2(σ

′)
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By definition, the sought quantity is[zπ(t1/2)km/2]F (z). Moreover, the definition ofF (z) and (92) imply that

F (z) =
∑

σ′:Vt1/2→{0,1}

∏

v∈Vt1/2

(1[σ′(v)=1]z
dv + 1[σ′(v)=0]z

d¬v)

The assertion follows. ✷

Lemma 6.2 follows immediately from the next statement, which is shown in Section 10.1.

Proposition 10.2 W.h.p.d chosen fromD has the following property. There is a constantC = C(k) > 0 such that is
we writeN = |Vt1/2 |, then

[zπ(t1/2)km/2]
∏

v∈Vt1/2

(zdv + zd¬v) = (C + o(1))N−1/22N .

We proceed with the proof of Proposition 8.5, i.e., we want toenumerate pairs of assignments withp-marginals that
have a specific overlap. Lets ∈ T be a signature. For anyσ, τ ∈ {0, 1}n denote the by thes-overlapos(σ, τ) the
number of literal occurrences that are satisfied in bothσ andτ , where we consider only literals of signatures, i.e.,

os(σ, τ) =
∑

ℓ∈Ls
1[σ(ℓ)=τ(ℓ)=1]dℓ.

Similarly, for any typet ∈ T we denote byot(σ, τ) the number of satisfied literal occurrences in bothσ andτ , where
only literals of typet are considered. Note thatot(σ, τ) = O(σ, τ)tπ(t)km, whereO is defined in Section 7.1. For
the special caset = t1/2 it follows

ot1/2(σ, τ) =
∑

v∈Vt1/2

1[σ(v)=τ(v)=1]dv + 1[σ(¬v)=τ(¬v)=0]. (94)

Let us begin with a simple observation. Lets ∈ t such thatp(s) > 1/2, and letσ, τ be two assignments withp-
marginals. Note that ifws(σ, τ) = (1+ δ)p(s)2π(s)km, for someδ ≥ −1, then the fraction of variables inVs that are
set to true inσ andτ is (1 + δ)p(s)2. Consequently, the number of variables that are set to falsein both assignments
is (1− p(s))|Vs| − (p(s)|Vs| − (1 + δ)p(s)2|Vs|), and therefore

w¬s(σ, τ) = (1− p(s))π(¬s)km−
(

p(s)π(¬s)km − (1 + δ)p(s)2π(¬s)km
)

=

(

1− δ
(1 − p(¬s))2
p(¬s)2

)

p(¬s)2π(¬s)km.

In words, the overlap ins determines the overlap in¬s. However, note that thes′-overlap, for anys′ 6= s,¬s, is not
affected by the quantitiesws(σ, τ) andw¬s(σ, τ).

Let t ∈ T be a type. With the previous observation at hand we are able toestimate the number of pairs of
p-satisfying assignments with a givent- and¬t-overlap. The proof can be found in Section 10.2.

Proposition 10.3 There is ac > 0 such that the following is true. Letε, ε′ > 0. Let t ∈ T be a type such that
p(t) 6= 1/2. Denote byH2

t,¬t(ε, ε
′) the set of pairsσ, τ of assignments withp-marginals, such that

|wt(σ, τ) − p(t)2π(t)km| ≥ εp(t)2π(t)km and |w¬t(σ, τ) − p(¬t)2π(¬t)km| ≥ ε′p(¬t)2π(¬t)km.

Then,
|H2

t (ε, ε
′)| ≤ |H|2 · exp

{

−cn
(

ε2π(t) + ε′2π(¬t)
)}

.

What remains is to enumerate pairs ofp-satisfying assignments with a givent1/2-overlap. The next proposition
provides this number as the coefficient of an appropriately defined generating function.
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Proposition 10.4 Let ε ∈ (−1/4, 1/4). LetH2
1/2(ε) denote the set of pairsσ′, τ ′ of assignments to the variables in

Vt1/2 such that

ot1/2(σ
′, τ ′) =

(

1

4
+ ε

)

π(t1/2)km

and
wt1/2(σ

′) = wt1/2(σ
′) = π(t1/2km)/2.

ThenH2
1/2(ε) = [(xy)π(t1/2)km/2 u(1/4+ε)π(t1/2)km]F (x, y, u), where

F (x, y, u) =
∏

v∈Vt1/2

(

(xyu)dv + (xyu)d¬v + xdvyd¬v + xd¬vydv
)

.

Proof. Assign to a pair of assignmentsσ′, τ ′ to the variables inVt1/2 the weightxwt1/2 (σ
′)
y
wt1/2 (τ

′)
u
ot1/2(σ

′,τ ′).
Then, by using (92) and (94)

∑

σ′,τ ′:Vt1/2→{0,1}
x
wt1/2 (σ

′)
y
wt1/2(τ

′)
u
ot1/2(σ

′,τ ′)

=
∑

σ′,τ ′:Vt1/2→{0,1}

∏

v∈Vt1/2

1[σ(v)=τ(v)=1](xyu)
dv + 1[σ(v)=τ(v)=0](xyu)

d¬v

+ 1[σ(v)=1,τ(v)=0]x
dvyd¬v + 1[σ(v)=0,τ(v)=1]x

d¬vydv .

Summing this expression up yields the claimed statement. ✷

The next statement provides the asymptotic value of the sought coefficients ofF (x, y, u) from the previous propo-
sition. The proof can be found in Section 10.3.

Proposition 10.5 W.h.p.d chosen fromD has the following property. There is a constantC = C(k, ε) > 0 such that
if we writeN = |Vt1/2 | andM = π(t1/2)km, then

[(xy)M/2 u(1/4+ε)M ]F (x, y, u) = (C + o(1)) · E ·N−3/2,

where
E = ρ−(1−4ε)M/2

∏

v∈Vt1/2

(2 + 2ρdv+d¬v) (95)

andρ is the solution to the equation

(1/4 + ε)M =
∑

v∈Vt1/2

dv + d¬v
2 + 2ρdv+d¬v

. (96)

In order to complete the proof of Proposition 8.5 we will estimate the exponential term in the previous statement as a
function ofε. Note that ifε = 0, then clearlyρ = 1 andE = 4N . Let |ε| < 1/100. We begin with providing bounds
for the value ofρ from Equation (96). Letfg(ρ) = g/(2 + 2ρg), whereg ≥ 3. Thenfg(1) = g/4, f ′

g(1) = −g2/8
and

f ′′
g (ρ) =

g2
(

gρ2 g−2 − gρg−2 + ρg−2 + ρ2 g−2
)

2 (1 + ρg)
3 .

Note that if0 ≤ ρ ≤ 1, then, with room to spare,|f ′′
g (ρ)| ≤ g3. Moreover, ifρ > 1, then we may estimatef ′′

g as
follows:

|f ′′
g (ρ)| <

g2
(

(g + 1)ρ2 g−2 + gρg−2 + ρg−2
)

2ρ3g
≤ g3

ρg
≤ g3.
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Let us writeρ = 1+ δ. Taylor’s theorem then implies that|fg(ρ)− (g/4−g2δ/8)| ≤ g2δ2. By writing gv = dv+d¬v
and recalling thatM =

∑

v∈Vt1/2
gv we infer from (96)

−δS2

8
− δ2S3 ≤ εM ≤ −δS2

8
+ δ2S3, where Si =

∑

v∈Vt1/2

giv, for i ∈ {2, 3}.

In view of these inequalities we might expect that wheneverε is not too large, thenδ ≈ −ε8M/S2. This can be made
precise as follows. By solving the quadratic equations explicitly we infer thatδ satisfies

1

16

−S2 +
√

S2
2 − 256S3εM

S3
≤ δ ≤ − 1

16

−S2 +
√

S2
2 + 256S3εM

S3

Note thatd is such that w.h.p.S2 = Θ(krM) andS3 = Θ((kr)2M). Thus, for sufficiently largek

√

S2
2 + 256S3εM = S2

√

1 +
256S3εM

S2
2

= S2 +
128S3εM

S2
+O

(

S2
3ε

2M2

S3
2

)

.

The square-root with the minus sign can be estimated analogously. We infer that

ρ = 1 + δ, where δ = −ε8M
S2

+O((kr)−1ε2). (97)

With the approximate value ofρ at hand we can proceed with estimating the exponential term in (95). First of, we
rearrange terms to obtain

E = ρ−(1−4ε)M/2
∏

v∈Vt1/2

(2 + 2ρdv+d¬v ) = 4N · ρ2εM ·
∏

v∈Vt1/2

(ρ−gv/2 + ρgv/2)/2. (98)

The bounds onρ imply that

ρ2εM =

(

1− ε
8M

S2
+O((kr)−1ε2)

)2εM

≤ exp

{

−16ε2
M2

S2
+ O(ε3(kr)−1M)

}

. (99)

Regarding the last term involving the product in (98), we bound it by the following probabilistic considerations. Note
that

∏

v∈Vt1/2

(ρ−gv/2 + ρgv/2)/2 =
∑

(sv):v∈Vt1/2 ,sv∈{−1,+1}
2−Nρ−1/2

∑
v svgv .

Let (Sv)v∈Vt1/2 be a family of independent random variables, which are uniformly distributed in{−1,+1}. Then the

last expression in the previous display is equal to the expected value ofρ {−1/2
∑

v svgv}. We obtain

µ := E

[

ρ
− 1

2

∑
v∈Vt1/2

Svgv
]

≤ 2
∑

t≥0

P



|
∑

v∈Vt1/2

Svgv| = t



 (ρt/2 + ρ−t/2)

Note that since eitherρt/2 ≥ 1 or ρ−t/2 ≥ 1 we may assume without loss of generality thatρ ≥ 1. The advantage
of the above formulation is that we can estimate rather easily the probability for a large deviation of the sumS =
∑

v Svgv. Indeed, if we change the value of anySv to obtain a new sumS′, then |S − S′| = 2gv. By applying
Azuma-Hoeffding we obtain

P



|
∑

v∈Vt1/2

Svgv| = t



 ≤ exp

{

−2t2/
∑

v

(2gv)
2

}

= exp{−t2/2S2}.
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Thus, by using (97) and noting thatε ≤ 0 due to our assumptionρ ≥ 1 we obtain the bound

µ ≤ 4
∑

t≥0

e−t
2/2S2 · ρt/2 ≤ 4

∑

t≥0

e−t
2/2S2 ·

(

1− ε
8M

S2

)t/2

≤ 4
∑

t≥0

exp

{

− t2

2S2
+ |ε|4Mt

S2

}

.

Since the exponent is convex int, it can easily be seen that it is maximized att = 4M |ε|, where its value equals

− (4M |ε|)2
2S2

+ |ε|4M(4M |ε|)
S2

= 8ε2
M2

S2
.

Thus,µ = O(
√
N)e

8ε2M
2

S2 , and by combining (98) and (99) we infer thatE ≤
√
Ne

−8ε2M
2

S2 . But sinceS2 = Θ(krM)

andM = Θ(krN), this is at most
√
Ne−cε

2N , for somec > 0.
Proposition 8.5 then follows immediately from Propositions 10.3-10.5, and the (aforementioned) observation that

thet- andt′-overlap ofσ, τ are independent fort 6= t′,¬t.

10.1 Proof of Proposition 10.2

SetM = π(t1/2)km. By the virtue of Cauchy’s integral formula we obtain

I := [zM/2]F (z) =
1

2πi

∮

C

F (z)z−M/2−1dz.

SinceF is analytic inC,C can be any curve enclosing the origin. To estimate the integral we will use the saddle point
method, which is commonly used to determine the asymptotic behavior of integrals that involve a large parameter,
and are simultaneously subject to huge variations. For an excellent overview and numerous applications we refer the
reader to [16].

The main idea is to chooseC such that the integrand ’peaks’ at a unique point, so that themain contribution to the
integral comes from a small neighborhood of this maximum. WechooseC to be the unit circle centered at the origin,
i.e.,C = {eiθ : −π < θ < π}. Moreover, letθ0 = θ0(n) = N−2/5, and writeC0 = {eiθ : |θ| ≤ θ0(n)} for the
restriction ofC to the segment with|θ| ≤ θ0(n). Then we may writeI = I0 + I1, where

I0 =
1

2πi

∮

C0

F (z)z−M/2−1dz and I1 =
1

2πi

∮

C\C0

F (z)z−M/2−1dz.

By changing variables, the first integral becomes

I0 =
1

2π

∫ θ0

−θ0
H(θ)dθ, where H(θ) = e−iθM/2 ·

∏

v∈Vt1/2

(eiθdv + eiθd¬v). (100)

Moreover, by using the trivial bound for complex integrals and the fact|z| = 1 onC we obtain

I1 ≤ 2π · sup
z∈C\C0

|F (z)| (101)

Our subsequent proof strategy is as follows. We will first compute the asymptotic value of the integral over the ’central
region’; in particular, we show that

I0 = (c+ o(1))N−1/22N (102)

for an appropriatec > 0. Then, by using (101) we show thatI1 = o(I0). The two statements combined yield then
immediately the conclusion of the proposition.

We proceed with showing (102). Recall that|θ| ≤ θ0 = N−2/5, and note that for anyd, d′, by applying Taylor’s
Theorem

eiθd + eiθd
′

= 2 + i(d+ d′)θ − 1

2
(d2 + d′2)θ2 +O

(

(1 + i)(d3 + d′3)θ3
)

uniformly for all d, d′ ∈ N, |θ| ≤ θ0.
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Let us write

S2 =
1

4

∑

v∈Vt1/2

d2v + d2¬v + (dv + d¬v)
2 and Sj =

∑

v∈Vt1/2

(djv + dj¬v). for j ≥ 3.

Observe thatd is w.h.p. such thatSj = (1 + o(1))cjN for somecj = cj(k) > 0, where2 ≤ j ≤ 9. Using (100) we
infer that the integrand satisfies

H(θ) = e−iθM/2 ·
∏

v∈Vt1/2

(

2 + i(dv + d¬v)θ −
1

2
(d2v + d2¬v)θ

2 +O
(

(1 + i)(d3v + d3¬v)θ
3
)

)

= 2N exp
{

−S2θ
2 +O

(

(1 + i)(S3θ
3 + S4θ

4 + · · ·+ S9θ
9)
)}

= (1 + o(1))2N exp
{

− S2θ
2
}

, sinceθ ≤ N−2/5.

Thus,

(2π)I0 =

∫ θ0

−θ0
H(θ)dθ = (1 + o(1)) 2N

∫ θ0

−θ0
e−S2θ

2

dθ

= (1 + o(1))
2N√
c2N

∫

√
c2N

1/10

−√
c2N1/10

e−x
2

dx = (1 + o(1))
2N√
2πc2N

.

This proves (102). To complete the proof we will show thatsupz∈C\C0
|F (z)| is asymptotically negligible com-

pared toI0. First, for anyv ∈ Vt1/2

fv(θ) := |eiθdv + eiθd¬v | =
√

2 + 2 cos (θ (dv − d¬v))

Let us collect some basic properties offv. Note that ifdv = d¬v, thenfv(θ) = 2 for any−π < θ < π. Otherwise,f
is maximized for any

θ ∈ Mdv−d¬v =

{

j
2π

|dv − d¬v|
: |j| < |dv − d¬v|

2

}

,

wheref(θ) = 2.
For a pair(d+, d−) ∈ N

2 let Vd+,d− ⊆ Vt1/2 denote the set of variablesv such thatdv = d+ andd¬v = d−, and
writeNd+,d− = |Vd+,d− |. Then,

|F (eiθ)| =
∏

v∈Vt1/2

fv(θ) =
∏

s=(d+,d−)

(

2 + 2 cos(θ(d+ − d−))
)Ns/2

.

Note that
∑

s=(d+,d−)Ns = N . Thus,|F (eiθ)| ≤ 2N for all θ. However, this bound is achieved only if all factors are
maximized simultaneously. We will argue in the sequel that if |θ| ∈ (θ0, π), then a linear (inN ) fraction of the factors
is≤ 2−O(N−4/5). It follows for someα > 0 that

|F (eiθ)| ≤ 2(1−α)N · (2−O(N−4/5))αN = 2N · e−O(N1/5) = o(N−1/22N ) = o(I0).

To see the claim, consider the specific pair(d′+, d
′
−) = (kr, kr − 1), and note that ifk is sufficiently large, then

kr − 1 > kr/2 + 10
√
k2k ln k. So, indeedVd+,d− ⊆ Vt1/2 . Furthermore,d is such that w.h.p. there is a constant

α = α(k) > 0 such thatNd+,d− ≥ αN . It follows that for all variablesv ∈ Vd′+,d′−

fv(θ) =
√

2 + 2 cos(θ).

It can easily be verified thatfv is monotone increasing for−π < θ < 0 and decreasing for0 < θ < π. Thus, for any
|θ| ∈ (θ0, π) we havefv(θ) ≤ max{fv(θ0), fv(−θ0)}. By using the Taylor series expansion of the cosine and the
square root we obtain that

fv(ε) = 2− θ2

4
+O(θ4), uniformly for all − π < θ < π.

We conclude thatfv(θ) ≤ 2−O(n−4/5) for at leastαN variablesv, and the proof is completed.
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10.2 Proof of Proposition 10.3

We will exploit a concentration inequality due to McDiarmid[26]. We present it here in a simplified form that is
appropriate for our purpose. Given a finite non-empty setB, we denote bySym(B) the set of all|B|! permutations
of the elements ofB. LetB1, . . . , BN be a family of finite non-empty sets, and denote byΩ = Sym(B1) × · · · ×
Sym(BN ). Moreover, letπ = (π1, . . . , πN ) be a family of independent random permutations, whereπi is drawn
uniformly fromSym(Bi).

Theorem 10.6 Let c andr be positive constants. Suppose thath : Ω → R+ is such that for anyπ ∈ Ω the following
conditions are satisfied.

• If π′ can be obtained fromπ by swapping two elements, then|h(π)− h(π′)| ≤ c.

• If h(π) ≥ s, then there is a set of at mostrs coordinates such thath(π′) ≥ s for anyπ′ ∈ Ω that agrees withπ
on these coordinates.

LetZ = h(π) and letm be the median ofZ. Then, for anyt > 0

P [|Z −m| > t] ≤ 4 exp

(

− t2

16rc2(m+ t)

)

.

Let us proceed with the proof of Proposition 10.3. We will assume without loss of generality thatt is such that
p(t) > 1/2. We will abbreviatep = p(t), q = p(¬t). Let σ be an arbitrary assignment withp-marginals. Moreover,
denote byτ an assignment that is obtained by selecting for any signature s ∈ t uniformly at randomp|Vs| variables
from Vs and setting them to true, and setting all other variables inV \ Vt arbitrarily so thatτ hasp-marginals.
Equivalently, we may generateτ by permuting the variables inVs randomly, and setting the firstp|Vs| variables in that
permutation to true, for alls ∈ t. With this notation we obtain

|H2
t,¬t(ε, ε

′)| ≤ |H|2 · P
[

|wt(σ, τ )− p2π(t)km| ≥ επ(t)km
]

The latter probability can be estimated with Theorem 10.6. Indeed, note that

• if τ, τ ′ havep-marginals and can be obtained by swapping the truth assignment of two variables, then

|wt(σ, τ) − wt(σ, τ
′)| ≤ 2max

v∈Vt
dv ≤ 4kr.

• if wt(σ, τ) ≥ s, then there is a setS of ≤ s/minv∈Vt dv ≤ 2s/kr variables that are set to true, and anyτ ′ with
p-marginals that sets all variables isS to true satisfieswt(σ, τ ′) ≥ s.

We thus may apply Theorem 10.6 withc = 4kr andr = 2/kr. Moreover, triviallyE [wt(σ, τ )] ≤ π(t)km. We infer
that

|H2
t,¬t(ε, ε

′)|
|H|2 ≤ 4 exp

(

−Θ(1)
(επ(t)km)2

kr · π(t)km

)

= 4 exp
(

−Θ(1) ε2π(t)n
)

.

Exactly the same argument, where we interchange the roles oft and¬t, shows that also

|H2
t,¬t(ε, ε

′)|
|H|2 ≤ 4 exp

(

−Θ(1)
(ε′π(¬t)km)2

kr · π(¬t)km

)

= 4 exp
(

−Θ(1) ε2π(¬t)n
)

.

The claim follows.

51



10.3 Proof of Proposition 10.5

SetM = π(t1/2)km. By applying Cauchy’s integral formula we obtain

I := [(xy)M/2 u(1/4+ε)M ]F (x, y, u) =
1

(2πi)3

∮

C1

∮

C2

∮

Co

F (x, y, u)(xy)−M/2−1u−(1/4+ε)M−1dudydx.

The functionF is analytic inC3, implying thatC1, C2, Co can be any curves enclosing the origin. We choose

C1 = {ρeiθ : |θ| < π}, C2 = {ρeiϕ : |ϕ| < π}, Co = {ρ−2eiψ : |ψ| < π},

whereρ is the solution to the Equation (96). Some remarks are in place here. The choice of the integration paths
may seem arbitrary at this point. Note, however, thatF is symmetric with respect tox andy, and thus it is natural
to assume similar integration curves for them. Moreover, the choice ofρ is guided by the general principles of the
saddle-point method and is such that the integrand has a unique maximum at(θ, ϕ, ψ) = (0, 0, 0). Indeed, as we will
show subsequently, the integrand is around(0, 0, 0) of elliptic type; this allows us to reduce the estimation of the main
terms to the evaluation of a 3-dimensional Gaussian integral.

Denote byC the restriction of the circlesC1, C2, Co to a small region around the origin, i.e.,

C = {ρeiθ : |θ| < N−2/5} × {ρeiϕ : |ϕ| < N−2/5} × {ρ−2eiψ : |ψ| < N−2/5}.

Then we may writeI = I0 + I1, where

I0 =
1

(2πi)3

∮

C
F (x, y, u) (xy)−M/2−1z−(1/4+ε)M−1dzdydx,

andI1 is the integral over(C1 × C2 × Co) \ C. By changing variables we obtain

I0 =
1

(2π)3

∫

[−N−2/5,N−2/5]3

H(θ, ϕ, ψ)dψdϕdθ, whereH = ρ−
(1−4ε)M

2 e−i
(θ+ϕ)M

2 −iψ(1/4+ε)M
∏

v∈Vt1/2

hv(θ, ϕ, ψ),

(103)
and

hv(θ, ϕ, ψ) = ei(θ+ϕ+ψ)dv + ei(θ+ϕ+ψ)d¬v + ρdv+d¬veiθdv+iϕd¬v + ρdv+d¬veiθd¬v+iϕdv .

RegardingI1, we will use the trivial bound

I1 ≤ (2π)3 sup
(x,y,u)∈(C1×C2×Co)\C

|H(x, y, u)| (104)

to show thatI1 = o(I0).
We begin with estimatingI0 by providing an appropriate asymptotic expansion of it for points around the origin.

First of all, note that for anyv ∈ Vt1/2 we havehv(0, 0, 0) = 2 + 2ρdv+d¬v and thus

H(0, 0, 0) = ρ−(1−4ε)M/2
∏

v∈Vt1/2

(2 + 2ρdv+d¬v ) = E.

Moreover,

∂

∂θ
hv(0, 0, 0) =

∂

∂ϕ
hv(0, 0, 0) = (2 + 2ρdv+d¬v)

i

2
(dv + d¬v), and

∂

∂ψ
hv(0, 0, 0) = i(dv + d¬v).

The second derivatives at(0, 0, 0) are given by

∂2

∂θ2
hv =

∂2

∂ϕ2
hv = −(d2v + d2¬v)(1 + ρdv+d¬v ), and

∂2

∂ψ2
hv = −(d2v + d2¬v).
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Furthermore, the mixed second derivatives are

∂2

∂θ∂ϕ
hv = −(d2v + d2¬v + 2dvd¬vρ

dv+d¬v) and
∂2

∂θ∂ψ
hv =

∂2

∂φ∂ψ
hv = −(d2v + d2¬v).

We will also need crude bounds for the third-order derivatives in order to establish an accurate approximation forH
around the origin. Note thathv linearly exponential inθ, ϕ, ψ anddv, d¬v. Thus, every time we take a derivative
with respect to some variable, the norm of each single term inthe expression ofhv can increase by at mostmv =
max{dv, d¬v}. Thus, uniformly for(θ, ϕ, ψ) ∈ [−N2/5, N2/5] we have that

∣

∣

∣

∣

∂3

∂ξ1∂ξ2∂ξ3
hv

∣

∣

∣

∣

≤ 2(1 + ρdv+d¬v )(dv + d¬v)
3, where ξ1, ξ2, ξ3 ∈ {θ, ϕ, ψ}.

By using the uniform estimate1 + x = ex−x
2/2+Θ(x3), where we set1 + x = hv(θ, ϕ, ψ)/hv(0, 0, 0) we infer that

ln
hv(θ, ϕ, ψ)

hv(0, 0, 0)
=
i

2
(dv + d¬v)(θ + φ) + i

dv + d¬v
2 + 2ρdv+d¬v

ψ + 2nd order+ error, (105)

where the 2nd order terms are

− (dv − d¬v)2

8
(θ2+φ2)− (dv − d¬v)2 + 2ρdv+d¬v (d2v + d2¬v)

2(2 + 2ρdv+d¬v )2
ψ2+

(dv − d¬v)2(ρdv+d¬v − 1)

2(2 + 2ρdv+d¬v )
θϕ− (dv − d¬v)2

4 + 4ρdv+d¬v
(θ+ϕ)ψ.

Finally, since(θ, ϕ, ψ) ∈ [−N2/5, N2/5] the error term is of order at most(dv + d¬v)3N−6/5. In order to obtain an
approximation forH we form the product over allv ∈ Vt1/2 . Observe that the (linear in the variables) exponential

factore−i(θ+ϕ)M/2−iψ(1/4+ε)M cancels exactly with the first order terms in (105). By abbreviating

Sθ,θ =
∑

v∈Vt1/2

(dv − d¬v)2

8
, Sψ,ψ =

∑

v∈Vt1/2

(dv − d¬v)2 + 2ρdv+d¬v (d2v + d2¬v)

2(2 + 2ρdv+d¬v )2
,

and

Sθ,φ =
∑

v∈Vt1/2

(dv − d¬v)2(ρdv+d¬v − 1)

4 + 4ρdv+d¬v
, Sθ,ψ =

∑

v∈Vt1/2

(dv − d¬v)2

4 + 4ρdv+d¬v
, S3 =

∑

v∈Vt1/2

(dv + d¬v)
3

we obtain uniformly for any(θ, ϕ, ψ) ∈ [−N−2/5, N−2/5]3

ln

(

H

E

)

= −Sθ,θ(θ2 + ϕ2)− Sψ,ψψ
2 + Sθ,φθφ− Sθ,ψ(θ + ϕ)ψ +O(S3N

−6/5).

Observe thatd is such that w.h.p. all quantitiesS.,. andS3 are linear inN . Thus, we are left with computing

I0 = (1 + o(1))E ·
∫

[−N−2/5,N−2/5]3
e−Sθ,θ(θ

2+ϕ2)−Sψ,ψψ2+Sθ,φθϕ−Sθ,ψ(θ+ϕ)ψdψdϕdθ.

In order to compute this integral we rescale each variable withN−1/2. By writing s.,. for S.,./N we obtain

I0 = (1 + o(1))E ·N−3/2 ·
∫

[−N1/10,N1/10]3
e−sθ,θ(θ

2+ϕ2)−sψ,ψψ2+sθ,ϕθϕ−sθ,ψ(θ+ϕ)ψdψdϕdθ.

A termwise comparison and elementary algebraic manipulations yield that

4S2
θ,θ − S2

θ,ϕ ≥ 0 and 2Sψ,ψSθ,θ − S2
θ,ψ − Sψ,ψSθ,ϕ ≥ 0
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Thus, the squares can be completed and the integral in the above expression equals a constant depending on the family
s.,.; this shows that asymptoticallyI1 is proportional toN−3/2 ·E.

In order to complete the proof we will use (104) to show thatI1 is asymptotically negligible compared toI0. Recall
the definition ofH from (103). It follows that the absolute value ofH is given by

ρ−(1−4ε)M/2 ·
∏

v∈Vt1/2

fv(θ, ϕ, ψ), where fv(θ, ϕ, ψ) = |hv(θ, ϕ, ψ)|.

Let us abbreviateDv = dv − d¬v. A lengthy calculation, which can be performed easily with the help of MAPLE,
yields that

fv(θ, ϕ, ψ)
2 = 2 + 2ρ2(dv+d¬v) + 2 cos

(

Dv(θ + ϕ+ ψ)
)

+ 2ρ2(dv+d¬v) cos
(

Dv(θ − ϕ)
)

+ 2ρdv+d¬v
(

cos
(

Dvϕ+ dvψ
)

+ cos
(

Dvθ + dvψ
)

+ cos
(

Dvθ − d¬vψ
)

+ cos
(

Dvϕ− d¬vψ
))

.

Note that we can get an upper bound forfv if we replace all terms involving a cosine by one; this implies that
|H | ≤ ρ−(1−4ε)M/2

∏

v(2 + 2ρdv+d¬v ) = E. Moreover, the bound is achieved only if all factors are maximized
simultaneously, and this happens for example when we choose(θ, ϕ, ψ) = (0, 0, 0). We will argue in the sequel
that if (θ, ϕ, ψ) ∈ (C1 × C2 × Co) \ C, i.e., at least one of the variablesθ, ϕ, ψ is assigned a value not lying in
[−N−2/5, N−2/5], then there is a subset of variablesV ′ ⊂ Vt1/2 such that|V ′| ≥ αN for someα > 0 and for all

v ∈ V ′ it holdsfv(0, 0, 0) ≤ fv(0, 0, 0)−O(N−4/5). Indeed, if this is true, then

|H | ≤ ρ−(1−4ε)M/2
∏

v∈Vt1/2\V ′

(2 + 2ρdv+d¬v)
∏

v∈V ′

(2 + 2ρdv+d¬v −O(N−4/5)).

Sinceρ is bounded andd is such that w.h.p.dv + d¬v = o(log n), it follows that|H | smaller thatE by an exponential
factor, which shows with (104) thatI1 = o(I0).

To see that a setV ′ with the desired properties exists, let us assume that at least one ofθ, ϕ, ψ is in absolute value
at leastN−2/5. For a pair(d+, d−) ∈ N

2 let Vd+,d− ⊆ Vt1/2 denote the set of variablesv such thatdv = d+ and
d¬v = d−, and writeNd+,d− = |Vd+,d− |. Consider the specific pair(d+, d−) = (kr, kr − 1), and note that for
all such variables we haveDv = 1. Furthermore,d is such that w.h.p. there is a constantβ = β(k) > 0 such that
Nd+,d− ≥ βN . Then we may assume that

for all v ∈ Nd+,d− : fv(θ, ϕ, ψ) ≥ (2 + 2ρ2kr−1 −O(N−4/5)),

as otherwise there is nothing to show. This impliesthat the arguments of all cosines appearing in the expression offv
are close to multiples of2π, and in particular,

|θ + φ+ ψ|, |θ − ϕ|, |ϕ+ d+ψ| = O(N−2/5) (mod 2π); (106)

this follows directly from the series expansion of the cosine around integer multiples of2π, which lack a linear term.
Next, consider the pair(d′+, d

′
−) = (kr, kr − 2); againd is such that w.h.p. there is a constantβ′ = β′(k) > 0 such

thatNd′+,d′− ≥ β′N . Note that for these variables we haveDv = 2. Then, as previously, we may also assume that

for all v ∈ Nd′+,d′− : fv(θ, ϕ, ψ) ≥ (2 + 2ρ2kr−2 −O(N−4/5)),

But then, by the same argument as above,|2ϕ+ d′+ψ| = O(N−2/5) (mod 2π). Sinced+ = d′+ and, by assumption,
|ϕ| < π, by combining this with the third term in (106), we infer that|ϕ| = O(N−2/5). In turn, together with the
second term in (106), this implies that also|θ| = O(N−2/5). Finally, the fact|θ + ϕ + ψ| = O(N−2/5) (mod 2π)
from (106) then also implies that|δ| = O(N−2/5). Everything together yields that(θ, ϕ, ψ) ∈ C, a contradiction.

54



11 Proof of Corollary 2.2

As a direct consequence of our second moment argument, the Paley-Zygmund inequality, and a concentration result
on the number of satisfying assignments from [1] we obtain the following.

Proposition 11.1 For r as in(14) we have|S(Φ)| ≥ E |S(Φ)| · exp
[

− nr
k94k

]

w.h.p.

We consider the following “planted model”: letΛ = Λk(n,m) be the the of all pairs(Φ, σ) of k-CNFsΦ over
V with m clauses and satisfying assignmentsσ ∈ S(Φ). Let PΛ signify the uniform distribution overΛ; PΛ is
sometimes called theplanted model. Moreover, letPG be the distribution onΛ obtained by first choosing a random
formulaΦ and then a uniformly randomσ ∈ S(Φ) (provided thatΦ is satisfiable);PG is sometimes called theGibbs
distribution. Combining Proposition 11.1 with an argument from [], we obtain the following “transfer result”.

Corollary 11.2 For anyB ⊂ Λ the following is true. IfPΛ [B] ≤ exp
[

− 2nr
k94k

]

, thenPG [B] = o(1).

Thus, in order to show that some ‘bad’ eventB is unlikely underPG, we “just” need to show thatPΛ [B] ≤
exp

[

− 2nr
k94k

]

is exponentially small.

Lemma 11.3 There is a numberδ = δ(k) > 0 such that

PΛ

[

dist(σ, σmaj) >
1

2
− δ

]

≤ exp

[

− 2nr

k94k

]

.

Proof. We can generate a pair(Φ, σ) from the planted model as follows: first, chooseσ ∈ {0, 1}V uniformly; then,
generatem clauses that are satisfied underσ uniformly and independently. Without loss of generality, we may assume
thatσ = 1 is the all-true assignment. We need to study the distributiond = (dl)l∈L of literal degrees. To this end, let
(el)l∈L be a family of independent Poisson variables such thatE [el] = E [dl] for all l. It is easily verified that there is
ζ = Θ(2−k) such that

E [dx] =
kr

2
(1 + ζ), E [d¬x] =

kr

2
(1− ζ) (107)

for all x ∈ V . Furthermore, if we letE be the event that
∑

l∈L el = km, thene = (el)l∈L givenE has the same
distribution asd. Moreover,

P [E ] = Ω(n−1/2). (108)

Let

Y =
1

n

∑

x∈V
1ex>e¬x +

1

2
1ex=e¬x .

Viewing the differenceex−e¬x as a random walk of lengthPo(kr) and using limit theorems for resulting distribution
(the Skellam distribution), we obtain from (107) thatE [Y ] ≥ 1

2 +Ω(
√
kr/2k). Further, applying Chernoff bounds to

Y (which is a sum of independent contributions), we find that for a certainδ = Ω(
√
kr/2k)

P

[

Y <
1

2
+ δ

]

≤ exp
[

−Ω(
√
kr/2k)2n

]

≤ exp

[

− 3nr

k94k

]

. (109)

Finally, the assertion follows from (108) and (109). ✷

12 Proof of Lemma 2.3

The expected majority weight inΦ is easily computed. InΦ, for eachx the numbersdx, d¬x of positive/negative
occurrences are asymptotically independently Poisson with meankr/2. Therefore, for anyd = Θ(kr) we obtain

E [|dx − d¬x| | dx + d¬x = d] =
√

2d/π +Ok(1).
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In effect,

E [wmaj(Φ)] ∼ 1

2
+

√

2

πkr
+Ok(1/kr). (110)

By comparison, given that, say, the all-true assignment is satisfying, the numberdx of positive occurrences has
distributionPo((1+1/(2k−1))kr/2), whiled¬x has distributionPo((1−1/(2k−1))kr/2). The normal approximation
to the Poisson distribution yields ford = Θ(kr),

E [|dx − d¬x| |1 ∈ S(Φ), dx + d¬x = d] =
√

2d/π +Θ(4−kd3/2) +Ok(1).

for a certain constantc > 0. Consequently,

E [wmaj(Φ) |1 ∈ S(Φ)] ∼ 1

2
+

√

2

πkr
+Θ(4−k(kr)1/2). (111)

Both with and without conditioning on1 ∈ S(Φ), wmaj enjoys the following Lipschitz property: changing one
single clause can alter the value ofwmaj by at mostk/(km) = 1/(rn). Therefore, Azuma’s inequality yields

P [|wmaj − E [wmaj ]| > λ] ≤ 2 exp

[

− (rλn)2

2m

]

= 2 exp

[

−rλ
2n

2

]

,

P [|wmaj − E [wmaj ]| > λ|1 ∈ S(Φ)] ≤ 2 exp

[

−rλ
2n

2

]

.

In effect, for a certain constantζ > 0 we have

P

[

wmaj ≥
1

2
+

√

2

πkr
+ ζ4−k(kr)1/2

]

≤ exp
[

−Ω
(

k/4k
)

n
]

, (112)

P

[

wmaj ≤
1

2
+

√

2

πkr
+ ζ4−k(kr)1/2|1 ∈ S(Φ)

]

≤ exp
[

−Ω
(

k/4k
)

n
]

. (113)

Combining (112) and (113) with a simple counting argument yields Lemma 2 from the extended abstract.
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