
Semi-Automatic Controller Design of Java-like Models

Yan Zhang
∗

Béatrice Bérard

Lom Messan Hillah Yann Thierry-Mieg

{yan.zhang, beatrice.berard, lom-messan.hillah, yann.thierry-mieg}@lip6.fr
LIP6/MoVe, Université Pierre & Marie Curie, Paris, France

ABSTRACT
Controller synthesis consists in automatically generating a con-
troller to restrict a hardware or software system so that it respects
given requirements, for instance safety properties. Existing synthe-
sis tools for discrete event systems mainly solve the problem for
systems described in low-level formalisms.

Controller synthesis, however, is not used in most industrial en-
gineering processes. Barriers to wider adoption are the complexity
of formally expressing the system and its requirements, the state
explosion induced by large systems, and the limited confidence in
the result, due to the difficulty in understanding the generated code.

We propose an iterative, incremental, and semi-automatic ap-
proach to controller design, supporting the engineering process and
mitigating state space explosion during synthesis. To provide a
high-level environment, our approach is implemented in VeriJ, a
Java-like language, and illustrated on a significant example taken
from automated transport systems.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
CASE; D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods

General Terms
Languages, Design, Verification

Keywords
controller synthesis, software engineering, automated transport sys-
tems, Java-like models

1. INTRODUCTION
∗This work has been supported by a Ph. D. grant from the Chinese
Scholarship Council.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2042-9 ...$15.00.

Context. Controllability of discrete event systems (DES), intro-
duced in the seminal work of Ramadge and Wonham [18], answers
the following question: given a model M of a system and a spec-
ification, does there exist a controller C such that the composition
of C and M satisfies the specification? If the answer is positive,
synthesis attempts to automatically build a controller.

This problem has been largely studied for transition systems and
several tools exist that take as input state machines or Petri nets.
Although the theory has been available for more than twenty years,
these tools are not widely integrated in industrial software engi-
neering processes. The reasons are the following:
• Formally expressing the complete system and its requirements in
low-level formal models is often very costly,
• Large systems produce a combinatorial explosion of the state
space, which is an obstacle for scalability,
• The code generated for the controller has size linear to the state
space, and reducing its size is NP-hard. Therefore it is difficult for
system experts to interpret.

Hence industrial experts usually manually design controllers. Be-
cause manual solutions are error-prone, controllers then need to be
extensively tested for correctness. The most widely used approach
for this is simulation.

Contributions. We propose to combine the fully automatic synthe-
sis with a user-centric design. Our main contribution is the def-
inition of an iterative, incremental and semi-automatic approach
for controller design. In addition to the usual engineering process
(testing, simulation. . .), controllability checking is used to verify
the correctness of user-defined strategies. Besides, we also use
automatic (partial) controller synthesis in the design process. It-
eratively, based on the feedback of the partial strategy, users can
successively refine the system or the controller.

Designers can model their systems using VeriJ [19], a Java-like
language. In this paper we introduce controller synthesis in the
VeriJ framework. Since VeriJ is source compatible with Java, all
operations in the engineering process can be directly run and tested
within usual IDEs (integrated development environments) at any
point of the process. By letting the system designer provide strate-
gies and by targeting assistance for the designer rather than fully
automatic synthesis we partly avoid scalability issues.

Outline. Section 2 briefly describes supervisory control theory and
the usual process of industrial controller design. In Section 3 we
present the techniques related to the semi-automatic controller de-
sign (SACD), while the instantiation with VeriJ is detailed in Sec-
tion 4. We illustrate this approach in Section 5 on a significant
example taken from automated transport systems and we discuss
related work in Section 6.

2. BACKGROUND

2.1 Supervisory Control Theory
The controllability problem can be viewed as a two-player turn-

based game, environment versus controller, where the controller
tries to enforce the specification, against all possible environment
moves. The problem is to find whether there exists a winning strat-
egy for the controller. If the answer is positive, controller synthesis
tries to automatically construct such a winning strategy. For safety
objectives, it is well known that the game is determined (one of the
two players has a winning strategy) and a memoryless strategy can
be built in linear time w.r.t. the size of the model [6].

Controllability. When the model is a Labelled Transition System
(LTS) T = (S,s0,→) over a set of actions Act (with S the set of
states, initial state s0 and transition relation →⊆ S× Act × S), a
safety specification requires avoidance of a subset Sfail of the set
Sreach of reachable states. The controllability algorithm is a back-
ward exploration, starting from Sfail: 1) any state from which the
environment can reach a failure state in a single move is added to
Sfail and 2) any state from which all controller moves lead to a fail-
ure state is added to Sfail. When a fixpoint is reached, either the
initial state is a failure state, hence the system is not controllable,
or there exists a winning strategy for the controller.

Synthesis. After the controllability test, the set Sreach is partitioned
into states in Sfail and states in Ssafe = Sreach \ Sfail. Let Sc be the
subset of states where the controller can act, and Actc be the possi-
ble controller actions. A strategy is a function f : Sc→ 2Actc which
maps each state in Sc to a subset of Actc. A winning strategy selects
actions ensuring that all system executions stay in Ssafe.

Control in practice. If we consider controllability and synthesis
tools as black boxes, controllability takes as input a model con-
taining a system, a safety specification, and a (partially) defined
controller. The output of the controllability check can be:
• system is controlled, there are no reachable failure states, hence
any strategy of a controller is a winning strategy;
• system is controllable, there are reachable failure states, but there
exist winning strategies for the controller;
• system is uncontrollable, the tool can exhibit a winning strategy
for the environment.

Controller synthesis takes as input a controllable model produced
by the previous check, and outputs a controlled model including a
winning controller strategy.

2.2 Manual Steps in Controller Design
A controller design expert manipulates models as follows:

1) Build a model based on his expertise; the model includes the de-
scription of a system, a specification and a (partial) control strategy.
It is usually defined by successive refinements.
2) Interpret diagnosis provided by tools to improve or correct the
model.

Modeling is essential and cannot be fully automated. Correct
interpretation of diagnosis also requires human insight. Most in-
dustrial controller design processes only use tests and simulations
to provide feedback to the user. The strength of having a human
design the controller is that the state space size is no longer a limit-
ing issue. Moreover, human designed controllers can be reused for
different parameters of a system. They can be small because they
often include additional variables that allow a simple definition of
the controller strategy.

Human design however is error-prone, so quality control tools
must be provided. For instance, testing returns a diagnosis in case
of errors that helps designers debug.

To formalize these notions, we consider quality control tools as
black boxes, that take as input a model and can output:
• an error diagnosis, if problems are identified;
• otherwise, a metric M that defines a measure of confidence, such
that higher values are better.

Differences between values of M can only be interpreted to com-
pare variants of a given model. The maximum value of M (denot-
ing 100% confidence) is usually a priori unknown. For instance, a
metric for a test suite could be the number of successful tests. If
a test fails, the user obtains a useful diagnosis. Testing increases
confidence in the controller but cannot prove correctness.

3. SEMI-AUTOMATIC CONTROLLER DE-
SIGN (SACD)

Fully automatic synthesis promises to automatically build a con-
troller hence replacing the human designer. Synthesis tools how-
ever cannot cope with large state spaces, whereas human designers
can often abstract parts of the system and guess a winning strategy.

To combine the strengths of both automatic synthesis and user-
centric design, we first propose the concepts of partial controlla-
bility checking and partial synthesis, and then develop an iterative,
incremental, semi-automatic approach.

3.1 Partial Control
We proceed by iterative refinement of a partially designed con-

troller, progressively decreasing non-determinism in the model, which
reduces the state space size. Hence controllability checking that
was unfeasible at early stages of a controller design, may become
possible at the final stages.

Partial controllability. To obtain useful results even when state
space exploration is incomplete, we consider an additional possi-
ble output for the controllability check: partially controllable with
confidence M. If the tool succeeds in complete exploration, it out-
puts a categorical answer (system is controlled, controllable or un-
controllable). Control theory tools can then be used in the con-
troller design process just like other quality-control tools that pro-
vide a metric. Partial exploration with uncontrollable result pro-
duces valid counterexamples for the full system.

To instantiate this metric, we define M as a bound on the depth
of a breadth-first exploration of the state space. Note that tools
can usually dynamically detect if M is greater than the state space
depth, indicating that the exploration is complete. They can also
dynamically interrupt computation when memory limits are reached,
and return the current depth.

With this definition, useful results can be obtained, even when
exploration is incomplete. Partial controllability increases the user’s
confidence in the quality of the controller. If for some depth M, the
system is not controllable, then a winning strategy for the environ-
ment in less than M steps can be obtained.

Partial synthesis. We propose two methods for partial synthesis.
The first one is based on the previous metric: When a system is
partially controllable with confidence M, synthesis based on the
explored state space can be attempted. Such synthesis will build
a control strategy allowing the controller to play at least M′ ≤ M
moves without loosing. Note that, this strategy may be a loosing
strategy for M′ > M.

Even partial strategies can eliminate possible failure states from
explored states. Hence in general, we can reduce the size of the
state space by iteratively implementing partial synthesis and in-
creasing the metric M up to full exploration. If a solution can be
found by this procedure, it is sound. However, if the procedure
fails, there is no guarantee that no solution exists.

The second method, which can be combined with the first, con-
sists in synthesizing non deterministic controllers. Such a partial
strategy provides deterministic choices only for a subset of system
states. In practice, the user provides a boolean predicate over states
and asks for partial synthesis only in states satisfying this pred-
icate. This predicate can describe for instance critical situations
where correctness is essential.

3.2 SACD Process
Our iterative controller design process is shown in Fig. 1.

Model:

system

+ specification

+ controller

partially

controllable

model

controllable?

partial

synthesis

END

model

refine

no

partially (M) yes

yes without

controller

decision

points

refine

refine

START
environment

winning strategy

Figure 1: Semi-automatic Controller Design.

The first step consists in manually building a model, called ini-
tial state, containing a system, a specification, and a (typically non
deterministic) controller. The user can refine the model with usual
quality-control techniques, for instance, simulation and debugging
(not represented in the figure).

At each step of the process, the user can first perform the con-
trollability check on the model. If the test is unsuccessful, the user
should interpret the diagnosis to correct the model. One way to do
this, as already proposed in UPPAAL-Tiga [2], is to synthesize a
counterexample and let the user interactively play against it.

For a partially controllable model (shaded node in the figure),
the user can ask for automatic partial synthesis. Any modification
of the model makes the process go to its initial state. If a controller
is fully defined, the controllability check proves controller correct-
ness.

4. INSTANTIATION OF SACD WITH VERIJ
We apply the SACD process on the Java-like modeling language

VeriJ [19]. We first briefly present VeriJ and then show how the
successive steps are instantiated in this framework.

4.1 VeriJ
VeriJ contains a core subset of Java and includes in addition sev-

eral constructs dedicated to control (see Fig. 2) described below.
Java implementations of these concepts are also provided to let
VeriJ be source-compatible with Java.

•

•

•

•

•

•

• …

•

•

•

•

•

•

•

• …

basic data types:int, boolean...

arithmetic operators: +, -, =,...

control flow statements : if, for …

variable declaration

method declaration

class declaration
I/O

native code

inheritance

libraries

threads (not yet)

exception

castVeriJ JavaCreated elements

• VeriJ.choice
• VeriJList

• VeriJ.fail

• class instance creation

Figure 2: Relation between VeriJ and Java.

From the metamodel perspective, VeriJ comprises the follows:
• 55 metaclasses that are shared with the Java metamodel repre-
senting instructions, class declarations, etc. It is based on the Java

metamodel provided by MoDisco1 that includes 126 metaclasses.
• A metaclass VeriJList to support basic Java collections frame-
work with the essential array operations (e.g. get(index), add,
set, remove, etc.). This specific construct avoids the complex-
ity of processing implementation of Java collections. A VeriJ Map
could also be implemented in the future.
• A metaclass to model the choice operation, which will induce
decision points corresponding to player moves. It carries as proper-
ties the player identifier (controller or environment), the label of the
choice (for instance Choose next move), and the possible choices
of actions (a list of integers representing moves).
• Another metaclass fail to label initial failure states.

VeriJ programs are analyzed using a transformation into LTS [19].
An LTS state is composed of the valuations of the program vari-
ables (heap + stack). Transitions correspond to instructions but,
thanks to a dedicated abstraction, only states at decision points are
retained in the LTS. More technical information about VeriJ and
full code for the example are available2.

4.2 VeriJ in SACD
VeriJ is designed to benefit from the expressiveness and simplic-

ity of Java to model complex systems and to carry the informa-
tion required in supervisory control. Users can 1) easily model the
system, specification and controller in a Java-like program, 2) use
quality-control techniques and tools of mature IDEs, 3) use partial
controllability and synthesis as described above. All these proper-
ties make VeriJ a good choice to support the SACD process.

Modeling. The first step consists in modeling the system by:
• Building a set of VeriJ classes that represent relevant aspects of
the system, based on the business domain metamodel. For instance,
an application in finance might include the classes Portfolio,
Account, MarketData, etc. Then users need to describe the be-
havior of these classes using standard Java syntax.
• Constructing the game structure using a possibly infinite loop
containing player moves (see the while (true) in Fig. 5). Player
moves are modeled as calls to a choice method. For instance, at
each time step the market (playing the environment) might choose
to emit actions like OrderExecuted or OrderCanceled. Users can
define a (possibly partial) controller through calls to the choice op-
eration, with player identifier “controller".
• Specifying the safety objectives as situations users wish to avoid.
A call to the fail operation indicates an initial failure state.

Simulation and testing. At this stage, thanks to the Java-like syn-
tax, in a mature IDE, users can test the model by running the pro-
gram (possibly under a debugger) at any point. Calls to choice

can be delegated to the standard Java random() to simply simulate
the system, or connected to an interactive trace, where the user is
prompted for values at each decision point. Execution traces (se-
quences of choices) can optionally be saved and replayed (typically
under a debugger or as part of a test suite) for further analysis.

Consequently, modeling bugs common to many approaches (par-
ticularly when using formal notations) are more easily avoided or
patched. Libraries of domain objects can also be easily reused to
build other models from the same application domain.

User-defined controllers. The user can design a (partial) control
strategy as VeriJ code and check the (partial) controllability of the
resulting model. Non determinism is modeled as calls to the choice
method with a range of values. This strategy is iteratively refined
by restricting the range until the model is fully controlled.

1www.eclipse.org/MoDisco/
2http://pagesperso-systeme.lip6.fr/Yan.Zhang/VeriJ.html

Automatic controller synthesis. As defined in Section 2.1, a strategy
is a mapping f : Sc→ 2Actc . Our strategies are defined on the subset
of Sc containing only safe states that can lead to unsafe ones, and
are non deterministic in other states. Our tool generates VeriJ code
that tests program variables to determine the current LTS state. This
code is injected as replacement of the calls to choice. However,
it contains a (huge) boolean expression that is difficult to read and
process even by tools. The size of this expression can sometimes
be reduced (by heuristics like in [2], since the general problem is
NP-hard) but in the worst case, it is linear in the state space size.

5. EXAMPLE: AUTOMATED TRANSPORT
CONTROL

In this section, we illustrate our approach on a significant exam-
ple from the area of automated transport systems. Some work has
been devoted to the verification on variants of this system modeled
with Petri net [5], transition systems [3], etc.

This example features a variable number of vehicles, stored in
a list, as well as complex list operations such as reordering. Most
of the previous formalisms require a static bound on number of in-
stances and describing the transition relation is a difficult and error-
prone step in the verification process. These difficulties are largely
addressed by the high level of description offered by VeriJ.

0 1 2 3 4
x

y

lane 0

lane 1

Figure 3: A highway section.

We consider a highway section similar to the one in [3], with
the aim to control vehicles and avoid collisions. A small part of
such a section is depicted in Fig. 3. This section is modeled as
a discrete system that consists of a set of vehicles, moving on n
lanes of length L, numbered from 0 to n− 1. Moves of a vehicle
include driving forward and changing lanes. New vehicles can be
dynamically inserted at left-most position and vehicles exiting the
section are deleted from the list. Crashes are detected by estimating
overlaps of danger zones (shadowed rectangles in the figure), which
are computed based on current vehicle speeds.

5.1 Modeling the Highway System with VeriJ

+ Vehicle

-xpos : int
-ypos : int
-xspeed : int
-yspeed : int
-isControlled : boolean

+updateSpeed()
+updatePosition()
+dangerZone() : int
+setControlled()
+Vehicle(lane : int)
+hasNegativeXpos() : boolean

+ Delays

-delays [0..*] : int

+canAddVehicle(lane : int) : boolean
+reset(lane : int)
+updateDelay()

+ VehiclesList

+addVehicle()
+deleteExitVehicle()
+moveEachVehicle()
+reorderVehicles()
+chooseSpeedofControlledVehicle()
+chooseSpeedofUncontrolledVehicle()
+isBad() : boolean
+dangerZoneOverlap() : boolean

vehicles

+ Highway

+transition()
-addNewVehicles()
-playEnvironment()
-playController()

0..*

delays
+ TestHighway

+main()

highway

Figure 4: Class diagram for the highway system.

To analyze this system, we first build a set of VeriJ classes, rep-

resented in Fig. 4:
• a Vehicle has a forward and lateral speed (noted xspeed and
yspeed) as well as coordinates with respect to x and y axes. It also
has a boolean property “isControlled” that indicates whether the
vehicle is currently controlled.
• The VehicleList is a holder for a list of Vehicles, that supports
global operations on the list (like adding, deleting and reordering).
• Delays represents for each lane the time elapsed after a new in-
serted vehicle on that lane.
• The Highway represents the full system and contains the scaling
parameters of the model and the main actions.
• TestHighway instantiates the Highway and contains the engine
of the system.
• Constants contains the number of lanes, maximum and mini-
mum xspeed, minimum delay dmin, etc.

We then define the behavior of the objects, as operations of their
corresponding VeriJ classes. Fig. 5 shows code extracts from the
example. The main simulation loop is defined in the main method.
The transition method of class Highway first updates the sys-
tem state, to express that a time step has elapsed. This consists
in updating delays, car positions according to their current speed,
and sorting the list of cars by distance to the entrance of the high-
way. Then both players will choose vehicle speeds for the next time
step. The controller can set the speed of controlled vehicles (see
playController). The environment adds new vehicles, deletes
exiting vehicles, and can arbitrarily choose one vehicle as out of
control and update its speed (see playEnvironment).

The operations concerning vehicles are described in class Vehi-
cleList and include adding or removing cars, as well as more com-
plex operations such as reordering the list of cars according to their
position along the x axis, defining the danger zones and identify-
ing crashes. For each vehicle, the method updateSpeed chooses a
speed, calling choice to perform a non-deterministic choice.

We can simulate the system by simply running the code as a Java
program and connect it to a graphical interface for simulation.

Defining scenarios. We studied several characteristic scenarios of
the highway:
•[Scenario 1] All vehicles are controllable, the controller updates
all vehicle speeds. As mentioned above, the environment 1) adds
at most one vehicle at the entrance of the highway, with random
choices for speed and lane, when the time elapsed is greater than
dmin, and 2) deletes the vehicles that exit the highway;
•[Scenario 2] Based on scenario 1, there is an immobilized vehicle
at a predefined position of the highway;
•[Scenario 3] Based on scenario 1, environment can arbitrarily choose
the speed of uncontrolled vehicles (dark colored in Fig. 3). At most
one vehicle is uncontrolled, since the environment could trivially
cause two uncontrolled vehicles to crash.
•[Scenario 4] Based on scenario 3, the elapsed time of every lane
is reset whenever a new vehicle is added on the highway. With
scenario 3, the system is reported uncontrollable for more than one
lane: two cars are introduced simultaneously, then one becomes
uncontrollable and crashes into its neighbor at the next time step.
Keeping a minimal safety distance between cars is essential to con-
trollability.

These scenarios share most of their code and defining varia-
tions is relatively easy in a programming environment. For ex-
ample, in scenario 1, we removed the last two method calls from
playEnvironment(). For scenario 2, we added a method
addUnmovedVehicle() in class Highway and invoke it in the main
function before the simulation loop.

5.2 Controller Design

/ / c l a s s TestHighway :
p u b l i c s t a t i c v o i d main (. . .) {

Highway hw = new Highway () ;
w h i l e (t r u e)

hw . t r a n s i t i o n () ; }
/ / c l a s s Highway :
p r i v a t e v o i d p l a y C o n t r o l l e r () {

v e h i c l e s . c h o o s e S p e e d O f C o n t r o l l e d V e h i c l e s () ; }
p r i v a t e v o i d p l a y E n v i r o n m e n t () {

addNewVehicles () ;
v e h i c l e s . d e l e t e E x i t V e h i c l e () ;
v e h i c l e s . s e t U n c o n t r o l l e d I f N o n e () ;
v e h i c l e s . c h o o s e S p e e d O f U n c o n t r o l l e d V e h i c l e () ; }

p u b l i c v o i d t r a n s i t i o n () {
d e l a y s . u p d a t e D e l a y () ;
v e h i c l e s . moveCars () ;
v e h i c l e s . r e o r d e r C a r s () ;
p l a y E n v i r o n m e n t () ;
p l a y C o n t r o l l e r () ; } . . .

/ / c l a s s V e h i c l e :
p u b l i c v o i d upda t eSpeed (i n t p laye r ID , i n t pos) {

. . .
t h i s . x speed = V e r i J . c h o i c e (minXspeed , maxXspeed ,

p l aye r ID , C o n s t a n t s . CHOOSE_X_SPEED) ;
t h i s . y speed = V e r i J . c h o i c e (minYspeed , maxYspeed ,

p l aye r ID , C o n s t a n t s . CHOOSE_Y_SPEED) ; }

Figure 5: Code samples from the highway system.

Performances (made on a 2.66 GHz, 4GB RAM Linux PC) are
shown in Tables 1 and 2. The column “depth" gives the maximal
depth reached in the breadth-first exploration. The columns “con-
trollability" show the result of controllability check (py: partially
yes, y(w/o): yes without controller) with |A| the size of set A. The
columns “synthesis" present the performance of automatic synthe-
sis when possible, with NA when Not Available and−when uncon-
trollable, and |code| giving a measure of the generated controller,
expressed in number of boolean connectives in the tests.

We studied the scenarios above (identified in column sc), with
different values of the parameters dmin, n, L. This produces 6 cases,
identified by C1 to C6 in column id.

Controllability and controller synthesis. From the results in Ta-
ble 1 we can see that, in scenario 3, the system is reported uncon-
trollable when the highway contains 2 lanes (C4). After studying
some crash scenarios, we deduced that the problem is related to si-
multaneous insertion of an uncontrolled and controlled vehicle in
adjacent lanes, where the uncontrolled vehicle can at the next time
step crash into its neighbor. We thus design a scenario 4 that does
not allow this behavior. This process corresponds to the upper “re-
fine" step of Fig. 1.

Full automatic controller synthesis. The synthesized controller
code for controllable cases is specific to each case, which prevents
any reuse of the controller code. For simple instances (C1 and C5),
the size of the generated code is still manageable, but for larger in-
stances such as cases C2, C3 and C6, the generated code is huge,
complex and unusable in practice.

Semi-automatic controller design. We now manually define several
control strategies. Table 2 gives the controllability and synthesis
results when using the combination of user-defined controller (S1
to S7) and automatic synthesis. These strategies are mostly non
deterministic but restrict the system by some choices that intuitively
seem “safe". A bad choice will yield an uncontrollable system, a
good choice will reduce the search while preserving controllability.
Each time we successfully built a controllable system, we could
add more constraints to the controller code.

Strategy S1 is described in Fig.6. In this code, the frontmost car
chooses the maximum possible value maxXspeed for xspeed and
0 for yspeed. Intuitively, since no vehicles are in front, it cannot
crash in front, and cannot be caught up by another car. Other cars
are assigned arbitrary speeds. Hence this controller is still non-
deterministic.

We iteratively added strategies S2 to S5 to the strategy S1.
• Strategy S2 limits maximum xspeed: when f is in the same lane
as c, then c should adopt a speed inferior to the distance between
them;
• Strategy S3 requires c to change lane if f is uncontrolled and is in
the same lane as c, but not to change lane if f is uncontrolled and
is in a different lane from c;

/ / s i z e : number o f c a r s ,
/ / posCar : i n d e x of c u r r e n t c a r
/ / a c t i o n L a b e l : which speed (x o r y) t o be u p d a t e d
i f (posCar == s i z e − 1){

i f (a c t i o n L a b e l == C o n s t a n t s . CHOOSE_X_SPEED)
r e t u r n maxXspeed ;

e l s e i f (a c t i o n L a b e l == C o n s t a n t s . CHOOSE_Y_SPEED)
r e t u r n 0 ; }

Figure 6: Deterministic part of strategy S1

• Strategy S4 sets the c.xspeed to f .xspeed if f is controlled and in
the same lane;
• Strategy S5 forbids lane changes, when f is controlled and is far
from c (it cannot be reached in one time step).

A bad choice in one of these strategies would lead to an uncon-
trollable result and would be reverted. In C3, the search space re-
duces as the controller becomes more restrictive, so does the size
of supervisor code. After combination of strategies S1 to S5, we
apply automatic synthesis for the remaining decisions, which vali-
dates these strategies.

Similarly, we iteratively design a controller for C6. We start with
the controller elaborated for C3, directly reusing strategies S1 to S5.
This yields a controllable system, with a state space that can now
be fully explored. However, since the system is more complex than
C3, we need further constraints and define additional strategies S6
and S7. We defined S6 that accelerates or slows down c so that
it tries to match f .xspeed when f is controlled, but slows down
c to its minimum speed if it is following an uncontrolled vehicle.
Constraint S7 tries to bring a vehicle xspeed to the middle of its
possible speed range, if this does not violate other constraints. The
controller including S1 to S7 is completed by synthesis to reach a
solution for C6.

Cases C3 and C6 show that the SACD approach helps design
readable controllers with proof of correctness. For large parameter
values, this method is better suited than fully automatic synthesis
where the generated code is huge and difficult to interpret.

6. RELATED WORK
Most of the work, devoted to practical aspects and implementa-

tion of controller synthesis, uses inputs specified as Petri nets or
automata, and specifications described as temporal logic formulas,
with a focus on performance rather than ease of use [4, 8].

To tackle the modeling of complex systems, some tools support
the use of scripts to generate graphs. For example, the luafaudes
script is integrated to the graphical interface DESTool and linked
to the back-end engine libFAUDES [16], an C++ software library
for DES synthesis. Supremica [1], provides parameterization and
instantiation for modeling. It has a graphical front end and supports

Table 1: Controllability checking (no controller), and synthesis
cases depth controllability synthesis

id sc dmin L n time(s) |Sreach| |Sfail| isCtr time(s) |Sreach| |code|
C1 1 2 10 1 Full(41) 4.0 3939 70 yes 4.5 3101 503
C2 2 20 1 61 547 727077 6652 py NA NA 57568
C3 2 4 10 2 Full(50) 1047 366615 16334 yes NA NA 82496
C4 3 3 10 2 30 9.1 12883 144 no - - -
C5 4 3 10 2 Full(62) 20.2 32213 18 yes 22.3 32172 134
C6 3 15 2 56 221.1 652582 700 py NA NA 11420

Table 2: System under user-defined controller
cases depth controllability synthesis

id strategy time(s) |Sreach| |Sfail| isCtr time(s) |Sreach| |code|
C1 S1 Full(39) 1.4 396 3 true 1.4 368 60
C2 S1 Full(127) 606.8 459026 10640 yes NA NA 165822

C3

S1 Full(43) 160.8 64055 5330 yes NA NA 55060
S1-S2 Full(43) 89.9 40938 2034 yes NA NA 33015
S1-S3 Full(39) 21.8 8906 507 yes NA NA 6127
S1-S4 Full(39) 14.9 6333 319 yes NA NA 3662
S1-S5 Full(36) 7.9 3161 214 yes 7.7 1194 1999

C6
S1-S5 Full(106) 601.3 585521 1609 yes NA NA 25752
S1-S6 Full(85) 479.7 467216 441 yes NA NA 10714
S1-S7 Full(81) 229.9 275626 128 yes 1753 253918 5592

multiple modeling styles.
However, representing dynamic structures (like the list of ve-

hicles and its related operations) is only possible by assuming a
higher bound on size and using a fixed size array. This kind of
process is error-prone and hinders scalability in the analysis.

For this reason, some other tools provide a modeling language to
complement or replace the graph model. This is the case of SMV
(Symbolic Model Verifier) or SPIN, which are foremost model check-
ing tools but can be used for synthesis ([9, 13]). UPPAAL-Tiga [2]
is a synthesis tool for systems modeled as timed game automata in-
tegrated with a C-like language. Our SACD process would be ap-
plicable using these tools, though from the modeling point of view,
VeriJ was more adapted to our case study than timed automata.

On the other hand, industry has shown major interests in verify-
ing controllers. Formal methods have shown to improve controllers
quality of X-ray equipment in [11]. A control algorithm is manu-
ally designed [15], to avoid collision among multiple unmanned
aerial vehicles (UAVs). Although simulations show good perfor-
mances, a verification is needed in the safety critical case.

Java Path Finder (JPF) [12] performs model-checking of full Java
programs. In a notable industrial experiment of JPF [14], it was
used in conjunction with Simulink to detect errors in a given super-
visory controller on a UAV. However, JPF by itself does not provide
controller synthesis. Because VeriJ is source compatible with Java,
JPF can also be used to analyze VeriJ models.

Support of programming languages as input for tools consid-
erably widens the application scope of traditional control theory.
For instance, the work [7, 17] have investigated the use of con-
trol theory to avoid common synchronization problems in concur-
rent Java software. In [10], European Research Project FastFIX
even proposes to use synthesis in the context of software mainte-
nance. However, support for more expressive languages yield an
unsustainable computational cost, whereas the partial approaches
we presented in this paper try to avoid this problem by focusing on
user-assistance rather than full problem solving.

7. CONCLUSION
We propose a semi-automatic controller design approach, based

on the concept of partial controllability and partial synthesis, that
helps tackle scalability issues. The use of formal techniques pro-
vides proofs of correctness for the designed controllers. Full veri-
fication of the controllers designed during the highway case study
was possible.

Thanks to the use of a Java-compatible syntax, VeriJ is well
adapted to controller design and is easy to use for software engi-
neers who can benefit from powerful Java IDE and various tools
for code analysis.

8. REFERENCES
[1] K. Akesson, M. Fabian, H. Flordal, and R. Malik. Supremica

- an integrated environment for verification, synthesis and
simulation of des. In 8th Int’l WODES, pages 384–385.
IEEE, 2006.

[2] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen,
and D. Lime. Uppaal-tiga: Time for playing games! In CAV,
pages 121–125. Springer, 2007.

[3] B. Bérard, S. Haddad, L. Hillah, F. Kordon, and
Y. Thierry-Mieg. Collision avoidance in intelligent transport
systems. In 9th Int. WODES, pages 346–351. IEEE Press,
2008.

[4] K. Bollue, M. Slaats, E. Abrahám, W. Thomas, and D. Abel.
Synthesis of behavioral controllers for des: Increasing
efficiency. In 11th Int’l WODES, pages 27–34.
IFAC/Elsevier, 2010.

[5] I. Demongodin. Modeling and Analysis of Transportation
Networks Using Batches Petri Nets with Controllable Batch
Speed. In Proc. 30th Int. Conf. on Applications and Theory
of Petri Nets, pages 204–222. Springer, 2009.

[6] L. Doyen and J.-F. Raskin. Games with imperfect
information: Theory and algorithms. In Lect. in Game
Theory for Computer Scientists, pages 185–212. 2011.

[7] C. Dragert, J. Dingel, and K. Rudie. Generation of
concurrency control code using discrete-event systems
theory. In 16th SIGSOFT Int. Symp. on Foundations of Softw.
Eng., pages 146–157. ACM, 2008.

[8] B. Finkbeiner and H. Peter. Template-based controller
synthesis for timed systems. Tools and Algorithms for the
Construction and Analysis of Systems, pages 392–406, 2012.

[9] M. M. Gallardo, P. Merino, L. Panizo, and A. Linares. A
practical use of model checking for synthesis: generating a
dam controller for flood management. Softw. Pract. Exper.,
41(11):1329–1347, 2011.

[10] B. Gaudin and A. Bagnato. Software maintenance through
supervisory control. In 34th IEEE Softw. Eng. Workshop
(SEW), pages 97–105. IEEE, 2011.

[11] J. Groote, A. Osaiweran, and J. Wesselius. Analyzing the
effects of formal methods on the development of industrial
control software. In 27th IEEE Int. Conf. on Softw.
Maintenance (ICSM), pages 467–472. IEEE, 2011.

[12] K. Havelund and T. Pressburger. Model checking java
programs using java pathfinder. International Journal on
Software Tools for Technology Transfer (STTT),
2(4):366–381, 2000.

[13] M. Hendriks, B. Van Den Nieuwelaar, and F. Vaandrager.
Model checker aided design of a controller for a wafer
scanner. Int. Journal on Softw. Tools for Tech. Transfer,
8(6):633–647, 2006.

[14] F. Lerda, J. Kapinski, H. Maka, E. Clarke, and B. Krogh.
Model checking in-the-loop: Finding counterexamples by
systematic simulation. In American Control Conference,
pages 2734–2740. IEEE, 2008.

[15] J. Manathara and D. Ghose. Reactive collision avoidance of
multiple realistic UAVs. Aircraft Engineering and Aerospace
Technology, 83(6):388–396, 2011.

[16] T. Moor, K. Schmidt, and S. Perk. Applied supervisory
control for a flexible manufacturing system. In 11th Int’l
WODES, pages 253–258. IFAC/Elsevier, 2010.

[17] Y. Pu, R. Bodik, and S. Srivastava. Synthesis of first-order
dynamic programming algorithms. In International
Conference on Object Oriented Programming Systems
Languages and Applications, pages 83–98. ACM, 2011.

[18] P. Ramadge and W. Wonham. Supervisory Control of a Class
of Discrete-Event Processes. SIAM Journal of Control and
Optimization, 25(1):206–230, 1987.

[19] Y. Zhang, B. Bérard, L. Hillah, F. Kordon, and
Y. Thierry-Mieg. Modeling complex systems with VeriJ. In
Proc. 5th Int. Conf. Verification and Evaluation of Computer
and Communication Sys. (VECOS), pages 34–45, 2011.

