
This is a repository copy of Cloud application portability: an initial view..

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/98334/

Version: Accepted Version

Proceedings Paper:
Gonidis, F., Simons, A.J.H., Paraskakis, I. et al. (1 more author) (2013) Cloud application
portability: an initial view. In: Diamantaras, KI, Evangelidis, G, Manolopoulos, Y,
Georgiadis, CK, Kefalas, P and Stamatis, D, (eds.) BCI '13 Proceedings of the 6th Balkan
Conference in Informatics. BCI 2013 - 6th Balkan Conference in Informatics, 19-21 Sep
2013, Thessaloniki, Greece. ACM , pp. 275-282. ISBN 978-1-4503-1851-8

https://doi.org/10.1145/2490257.2490290

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Cloud Application Portability: An Initial View
Fotis Gonidis

South East European Research Centre
International Faculty of the University of Sheffield

24 Proxenou Koromila street
 Thessaloniki, 54622, Greece

fgonidis@seerc.org

Anthony J. H. Simons
Department of Computer Science

University of Sheffield
Regent Court, 211 Portobello Street
Sheffield S1 4DP, United Kingdom

A.Simons@dcs.shef.ac.uk

Iraklis Paraskakis

South East European Research Centre
International Faculty of the University of Sheffield

24 Proxenou Koromila street
 Thessaloniki, 54622, Greece

iparaskakis@seerc.org

Dimitrios Kourtesis
South East European Research Centre

International Faculty of the University of Sheffield
24 Proxenou Koromila street
 Thessaloniki, 54622, Greece

dkourtesis@seerc.org

ABSTRACT
Growing interest towards cloud application platforms has resulted

in a large number of platform offerings to be already available on

the market and new related products to be continuously launched.

However, there are a number of challenges that prevent cloud

application platforms from becoming widely adopted. One such

challenge is application portability. This paper reports on an

ongoing effort to explore the area of cloud application portability.

We briefly examine the issue of heterogeneity in cloud platforms

and highlight specific platform characteristics that may hinder the

portability of cloud applications. We present some high level

approaches and existing work that attempts to address this

challenge. In order to narrow down the area of our exploration we

have been carrying out an experiment in cross-platform

application development and deployment with four prominent

cloud platforms: OpenShift, Google App Engine, Heroku, and

Amazon Elastic Beanstalk. We briefly discuss our initial

conclusions from this ongoing experimentation.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]: Portability

General Terms
Documentation, Experimentation

Keywords
Cloud platforms, PaaS, application portability, Standardization,

Intermediation

1. INTRODUCTION
Cloud computing is a relatively new paradigm that promises to

revolutionize the way IT services are provided and consumed.

There are multiple benefits that companies can gain from adopting

the cloud computing model [1]. These benefits differ with respect

to the particular type of cloud service involved, namely,

Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

and Software as a Service (SaaS).

Particularly in the case of PaaS, a key benefit is that users can

develop and deploy applications without the burden of setting up

and maintaining the necessary programming environment and

infrastructure that the application is executed on. In addition, most

platforms offer tools and services that help developers to decrease

development time. Moreover, some PaaS offerings allow

Independent Software Vendors (ISVs) to make their applications

available on the platform’s marketplace reaching a large number

of potential customers.

However, different cloud application platform offerings are

characterized by considerable heterogeneity. Because of

incompatibilities, users that develop applications on a specific

platform may encounter significant problems when trying to

deploy their application in a different environment. This gives rise

to the familiar problem of vendor lock-in [2], which has been a

challenge long before the advent of cloud computing.

Consumers need to be able to easily change between cloud

providers and should be free to choose the one that better serves

their needs in terms of quality and/or cost. The ability of

consumers to switch from one cloud platform provider to another

can be critical for their business, especially when a cloud

provider’s operation is unexpectedly terminated. A real example

to illustrate this argument is the case of Coghead [3], an online

application development platform supporting the development and

hosting of data-driven applications. The platform had managed to

attract hundreds of developers before it suddenly announced that

it would stop operating, calling all customers to export the data

that was stored in their applications, but not giving them the

option to port the actual applications to some other platform.

For developers to be able to exploit the full advantages of PaaS,

they should be able to deploy their cloud applications across

multiple platforms, without lock-in to a particular vendor. To

achieve this, a new approach to cloud application development

must be adopted. The key concept is for users not to develop

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

BCI’13, September 19-21, 2013, Thessaloniki, Greece.

Copyright 2013 ACM 978-1-4503-1851-8/13/09 ...$15.00.

applications directly against proprietary platform environments.

Rather, developers should use either standard and widely adopted

technologies, or abstraction layers which decouple application

development from specific target platforms. Ensuring portability

across cloud providers would eliminate the vendor lock-in

problem and would allow consumers to switch between vendors

according to their needs. In turn, this would increase consumers’

trust towards cloud computing and public cloud services.

This paper focuses on the challenge of application portability in

the scope of Platform as a Service environments. In this context

we examine how the heterogeneity of cloud platforms may hinder

cross-platform deployment of an application. We believe that

there is no universal solution to this problem; addressing the issue

of application portability across platforms that don’t share any

common characteristics is practically impossible. Consequently,

we attempt a high-level classification of cloud application

platforms and thereafter we narrow down on a specific category of

platforms where our interest will focus on. Next, we discuss

specific conflicts that may occur when deploying an application to

different cloud platforms of the same category. Thereby we

attempt to illustrate potential points where our research work may

subsequently focus on. In section 3 we mention existing

approaches and concrete research work attempting to tackle

application portability. Finally, in section 4 we discuss

preliminary results from an on-going experiment in cross-platform

development and deployment of a cloud application. The

experiment involves four widely used cloud application platforms

and is aimed at helping us gain a deeper understanding of the

characteristics of the problem in a realistic setting.

2. PORTABILITY IN THE CONTEXT OF

PLATFORM AS A SERVICE

2.1 Overview of cloud platforms
Growing interest towards cloud application platforms has resulted

in a large number of platform offerings to be already available on

the market and new platform products to be continuously

launched. The platforms available on the market form a wide

spectrum of solutions that a user can choose from. These solutions

may significantly vary from each other. To allow for better

understanding of the types of cloud platform offerings available

today, and to highlight the differences between them, we present a

brief overview of a few illustrative examples. This section is part

of an on-going survey on cloud platforms that is due to be

published in the coming months.

2.1.1 Cloud platforms
The purpose of this section is to present some instances of

different types of cloud platforms available today. The examples

provided in the following paragraphs represent popular Platform

as a Service offerings supporting different approaches to the

development and deployment of applications. The selection was

based on the fact that the authors have working experience with

the following platforms and also the presented offerings are

prominent solutions of the cloud platform ecosystem.

OpenShift: OpenShift is a cloud platform managed by Red Hat. It

provides several programming languages and frameworks that a

developer can choose from to create an application, like Java,

PHP, Ruby, Python etc. Regarding the database offerings,

OpenShift provides the widely used relational MySQL and

PostgreSQL as well as MongoDB, a noSQL document-oriented

database. The platform does not offer any storage service. The

user can create the application using a traditional development

tool locally. OpenShift provides a command line tool to be used

for deploying the application on the platform. Alternatively, the

application can be developed in Eclipse IDE and deployed on the

platform with the help of a deployment plug-in for Eclipse

provided by OpenShift. OpenShift is a generic cloud platform

meaning that there is no restriction on the scope or type of the

applications that one can build and deploy. A user can execute any

source code as long as it is compatible with the platform. The

platform does not require platform-specific libraries to be used

and does not offer any standard application logic pre-packaged in

the form of native services (e.g. application authentication logic).

Therefore development time is relatively high, since developers

need to code all the application functionality from the ground up.

OpenShift does not provide native integration with 3rd party

applications.

Google App Engine: Google App Engine (GAE) is a cloud

platform offered by Google. Developers can code their application

in Java, Python or Go - an open source programming language

developed by Google1. Regarding database support, GAE

provides a traditional SQL database called Google Cloud SQL,

and a noSQL database called App Engine Datastore. Apart from

database services, GAE also provides a file storage service.

Developers deploy applications locally and deploy them to the

platform via a command line tool or the Google plug-in for

Eclipse. To speed up development and enhance application

functionality Google provides API integration with a wide range

of its own products like Google Docs, Google Maps for location-

based applications, Google Wallet for online payments, etc.

However Google App Engine has still a generic application scope.

That means that users are free to deploy their own source code

provided that it complies with the restrictions of the platform.

Zoho Creator: Zoho Creator is the cloud platform offered by

Zoho. The platform is focused on the development of office and

CRM applications that are data oriented. It follows a different

application development paradigm than the previous mentioned

platforms. In Zoho Creator, developers are not expected to create

their applications using a programming language. Instead,

applications are developed via the web-browser using a visual

design interface. The platform offers a toolkit that includes design

forms to be used to create data fields, data analytics and reports as

well as a scripting language called Deluge, for defining

workflows, business rules, etc. The goal of the tools that are

offered by the platform is to drastically reduce the time and level

of expertise required to develop applications. In contrast to other

cloud application platforms such as OpenShift and Google App

Engine, the scope of the applications to be developed on Zoho

Creator is rather narrow, limited to the tools and templates that are

already available. Unlike the previously mentioned platforms,

users are not able to upload their own source code.

2.1.2 Cloud platforms classification
OpenShift, Google App Engine and Zoho Creator can be

considered representative examples of three different categories of

cloud application platforms.

The first category includes the platforms that adopt or provide

support for standard, widely adopted and used technologies, like

programming languages and databases. Platforms in this category

have a generic application scope and users can upload the source

1 http://golang.org/project/

code of their application. They don’t provide native APIs for

offering custom functionality, increasing this way the application

development time. However the fact that they offer only standard

programming technology without native APIs maximizes the

portability of the application.

The second category includes platforms that also offer standard

programming languages and databases like Java and MySQL

respectively. However, in order to decrease the application

development effort they also offer custom functionality via native

APIs. The degree of the lock-in effect is determined by whether or

not a developer will choose to speed up development by making

use of the custom functionality.

The third category includes platforms that adopt a different

application development paradigm, characterized by tools for

online development via a web browser, using visual interfaces and

design templates. Developers are provided with a generic visual

application development framework that they can customize to

meet their requirements. These platforms have a specific

application scope that is oriented in CRM systems and similar

data-driven business applications. Development time can be

dramatically decreased due to the automated development

processes. However this is done at the expense of portability and

the limited application scope.

It becomes obvious that there can be significant variations

between cloud platform offerings that are available on the market.

Due to the heterogeneity between offerings it is not feasible to

tackle application portability by engineering a solution applicable

to the whole wide spectrum of available cloud platforms. Efforts

need to be concentrated on a specific set/class of platforms that

present similar characteristics.

The first category of cloud application platforms consists of

offerings that are strongly characterised by the use of standard and

widely adopted technologies. Therefore the lock-in effect in these

cases is not significant. On the other side of the spectrum, the

third category of platforms comprises offerings where developers

are primarily concerned with minimizing the effort of application

development. In this case the lock-in factor is very high and cross-

platform deployment is practically impossible, but this seems to

be a trade-off that developers are willing to accept.

For these reasons, the initial focus of our research work is on the

second category of cloud platforms, namely the ones that offer

proprietary services via native APIs (e.g. for file storage or data

storage) and allow developers to develop and deploy arbitrary

source code.

After narrowing down the research focus on a specific category of

platforms, the next step is to define the exact part of the cloud

application where our research efforts will be focused on. From

the description of Google App Engine, certain platform

characteristics emerge that could potentially hinder application

portability: programming languages and frameworks, data stores,

and platform-specific services. These characteristics are addressed

in some detail in the next section.

2.2 Portability issues in cloud applications
To proceed with our investigation into the problem of cloud

application portability we need to identify specific points of

conflict emerging when attempting to deploy an application to

multiple platforms. In other words, we need to identify which

aspects of a cloud application may be addressed differently by

cloud platforms. In this section we discuss the following four

potential conflict points: programming languages and

frameworks, platform-specific services, data stores and platform

specific configuration files.

a) Programming languages and/or frameworks

The specific programming languages and frameworks that an

application has been built with is obviously a major determinant

for cross-platform deployment. Each cloud platform supports

certain languages, frameworks, and versions thereof. For example,

while Google App Engine (GAE) provides support for Java it

does not support the same extent of standard Java class libraries

supported by OpenShift.

b) Platform specific services

An important characteristic of several cloud platforms is that they

provide certain services via specific APIs. A service can be

considered as high-level functionality that the provider can use

without the need to implement it from scratch. Such examples are

analytic tools for handling data sets, APIs for image manipulation

etc. Developers can drastically reduce the application

development time by using such platform services. Instead of

programming every bit of functionality from the ground up, they

can integrate it into their application by binding to the respective

platform APIs.

For example, consider the application in Figure 1. It comprises

functionality for reading-in data from a database and producing

some analytics. It performs logging and monitoring of the

resources that it consumes. Moreover it alerts the stakeholders

about various events via e-mail and SMS. These blocks of

functionalities can be provided by the platform as services

through APIs. The developer only needs to “glue” the offered

services together in order to build the application. This is only an

example application for allowing the reader to gain a better

understanding of the platform specific services. Each platform

provider may offer a wider or smaller range of such specific

services.

Figure 1. Example of application synthesized by multiple

platform services

Let us assume that a developer chooses a certain platform in order

to develop and deploy the above mentioned application. A

portability issue arises when the application needs to be ported to

a different cloud platform. There are two cases:

1) The target platform doesn’t provide the full set of

services that the application uses. For example, SMS

services and monitoring services are not supported. In

this case the developer would need to recreate the

missing functionality from scratch on the new target

platform.

2) The target platform supports the services that the

application uses but provides different APIs in order to

use them. In this case the developer would need to

modify the application code and align it with the APIs of

the new target platform.

In both cases, the application cannot directly be ported across

multiple platforms. The developer needs to modify the application

in order to be deployable to different platforms.

c) Data Storage

Data storage is an essential part of an application. There are two

types of data storage: database stores and file stores. The first one

is used for storing structured data while the second one could be

perceived as an analogy to a hard disc drive on the cloud.

Almost every modern cloud application needs to access data from

a database. A high level classification can be made into SQL and

noSQL databases:

• SQL database: This type of database represents the

widely used, traditional relational database. All major

cloud platforms offer relational database as a service.

Specific examples are: Amazon Relational Database

Service (Amazon RDS), Google Cloud SQL, and

Windows Azure SQL Database.

• noSQL database: noSQL database is a relatively new

category of databases compared to SQL. The noSQL

term groups together all database systems that don’t

adhere to the relational structure. Main characteristics of

these systems, according to R. Catell [4] and Cure et al.

[5] are: the ability to distribute data over many servers,

the simple operations compared to the complex SQL

queries and joins, the ability to dynamically add new

attributes to data entities, and the fast access times for

storage, data retrieval and analysis. There is a wide

variety of noSQL database types as listed in the work of

R.Catell [4] and Burtica et al. [6]. As examples we can

consider Key-value Store (Redis, Dynamo etc),

Document store (MongoDB, SimpleDB, etc.), Graph

Store (Neo4j etc.)

Different platforms often support different types of database.

Therefore the following conflicts may arise when trying to port an

application across various platforms:

1) Incompatible data structures: As it became clear there

is a wide range of available databases where each one of

them adopts a different data structure. Portability issues

are bound to arise when trying to move data from a SQL

to a noSQL database, but also between different types of

noSQL databases, e.g. when moving from a key-value

store to a document store.

2) Different query languages: Apart from the

incompatibility due to different data structures, conflicts

may occur at the way of querying data. Databases use

their own APIs or query languages. Therefore even

when data is moved across databases of the same

category (e.g. a document store), portability issues may

arise concerning the way the database is accessed.

3) Data migration (export/import formats): Another

issue that should be considered is data migration. It may

happen that an exported database cannot directly be

imported to another database engine due to incompatible

data formats.

In addition to issues around data storage, points of conflict may

also arise in relation to the file storage services offered by

different cloud platforms. A file store service can be provisioned

via two ways:

• Use of graphical interface. Human users of the cloud

application can manually perform operations on the file

storage space.

• Use of APIs. Platform APIs can be used by the cloud

application to obtain programmatic access to the file

storage.

In the latter case each platform vendor provides a custom

proprietary API in order to allow applications interact with the

storage space. Therefore when an application is ported across

different platforms the storage API needs to be adjusted

accordingly to fit the host provider. As a result a portability issue

is raised. Major file storage services are: Amazon Simple Storage

Service by Amazon and Google Cloud Storage by Google.

d) Platform specific configuration files

Similar to the configuration files that traditional software

applications require in order to instruct the hosting environment

on how to execute the applications, cloud platforms may require

analogous configuration files. For example Google App Engine

uses the “appengine-web.xml” file. The process of adapting the

configuration files to each target cloud platform adds to the

overall overhead of cross-platform deployment of a cloud

application.

In this section the multiple conflict points between cloud

platforms were highlighted. There are several research works

attempting to address the challenge of portability. Some

representative ones are presented in the next section.

3. EXISTING WORK
There are two generic approaches that could be adopted in order

to overcome the incompatibilities between cloud platforms, and

eventually ease application portability: standardization and

intermediation.

Standardization implies the definition of common set of standards

for PaaS offerings. The adoption of such standards by all cloud

providers would enable developers to create and manage their

applications independently of specific platform environments and

then deploy them to the cloud platform of their choice. This set of

standards could include a standardized API to access the service

offered by the platform and to manage the deployment and the

lifecycle of the application. The National Institute of Standards

and Technology (NIST) has published a roadmap [7] about cloud

computing standards pinpointing what interfaces need to be

standardized in each cloud computing service level (IaaS, PaaS,

SaaS).

There are several active standardization organizations. The

Distributed Management Task Force (DMTF) has launched the

Open Virtualization Format (OVF) [8] in an attempt to

standardize the VMs format and enable their portability. The

Storage Networking Industry Association (SNIA) has created the

Cloud Data Management Interface (CDMI) [9] as an attempt to

standardize access to cloud storage services. Open Cloud

Computing Interface (OCCI) [10] is active in standardizing the

way VMs are managed. Topology and Orchestration Specification

for Cloud Applications (TOSCA) [11] is a standard supported by

OASIS aiming at standardizing the packaging of the application in

order to enable automatic cross-platform deployment.

Standardization seems to be a very efficient approach to achieve

cloud portability. However, for reasons not necessarily related to

technology, it is very difficult for all cloud platforms to eventually

agree on a common set of standards. All major cloud vendors use

proprietary APIs and file formats as a way of locking-in

customers to their services. The effort required to re-engineer an

application in order for it to be ported to another platform is

discouraging customers from moving. In addition, a set of

common standards would prevent platform providers from

offering the special, platform-specific features that allow vendors

to differentiate from their competitors.

Another approach towards achieving portability between

platforms is intermediation. That is, introducing an intermediate

layer that decouples application development from specific

platform APIs and supported formats. In this case developers

create their applications using an intermediate API which is

platform agnostic and which can “hide” or “wrap” the proprietary

APIs of particular vendors. The intermediate layer prevents

developers from being bound to specific programming languages

or data stores. For example an application could be developed in a

language-independent manner, and later on, through model

transformations, be translated into the particular programming

language supported by a PaaS provider (such as Java, Python or

C#), the database query language particular to a platform database

(e.g. MySQL or noSQL databases) or file storage API (e.g

Amazon S3 or Azure blobstore).

jClouds is an open source library that can be used by application

developers in order to abstract cloud vendors’ specific APIs.

jClouds offers a file storage service. It allows an application to

store and read files from a remote store provided by a cloud

provider. The storage service of jClouds (blobstore) consists of

the following structure: Container, which is the top level

directory, Blobs, which contain the data to be stored and Folders

which are used to organize the blobs

Major file storage services that jClouds can abstract are

Azureblob by Microsoft Azure and Amazon S3 by Amazon.

jClouds API is offered in two programming languages: Java and

Closure.

Another example of intermediation approach is mOSAIC [12].

mOSAIC is an open source platform which promotes application

portability. It achieves this by implementing multiple API layers

which gradually offers the developers an abstraction from the

native APIs. mOSAIC API supports the use of cloud databases,

cloud file storages and communication service.

Regarding the abstraction of the database store, Cure et al. [5] put

forward an approach for providing abstract access to non-

relational database systems. The focus of this work lies in

allowing developers accessing the noSQL databases using the

familiar syntax of SQL.

The architecture of the proposed approach consists of two parts:

• Translation of the SQL query into an intermediate query

language, BQL (Bridge query language). SQL is a

declarative query language , while, as it is in mentioned

in [5], most noSQL follow a procedural query approach.

Therefore BQL is introduced as an intermediate step in

order to bridge SQL with noSQL languages.

• Translation of BQL into specific noSQL query. The

second step is to transform the BQL query to the native

query that is supported by the source database system.

Apart from the use of APIs, the issue of cloud portability can be

addressed by exploiting Model Driven Engineering (MDE)

techniques [13]. MDE is an approach to system and software

development in which software models play an indispensable role

[14]. MDE is based on two core ideas: Abstraction and

Automation. Abstraction enables decoupling application

development from targeting specific platforms. Automation refers,

among others, to the ability to change the level of abstraction

automatically, using model transformations. Model

transformations can automate the process of generating platform

specific implementations. MDE has been since many years in

practice for developing traditional software systems. The most

prominent and widely used modeling language for that purpose is

UML2. In recent years, with the emergence of cloud computing

and cloud application development, efforts are made in exploiting

the benefits of MDE in creating portable applications. Similar to

the traditional software development, the goal is to abstract the

cloud application design and development from targeting specific

platforms. The creation process begins with building a platform

independent model (PIM) and then using automated model

transformations translate the PIM into a platform specific model

(PSM) targeting particular cloud platforms (Figure 2).

Ajith Ranabahu et al. put forward an abstraction driven approach

to achieve application portability [15]. Particularly they have been

working on a Domain Specific Language (DSL) called

MobiCloud [16].

MobiCloud is a modeling language that closely resembles the

Model-View-Controller (MVC) design by providing constructs

for each of the three key components: model, view, and controller.

This approach allows developers to create simple CRUD mobile

applications using a graphical editor and a scripting language. The

platform automatically generates the source code for uploading

the backend of the application on Google App Engine and

Amazon EC2.

To the best of our knowledge, there has been no extensive survey

so far that has undertook to describe in detail the problem space of

cloud application portability and how solutions like the ones

mentioned above are mapped to that space. Such a study is

essential in order to understand the root causes for the platform

lock-in effect and the desirable characteristics of solutions to this

problem. To that end, we have designed an experiment with a test

case application and four target cloud application platforms,

presented in the next section.

2 http://www.uml.org/

Figure 2. MDE approach in developing cloud portable

applications

4. EXPERIMENTATION WITH CLOUD

PLATFORMS
Our research focus lies in addressing the issue of application

portability across cloud platforms. As it was described in 2.2 there

are multiple conflict points where a portability issue could be

raised within a cloud application like data stores or platform

specific services. In order to get an insight and be able to narrow

down our research focus to a specific context, it is essential that

we experiment with a realistic application.

Towards identifying the commonalities and incompatibilities

among the cloud platforms, a toy application has been developed.

A number of target platforms have been selected from category

one and two for the application to be deployed on. Particularly,

the following four platforms have been selected: OpenShift,

Google App Engine, Heroku, and Amazon Elastic Beanstalk. All

four platforms were chosen because they are popular solutions in

the domain of cloud computing and the authors are familiar with

those. The list of the target platforms is not exhaustive. There are

several other cloud platforms such as Windows Azure. However

the purpose of this experimentation is not to test exhaustively all

available cloud platforms but rather to draw an initial high level

conclusion about portability of simple applications across certain

prominent platforms.

We started with the development of a very simple application

without using any platform specific technology and APIs. The

initial goal was to examine whether there are cross-platform

deployment issues when the application consists only of standard,

widely used technologies such as JavaEE and MySQL. Therefore

in relation with the four conflict points that were discussed in

section 2.2 (programming language and frameworks, platform

specific services, data stores and configuration files) the platforms

will be evaluated against the support of the programming

framework, the database and the required configuration files if

any.

The application is going to be enhanced gradually with platform

specific services and we will re-examine the feasibility of the

application portability. This will be an iterative process until we

reach a mature level of understanding of the examined platforms

that will lead us to the exact definition of our research scope.

4.1 Description of the test application
The test application that was developed and deployed in the above

mentioned cloud platforms is a simple application that allows

users to perform “create”, “read” “update” and “delete” operations

on certain entities. Representative view of the user interface is

shown in Figure 3.

Initially the application was developed and deployed on a local

workstation. The development framework was Java EE and the

deployment facility was a JBoss AS 7.1 application server.3 For

building the presentation layer, the JavaServer Faces4 (JSF)

framework together with Primefaces5 library was used. The

business logic layer has been built using Enterprise Java Beans6

(EJB) technology. For accessing the data layer, JPA7 was used,

together with Hibernate. Data is stored in a MySQL 5.1 database.

4.2 Discussion
In this section we discuss the initial results that were obtained

from the deployment of the test application in the four platforms.

We specifically examine the support of the four platforms for the

JavaEE framework and MySQL database. The process of

deploying the application in the four target platforms was divided

in 4 phases: Deployment of the presentation layer, business logic

layer, data access layer and data migration. For each of the 4

phases we comment on the modifications that were required, if

any.

As it was mentioned in section 4.1, JSF and Primefaces were used

for the presentation layer. OpenShift supports the JSF

specification. Primefaces framework could easily be loaded by

including the respective library when deploying the application.

on the platform.

When the application was ported on Google App Engine, some

modifications were required. The platform supports specific

version of the JSF and therefore we were required to upload the

respective library versions. Furthermore the configuration file

needed to be adjusted accordingly. No issues were encountered

concerning Heroku and Amazon Elastic Beanstalk. JSF and

Primefaces were loaded, simply by adding the library files without

further configuration.

Regarding the business logic layer, Java EJBs were used.

OpenShift supports the Java EE specification. Therefore there

were no complications when deploying the business logic layer on

the platform. That was an expected result since OpenShift is using

3 http://www.jboss.org/

4 http://www.oracle.com/technetwork/java/javaee/javaserverfaces-

139869.html

5 http://www.primefaces.org/

6 http://www.oracle.com/technetwork/java/javaee/ejb/index.html

7http://www.oracle.com/technetwork/java/javaee/tech/persistence-

jsp-140049.html

JBoss application server, the same as we used for the development

of the application. GAE, although it provides some support for

Java EE features, doesn’t support the full Java EE specification.

EJBs are among the features that are not supported. Therefore we

needed to modify the business logic layer and remove the EJBs in

order to deploy it on the platform. To the best of our knowledge,

Heroku and AEB don’t also natively support EJBs specifications.

Consequently the application needed to be modified.

Figure 3. User Interface view of the test application

Concerning the data access layer, no particular issue was

encountered. All four platforms support JPA specification. In

OpenShift, Heroku and AEB, Hibernate was used as

implementation framework, while in the case of GAE EclipseLink

was deployed.

Regarding the database store, each platform provides an

implementation of MySQL database. In OpenShift, users can

import and export a dump file of the database using the open

source tool PhPMyAdmin which is offered by the platform. GAE

provides the Google SQL database, which supports most of the

SQL statements. Users can create an instance of Google SQL

database and then import data using a graphical interface. Heroku

natively offers only PostgreSQL database. However there are

third-party MySQL implementations that can be used. We chose

to connect to Amazon RDS, which is Amazon’s MySQL offering.

It is first required that user creates an Amazon RDS instance and

then connect their application with the database. Importing data in

Amazon RDS instance can be done via a database administration

tool. In AEB, as it is just stated, Amazon RDS was used.

As it was stated in the beginning of section 4, the test application

was developed using standard and widely used technologies.

Given the simplicity of the application functionality and the fact

that no custom platform functionality was used, the anticipated

result was that the application would be directly portable across

the four target platforms. However, even at this initial stage,

certain portability issues were encountered. Particularly, the

conflicts were raised at the level of the programming frameworks

and the configuration files. Not all platforms supported EJB

specifications. Therefore we needed to modify the application

removing EJBs. Furthermore, in the case of Google App Engine,

certain configuration files needed to be adjusted in order to deploy

the database and the JSF specification.

Although the majority of the target platforms were chosen from

the second category of our classification, we would not anticipate

any different results were the platforms chosen from the first

category. The reason is that at this initial stage of our

experimentation no platform specific functionality was used.

Furthermore as it was mentioned in the section 2.1.2, similar to

the platforms in the first category, the offerings in the second one

also support standard and widely used technologies. The result

would not be the same if platform offerings from the third

category were chosen. The reason is that in the third category

even simple applications are developed using proprietary tools

and technologies.

As future steps, the application is going to be enhanced with more

complex functionality and cross-platform deployment will be re-

evaluated. Particularly, we are planning to use platform specific

services which are offered by a set of cloud platforms of the

second category. Examples of such cloud services are message

queue and billing service. We expect to encounter further

portability issues when dealing with platform specific services.

The issues may be raised due to incompatible APIs, differences in

the architecture of the offered services, differences in the
supported operations, etc.

5. CONCLUSIONS
In this paper we discussed the challenge of cloud application

portability in the context of Platform as a Service offerings. Due

to the high degree of heterogeneity between cloud application

platforms, any approach to tackle application portability needs to

target a specific set/class of platforms that present similar

characteristics. In this context we attempted a high level

classification of cloud platforms into three categories.

The first category includes platforms that support standard and

widely used technologies without offering platform specific

functionality via proprietary APIs. Platforms included in the

second category also support standard technologies for application

development, but also provide custom functionality via native

APIs. The third category includes platforms that don’t support

standard programming technologies. As we move from one

category to the next, the portability of applications is gradually

decreased.

Next, we focused on specific characteristics of platforms in the

second category that may hinder application portability, such as

programming languages and frameworks, database offerings, file

storage service, platform specific services and configuration files.

We presented related work aimed at addressing the challenge of

cloud application portability and distinguished between two

generic approaches to tackle the issue of application portability:

standardization and intermediation. Standardization addresses

cross-platform portability through the adoption of common

standards by cloud providers. Alternatively intermediation enables

developers to create applications independently of a specific

platform and then bind them to particular target platforms through

some form of automatic translation.

Finally, we reported on an ongoing experiment that we have been

carrying out on cross-platform application development and

deployment with four prominent cloud platforms: OpenShift,

Google App Engine, Heroku and Amazon Elastic Beanstalk.

6. ACKNOWLEDGEMENTS
This research work is funded by the FP7 Marie Curie Initial

Training Network “RELATE”.

7. REFERENCES
[1] F. Gonidis, I. Paraskakis, and D. Kourtesis, “Addressing

the Challenge of Application Portability in Cloud

Platforms,” in 7th South-East European Doctoral Student
Conference, Thessaloniki, 2012, pp. 565–576.

[2] Neal Leavitt, “Is Cloud Computing Really Ready for Prime

Time?” Computer, vol. 42, no. 1, pp. 15–20, Jan. 2009.

[3] Jason KinCaid, “Coghead Grinds To A Halt, Heads To The

Deadpool,” techcrunch, Feb-2009. [Online]. Available:

http://techcrunch.com/2009/02/18/coghead-grinds-to-a-

halt-heads-to-the-deadpool/:Last Accessed June 26th 2013.

[4] R. Cattell, “Scalable SQL and NoSQL data stores,”

SIGMOD Rec., vol. 39, no. 4, pp. 12–27, May 2011.

[5] O. Curé, R. Hecht, C. Le Duc, and M. Lamolle, “Data

Integration over NoSQL Stores Using Access Path Based

Mappings,” in Database and Expert Systems Applications,

vol. 6860, A. Hameurlain, S. Liddle, K.-D. Schewe, and X.

Zhou, Eds. Springer Berlin / Heidelberg, 2011, pp. 481–

495.

[6] R. Burtica, E. M. Mocanu, M. I. Andreica, and N. Tapus,

“Practical application and evaluation of no-SQL databases

in Cloud Computing,” in Systems Conference (SysCon),
2012 IEEE International, 2012, pp. 1 –6.

[7] Michael D. Hogan, Fang Liu, Annie W. Sokol, and Tong

Jin, “NIST Cloud Computing Standards Roadmap,” NIST,

SP500‐291-v1.0, Aug. 2011.

[8] “Open Virtualization Format Specification,” Distributed

Management Task Force, DSP0243, Jan. 2013.

[9] “Cloud Data Management Interface (CDMITM),” Storage

Networking Industry Association (SNIA), Version 1.0.2,

Jun. 2012.

[10] Thijs Metsch and Andy Edmonds, “Open Cloud

Computing Interface - Infrastructure,” Open Grid Forum,

GFD-P-R.184, Jun. 2011.

[11] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable

Cloud Services Using TOSCA,” IEEE Internet Computing,

vol. 16, no. 3, pp. 80 –85, May 2012.

[12] D. Petcu, G. Macariu, S. Panica, and C. Cr�ciun, “Portable

Cloud applications—From theory to practice,” Future
Generation Computer Systems, Jan. 2012.

[13] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C.

Ballagny, F. D’Andria, G. Casale, P. Matthews, C.-S.

Nechifor, D. Petcu, A. Gericke, and C. Sheridan,

“MODAClouds: A model-driven approach for the design

and execution of applications on multiple Clouds,” in 2012
ICSE Workshop on Modeling in Software Engineering
(MISE), 2012, pp. 50–56.

[14] Bran Selic, “MDE Basics with a UML Focus,” presented at

the 12th International School on Formal Methods for the

Design of Computer, Communication and Software

Systems: Model-Driven Engineering, Bertinoro, Italy, Jun.

2012.

[15] A. Ranabahu, E. M. Maximilien, A. Sheth, and K.

Thirunarayan, “Application Portability in Cloud

Computing: An Abstraction Driven Perspective,” IEEE
Transactions on Services Computing, vol. 99, no. 1, p. 1,

Apr. 2013.

[16] A. H. Ranabahu, E. M. Maximilien, A. P. Sheth, and K.

Thirunarayan, “A domain specific language for enterprise

grade cloud-mobile hybrid applications,” in Proceedings of
the compilation of the co-located workshops on DSM’11,
TMC’11, AGERE!’11, AOOPES’11, NEAT’11, &
VMIL’11, New York, NY, USA, 2011, pp. 77–84.

