
Language Trends
Editor: Ron K. Cytron, Dept. of Computer Science, Washington University in St. Louis, MO 63130; cytron@es.wustl.edu

Patterns, Architecture and Software
Richard Helm

Introduction

Patterns are a hot topic in the object-oriented software
community at present. At the recent OOPLSA'95 confer-
ence there were numerous talks, tutorials, workshops and
experience reports all focusing on the application of pat-
terns to building software. But what are they, where did
they come from, why all the fuss?

Most of the recent interest in patterns sprang from a
Birds of Feather session titled "Towards a Software Ar-
chitecture and Design Handbook" organized by Bruce
Anderson at OOPLSA'90 and followed by a workshop of
the same name at OOPLSA'91. There Bruce offered the
following thought experiment:l Imagine yourself seated
by your computer at your desk. You have been sweating
for many hours on a really tough software design problem.
Nothing you can think of works, you reach dead-end after
dead-end, and, worse, a critical product deadline looms.
Eventually after much frustration, you reach in despera-
tion to your bookshelf, pull down Volume III of ACM's
Handbook of Software Architecture and Design and casu-
ally leaf through it, Suddenly, on a page towards the end of
the handbook, you come across an entry that solves your
very problem. You read the entry, rapidly implement the
solution, and with some relief meet your ship date.

Unfortunately no such handbook exists. But what
would it look like if it did? What would the entries be,
how would they be organized? What topics would they
discuss? Who would write it? All these questions were
discussed at this workshops, but what was perhaps more
remarkable was that many people's independent threads
of investigation into software architecture and design met
and started to weave together. Out of this meeting the idea
of patterns for software emerged. 2

The inspiration for the patterns community comes from
many sources. If we look at disciplines such as mechani-

I This is roughly how I recall it, but I have added some
embellishments.

2 A more complete history may be found at the Portland Patterns
Repository (http : / / c2 . com. ppr/index, html)

cal, electrical and civil engineering or architecture we can
find a rich body of experience and knowledge recorded
in the form of engineering handbooks, or codes of prac-
tice. One of my favorite examples is a Russian mechani-
cal engineering handbook Mechanisms for Modern Engi-
neering Design by Ivan Artobolevsky. This five-volume
handbook contains thousands of descriptions of mechan-
ical devices. The first two volumes concern just lever
mechanisms and contains 2288 entries describing every-
thing from clutches, to governors to aircraft landing gear.
The entries are all indexed and each is less than a page
long. Note that such a handbook is not a product catalog,
nor is it a collection of specifications--none of the entries
say anything about materials, dimensions or tolerances.
Yet each entry provides enough information to describe
what the device is, its key features, and how it works so
that a mechanical engineer can simply implement it.

Another source of inspiration is the work of the archi-
tect Christopher Alexander and his books Timeless Way of
Building and A Pattern Language. In these books Alexan-
der set out to describe what it is that gives buildings their
life, harmony, freedom, comfort, or as Alexander calls it,
their "quality without a name". Alexander's answers to
this question is recorded as a set of 253 linked patterns
forming a pattern language. Patterns such as 112:Entrance
Transition, 127: Intimacy Gradient, 159: Light on two
sides of every room each describe a problem encountered
during the design of, what is the context for this prob-
lem and finally its solution. For example ll2:Entrance
Transition concerns the problem of how to create the en-
trance to a building. The context is that the entrance of
the building does much to shape your impression of the
interior, yet you do not want people walk straight off the
streets into the main part of the building. The solution de-
scribed by the pattern, is to create an entrance transition,
a space, change of direction or light that clearly indicates
the transition from inside to outside. Buildings with en-
trance transitions allow people to make the mental shift
from an outside mode of thinking to an interior mode. -

Alexander's work gives rise the current de-facto deft-

2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F249094.249099&domain=pdf&date_stamp=1996-01-01

nition of a pattern: A pattern is a solution to a problem in
a context. Essentially a pattern tries to capture and dis-
till recurring experience about a domain in a form which
makes this knowledge easily acquired by someone who
does not have it. Simply reflecting and recording our ex-
periences may seem trivially simple and not a suitably
worthy or lofty goal. Yet the tack of software engineer-
ing handbooks which document proven software design
techniques suggests otherwise. As a software community
we have no common vocabulary or language that is rich
enough to describe the issues in creating, understanding
a system's architecture or design - what are the software
equivalents to terms such as trusses, vaults, cantilevers,
columns and arches. And although we have notations,
these are often intimately linked to the underlying imple-
mentation technology, not the problem-- to the bricks and
mortar, not to the problems to be solved such as spanning
a space, or supporting a beam.

Part of the reason why no such equivalents exists for
software is that they are hard to create. Software is
ephemeral and intangible. In the software world we tend
to spend much effort describing descriptions of software
(notations), or descriptions of how to create software
(methods), but far less effort describing the actual soft-
ware artifact itself.

The pattern community is trying to do the latter. We
try to simply write descriptions of recurring software de-
sign structures, techniques and architectures as patterns.
Our approach is very pragmatic. We focus on describing
real systems and the experiences that we face in our every-
day work in the software industry. Our goal is to record
and make explicit all the stuff that we all know inside our
heads but think is either too trivial or too well known to
bother writing down-- invar iably it is neither, and usually
far deeper than we imagine.

Patterns have been used to describe different parts
of the software development process, including reusable
object-oriented designs, team structure and process orga-
nization, how to reuse frameworks, and to describe com-
mon themes during systems analysis. There are a number
of books and papers about patterns, many of these can be
accessed directly though the patterns home page. z

There is also an annual conference PLoP - Pattern Lan-
guages of Programs which provides a forum for people
to present their patterns. A unique feature of this confer-
ence is that papers are not presented by authors to the au-
dience as they quietly listen, quite the opposite: the audi-
ence discusses each paper in front of its author while he or

3 http:/lst-www.cs.uiuc.edulluserslpatternslpattems.html

she remains silent. This Writers Workshop is very much in
keeping with the idea that patterns are not about present-
ing new ideas, but presenting experience in such a way
that readers can absorb it as quickly as possible. There is
no better way to see if readers are getting it than to hear,
directly from them, what they think.

Richard Helm (Richard.Helm@msn.com) is a consultant
with the object technology practice with IBM Consult-
ing Group/ISSC Australia in Sydney Australia. There he
is actively applying patterns to the design of commercial
systems. Prior to IBM, Richard was with DMR Group
based in Montreal, Quebec, and prior to that he was a
research staff member with IBM at the T.J. Watson Re-
search Center in New York. Richard has numerous in-
ternational publications, is a frequent speaker at inter-
national conferences, and is one of the four co-authors
of the award-winning book Design Patterns: Elements of
Reusable Object-Oriented Software. Richard has a Ph.D.
from the University of Melbourne Australia.

