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ABSTRACT

A fundamental unit of work in programming is the code
contribution (“commit”) that a developer makes to the code
base of the project in work. An author’s commit frequency
describes how often that author commits. Knowing the dis-
tribution of all commit frequencies is a fundamental part of
understanding software development processes. This paper
presents a detailed quantitative analysis of commit frequen-
cies in open-source software development. The analysis is
based on a large sample of open source projects, and presents
the overall distribution of commit frequencies.

We analyze the data to show the differences between au-
thors and projects by project size; we also includes a com-
parison of successful and non successful projects and we de-
rive an activity indicator from these analyses. By measuring
a fundamental dimension of programming we help improve
software development tools and our understanding of soft-
ware development. We also validate some fundamental as-
sumptions about software development.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics; D.2.9 [Software
Engineering]: Management; D.m [MISCELLANEOUS]

1. INTRODUCTION

Free/libre/open source software (FLOSS) has been adopted
widely by industry in recent years. In 2008, 85% of all enter-
prises used open source software [8]. A 2010 study estimates
that 98% of all enterprises use open source software [22].

Given the significance of open source and the interest in
the field of mining software repositories [13], it is surprising
that there are few statistical analyses that cover a represe-
native percentage of open source.

As open source software is being used for critical tasks, it
is important to have a quantitative analysis of as broad a
range of open source projects as possible, so that research
can characterize their development methodologies in an in-
formed way.
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Previous analyses are limited in two ways: they tend to be
case studies focusing either on key open source projects, or
on a small sampling of projects; and they only briefly men-
tion commit frequencies (e.g. [7], [2], [4]) or don’t mention
commit frequency at all.

This work addresses these two limitations: our database
covers approximately 30% of all open source software projects
of its time and we focus exclusively on commit frequencies.
Our companion paper, [15], likewise focuses on commit sizes.
The size of our dataset also alows us to empirically show cer-
tain general patterns like the “daily commit” or the commit
shortly after one that broke the build can be statistically
proven. We also show that ther is a correlation between
activity and successfulness of a project.

This combination of narrow focus and breadth of data al-
lows us to analyze properties that have not been analyzed
before: for instance, tracking the activities of individual de-
velopers across projects, as well as deriving more broadly
applicable conclusions from the properties observed in pre-
vious studies (e.g. the prevalence of commits by top devel-
opers in individual projects). This narrow but deep focus
furthermore allows us to do a cross project comparison to
investigate if the commit frequency can be used as an indi-
cator for project performance.

The contributions of this paper are:

e the empirical commit frequency distribution of open
source software projects,

e an analysis of the differences between developers,

e the empirical distribution of commits of a developer to
a particular project, and

e an analysis of the differences between the commit fre-
quency distributions of projects of different sizes, as
well as

e a comparison of successful and unsuccessful projects
and an

e activity indicator for projects.

The paper is organized as follows. Section 2 defines some
terms we use. Section 3 contains our analysis of commit
frequencies. Section 4 discusses threats to validity. Section
5 discusses related work, and section 6 concludes the paper.

2. COMMIT FREQUENCIES

A software project is typically developed in multiple itera-
tions, in a series of changes to its artifacts, for instance code,



documentation and artwork. When the project is managed
using a version control system (VCS; also known as a source
configuration management system), these changes are orga-
nized into sets known as commits.

From this range of potential artifacts, in the following,
we focus on commits that involve source code contributions,
and refer to them as commits.

We define commit frequency as the number of commits in
a time period; this, however, is not directly measurable; thus
we first measure the commit interval which is the time be-
tween two commits, and derive a commit frequency measure
from it.

3. MEASUREMENTS

3.1 Data Source and Research Method

This paper uses the database of the Ohloh.net open source
project index. Our database snapshot is dated March 2008.

It contains 11,143 open source projects with a total of 8,705,118

commits by 47,548 commiters. Daffara estimates that there
were 18,000 active open source projects in September 2007
worldwide [5]. The total number of projects is much larger,
but most open source projects are not active and by our
activity definition have to be excluded. We use the same
definition of “active project” as Daffara: A project is active
at a given point of time when the number of commits in
the preceding 12 months is at least 60% of the number of
commits in the 12 months before that. Using this definition
our data set contains 5,117 active open source projects. We
therefore estimate that our database contains about 30% of
all open source projects considered active in March 2008.

Our analysis is descriptive: we are discovering existing
characteristics in the data rather than starting off with a
hypothesis and attempting to invalidate or validate it. We
also split our analysis along project sizes and provide the
characteristics of commit frequency by project size. Using
the Ohloh data, we calculated the interval between two com-
mits. We do this, because the commit interval is not prone
to timezone errors. Thus it is always calculated for a sin-
gle committer. To be able to track this commiter we used
Ohloh.net’s committer identities which allow us to have a
committer ID across project boundaries.

3.2 Commit Frequency Distribution

The commit frequency is the number of commits in a given
time span. Thus it is the inverse of the commit interval
which we defined as the time between two commits.

The number of occurences of a certain commit interval
results in the commit interval distribution. We measure it
instead of the equivalent but not directly measurable commit
frequency distribution.

The distribution of those commit intervals shows how likely
it is that a certain time elapses between two commits of the
same committer.

In statistics a distribution can be represented as a probabil-
ity distribution function (PDF) or a cumulative distribution
function (CDF). The PDF in our case describes the relative
likelihood that a particular time interval lapses between two
commits of the same committer.

The CDF can be computed by integrating the PDF. In-
tegrating the PDF over an interval provides the probability
that the time that lapses between two commits is within a
certain interval. For example, integrating over the interval

Key Parameter  Value

Median 1.666 h
Mean 3.206 d
90th percentile 4.075 d
95th percentile 9.427 d

Table 1: Statistical key characteristics of the open
source commit intervals in open source.

[0s,10min] provides the probability that the time between
two commits of the same committer is between 1 second and
10 minutes.

Neither the PDF nor the CDF are sensitive to the absolute
time (timezone etc.) of the committer as we only measure
the time between commits; thus this time offset has no im-
pact.

The empirical result of our measurements is the empir-
ical probability distribution function (EPDF) as shown in
figure 1. The EPDF is a density estimation based on the
observed data. The EPDF is not a closed model, it is a rep-
resentation of the observed data. The statistical key char-
acteristics of commit intervals in open source are shown in
table 1.

To make it easier to visually inspect the PDF, we have
added a plot showing only the density estimates for commits
having an interval of less than 24 hours (see figure 2).

Integrating the EPDF yields the empirical cumulative dis-
tribution function (ECDF). Using the ECDF we can deter-
mine that the time between two commits of the same com-
mitter is normally less than one day with 50% of the commits
happening in less than 1.666 h after a former commit and
that there are local maxima every 24 hours. Those 24 hours
maxima correspond to commits which have approximately
24 hours between them.

We not only present the EPDF and ECDF but also table 2
which shows the percentage of all commits happening in a
certain time interval after a preceding commit.

3.3 Comparison by committer

In the previous section, after computing the commit inter-
vals for individual committers, we provided aggregate mea-
sures for the combined commit intervals of all committers.
We now compare committers to each other to determine dif-
ferences in commit frequency from committer to committer.
We do this by calculating the median commit interval for
each committer. The results show that the vast majority
of committers works very regularly on open source projects
with 50% of the committers having a median commit inter-
val of less than 13.78 h (for other statistical key character-
istics see table 4). We present the EPDF of the distribution
of the median commit interval of committers in figure 3. It
shows a tendency towards short commit intervals clearly but
it also shows local maxima on multiples of 24 hours.

We also look at the mean commit interval which is much
larger because it incorporates outliers (huge commit inter-
vals, e.g. because a committer was on vacation). Based
on this we calculate the mean number of commits per week
and the mean number of commits per day. We use the mean
instead of the median to calculate this aggregated commit
frequencies because we cannot say for sure if those outliers
are always created because of external events like vacation
or if a committer just needed more time for this particular
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Figure 1: The EPDF and ECDF of time between commits (up to an interval of 1 week)
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Figure 2: The EPDF and ECDF of time between two consecutive commits of (up to an interval of 1 day)

Time between two commits Oh-1h  1h-2h  2h-3h  3h-4h  4h-5h
of the same committer

Occurences in percent 44.8 7.0 3.8 2.5 1.8
Time between two commits 5h-6h  6h-7h  7h-8h 8h-9h 9h-10h

of the same committer
Occurences in percent 1.3 1.0 0.8 0.7 0.7

Table 2: Mean time between commits in percent.
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Figure 3: The EPDF and ECDF of median commit intervals per committer.

0%-10% 10%-20% 20%-30% 30%-40% 40%-50%

Average commits per week 28.07 6.67 3.66 2.32 1.51
Average commits per day 4.01 0.95 0.52 0.33 0.22
50%-60% 60%-70% 70%-80% 80%-90%  90%-100%
Average commits per week 0.99 0.63 0.38 0.20 0.04
Average commits per day 0.14 0.09 0.05 0.03 0.01

Table 3: Mean commit frequency per committer by the percentile of commit frequency

Key Parameter  Value

Mean 13.62 d
Median 13.78 h
90th percentile 16.51 d
95th percentile 51.4d

Table 4: Statistical key characteristics of the dis-
tribution of the median of the commit intervals for
particular authors.

8e-05 —
commit. The mean number of commits per day and per - 6e-05 =
week for the different percentiles of developers are shown in ‘?‘ 4on0s Small Projects
table 3. © Medium Projects
= Large Projets -~
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We not only examine the commit frequency of committers 0e+00 — | ‘ ‘ i : i i ;
across all projects the particular committer is working on. 1h 6h  9h 12h 15h 18h 21h  1d
We also look at committer/project pairs and examine the ) ) )
commit frequency of a particular committer to a particular Time between two commits of the same committer
project.
We classify the projects into small, medium, and large size Figure 4: Combined EPDF plot by project size

projects based on the number of involved developers. Becher
provides an analysis of the number of developers in a ran-
dom sample of projects included in the Debian GNU/Linux
distribution [3]. We use their proposed partitioning to group
our projects accordingly (see table 5).

Figure 4 and figure 5 shows that the divergences between
the project categories are very small. In fact, a close exam-
ination of the ECDFs shows that the maximum difference



Parameter Minimum number of developers Maximum number of developers

Small 1
Medium 6
Large 48

5
47
00

Table 5: Project size boundaries
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Figure 5: Combined ECDF plot by project size

is only 6.3%. We posit that these dissimilarities are caused
by differences in commit management. A large project typ-
ically has contributors that commit patches from different
committers, but in the Ohloh database those differences be-
tween committer and author are not represented; this leads
to a very small commit interval for these committers.

3.5 Comparison by project success

Another question is how the commit frequency of commit-
ters in successful projects differs from those in unsuccessful
ones. To answer this question we first have to come up with
a definition of success. There are many ways to define suc-
cess in open source projects. The two most common are:

Popularity: Popularity describes whether the project is
used and liked by the open source community. We use the
ohloh popularity index to decide whether a project is pop-
ular or not. The ohloh popularity index is equal to the
number of web pages linking to the project home page as
determined by the Yahoo search engine API [1].
Survivability: It describes whether a project stays active.
To analyze this we divided the projects in two groups active
ones and inactive ones and compare the commit frequency
of active projects to the commit frequency of inactive ones
to do this we use the same definition of “active project” as
Daffara as mentioned in section 3.1.

Popularity and project activity are mentioned as success
indicator for open source projects in [19] while [6] only men-
tions popularity.

To compare popular projects to non popular ones we com-
pare the 100 most popular projects in our database to the
rest of the projects. We see that unpopular projects have a
much higher chance of high commit frequencies for a single
commiter. Figure 6 shows the distribution of time between
commits of the same author to the same project and figure
7 shows the median commit frequencies of the projects. We
posit that the higher commit frequency in small projects

is caused by the much tougher review process in popular
projects which causes the delay [20].

To show that the commit frequency is an indicator for
project activity. We calculate the median commit frequency
in a project over the last 6 months and over the whole life-
time of the project and then we calculate the ratio of those
two.

When a project becomes inactive the developers commit
less and therefore the time between commits increases, and
thus the commit frequency is a good indicator for the project
activity. Figure 8 shows the distribution of the ratios com-
paring active and inactive projects classified using the Daf-
fara criteria.

At a threshold of 0.47 the difference to the Daffara criteria
is the smallest. 24.4% of the projects that Daffara classifies
as active have been classified as inactive by our metric. This
difference sounds bigger than it is. We compare two metrics
to each other if they were exactly the same our metric would
be redundant. The less active a project is the longer the time
between commits of individual developers.

Therefore it is logical to use the commit frequency as an
activity metric. The clear maxima in figure 8 show that for
projects approaching inactivity the metric gets closer and
closer to zero while for projects that are active the commit
frequency stays roughly the same or even increases. Thus it
makes sense to use it as an indicator in a survivability metric,
which indicates if a project is still healthy and active or
whether steps need to be taken because the project became
less active.

4. THREATS TO VALIDITY

4.1 Committer vs author

While ideally the two definitions coincide exactly, in prac-
tice this is not always the case. In open source there are
committers which commit patches that are developed by
other developers. But there are also committers that only
commit patches they developed themselves. We cannot re-
liably distinguish the one from the other. We just track the
time between commits of individual committers. We believe
that this is not problematic as it simply reflects the actual
commit behavior of committers.

4.2 Invalid timestamps

There are outlier timestamps, either newer than the database

itself (as far in the future as the 22nd century) or older than
most version-control systems.

The number of outliers is very small — less then one-
thousandth, so we believe that they don’t have any signifi-
cant impact. Thus, we removed them.

4.3 Different IDs in different Projects

The commiters could have different IDs in different Projects.
We use the author id from the ohloh.net database which is
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derived from the email address. If committers use different
email addresses in different projects this can lead to different
IDs and therfore distort our results.

4.4 Project rules for commit strategies

Some projects have rules for commit strategies e.g. no
commits of new features close to a release date the so called
feature freeze. We see these commit strategies as part of the
general commit frequency distribution. It is true that these
strategies have an impact and we reproduce this impact.

S. RELATED WORK

After a thorough review of related work, we found no
previous research on this aspect of open source program-
ming behavior. Commit frequencies are briefly mentioned
in Daniel M. German’s work on mining CVS repositories.

German reconstructs “modification requests”, i.e. com-
mits, from source code repositories of selected projects, where
modifications are recorded on a per-file basis [11, 10, 9]. Ger-
man provides a modification request per month in passing
[9], and the term modification frequency is defined in [12].
[14] analyses commits and tries to find reoccuring events
using fourier analysis. But the papers don’t provide a com-
mit frequency distribution or detailed statistical data about
commit frequencies.

[16] briefly mentions the time it takes to fill modification
requests, this is the time it takes till a change to the code is
commited from the time of the request to the actual commit.
In contrast to the commit interval which is the time between
two commits.

[17] uses changes per hour as a measure for code changes
but the changes are not commits in this case but rather
every change in source code (e.g. renaming a function is
one change) this leads to very high numbers of changes per
hour (between 25 and 46 changes per hour) the paper has
therefore a completely different scope.

[23] studies how many commits conflict but the time be-

tween commits or how often developers commit was not in-
vestigated.

[18] and [21] focus on predicting where in the code a
change occurs but don’t address when a change occurs.

6. CONCLUSIONS

We found that committers have small commit frequencies
with an average time between commits of 3.206d. But we
also found out that this is most likely due to larger pauses in
development because the median commit frequency of the
median author is higher, in fact 50% of all authors have
less than 13.78 h between 50% of their commits. A possible
explanation is that many authors try to slice their contri-
butions into several commits or because committers need to
hotfix a commit because it breaks someone’s build, or has
other side-effects, or bugs. Both are reasons for having two
commits in a short period of time. The difference between
the median of the commit interval over all commits and the
median of individual commit intervals shows that there is a
group of committers that committs an order of magnitude
more often that the average committer this group most likely
has the comitter role in projects. We also observed maxima
in the EPDF every 24 hours which are caused by commit-
ters that commit a “daily commit” roughly on the same time
every day. Another important discovery is that we’ve pre-
sented in this paper is that small, medium and large project
only differ slightly in terms of commit frequency with a max-
imum difference between the ECDFs of 6.34%.

Finally, knowing the commit frequency distribution allows
us to better design and provision configuration management
systems. Using our results, we can better predict the esti-
mated time of arrival of the next commit to a configuration
management system and implement it accordingly. Also,
knowing the number of users and using our results lets us
predict the workload when provisioning and operating a con-
figuration management system. Thus, our results should be
helpful to configuration management users, developers, and



operators alike.

The empirical knowledge gained from actually measuring
the commit frequency distribution is an important first step
to create hypotheses for research. But more important it
can be used as a benchmark to compare projects and de-
velopers. A commit is the smallest increment a developer
contributes to the code base of a project therefore the com-
mit frequency distribution allows us to rank the developer
by how frequently he makes a contribution. This in turn
allows us to compare a developer with an average developer
and it furthermore allows us to give an exact percentile rank-
ing for an individual developer. With this information we
can determine whether he has a high commit frequency that
makes agile development easier as it prevents merge conflicts
on the repository or not.

But we can not only compare developers to each other,
we can also compare projects. As shown we can compare
them to the overall commit frequency distribution to get
a percentile ranking. But we can also compare a projects
commit frequency statistic to itself to determine weather
it is active or not. In short the commit frequency is a fast
indicator to determine if the project is healthy because it has
regular contributions and if the developers are productive by
checking whether they contribute regularly.
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