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ABSTRACT

Human-Centric DTNs exhibit some degree of regularity on
their temporal contact patterns [1]. The impact of this reg-
ularity on network performances has not been well studied
and analyzed. In this paper, we study this temporal di-
mension of Human-Centric DTNs and its impacts on rout-
ing performances. We propose a simple parametric network
model which covers the full spectrum of contact patterns
from strictly periodic to fully random ones. Based on this
model, we study the impact of contact patterns regularity on
routing performances and we show how to exploit the tempo-
ral structure to navigate with a good resource/performance
tradeoff in Human-Centric DTNs. Simulation and analyti-
cal analysis show that efficient routing with respect to their
degree of regularity emerge within a subset of dynamic net-
works. Moreover, we show there is a specific degree of reg-
ularity where routing performance achieves its optimum.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.2.2 [Network Protocols]: Routing proto-
cols

Keywords

Human-Centric DTNs, routing, search and retrieval, disor-
der, dynamic network structure

1. INTRODUCTION
The advent of new generations of wireless communication

devices, coupled with the ever-increasing growth of multime-
dia contents, make multimedia services becoming one of the
most resources-consuming use of the Internet. In this paper,
we envision a network at the edge of the Internet in which
human portable devices, endowed with peer-to-peer com-
munication and sensing capacities, communicate each other
without infrastructure to offer potentially free infrastruc-
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tureless new multimedia services. Because of their mobility
nature, these networks might suffer from nodes and links
churns, and hence can be classified within the scope of De-
lay/Disruption Tolerant Networks (DTNs). These Human-
Centric DTNs, if successfully deployed, will play the role
of a complement to infrastructure-based networks by free-
ing users from infrastructure dependence and reducing the
load on the network core. These networks will pave the way
for an pervasive computing environment to which users can
access anywhere anytime. One can imagine many future ap-
plications of this type of network, e.g., content sharing and
retrieval, gaming, recovery networks, offloading, etc.

The modeling and study of the properties of these dy-
namic networks under the umbrella of the science of dynamic
and stochastic graphs is a recent scientific field when com-
pared to the field of static networks and their underlying
graph models [14]. Therefore there remains numerous open
questions. One of the most interesting fundamental problem
is the issue of efficient routing in such networks. Indeed,
unlike routing in static networks with the support of the
well developed static graph theory, there is still no widely
developed theoretical background to understand deeply the
routing issues in dynamic networks. In the context of DTNs,
several routing algorithms and heuristics have been proposed
[2], trying to answer some specific questions about routing
while usually ignoring and not leveraging on the profound
structural properties of dynamic networks.

In this paper, we aim to contribute to understanding the
impact of the dynamic structure of Human-Centric DTNs on
information routing. In DTNs, communication relies on in-
termittent contact between nodes and their mobility. Rout-
ing in such a network means finding a temporal path between
a source node and a destination node [15]. Finding an effi-
cient temporal path is made difficult by the lack of a-priori
knowledge of the evolution of the dynamic network topology.
In other words, nodes can base their forwarding decisions on
their local knowledge based on a limited temporal and spa-
tial scope only. In the context of acquaintance networks
[20], it was shown that people implicitly solve the informa-
tion routing problem by leveraging on spatial or structural
properties of the network, such as nodes relative or absolute
positions [7], nodes centrality [21], to enforce the forwarding
decision. This approach can be extended to dynamic net-
works by inferring the spatio-temporal nodes relationships
from their peer to peer interactions [18]. In [17], we have
sketched out a new model to capture the disorder degree of
dynamic networks and highlighted its impacts on routing in



such networks. This paper investigates further this direction
by giving the full details of the study in the first part and
showing how one can exploit this disorder to make efficient
routing in Human-Centric DTNs in the second part.

2. RELATED WORKS
With the potential of future pervasive mobile networks,

recent researches have drawn attention to the theories of
dynamic networks (see [4] a for a good review of recent re-
searches on temporal networks). The persistence and regu-
larity of communication patterns is one interesting aspect of
dynamic networks. In [1], Clauset et al. investigate real dy-
namic network traces divided in time snapshots to demon-
strate that dynamic networks have a high persistence and
periodicity in time. They show that the daily and weekly
rhythms of human social behaviors make periodic contacts
patterns in the network. Motifs is another aspect of dy-
namic network which has drawn attention of researchers. In
[9], Kovanen et al. formalize the notion of temporal motif as
isomorphic connected subgraphs and propose an algorithm
to find such motifs in a temporal graph. They apply this
algorithm on mobile phone traces to study the behavior of
mobile users.

In the context of human acquaintance networks, the fa-
mous experiment of Milgram [20] consists in sending a pack-
age from a group of persons living in Boston to a randomly
chosen person in Massachusetts only through their acquain-
tances. The obtained result was striking in the fact that the
chains of persons leading to the destination are very short,
having on average only 6 peoples. This can be considered a
typical example of routing in a social network. The routing
problem we are addressing here is different. We consider
Human-Centric DTNs in which nodes (i.e., mobile devices)
can communicate only through peer-to-peer contacts (i.e.,
when they are in the radio range of each other) and there is
no long range contact unlike the postal service in the Mil-
gram case. Besides, nodes in the network may not know
each other in advance.

Kleinberg [7] is interested in the algorithmic component
of the experiment of Milgram, i.e. how individuals can find
such short routes in such large social network. The author
proposes a simple model that embeds the geographic world
in a 2D lattice (the result can be generalized to other number
of dimensions). Nodes have local contacts with neighboring
nodes and choose a long-range contact with a far node with
a probability inversely proportional to the distance to the
later. The probability distribution follows a power law d−α

where d is the distance and α is the unique parameter of
the model. By applying a greedy algorithm in which nodes
select the contact closest to the destination as message relay,
the author demonstrates that the routing delay reaches its
optimum (i.e., in logarithmic time) when α equals to 2 and is
polynomial otherwise. This is due to the isotropic structure
of the network at the optimum which establishes gradient
allowing nodes to have a cue to find short paths. In [8],
Kleinberg discusses various decentralized search algorithms.

Watts et al. [21] proposed another model for searching in
social networks. The network is embedded in a hierarchi-
cal social structure in form of b-ary tree. One can imagine
starting from the top level which represents the whole world,
and the lower levels of the tree will correspond to countries,
cities, etc down to the smallest social organization in which
one people knows only one other. In such structure, the dis-

tance between nodes is measured by the height of the nearest
common ancestor. The authors proposed a method to gen-
erate networks from this structure by connecting randomly
nodes at distance x with probability p(x) = c exp−αx where
α is the parameter of the model and c is a normalizing con-
stant. Again, they found that there is only one value of α
allowing a greedy search algorithm to perform in logarithmic
time otherwise the delay is polynomial.

The above approaches work under the assumption that
nodes know some information on the whole network or on
the destination which are not necessarily true in the case of
DTNs. In the context of DTNs, routing has drawn much
attention (see [2] for a survey). Generally, we can classify
the routing protocols in three categories: oblivious routing,
mobility-based routing and social-based routing. In the first
approach, nodes don’t use any information on the network
and either randomly forward the message or just flood it
into the network. In the second approach, nodes leverage
on the information on mobility like their position to make
the forwarding decision (e.g, PROPHET [11]). The third
approach consists in using the social information, e.g., node
degree, detected communities, daily routines, to forward the
message to the best candidate nodes (e.g., BubbleRap [5],
dLife [13]). These informations are not always available or
difficult to obtain.

In this work, we address a more general problem by not
leveraging on the assumption on social structure or mobility.
We postulate that mobile nodes may leverage on the intrinsic
temporal structure that exists in every DTNs to efficiently
route information. Intuitively, when looking for someone
through a third person, people usually ask questions such
as “when was the last time you met him/her?, Do you know
someone who recently meets him/her ?” etc. Therefore, time
is also a cue to consider for routing in DTNs. We address
this issue in the next section.

3. TEMPORAL STRUCTURE OF DTNS
This section aims to introduce the temporal structure that

exists inherently in DTNs and a model that captures the dis-
order degree of such networks. Dynamic networks such as
DTNs, in contrast to static networks, evolve in temporal
and spatial dimensions. Therefore, one of the most simple
and natural structure that could emerge from a DTN could
be given by a relation of temporal and spatial order. This
consideration leads to study if it makes sense to consider
the notion of spatio-temporal proximity between nodes in
a DTN. Intuitively, we can consider that the more often a
node is close to another node the smaller is its spatiotem-
poral distance from this node. Therefore this notion of spa-
tiotemporal distance is defined from a statistical point of
view according the time and space behavior of nodes. More-
over, this notion of distance can be recursively defined by
considering the transitive closure of contacts between nodes.
This consideration raises the following questions that will
find answers in this paper:

• Is there any simple way to process in every node, just
from its opportunistic contacts, its spatiotemporal dis-
tance to the other nodes?

• Can we use this notion and the resulting order rela-
tion entailed on the space of nodes to improve routing
decisions in dynamic networks?
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Figure 1: Network model

Following opportunistic contacts between nodes from a
source to a destination along a dynamic path (as defined in
[15]) every node can potentially process how far the source
is from it. In other words every node of a dynamic path
can be aware of the distance between the source and itself.
Moreover, in [18], several traces analysis that we have driven
lead to the conclusion that the spatio temporal distance
in dynamic graph is symmetric. This means that during
some time window the dynamic path length between node
i and node j is equal to the dynamic path length between
j and i. Therefore as soon as nodes of a DTN can process
their respective distance they can use this information dur-
ing opportunistic contacts for assessing if a node in contact
is “closer” or “farther” from a destination node. More for-
mally, this notion of temporal distance is based on the two
following metrics

• Delay d
j
i (t): the delay of node i with respect to node

j at time t is the elapsed time from the last moment
when there was a dynamic path from j to i. Formally,

d
j
i (t) = {inf(t− t0)|t0 ≤ t and ∃ a dynamic path from

j to i starting at time t0} .

• Hops hj
i (t): the number of nodes on the path.

If mobile nodes in a DTN keep track of these metrics with
respect to other nodes, the metric values will maintain an or-
der relation between all the nodes in the network which rep-
resents a “temporal and spatial proximity” between nodes.
In consequence, this order relation forms a gradient field
from a node towards the others. It’s worthy to note that
this temporal structure is inherent to any dynamic network
in which there are intermittent contacts between nodes.

To build such structure, we need to maintain two scalars
dki (t) and hk

i (t) for each destination k at each node i. Ini-
tially, the metrics are null because nodes do not know about
each others. Through opportunistic contacts, nodes learn
about the existing of other nodes and update their scalars.
The algorithm to build and maintain the temporal structure
is summarized in Algorithm 1. Indeed, when two nodes are
in contact, the node which is farther from the destination in
time (i.e., has a smaller value of d) learns the new shorter
dynamic path and hence updates its delay value (i.e., equals
to the other node’s delay value) and its number of hops
(i.e., equals to number of the other node plus 1). Note that
the delay metric can be implemented by two methods. The
straightforward implementation of the definition consists in
using a timer to keep track of the delay with respect to
a destination. We consider here a simpler method in which
dki (t) = { sup(t0)|t0 ≤ t and ∃ a path from k to i starting at
time t0}.

1 repeat
2 if contact with a node j then
3 for all known destination k do
4 dki (t+ 1) = max(dki (t), d

k
j (t));

5 if dki (t) < dkj (t) then
6 hk

i (t+ 1) = hk
j (t) + 1;

7 until Tmax;
Algorithm 1: Building the temporal structure at node i

These two simple metrics reflect how a DTN is structured.
Indeed, a DTN may be very regular, i.e., with a periodic
contact pattern in which a node is always connected to the
same node after the same time interval. In such network, the
metric values are constant or periodic. On the contrary, the
network regularity may be random such that a node can be
connected to any node at any time. In this case, the metric
values evolve randomly. We introduce in this paper a sim-
ple parametric model able to capture the regularity/disorder
degree of DTNs. This model covers the full scope between
a totally regular network and a totally random network by
gradually increasing the disorder of network’s contact pat-
terns.

Let us consider a network of N nodes n0, . . . , nN−1 that
evolves over time with a periodic contact pattern as follows.
At time 0, n0 is connected to n1; at time 1, n1 is connected
to n2; at time 2, n2 is connected to n3 and so on. This
contact pattern repeats until time Tmax beyond which we
no longer observe the network. Note that we consider that
contact arrivals are atomic and so can be serialized.

We introduce disorder into this network by rewiring its
links as follows. For each contact, with a probability p we
replace it by a contact between another pair of nodes. With
probability 1 − p we let the contact unchanged. We oper-
ate this rewiring process until time Tmax. We illustrate the
process in Figure 1.

This rewiring process results in:

• When p = 0, the network is totally regular and ex-
presses a periodic contact pattern.

• When p = 1, the network is totally random i.e. any
contact can happen at any time.

• By varying p between 0 and 1, we gradually inject
disorder into the network. Therefore the parameter p

quantifies the disorder degree.

4. DISORDER DEGREE OF REAL HUMAN-

CENTRICS DTNS
In this section, we investigate various real traces of Human-

Centric DTNs to estimate their disorder degree using the
previously described model. To estimate the rewiring prob-
ability p of real networks, we first need to identify the peri-
odic contact patterns in the traces. We apply the following
algorithm to detect the contact patterns and estimate the
value of p. For each pair of nodes (i, j), their contact times
are collected and a time series cij(t) in which cij(t) = 1 if
i encounters j at time t and 0 otherwise is generated. The
auto-correlation coefficients of these series

Corrij(k) =

Tmax−k∑

i=1

cij(i)cij(i+ k) (1)



Dataset Size (nodes/days) Environment preal (%)

Cambridge05 12/6 laboratory 12.97
Intel 9/6 laboratory 16.78
Cambridge06 36/54 city 22.17
Infocom06 98/4 conference 27.77
MIT 104/246 campus,city 29.96
Infocom05 41/4 conference 34.96
Milan 49/19 university 39.31

Table 1: Estimated disorder degree of real dynamic
networks

give us the number of contacts that are separated by k time
units. We then reorder the auto-correlation coefficients in
descending order and select the second mode Mij for each
pair of nodes (the first mode corresponds to k = 0). The lag
k that gives this mode is the most frequent contact period.
For each pair of nodes, we count the number of k-periodic
contacts then sum up globally. Consequently, an estimate
of p is given by

preal =
contacts−

∑
ij
Mij

contacts
. (2)

We ran the algorithm on various traces ([19, 12, 10, 3]).
These network traces contain recorded bluetooth connection
activities in different environments. Table 1 shows the char-
acteristics and the estimated preal values of all traces.

The results show that the analyzed Human-Centric DTNs
exhibit a low disorder degree ranging from 10% to 40%. We
can see that the large traces seem to have a larger disor-
der degree than the small ones. Especially, spontaneous
networks, such as networks at conferences, exhibit a higher
randomness than business structured networks. The results
also suggest that, the more a DTN is structured around a
business activity, the more regular the network is.

5. ROUTING IN HUMAN-CENTRIC DTNS

USING TEMPORAL STRUCTURE

5.1 One-message Routing Algorithms Class
Routing aims to find an efficient path from a node to an-

other which minimizes some costs. That is, if a node i wants
to send a message m to a node j, how do i can find a path
to j which minimize some cost function. In this paper, we
propose a simple and efficient solution using the temporal
structure introduced in the previous section. As previously
discussed, the temporal structure creates a order relation
between nodes. Such order relation can be the cue allowing
a node to find the efficient path. Indeed, when two nodes
are in contact, they know which one is closer to the desti-
nation. Therefore the decision of forwarding the message to
the destination can be based on this order relation.

A straightforward solution of routing in DTN is to send
the message to every encountered node while keeping a mes-
sage copy. This viral diffusion or flooding solution, while
guaranteeing the best delay induces buffering and network
capacity overheads, which make this solution impracticable
in reality. In the following, for focusing on the impact of
contact regularity on routing, we will consider the basic and
worst case solution where only one copy of each packet is
kept in the whole network.

Let us introduce a class of routing algorithms A that uses
only one message copy reach the destination. Let assume

1 repeat
2 if contact with another node k then

3 if d
j

k(t) < d
j
i (t) then

4 forward(m);

5 else if d
j

k(t) = d
j
i (t) then

6 if h
j

k(t) < h
j
i (t) then

7 forward(m);

8 until Destination reached;
Algorithm 2: GRAD-DOWN

1 repeat
2 if contact with another node k then

3 if d
j

k(t) > d
j
i (t) then

4 forward(m);

5 else if d
j

k(t) = d
j
i (t) then

6 if h
j

k(t) > h
j
i (t) then

7 forward(m);

8 until Destination reached;
Algorithm 3: GRAD-UP

that at time t, a node i search an efficient path towards a
node j. It creates a message m to j. At each contact with a
node k, following the forwarding strategy of A, i will decide
whether or not to forward m to k. The goal of A is optimiz-
ing the cost for m to reach j. In this paper, we consider 3
costs, respectively the delay, the delivery rate and the over-
head which are 3 basic metrics to evaluate routing protocols
in DTNs. We introduce here two greedy algorithms that ex-
ploit the temporal structure. In these algorithms, messages
follow either upward or downward the gradient slope of the
temporal structure to reach their destination. With the first
algorithm named GRAD-DOWN, detailed in Algorithm 2,
a node forward the message if the encountered node has a
lower delay or an equal delay with a lower hops. Conversely,
the GRAD-UP algorithm, detailed in Algorithm 3, consists
in forwarding the message as soon as the encountered node
has a higher delay or an equal delay with a higher hops. We
will study the performance of these algorithms in function
of the disorder degree of the network.

5.2 Simulation Results & Discussions
In this section, we present and discuss our simulation re-

sults. We also provide a full formal analysis of the algorithm
in [16]. To evaluate the performance of these algorithms, we
implemented them in the ONE simulator for Delay Tolerant
Networks [6]. We also compare them with 4 other algo-
rithms: Direct Delivery, First Contact, PROPHET [11] and
dLife [13]. Direct Delivery is the most radical solution in
which a node waits until being in contact with the destina-
tion to deliver the message. FIRST-CONTACT consists in
forwarding systematically the message at the first contact.
The more elaborated PROPHET routing protocol is based
on the contact history to infer the probability that a node
will encounter the destination. Finally, dLife is a social-
based approach that exploits the human daily routines to
deliver messages.

For a given rewiring probability p, we generate under
MATLAB a regular connection trace of a network of 100
nodes with Tmax being 10000 time units and rewire it fol-
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Figure 2: Performance comparison of all algorithms

lowing the model described in Section 3. The rewired trace
is then fed to the ONE simulator [6]. As we want to focus
only on measuring the impact of the disorder on these rout-
ing algorithms, the connection bandwidth and the buffers
are assumed to be infinite. A message between a randomly
taken pair of nodes is generated each 5 time units. Because
our approach does not rely on an assumed daily routine, to
be fair with dLife, we create a favorable simulation setting
for this protocol by assigning a contact cycle to a day and a
contact to a time slot.

We choose to evaluate the delivery delay, the delivery rate
and the overhead (i.e., the number of relays to perform a
successful delivery)–three basic performance measures–for
all algorithms. For each value of p, we run each algorithm
on 10 generated random traces. The performance is then
measured as the average over 10 simulation runs. Figures
2(a),2(b) and 2(c) depict the resulting three performance
measures for all algorithms coupled with the 95% confidence
intervals. We can see that the algorithms behaves differ-
ently as we vary the disorder degree in the network. With a
highly regular network, GRAD-UP outperforms all other al-
gorithms while Direct Delivery offers the worst performances
among them. GRAD-DOWN and PROPHET perform quite
bad in a regular network with a higher delivery rate and a
lower overhead for GRAD-DOWN. FIRST-CONTACT and
dLife deliver fast but with low delivery rate in a regular net-
work. Moreover, the naive forwarding strategy of FIRST-
CONTACT makes that its overheard is much higher than
the others (in the order of 104). For easy-reading, we do not
plot this result.

When the disorder degree increases in the network, GRAD-
DOWN outperforms all other algorithms by minimizing the
delivery delay while maximizing the delivery rate and keep-
ing a low overhead. As expected, the Direct Delivery algo-
rithm performs worst in term of delivery delay and delivery
rate due to its radical forwarding strategy. GRAD-UP and
FIRST-CONTACT performs bad when the network is dis-
ordered. PROPHET also takes advantage of the disorder to
deliver faster and with higher delivery rate than GRAD-UP
and FIRST-CONTACT. dLife performs well in a highly dis-
ordered network, with slightly better performances in term
of delivery delay and delivery rate compared to GRAD-
DOWN. It’s overhead is as good as Direct Delivery. This
is a surprising result because dLife is supposed to work well
in a regular network.

When the network is totally random, the algorithms have
similar performances. In overall, GRAD-DOWN has the

best performances over a wide range of network structures
compared to the other algorithms. Its sibling GRAD-UP
performs in an inverse manner. This first results show that
the temporal structure creates a natural gradient field allow-
ing, when exploited, the messages to reach their destinations
with low delay, high delivery rate and low overhead. We will
look closer at this phenomenon to understand how the tem-
poral structure is formed and maintained in the network. In
the following, we will focus on the delivery delay, which is
an important performance measure for a routing algorithm
in Human-Centric DTNs.

These results show that routing performances in DTNs
greatly depends on the degree of disorder. Specifically when
we introduce a little level of disorder into the network (i.e.,
20% rewired links), the network become highly navigable
using our approach. But the more disorder increases, the
less we can leverage on time structure.

We can see that, in a totally regular network, the con-
tacts follow the cycle: n0 ↔ n1, n1 ↔ n2, . . . , nN−1 ↔ n0.
In consequence, according to the two previously introduced
metrics and their updating procedures, when the contact
between node ni and ni+1 happens, ni is always “closer” to
the destination k than ni+1 in term of delay and number of
hops, and hence has a smaller gradient value. In that case,
GRAD-UP achieves its best performance, as we can see on
Figure 2(a) and 2(b), because the message is forwarded in
the direction of the contacts. Conversely, GRAD-DOWN
performs badly in this case because the node bearing the
message has to wait a contact cycle to encounter a node
whose the gradient value is smaller. By increasing the dis-
order degree in the network, we introduce shortcuts that
shorten the contact cycle. GRAD-DOWN takes advantage
of these shortcuts to make faster deliveries while GRAD-UP
is penalized by them. At the other extrema, in a totally
disordered network, any contact can happen at any time
hence there is no longer interest in leveraging on order in
the contacts. Too many shortcuts contribute to suppress
the cue to find efficient paths resulting in message converg-
ing more slowly towards their destination. Intuitively, the
optimal point (i.e. p equals to 0.2) corresponds to a network
structure in which the contact order is still conserved but
the number of injected shortcuts is just enough to reduce
the delay until being in contact with a node with smaller
gradient value. We confirm this intuition by collecting the
traces of messages which successfully arrived at their desti-
nations. These traces contain the chains of nodes by which
the message passed through and also the time when it was
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Figure 3: (a) Message passing chains (from the top,
p = 0, 0.1, 0.2, 0.5, 1 respectively) (b) Average message
passing chain length (hops)

forwarded to these nodes. Figure 3(a) shows 10 chains for
p equals to 0, 0.1, 0.2, 0.5, 0.7 and 1. The x-axis depicts the
time and the y-axis depicts the node’s IDs. A totally regular
network makes the nodes holding a message to wait during
100 time units before forwarding it to another node. On
the other hand, the algorithm does not perform better in
a totally random network because the message goes back
and forth between nodes. In consequence the delivery delay
is high. A slight disorder improves significantly the perfor-
mance thanks to the shortcuts that reduce the path length.
To be more precise, Figure 3(b) shows the average chain
length (i.e. number of nodes on the chain) over 10 simula-
tion runs. It is clear that we achieve the best performances
at p equals to 0.2.

6. CONCLUSION
This paper has analyzed the impact of the periodicity and

regularity of nodes inter-contacts on information routing in
Human-Centric DTNs. First, we gave the characterization
of the spatio-temporal structure of these networks from the
notions of spatio-temporal distance between nodes. Then,
based on real dynamic network trace analysis, we showed
that the inter-contact relations follow some degree of peri-
odicity and regularity. We formalize these notions of reg-
ularity and periodicity of contacts via a simple parametric
model. From these definitions, we studied the impact of the
disorder, expressed as a decrease in the regularity and peri-
odicity of contact patterns, on the performances of routing
protocols and showed that a family of routing algorithms
can leverage on this disorder to deliver messages efficiently.
Especially, we showed that when a dynamic network has a
fraction of disorder of about 20%, this algorithm achieves
its optimal performance. At the best of our knowledge, this
is the first work that studies this aspect of DTNs. However,
we are convinced that there are rooms to develop further
this research. Especially, the model presented in this paper
can be extended to be more realistic by considering different
frequencies of contact for different nodes. One other possible
direction is to combine the two presented routing algorithms
to have an adaptive algorithm that performs efficiently in all
contexts.
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