
Towards Network-wide QoE Fairness Using
OpenFlow-assisted Adaptive Video Streaming

Panagiotis Georgopoulos, Yehia Elkhatib, Matthew Broadbent,
Mu Mu, Nicholas Race

School of Computing and Communications, Infolab 21,
Lancaster University, Lancaster, LA1 4WA, United Kingdom

{p.georgopoulos, y.elkhatib, m.broadbent, m.mu, n.race}@lancaster.ac.uk

ABSTRACT
Video streaming is an increasingly popular way to consume
media content. Adaptive video streaming is an emerging de-
livery technology which aims to increase user QoE and max-
imise connection utilisation. Many implementations naively
estimate bandwidth from a one-sided client perspective, with-
out taking into account other devices in the network. This
behaviour results in unfairness and could potentially lower
QoE for all clients. We propose an OpenFlow-assisted QoE
Fairness Framework that aims to fairly maximise the QoE
of multiple competing clients in a shared network environ-
ment. By leveraging a Software Defined Networking tech-
nology, such as OpenFlow, we provide a control plane that
orchestrates this functionality. The evaluation of our ap-
proach in a home networking scenario introduces user-level
fairness and network stability, and illustrates the optimisa-
tion of QoE across multiple devices in a network.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: [Evaluation/
methodology]; C.2.3 [Network Operations]: [Network mon-
itoring, Network management]; C.4 [Performance of Sys-
tems]

General Terms
Design, Human Factors, Algorithms, Measurement

Keywords
Video Adaptation, Fairness, Quality of Experience (QoE),
OpenFlow, Software Defined Networking, MPEG-DASH

1. INTRODUCTION
Recent years have seen the growing popularity of video

streaming in best effort IP networks, thanks to the increas-
ing computational and display capabilities of user devices.
In 2011, Internet video traffic accounted for 51% of all con-
sumer Internet traffic. By 2016, it is expected to be 55% [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FhMN’13, August 16, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-2183-9/13/08 ...$15.00.

High Definition content has also become the de facto qual-
ity level consumed by users: in 2011, high definition video
traffic surpassed standard definition for the first time [4].

Although bandwidth provision in consumer networks has
been greatly improved in the last few years, streaming high
bitrate audio-visual content places ever increasing load on
the underlying infrastructure. Without any adaptation in
the user application and/or advanced traffic control, insuffi-
cient network resources can cause network congestion. This
can lead to video quality degradation that manifest as video
artifacts or frame freezing during playback. This is particu-
larly critical in unmanaged best-effort networks where there
are growing numbers of concurrent video streaming applica-
tions from a variety of different user devices.

One of the ultimate goals in future multimedia networks is
to provide a user-centric fair-share of network resources, so
that the user Quality-of-Experience (QoE) is maximised for
all users in a network. There is a strong need to ensure QoE
fairness across different devices in a network-wide manner,
i.e. for devices that are sharing a bottleneck. Examples
include residential, campus, and corporate networks, as well
as publicly available hotspots.

Recent developments in scalable video streaming [22] and
adaptive streaming [13] facilitate the dynamic adjustment of
the streaming bitrate to minimise video pauses and buffering
times, and ultimately improve the overall user experience.
However, these types of video adaptation present three sig-
nificant problems. Firstly, they are unstable and bursty in
nature, especially when competing with other video clients
and associated flows [1, 9]. Secondly, each video application
is free to employ its own adaptation strategy, potentially
leading to further network congestion. Thirdly, video adap-
tation occurs based upon each client’s perspective. This can
be problematic because the client has no knowledge of other
clients on the same network and typically aims to selfishly
maximise its own QoE. Such selfish behaviour could poten-
tially lead to worsened QoE levels for multiple clients due
to increased network congestion [1, 9, 12].

This paper introduces an OpenFlow-assisted QoE Fair-
ness Framework (QFF) that aims to optimise the QoE for
all video streaming devices in a network, whilst also taking
into consideration various device and network requirements.
QFF is designed to monitor video streams in a network and,
in conjunction with a client control plane, dynamically ad-
just video flow characteristics to ensure network-wide QoE
fairness. QFF accounts for both the user’s, device-based,
requirements and the current status of the network. The
implementation and evaluation of the QFF is conducted us-

15

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2491172.2491181&domain=pdf&date_stamp=2013-08-16

ing MPEG-DASH and OpenFlow, two promising standards
for audio-visual content distribution and network manage-
ment in future multimedia networks, respectively.

The remainder of the paper is organised as follows. Sec-
tion 2 provides the background of this work, whilst the mo-
tivation and related work is presented in Section 3. Section
4 introduces QFF and our implementation. Evaluation is
shown in Section 5 and finally, Section 6 discusses our fu-
ture work and concludes the paper.

2. BACKGROUND

2.1 Adaptive Bitrate Video Streaming
Adaptive bitrate video streaming aims to support the in-

creasing requirements of future multimedia networks. By
dynamically adapting the bitrate of video during playback,
it is possible to minimise video interruption and buffering
times. By taking available bandwidth into consideration, a
client can request the highest possible video quality. This
should translate in a better experience for the user. Cur-
rently, there are a number of solutions that specifically sup-
port dynamic bitrate adaption, such as HDS by Adobe,
Smooth Streaming by Microsoft and HLS by Apple. In
this paper, we will be working with an implementation stan-
dardised by the Moving Pictures Experts Group under the
name of MPEG-DASH or simply, DASH (Dynamic Adap-
tive Streaming over HTTP) [13]. This was chosen due to its
vendor-agnostic design, that will see implementations on a
wide range of devices and operating systems in the future.

Adaptive bitrate video streaming is almost exclusively de-
livered using HTTP. Different bitrate encodings of the same
content are fragmented into fixed time chunks. These are
then listed in a Media Presentation Description (MPD) or
manifest. For any given time during the video’s prescribed
length, a number of different bitrate options are available.
Swapping between the available bitrates is as simple as an
application requesting a chunk with a different bitrate.

2.2 Software Defined Networking
Software Defined Networking (SDN) is a new, very promis-

ing, networking approach that facilitates the decoupling of
the control plane in a network (i.e. the decision making
entity) from the data plane (i.e. the underlying forward-
ing system). OpenFlow [17], currently the prominent SDN
protocol, defines the communication between the Layer 2
networking devices (i.e. switches) and the controller of the
network. OpenFlow allows experimenters, researchers, pro-
tocol developers and network administrators to exploit the
true capabilities of a network in a quick, easily deployable
and flexible manner. With the centralised network perspec-
tive that OpenFlow provides through its controller, an ex-
perimenter has an overarching view of the current status in
the network. In addition, they have the ability to introduce,
at run-time, new functionality without having to specifically
modify any of the networking devices. OpenFlow’s recent
popularity is in part due to its open and vendor-agnostic
nature. It provides powerful tools to both network admin-
istrators and developers, and enables the implementation of
a diverse range of functionality and network behaviour.

3. MOTIVATION AND RELATED WORK
Using DASH, a user device is offered a set of representa-

tions to fit its screen resolution. Each representation defines

the bandwidth required to stream that bitrate of transcoded
video content. This enables a client to optimise the video
streaming based upon available bandwidth. A direct impact
of video transcoding using limited bitrates is image compres-
sion loss. Research work in the field of video quality analysis
shows that there is no linear correlation between the bitrate
of a video stream and its perceptual quality [3]. In order to
optimise the efficiency of network resource allocation whilst
maintaining a satisfactory level of user experience, it is es-
sential to quantify the non-linear mapping (in the form of
utility functions) between bitrates and perceived video qual-
ity [3].

In an environment of heterogeneous user devices, such as
a household or a campus network, efficient allocation of net-
work resources is further complicated. The ultimate goal
of resource sharing is not only optimising the QoE for a
single user application, but rather achieving user-level fair-
ness between relevant applications on multiple user devices.
However, achieving such goal for live or on-demand HTTP
streaming applications is non-trivial due to two shortcom-
ings in current DASH implementations. Existing DASH-
capable applications can suffer from instability and unfair
network resource sharing [2, 12]. These are consequences of
using HTTP as a transport layer which creates a mismatch
between client behaviour and TCP, as we describe below.

Both TCP, the transport protocol employed by HTTP,
and current DASH-capable implementations adapt their net-
work usage based on feedback they get from it. TCP and
DASH are, however, different in ways other than belonging
to different networking layers. TCP aggressiveness is con-
trolled by the sender, while it is the receiver who throttles
the traffic in existing DASH clients. Another difference is
their objectives: TCP aims to increase bandwidth utilisa-
tion whilst avoiding congestion through acting as a “good
network citizen”; a DASH client is much more user-centric,
aiming to ensure uninterrupted video playback by prefetch-
ing and buffering sufficient video chunks.

This mismatch allows a DASH client to continuously in-
flate its receiver window during ON periods. This inadver-
tently forces the sender to burst as much traffic as possi-
ble on to the network, until either enough video chunks are
buffered at the client (which then switches to OFF mode),
or until the sender incurs TCP packet loss. This behaviour
causes extremely bursty traffic and TCP inefficiency, as con-
nections are repeatedly restarted between ON/OFF periods,
resulting in unstable video playback quality and unfair shar-
ing of network resources [2, 12].

Another consequence of using HTTP as a transport pro-
tocol is a disruption in the feedback loop from the network.
Current DASH implementations employ their own client-
based bandwidth estimation tool which has been reported
to yield inaccurate measurements [11, 8], another reason for
unstable and suboptimal selection of streaming bitrates [12].

Ultimately, instability diminishes user engagement [7, 18,
15, 19], and inefficient network usage induces instability to
other DASH users sharing the same network [1, 9]. Hence,
there has been several efforts to readjust the imbalance be-
tween TCP and typical DASH behaviour. Most of these
efforts have focused on altering the DASH client to improve
its sensitivity to the state of the network. One solution, put
forward in [12], is to have some cross-layer interaction be-
tween TCP and HTTP in order to provide the streaming
application with better metrics and to allow TCP to reach

16

steady-state. This would indeed improve TCP performance,
but would not control the ON/OFF nature of DASH-style
applications. Furthermore, it would not attain network-wide
fairness across all devices. Tian and Liu [21] use throughput
prediction algorithms to attenuate video rate fluctuations.
Mansy et al. [16] have shown that DASH’s bursty nature
leads to excessive queuing in the network (a phenomenon
commonly referred to as bufferbloat [10]) and proposed to
adjust DASH’s buffering behaviour to keep the size of the
client’s receiver window low. FESTIVE [14] attempts to im-
prove fairness, stability and efficiency through using a DASH
player with a stateful, delayed bitrate update mechanism.
However, the outcome is client specific and cannot be easily
adapted to achieve similar goals across multiple clients.

4. QOE FAIRNESS FRAMEWORK
We introduce an OpenFlow-assisted QoE Fairness Frame-

work (QFF) that fairly maximises users’ QoE in multime-
dia networks. QFF employs OpenFlow that allows vendor-
agnostic functionality to be implemented for network man-
agement and active resource allocation. With the help of
OpenFlow, QFF monitors the status of all the DASH video
applications in a network and dynamically allocates network
resources to each device. This allocation ensures that the
QoE of all video streams on even heterogeneous user devices
is optimised to achieve the maximum user-level fairness.

QFF avoids user-agnostic network management, where
bandwidth is blindly divided between active user sessions.
Such a management approach leads to unfairness in terms
of the experience users receive given different device require-
ments, as both our work (Sections 4.1 and 5) and related
work show [1, 9, 12]. The underlying reason is at a sin-
gle bitrate (delivered by equal bandwidth sharing), a device
of higher resolution, such as an HD IPTV, would receive a
significantly lower QoE compared to a device with less capa-
bilities, such as a smartphone. Instead, the core of QFF is
a bandwidth allocation algorithm, which is designed to seek
the optimal representations for each video application based
on bitrate to QoE utility functions.

Figure 1 presents a high-level view of the QFF. At its
core, there is an OpenFlow Module (OM), running on the
OpenFlow controller of the network. This is responsible for
orchestrating the main QFF functionality. Logically, the
QFF is also composed of three additional parts :

1. Input : The Network Inspector and the MPD Parser
provide the network and clients’ status as input to the
core OM. The Network Inspector monitors the packets
in the network and informs the OM of the number of
devices in the network, the streaming bitrate each de-
vice is currently requesting and the available network
capacity. The MPD Parser checks the MPD files re-
quested by the users and informs the OM as to the
specifics of the clients’ video requests, such as the du-
ration and available encoding bitrates of a requested
video file, and the number and size of its chunks. Both
the Network Inspector and the MPD Parser use the
OpenFlow protocol to capture this information from
the switches in a network and pass them to the OM.

2. Intelligence : The Utility Functions and the Opti-
misation Function (described in Sections 4.1 and 4.2,
respectively) interact with the OM to dynamically op-
timise QoE fairness at each point in time. In essence,

Figure 1: OpenFlow-assisted QoE Fairness Framework

each Utility Function provides a model that maps the
bitrate of a particular video to the QoE delivered on
that device. The Optimisation Function finds a set of
bitrates for each streaming video in the network that
results in equivalent QoE level for all devices according
to the specific Utility Functions.

3. Output : The Flow Tables Manager and the DASH
Plugin ensure that the decisions of the OM are being
appropriately propagated to the network. In partic-
ular, the Flow Tables Manager adds the appropriate
flows to the OpenFlow switches, so that each client
receives the requested video stream. The DASH Plu-
gin uses the OM’s Intelligence to inform all DASH
clients of the bitrate that they should now be request-
ing to achieve network-wide QoE fairness. QFF is not
restricted to DASH and allows other adaptive video
streaming technologies to be plugged into it.

4.1 Utility Functions
QFF’s Utility Functions provide a model that maps the

bitrate of a video at a particular resolution and the QoE
perceived by the user. For wide adoption of QFF, a database
consisting of a Utility Function per video at each resolution
would need to be constructed.

To evaluate the feasibility of our design, we selected a ref-
erence source video file of an animated film called “Big Buck
Bunny”1. This film is widely used by researchers in the area
of adaptive content distribution. We acquired the uncom-
pressed YUV video files in 360p, 720p and 1080p resolution
and the FLAC audio file. Then, we used FFMPEG to encode
the source files using the H.264/AAC audio-visual codec and
MPEG4 encapsulation for direct HTML5 video playback us-
ing DASH-JS [6] (a DASH implementation). These resolu-
tions are selected to represent three typical user devices;
smartphone, tablet/PC and HD IPTV respectively. Nowa-
days, modern devices could be equipped with even higher
resolution screens and corresponding computing resources,
but we believe that the three selected resolutions encom-
pass a significant number of use cases. We generated 22 test
video sequences with various predefined bitrates for each res-
olution, with respect to practice, as shown in Table 1. In
addition, a lossless version of the encoded video was also
generated as a reference for each resolution.

1http://www.bigbuckbunny.org/

17

In order to measure the quality of the encoded test se-
quences, we employed objective video quality assessment
models. The Structural Similarity Index (SSIM) uses a func-
tional model of the Human Visual System (HVS) by com-
bining local luminance, local contrast and structure compar-
ison [23]. The Video Quality Metric (VQM) is also a HVS-
based objective model that measures the perceptual effects
of video impairments [24]. The video quality of all our test
sequences was measured by evaluating the perceptual loss of
every test video sequence to the lossless encoded reference
video using SSIM and VQM. Examining the assessment re-
sults from both metrics reveals an extremely high absolute
Pearson correlation R of 0.9912 (R2=0.9825). Therefore, it
was decided to adopt SSIM as the quality metric to create
our Utility Functions.

The scatter plot showing the mapping of bitrate to video
quality using SSIM (Figure 2) presents our two fundamen-
tal principles. First, the relationship between bitrate and
perceptual quality is not linear; as the bitrate increases, the
gain in video quality is gradually saturated. Second, the
equal division of network bandwidth for video steams of dif-
ferent resolutions (i.e. a vertical line representing a certain
bitrate for all clients) results in unfair video quality levels
as perceived by end-users. In order to generalise the bitrate
to video quality mapping and derive a set of parameters for
our QFF’s Utility Functions, we conducted curve fitting us-
ing a number of general models. The two-term power series
model has proven to be the most suitable function (Table
2, Figure 2) providing a high level of goodness of fit for
all three selected resolutions whilst keeping a low computa-
tional complexity for the Optimisation Function.

Table 1: Set Bitrates for Three Video Resolutions

Resolution Video Bitrate (kbps)
1080p 100, 200, 600, 1000, 2000, 4000, 6000, 8000
720p 100, 200, 400, 600, 800, 1000, 1500, 2000
360p 100, 200, 400, 600, 800, 1000

Table 2: Model and Coefficients for Utility Function

General Two-term Power Series Model Goodness
Model f(x) = axb + c of Fit
For a b c Adjusted R2 RMSE
1080p -3.035 -0.5061 1.022 0.9959 0.006011
720p -4.85 -0.647 1.011 0.9983 0.002923
360p -17.53 -1.048 0.9912 0.9982 0.002097

Figure 2: Scatter Plot and Derived Utility Function

4.2 Optimisation Function
The Optimisation Function uses the models that the Util-

ity Functions provide in order to find the optimum set of
bitrates that ensures QoE fairness across all DASH clients
in the network. For each resolution i, there is a Video Qual-
ity (VQ) function fi(xi), where xi represents the bitrate
the video is encoded in. To find such optimum set of bi-
trates for all network devices, we need to compute the value
p = max[mini(fi(xi))] such that

∑
xi ≤ B, where B is the

total amount of bandwidth available in the network. Since
the fi(x) are strictly increasing functions, the above problem
is equivalent to solving

∑
f−1
i (p) = B, where f−1

i () is the
inverse of fi() satisfying f−1

i (f(x)) = x. This is equivalent
to finding the root of a univariate equation, which requires
a simple line search assuming that fi() are continuous.

However, fi() are not continuous: videos are made avail-
able only at a finite set of encoding bitrates (Table 1). Hence,
finding the optimum p is not a straightforward process. We
decided on a branch and bound algorithm [5] that uses heuris-
tic evaluation, which allows us to optimise over a discrete
data set in linear time.

Our starting criterion is solving for p using the contin-
uous functions of Table 2 that fit the VQ curves and the
bandwidth constraint as stated above. This provides theo-
retically optimum bitrates x′i, which have to be downgraded
to the maximum discrete values xi where xi ≤ x′i, ∀i. QFF
supports having pluggable algorithms for enforcing differ-
ent optimisation policies. For our proof-of-concept design,
we implemented two algorithms. Both algorithms calcu-
late ∆x =

∑
x′i − xi and try to maximize additional VQ

that can be obtained from this surplus ∆x. The first algo-
rithm, Promote, tries to upgrade user a with the minimum
VQ, i.e. min(fi(xi)) = fa(xa), from bitrate xa to xa+1,
if xa+1 − xa ≤ ∆x. This is sequentially repeated until no
longer possible. The second algorithm, Boost, has the same
stopping heuristic but starts with upgrading user b with the
least amount of needed bandwidth till its next bitrate, i.e.
min(x′i−xi) = x′b−xb. Both algorithms have modest compu-
tational overhead, requiring ≤0.3s for optimising 100 Utility
Functions with 10 different bitrates each.

5. EVALUATION
In order to evaluate QFF we considered a home network-

ing scenario. In this scenario, users are connected to a home
gateway and are accessing video content on three different
DASH-enabled devices. These devices support different res-
olutions, namely, HD TV (1080p), Tablet (720p) and Smart-
phone (360p).

5.1 Testbed Setup
Figure 3 depicts our testbed setup that recreates the afore-

mentioned home environment. We use off-the-shelf home
networking equipment (TP-LINK WR1043ND) that sup-
ports Pantou, an OpenFlow implementation. We then at-
tach three clients to it, each representing a different device
type. The OpenFlow switch is then connected to the In-
ternet so that each client may access DASH content hosted
externally. An additional machine is used to provide an
OpenFlow controller that runs our QFF. We also throttle
the external link to 8Mbit/s (approximately the UK aver-
age home bandwidth [20]) to emulate a home networking
scenario as accurately as possible.

18

Figure 3 : Testbed Setup

5.2 Experiments
In order to effectively evaluate QFF, we run a number

of experiments upon our testbed using three different ap-
proaches. Firstly, we use DASH-JS [13], an unmodified
DASH client. Secondly, we use OpenFlow to manage the
allocation of the available bandwidth equally between ac-
tive users (EqualBW). Thirdly, we use QFF to run Promote
(Boost’s evaluation is not shown for space, but its results are
similar to that of Promote). For each experiment, we mea-
sure the video bitrates and associated QoE level of each user,
as well as the overall network utilisation. The first exper-
iment illustrates what user applications experience under
the inherent DASH behaviour. The second experiment is
a control to demonstrate what is gained by equally allocat-
ing network resources via an OpenFlow-based control plane.
The third experiment shows the contribution of QFF in im-
proving user-level QoE fairness with the use of OpenFlow.
In each run, the HD TV client (1080p) starts playing at
time 0s. The smartphone (360p) starts its DASH session at
30s, followed by the tablet device (720p) at 60s. Playback
is continued for another minute beyond that point in time.

The results of our experiments are now presented. Fig-
ure 4 portrays the bitrate of the downloaded video chunks
over the duration of each experiment run. Figure 4a shows
one out of 10 runs we carried out, during which there were
23 changes in user bitrate. The number of DASH bitrate
changes across our experiments varies from 18 to 31, with
an average of 23. For EqualBW and Promote, all runs result
in the same changes, i.e. 2, depicted in Figures 4b and 4c.

We note in Figure 4a, where DASH-JS is allowed to resort
to its own adaptation, an unmistakable instability in the bi-
trate of the video stream even before the smartphone starts
streaming. Another interesting observation is that the HD
TV user sacrifices the most in competition over network re-
sources, whilst the other two devices (of lesser capability)
seem to be content bitrate-wise. The HD TV user never

reaches 8000kbps which the network can sustain before 30s.
We attribute this to poor bandwidth estimation, something
that has already been highlighted (see Section 3). When
bandwidth fairness is enforced, as depicted in Figure 4b,
the instability caused by the inaccurate estimation of avail-
able bandwidth is immediately rectified, allowing the clients
to continue smooth playback for longer periods. However,
strict bandwidth fairness is oblivious to the needs of the user
applications. This results, between 0 and 30s, in allocating
half of the available bandwidth between the two active users.
In other words, the HD TV runs at 4000kbps and the smart-
phone at 1000kbps. The smartphone user in this instance is
achieving maximum QoE as he is receiving the maximum
bitrate possible for his device’s resolution. However, the
HD TV is not achieving maximum possible QoE. This is
resolved by our QFF (Figure 4c). Promote uses the SSIM
Utility Functions to factor in the device-specific relationship
between bitrate and QoE, and adapts the bandwidth alloca-
tion policy to achieve maximum QoE for all users. Promote
also achieves improved stability, as EqualBW does.

The bitrate figures however do not indicate what is per-
ceived by the user consuming the video, and hence they do
not tell the whole story. To study the range of QoE levels
delivered by each approach, we present Figure 5. This shows
the mean value as well as the range of QoE levels delivered
per user type and experiment, averaged across our experi-
ments. Conforming to our previous findings, we observe a
distinct instability in the QoE delivered by DASH clients.
This is especially true as the user’s network requirements
increase: signified by diminished mean and inflated variance
in QoE for the HD TV and the tablet. Stability is improved
using the network plane for equal bandwidth sharing. It is
improved even further with our QFF, which produces in-
creased mean QoE and reduced QoE variance, particularly
for the HD TV user.

 0.9

 0.925

 0.95

 0.975

 1

DASH-JS EqualBW Promote

V
id

eo
 Q

u
al

it
y

HD TV
Tablet

Smartphone

Figure 5 : Variance in QoE

 0

 2000

 4000

 6000

 8000

 0 30 60 90 120

B
it
ra

te
 (

kb
p
s)

Time (s)

HD TV
Tablet

Smartphone

(a) DASH-JS

 0

 2000

 4000

 6000

 8000

 0 30 60 90 120

B
it
ra

te
 (

kb
p
s)

Time (s)

HD TV
Tablet

Smartphone

(b) Bandwidth Fairness

 0

 2000

 4000

 6000

 8000

 0 30 60 90 120

B
it
ra

te
 (

kb
p
s)

Time (s)

HD TV
Tablet

Smartphone

(c) Promote Algorithm

Figure 4 : Bitrate Stability

19

6. FUTURE WORK AND CONCLUSION
The Utility Function presented in this paper (Section 4.1)

is dependent upon the characteristics of the test source video,
as it was used to evaluate the feasibility of our design. In or-
der to increase the applicability of QFF for Internet stream-
ing, we would need to create either a Utility Function that
is more generic and covers video content of all natures, or
generate Utility Functions that incorporate video content
metrics, such as motion and complexity. We plan to do
this as future work, in addition to including background
traffic in our experiments and evaluating QFF in a more
widely scoped scenario with more users and enterprise-grade
OpenFlow switches. Finally, subjective user studies will also
be conducted as a feedback loop for our future development.

In this paper we proposed a new framework to achieve
user-level fairness in an adaptive video streaming environ-
ment. QFF focuses on the requirements of future multi-
media networks and optimises the QoE of multiple compet-
ing and heterogenous clients. Our approach leverages the
advantages of OpenFlow to overcome the one-sided client
perspective of video applications, and to offer network-wide
QoE fairness. The results of our experiments demonstrate
that QFF provides network stability and optimises video
streaming QoE across heterogeneous devices in a network.

7. ACKNOWLEDGMENTS
The work presented in this paper was funded by the EU

FP7 OFELIA project (FP7-ICT-258365), the EU FP7 STEER
project (FP7-ICT-318343) and the NERC EVOp (NE-I002200-
1) project. The authors would also like to thank Dr. Andrew
Titman for his assistance with optimising discrete functions.

8. REFERENCES
[1] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and

A. Begen. What Happens When HTTP Adaptive
Streaming Players Compete for Bandwidth? In Proc.
NOSSDAV, 2012.

[2] S. Akhshabi, A. Begen, and C. Dovrolis. An
Experimental Evaluation of Rate-adaptation
Algorithms in Adaptive Streaming over HTTP. In
Proc. 2nd annual ACM Conference on Multimedia
Systems, MMSys ’11, pages 157–168, 2011.

[3] G. Cermak, M. Pinson, and S. Wolf. The Relationship
Among Video Quality, Screen Resolution, and Bit
Rate. IEEE Trans. Broadcast., 57:258 – 262, 2011.

[4] CISCO. The Zettabyte Era. Technical report, 2012.

[5] R. J. Dakin. A Tree-search Algorithm for Mixed
Integer Programming Problems. Comput. J.,
8(3):250–255, 1965.

[6] DASH-JS: A JavaScript-based DASH library for
Google Chrome.
http://www-itec.uni-klu.ac.at/dash/?page id=746.

[7] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan,
V. Sekar, I. Stoica, and H. Zhang. Understanding the
Impact of Video Quality on User Engagement.
SIGCOMM Computer Communication Review,
41(4):362–373, 2011.

[8] Y. Elkhatib. Monitoring, Analysing and Predicting
Network Performance in Grids. PhD thesis, Lancaster
University, Sep. 2011.

[9] J. Esteban, S. Benno, A. Beck, Y. Guo, V. Hilt, and
I. Rimac. Interactions Between HTTP Adaptive
Streaming and TCP. In Proc. NOSSDAV, 2012.

[10] J. Gettys and K. Nichols. Bufferbloat: Dark Buffers in
the Internet. ACM Queue, 9(11):40–54, Nov. 2011.

[11] O. Goga and R. Teixeira. Speed Measurements of
Residential Internet Access. In Proc. Passive and
Active Measurement, pages 168–178, 2012.

[12] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown,
and R. Johari. Confused, Rimid, and Unstable:
Picking a Video Streaming Rate is Hard. In Proc.
ACM IMC, pages 225–238, 2012.

[13] ISO-IEC 23009-1:2012 Information Technology.
Dynamic Adaptive Streaming over HTTP (DASH).

[14] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness,
Efficiency, and Stability in HTTP-based Adaptive
Video Streaming with FESTIVE. In Proc. ACM
CoNEXT, pages 97–108, 2012.

[15] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar,
I. Stoica, and H. Zhang. A Case for a Coordinated
Internet Video Control Plane. In Proc. ACM
SIGCOMM 2012 on Applications, Technologies,
Architectures and Protocols for Computer
Communication, pages 359–370, 2012.

[16] A. Mansy, B. Ver Steeg, and M. Ammar. SABRE: A
Client based Technique for Mitigating the Buffer Bloat
Effect of Adaptive Video Flows. In Proc. 3rd annual
ACM Conference on Multimedia Systems, MMSys ’12.
ACM, 2012.

[17] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Computer Communication
Review, 38(2):69–74, Mar. 2008.

[18] R. Mok, X. Luo, E. Chan, and R. Chang. QDASH: a
QoE-aware DASH system. In Proc. 3rd annual ACM
Conference on Multimedia Systems, MMSys ’12, pages
11–22, 2012.

[19] M. Mu, W. Knowles, P. Georgopoulos, S. Simpson,
E. Cerqueira, N. Race, A. Mauthe, and D. Hutchison.
Quality Evaluation in Peer-to-Peer IPTV Services. In
Data Traffic Monitoring and Analysis: From
Measurement, Classification and Anomaly Detection
to Quality of Experience, LNCS, pages 302–319.
Springer, 2013.

[20] Ofcom. Overview of UK Broadband Speeds. http:

//stakeholders.ofcom.org.uk/market-data-research/other/

telecoms-research/broadband-speeds/bb-speeds-nov-11.

[21] G. Tian and Y. Liu. Towards Agile and Smooth Video
Adaptation in Dynamic HTTP Streaming. In Proc.
ACM CoNEXT, pages 109–120, 2012.

[22] I. T. Union. H.264: Advanced Video Coding for
Generic Audiovisual Services (Part 10), 2003.

[23] Z. Wang, L. Lu, and A. C. Bovik. Video Quality
Assessment based on Structural Distortion
Measurement. Signal Processing: Image
Communication, 19(2):121–132, 2004.

[24] S. Wolf and M. H. Pinson. Spatial-temporal Distortion
Metric for in-service Quality Monitoring of any Digital
Video System. In Proc. SPIE, volume 3845, page 266,
1999.

20

