
Exploiting Locality in Distributed SDN Control

Stefan Schmid
TU Berlin & T-Labs, Germany

stefan@net.t-labs.tu-berlin.de

Jukka Suomela
Helsinki Institute for Information Technology HIIT

Department of Computer Science
University of Helsinki

jukka.suomela@cs.helsinki.fi

ABSTRACT
Large SDN networks will be partitioned in multiple controller
domains; each controller is responsible for one domain, and
the controllers of adjacent domains may need to communicate
to enforce global policies. This paper studies the implications
of the local network view of the controllers. In particular,
we establish a connection to the field of local algorithms and
distributed computing, and discuss lessons for the design
of a distributed control plane. We show that existing local
algorithms can be used to develop efficient coordination
protocols in which each controller only needs to respond to
events that take place in its local neighborhood. However,
while existing algorithms can be used, SDN networks also
suggest a new approach to the study of locality in distributed
computing. We introduce the so-called supported locality
model of distributed computing. The new model is more
expressive than the classical models that are commonly used
in the design and analysis of distributed algorithms, and it
is a better match with the features of SDN networks.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Network
Architecture and Design; C.2.4 [Computer-Communica-
tion Networks]: Distributed Systems; F.1.1 [Computa-
tion by Abstract Devices]: Models of Computation

Keywords
local algorithms, software defined networking

1. INTRODUCTION
The paradigm of software defined networking (SDN)

advocates a more centralized approach of network control,
where a controller manages and operates a network from
a global view of the network. However, the controller may
not necessarily represent a single, centralized device, but the
control plane may consist of multiple controllers in charge of
managing different administrative domains of the network or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

different parts of the flow space. The problem of managing a
network and enforcing policies in such a distributed control
plane, however, exhibits many similarities with the task
of designing local algorithms—a well-studied subfield in
the area of distributed computing. Local algorithms are
distributed algorithms in which each device only needs to
respond to events that take place in its local neighborhood,
within some constant number of hops from it; put otherwise,
these are algorithms that only need a constant number of
communication rounds to solve the task at hand.

This paper highlights that there is a lot of potential for
interactions between the two areas, the distributed control
of SDN networks and local algorithms. On the one hand,
we argue that there are many recent results related to local
algorithms that are relevant in the efficient management and
operation of SDN networks. On the other hand, we identify
properties of SDN networks which raise additional and new
challenges in the design of local algorithms. We describe
a disparity between the features of SDN networks and the
standard models of distributed systems that are used in the
design and analysis of local algorithms. Indeed, there are
many tasks that can be solved efficiently in real-world SDN
networks, yet they do not admit a local algorithm in the
traditional sense. We suggest a new model of distributed
computing that separates the relatively static network struc-
ture (e.g., physical network equipment) and dynamic inputs
(e.g., current traffic pattern).

1.1 Running Examples
We begin our exploration of the interactions between dis-

tributed SDN control and local algorithms with two scenarios
that we will use as running examples.

Example 1. Link assignment. Consider an Internet Service
Provider with a number of Points-of-Presence v ∈ V , and a
number of customers u ∈ U . For each customer, there are
multiple redundant connections between the customer’s site
and the operator’s network. We can represent the connections
between the customer sites and the access routers in the
operator’s network as a bipartite graph G = (U ∪ V,E),
where an edge {u, v} ∈ E indicates that there is a network
link from customer site u to the access router in point-of-
presence v.

points-of-presence

customer sites
redundant links

V:
E:
U:

operator’s backbone network

121

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2491185.2491198&domain=pdf&date_stamp=2013-08-16

The task is to select the links for the primary connection
between the customer’s site and the Internet: that is, we
have to activate one link for each customer. More formally,
we need to select a subset of edges X ⊆ E such that each
customer site is incident to one edge in X; see below for two
examples.

points-of-presence

customer sites
primary links

V:
X:
U:

points-of-presence

customer sites
primary links

V:
X’:
U:

Not all solutions are equally good. While the solution X
above provides a fairly nice load balancing in the operator’s
network, solution X ′ is much worse: some routers are idle
while others are serving a large number of customers. Our
goal is to find a balanced assignment, automatically and
quickly—we want to respond to changes in the network (e.g.,
a primary link going down) as fast as possible.

Example 2. Spanning tree verification. There are many
protocols that aim at constructing a spanning tree (e.g.,
the STP protocol in the context of layer-2 networking). In
this example scenario, we consider the seemingly simpler
task of verifying the correctness (e.g., loop-freeness) of a
spanning tree (or forwarding set). We are given a spanning
tree—constructed by some other protocol—and our goal is
to detect errors as efficiently as possible. More precisely,
we want to raise an alarm (e.g., trigger a re-computation
of the spanning tree) whenever we notice that the tree is
disconnected or contains loops (e.g., in the forwarding set).

OK alarm

1.2 Distributed Control in SDN
At first sight, both of our examples seem to be straight-

forward to solve in the SDN paradigm, given a single global
controller with an up-to-date network view: In the link as-
signment example, the controller is aware of the structure
of graph G; the controller can use an algorithm that finds
an optimal assignment, and configure the switches/routers
accordingly. Also the spanning tree verification is trivial—
indeed, if the controller itself constructs the spanning tree,
no verification is needed. The controller has a global view of
the network, and it can easily ensure that the network is in
a consistent, optimal configuration.

However, the situation changes once control becomes dis-
tributed, and there are many reasons to use a distributed
control plane [11]: (1) administration; (2) SDN providers
with a geographically local footprint; (3) scalability; (4) re-
ducing the latency from a switch to its closest controller;
(5) fault-tolerance; and (6) load-balancing. Indeed, efficiency
is an important motivation besides administration and fault-
tolerance: even within a single administrative domain, mul-
tiple controllers may be used for offloading computational
tasks (see, e.g., the Kandoo framework [9]).

Hence we have to cope with a network of distributed con-
trollers; each controller has a partial view of the network, and
the controllers have to collaborate and exchange information
with each other.

1.3 Structure of the Control Plane
We can identify two main types of distributed control con-

trol planes: a flat control plane, in which the controllers
partition the network into disjoint areas (horizontal parti-
tion), and a hierarchical control plane, in which the func-
tionalities of the controllers are organized vertically. In the
flat control plane, the structure is often given by administra-
tive constraints (e.g., each part corresponds to the network
controlled by one organization), whereas in a hierarchical
control scenario, we can select an appropriate structure.

Hierarchical SDN Control. Tasks are distributed to differ-
ent controllers, e.g., depending on the locality requirements:
while certain tasks such as heavy-hitter detection may be
performed topologically close to an SDN switch, other tasks
such as routing require a more global network view. An ex-
ample of a hierarchical control is Kandoo [9], which organizes
controllers into layers. At the bottom layer only local control
applications are run (i.e., applications that can function using
the state of a single switch). The local controllers handle
most of the frequent events near the data path and shield the
higher layers, which can hence focus on more global events
The following figure illustrates the structure of a hierarchi-
cal SDN network in the context of the link assignment task
(Example 1 with two levels).

local controllers

root controller

customer sites

Flat SDN Control. The network is partitioned into dif-
ferent controller domains, where each controller manages
a disjoint set of SDN-enabled switches. The structure is
mainly motivated by administrative constraints: different
economical players own different parts of the network and
manage them more or less independently. Another reason
for a flat distributed control may be to reduce the latency
between switches and controllers, and to keep the control
traffic local (e.g., Heller et al. [10]). In both cases, the SDN
switches managed by a given controller are most likely con-
nected (local “topological footprint”), but they may not have
a geographically local footprint (see, e.g., wide-area SDN
networks [15]). Below we have a schematic illustration of
the structure of a flat SDN network in the context of the
spanning tree verification task (Example 2).

OK alarm

122

1.4 Implications of Distributed Control
Our running examples are no longer trivial to solve effi-

ciently if we have a distributed control plane. The controllers
will need to exchange information with each other (directly
or indirectly, e.g., via some middleware [4]) in order to solve
the task at hand. Especially in the case of a flat SDN control,
the high-level structure (i.e., network of controller domains,
henceforth called controller graph) of the SDN control plane
network resembles the structure of a traditional network.
The following figure illustrates this concept:

≈

2. LOCALITY
Given that the control plane becomes distributed, it is time

to revisit the concepts from distributed computing: which
lessons are applicable to the practical challenges of the design,
management, and operation of SDN networks? In this article,
we will mainly focus on the aspect of locality. To understand
the concept of locality in the context of distributed SDN
control, let us begin with a more straightforward setting:
locality in traditional communication networks.

2.1 Traditional Networks and Locality
The control plane in a traditional network is best seen as

an instance of a classical distributed system. Each device
is a computational entity; initially, it is only aware of its
immediate surroundings (e.g., its own identity and the state
of each network link connected to it), but it can gather more
information about the structure of the network by exchanging
messages with its neighbors.

In general, distances in the network are related to costs
(e.g., latency, communication, synchronization, network traf-
fic, coordination among controllers, etc.). If we abstract the
cost so that one unit corresponds to the interaction between
adjacent control domains (e.g., round-trip time), then at
a cost of 1 unit each device can gather information from
its distance-1 neighborhood (i.e., its immediately adjacent
controller domains). To propagate information further in the
control plane, controllers need to communicate repeatedly
with their neighborhoods, so that after t iterations (and t
units of cost), each device can know (at best) everything
about its distance-t neighborhood. In particular, if we need
to respond to changes in the network that happened t (logical)
“hops” away from us, even in the best case this costs t units.
This imposes a fundamental limitation on the controllability
of the network.

A key observation is that not all tasks related to network
control are alike. Some tasks are inherently global : to solve
the task, it is absolutely necessary that we respond to events
that take place arbitrarily far from us, no matter how clever
algorithms and protocols we use. However, some tasks are
local : to solve the task, it is sufficient that each device only
responds to events that take place in its vicinity. More
precisely, a task is local if it can be solved with a local
algorithm; in a local algorithm each node only responds to

events that take place within distance t for some constant
t = O(1), independently of the size of the network [17,19].

We will see in Section 3 that link assignment (Example 1)
is a local task, while spanning tree verification (Example 2)
is a global task.

2.2 Flat SDN Control and Locality
As we have already hinted, in the case of a flat SDN control,

the high-level structure of the control plane can be interpreted
as a distributed system. More formally, we can construct
the controller graph, in which each node is a controller, and
nodes u and v are connected if the corresponding controller
domains of u and v are adjacent.

OK alarm

v

u

v

u

In essence, we abstract away the structure of the underlying
physical network (and individual devices in the data plane);
following the SDN paradigm, the active elements of the
network are controllers, which exchange information with
their neighbors.

Often the task at hand also has a natural interpretation
from the perspective of the controller graph. This is the
case for the spanning tree verification task as well: if each
controller ensures that the network topology within its own
domain is loop-free and connected (and there are no multiple
connections between adjacent controllers), then it is sufficient
to verify that the controller graph itself is loop-free and
connected.

Now we can take any distributed algorithm that solves the
task, and apply it in the controller graph. In particular, if
the original algorithm was local, then we would have a very
efficient protocol for the operation of the SDN control plane
as well.

2.3 Locality-Preserving Simulation
Let us now have a look at the link assignment example.

A problem instance is defined by a bipartite graph G =
(U∪V,E) that captures the connections between the customer
sites u ∈ U and the points-of-presence v ∈ V . Therefore—
from the perspective of distributed algorithms—it is natural
to design algorithms that work in the graph G. Nodes in
U and nodes in V are active elements that take part in the
execution of the algorithm, and they exchange messages with
each other.

points-of-presence

customer sites

V:
E:
U:

backbone

While this makes perfect sense in the context of algorithm
theory, it looks unwieldy from the perspective of networking:
interpreted literally, the network equipment in the operator’s
network would exchange messages through customer sites.

123

Fortunately, a much better approach exists: we can sim-
ulate any algorithm designed for graph G efficiently. For
the sake of concreteness, consider a large-scale SDN network
that is structured as follows: in the operator’s network we
have one local controller in each point-of-presence v ∈ V .
The controller maintains a full information of all network
equipment in the point-of-presence, as well as the connections
between the network equipment and the customer sites.

Now assume that we have a distributed algorithm A that
is designed to be executed in the bipartite graph G; for
simplicity, assume that A is a deterministic algorithm (no
randomness). We can efficiently simulate the operation of A
as follows: Only nodes v ∈ V participate in the execution of
the algorithm; these nodes correspond to the SDN controllers
in our network. Each controller v ∈ V simulates the actions
of all customer sites u ∈ U that are adjacent to v. For
example, assume that in the original algorithm, node v ∈ V
sends a message to an adjacent node u ∈ U , which then sends
a message to an adjacent node w ∈ V ; in the simulation, it
is sufficient that the local controller v ∈ V sends a message
to the local controller w ∈ V . All communication takes place
through the operator’s backbone network.

local controllers

customer sites

V:
E:
U:

backbone

u

v w

While such a simulation is always possible, it is important
to note that in our example it also preserves locality. From
the perspective of shortest-path distances in graph G, two
points-of-presence v, w ∈ V are within distance 2 from each
other if and only if there is a common customer site u ∈ U
that is connected to both of them. This typically implies that
the geographic locations of v and w are relatively close to
each other, and therefore it is likely that there is also a short
path in the operator’s backbone that connects v and w. In
particular, if algorithm A is local (in terms of graph G), then
each SDN controller only needs information that is near it (in
terms of shortest-path distances in the operator’s backbone).

2.4 Hierarchical SDN Control and Locality
We can apply the simulation technique in the case of

hierarchical SDN networks in a straightforward manner. If we
have a controller hierarchy in which the local controllers that
are located at each point-of-presence, we can use the approach
of Section 2.3 directly: The local controllers are the active
participants. Higher-level controllers in the hierarchy do not
take part in the execution of the distributed algorithm A;
they are only responsible for maintaining the routing tables
in the backbone network.

3. FROM LOCAL ALGORITHMS TO SDN
Now that we have seen how to apply local algorithms in

the context of SDN networks, let us have a look at some
concrete examples.

3.1 Link Assignment
The link assignment task (Example 1) can be formalized

as a semi-matching problem [8]. If a customer u ∈ U is
connected to site v ∈ V , and there are c customers in total

who are connected to the same site (and hence compete of
the same limited resources), we say that the cost of customer
u is c. In the semi-matching problem, the task is to minimize
the average cost of the customers (in essence, we prefer an
assignment in which each customer is connected to a site
with few other customers).

As we now have the task defined in a formally precise
manner, we can investigate it from the perspective of locality.
It is fairly easy to see that if we want to find an optimal
assignment, the task is inherently global (consider a graph
G that consists of a long path).

However, if we are happy with a near-optimal assignment
(a constant-factor approximation of the optimum), it turns
out that task becomes local; see Czygrinow et al. [2] for a
distributed algorithm that solves precisely this task. (Con-
cretely, the running of their algorithm depends on the max-
imum degree of the bipartite graph G, i.e., the maximum
number of links per customer and links per point-of-presence.
However, the running time is independent of the size of graph
G, i.e., the total number of customers or the total number of
points-of-presence.)

This is just one example of a local algorithm that can
be applied in resource allocation tasks—local algorithms
are also known for many closely related problems, such as
maximal matchings [7], stable matchings [3], and fractional
matchings [14].

3.2 Spanning Tree Verification
While there is an abundance of positive results related

to local algorithms and the link assignment task, it is easy
to see that spanning tree verification (Example 2) is an
inherently global task. If each device is only permitted
to gather information in its local neighborhood, feasible
spanning trees are indistinguishable from graphs with loops
or disconnected graphs. To see this, consider the following
examples.

alarmOK OK

In the above examples, all nodes in the bad instance have local
neighborhoods that look identical to the local neighborhoods
of at least one good instance. However, one of the nodes in
the bad instance has to raise an alarm—if we attempt to
do this based on local information only, we will occasionally
make false alarms.

Even though the task is inherently global, we can still
use local algorithms if we resort to proof labeling schemes
[6, 12, 13]. If we are given just an arbitrary spanning tree T ,
we cannot verify it locally. However, it is possible to label tree
T with a locally checkable proof. The labels are compact—
we do not need to waste much storage or bandwidth—yet
they contain sufficient information so that we can use a local
algorithm to verify that tree T is indeed globally consistent.

Example 3. We can construct a compact locally checkable
proof for a spanning tree T as follows [13]. We pick one
node r as the root node of tree T . Then each node v in the
network is given two pieces of information: the identity of

124

the root node r, and the distance between v and r in T . Now
it is fairly easy to see that this information suffices to turn
T into a locally checkable spanning tree. For example, if T
contained a cycle, at least one node would notice it, as the
distance labels would not be consistent with the structure
of T , and if T consisted of two components, some pair of
adjacent nodes would notice that they do not agree on the
identity of the root node. No matter how we assign the proof
labels, at least one node will immediately detect if T is not
a spanning tree.

Locally checkable proofs are very strong in the sense that
they tolerate arbitrary failures and even malicious tampering:
if all nodes accept the proof, we can be sure that the routing
tables are globally consistent.

Obviously, the construction of a spanning tree is not a local
task, and neither is the construction of a locally checkable
spanning tree. However, the key point is that proof labeling
schemes make the routing task of verification lightweight,
and hence we can trigger a more expensive task of updating
routing tables in a timely manner in precisely those situations
in which it is needed.

4. FROM SDN TO LOCAL ALGORITHMS
So far, we have shown how results in the field of locality-

sensitive computing can provide guidelines on how to design,
manage, and verify an SDN network. We will now argue
that the benefit of this comparison is bidirectional: The
SDN network model comes with an interesting twist that
generalizes the problems typically studied in the context of
local algorithms. In particular, we will introduce the so-called
supported locality model which opens a wide range of new
theoretical problems.

Informally, we can identify two different hurdles that often
prevent us from solving problems with local algorithms: (1)
challenges related to symmetry breaking, and (2) challenges
related to finding good solutions to optimization problems.
One of the hurdles disappears in the context of SDN.

To illustrate our point, let us consider the example of
computing matchings; a similar picture emerges with many
other classical graph problems [19]. Inspired by the link
assignment task (Example 1), let us study the following
closely related problems:

(M1) maximal matching

(M2) maximal matching in a bicolored graph

(M3) maximum matching

(M4) maximum matching in a bicolored graph

(M5) fractional maximum matching

(Here a bicolored graph is a bipartite graph that is colored
with two colors. This is precisely what we had in the link
assignment task; one color class consisted of customer sites
and the other color class consisted of the points-of-presence.
A fractional matching is the usual linear programming re-
laxation of the maximum matching problem; it is a packing
linear program.)

We can classify the above graph problems as follows. (For
simplicity, we will focus on the case of bounded-degree graphs:
all nodes have degree at most ∆ = O(1).)

Optimization:

• (M1), (M2): we only need to find a feasible solution.

• (M3), (M4), (M5): we ask for an optimal solution.

Symmetry breaking:

• (M1), (M3): symmetry-breaking is required. For example,
if our input graph is a symmetric cycle, some but not all
edges have to be chosen.

• (M2), (M4): symmetry-breaking is required, but we are
already given a two-coloring of the input graph, which
breaks symmetry.

• (M5): symmetry-breaking is not needed; the problem is
trivial in a symmetric graph.

Locality:

• (M1), (M3): cannot be solved with a local algorithm—
symmetry breaking is impossible [16].

• (M2): easy to solve with a local algorithm [7].

• (M4), (M5): cannot be solved optimally with a local
algorithm—these are inherently global problems.

• (M4), (M5): can be approximated arbitrarily well with
local algorithms [1,14].

All of this applies to deterministic local algorithms and
the classical models of distributed computing, most notably
the LOCAL and CONGEST models [18].

In what follows, we will argue that the standard models
of distributed computing are overly pessimistic. More specifi-
cally, we make the following claims:

• Symmetry-breaking issues need not be a hurdle in the
design of efficient protocols for SDN networks.

• However, prior results related to the difficulty of finding
good solutions to optimization problems still apply.

To see why this is the case, note that we can identify two
very different time scales in SDN networks: (1) Constructing
the network, e.g., the physical deployment of new controllers
and the creation of new controller domains. (2) Reacting
to new events, e.g., finding optimal routes based on the
current traffic patterns. We can exploit this in the design of
protocols:

(1) We can break symmetry already while we are construct-
ing the network, and we can use non-local protocols to
do that. As a simple example, every time we deploy
a new controller, we could trigger a global recomputa-
tion that gathers information related to the physical
network topology.

(2) However, we need to know the current logical state of
the system (e.g., current traffic) before we can produce
the output. As we want to respond to events quickly,
we would like to use a local protocol.

An appropriate model of computation needs to take these
opportunities into account.

We suggest the following two-stage model of computation.
We have an underlying network G that represents the physical
network topology. The current logical state of the network
is represented as a subgraph H of G; here graph H may be
annotated with additional information related to the state
of the network (e.g., forwarding set, Network Information
Base, etc.). Each node v of network G is given the following
information:

(1) G: full topological information about G.

(2) H[v, r]: full state information about radius-r neighbor-
hood of v in H.

125

Based on this information (and nothing else), node v has to
produce its own local output. The local outputs of the nodes
must form a globally consistent solution to the task at hand.
A crucial aspect is that we are studying problems related
to the structure of graph H—for example, we would like to
find a maximal matching in graph H. However, we have
additional knowledge of the underlying network G, which
lets us get rid of most issues related to symmetry breaking.

We will refer to this model of local computing with addi-
tional state information on H as the supported model. Sim-
ilarly to the classical LOCAL and CONGEST models, we
can have the variants of supported -LOCAL (no restriction on
message size) and supported-CONGEST (with message size
restrictions) model.

As a simple example, it is easy to show that problem (M1)
admits a local algorithm in the supported model. Another
example of the supported models is related to the classical
dominating set problem. The dominating set algorithm by
Friedman and Kogan [5] consists of two phases: symmetry
breaking (distance-2 coloring) and optimization (greedy).
In the supported model we can solve both phases with a
local algorithm—in essence, we can pre-compute a distance-2
coloring of the underlying network G, which provides an
appropriate coloring of the subgraph H as well.

There are many other straightforward examples of the
power of the supported models, but also many open problems.
In particular, many classical lower bound results no longer
apply, which makes it more challenging to understand the
fundamental limitations of local algorithms in the supported
model.

5. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful feed-

back. This work was supported in part by the Academy of
Finland, Grant 252018, and the EU projects OFELIA and
CHANGE.

6. REFERENCES
[1] Matti Åstrand, Valentin Polishchuk, Joel Rybicki,

Jukka Suomela, and Jara Uitto. Local algorithms in
(weakly) coloured graphs, 2010. Manuscript,
arXiv:1002.0125 [cs.DC].

[2] Andrzej Czygrinow, Micha l Hańćkowiak, Edyta
Szymańska, and Wojciech Wawrzyniak. Distributed
2-approximation algorithm for the semi-matching
problem. In Proc. 26th Symposium on Distributed
Computing (DISC 2012), volume 7611 of LNCS, pages
210–222, Berlin, 2012. Springer.

[3] Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and
Jukka Suomela. Almost stable matchings by truncating
the Gale–Shapley algorithm. Algorithmica,
58(1):102–118, 2010.

[4] Nate Foster, Rob Harrison, Michael J. Freedman,
Christopher Monsanto, Jennifer Rexford, Alec Story,
and David Walker. Frenetic: a network programming
language. In Proc. 16th International Conference on
Functional Programming (ICFP 2011), pages 279–291,
New York, 2011. ACM Press.

[5] Roy Friedman and Alex Kogan. Deterministic
dominating set construction in networks with bounded

degree. In Proc. 8th International Conference on
Distributed Computing and Networking (ICDCN 2011),
volume 6522 of LNCS, pages 65–76, Berlin, 2011.
Springer.

[6] Mika Göös and Jukka Suomela. Locally checkable
proofs. In Proc. 30th Symposium on Principles of
Distributed Computing (PODC 2011), pages 159–168,
New York, 2011. ACM Press.

[7] Micha l Hańćkowiak, Micha l Karoński, and Alessandro
Panconesi. On the distributed complexity of computing
maximal matchings. In Proc. 9th Symposium on
Discrete Algorithms (SODA 1998), pages 219–225,
Philadelphia, 1998. SIAM.

[8] Nicholas J. A. Harvey, Richard E. Ladner, László
Lovász, and Tami Tamir. Semi-matchings for bipartite
graphs and load balancing. Journal of Algorithms,
59(1):53–78, 2006.

[9] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: a
framework for efficient and scalable offloading of
control applications. In Proc. 1st Workshop on Hot
Topics in Software Defined Networking (HotSDN 2012),
pages 19–24, New York, 2012. ACM Press.

[10] Brandon Heller, Rob Sherwood, and Nick McKeown.
The controller placement problem. In Proc. 1st
Workshop on Hot Topics in Software Defined
Networking (HotSDN 2012), pages 7–12, New York,
2012. ACM Press.

[11] Teemu Koponen, Martin Casado, Natasha Gude,
Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv
Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki
Hama, and Scott Shenker. Onix: a distributed control
platform for large-scale production networks. In Proc.
9th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2010), pages 351–364,
Berkeley, 2010. USENIX Association.

[12] Amos Korman and Shay Kutten. Distributed
verification of minimum spanning trees. Distributed
Computing, 20(4):253–266, 2007.

[13] Amos Korman, Shay Kutten, and David Peleg. Proof
labeling schemes. Distributed Computing,
22(4):215–233, 2010.

[14] Fabian Kuhn, Thomas Moscibroda, and Roger
Wattenhofer. The price of being near-sighted. In Proc.
17th Symposium on Discrete Algorithms (SODA 2006),
pages 980–989, New York, 2006. ACM Press.

[15] Paul Lappas. SDN use case: Multipath TCP at Caltech
and CERN. Project Floodlight Blog, December 2012.

[16] Nathan Linial. Locality in distributed graph algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.

[17] Moni Naor and Larry Stockmeyer. What can be
computed locally? SIAM Journal on Computing,
24(6):1259–1277, 1995.

[18] David Peleg. Distributed Computing: A
Locality-Sensitive Approach. SIAM Monographs on
Discrete Mathematics and Applications. SIAM,
Philadelphia, 2000.

[19] Jukka Suomela. Survey of local algorithms. ACM
Computing Surveys, 45(2):24:1–40, 2013.

126

	Introduction
	Running Examples
	Distributed Control in SDN
	Structure of the Control Plane
	Implications of Distributed Control

	Locality
	Traditional Networks and Locality
	Flat SDN Control and Locality
	Locality-Preserving Simulation
	Hierarchical SDN Control and Locality

	From Local Algorithms to SDN
	Link Assignment
	Spanning Tree Verification

	From SDN to Local Algorithms
	Acknowledgements
	References

