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ABSTRACT

Most empirical disciplines promote the reuse and sharing
of datasets, as it leads to greater possibility of replication.
While this is increasingly the case in Empirical Software En-
gineering, some of the most popular bug-fix datasets are now
known to be biased. This raises two significant concerns: first,
that sample bias may lead to underperforming prediction
models, and second, that the external validity of the studies
based on biased datasets may be suspect. This issue has
raised considerable consternation in the ESE literature in
recent years. However, there is a confounding factor of these
datasets that has not been examined carefully: size. Biased
datasets are sampling only some of the data that could be
sampled, and doing so in a biased fashion; but biased sam-
ples could be smaller, or larger. Smaller data sets in general
provide less reliable bases for estimating models, and thus
could lead to inferior model performance. In this setting, we
ask the question, what affects performance more, bias, or
size? We conduct a detailed, large-scale meta-analysis, using
simulated datasets sampled with bias from a high-quality
dataset which is relatively free of bias. Our results suggest
that size always matters just as much bias direction, and
in fact much more than bias direction when considering
information-retrieval measures such as auc and F-score.
This indicates that at least for prediction models, even when
dealing with sampling bias, simply finding larger samples
can sometimes be sufficient. Our analysis also exposes the
complexity of the bias issue, and raises further issues to be
explored in the future.
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1. INTRODUCTION
Detailed data on bugs are clearly crucial to empirical

studies of software quality. Such data is generally collected
in bug-fix datasets. Several such datasets have been publicy
released into repositories such as Promise1. These datasets
include both detail on bugs reported by users and developers
and the source code location where the bugs were fixed. The
fix location is provided by a link to commits in the version
control system. These links identify the source code files
involved in a bug report, as well as other details, such as
the developer who committed the fix, the date and time,
and the lines changed in the corresponding files. This is a
rich source of historical data for building software quality
prediction models that may yield improved understanding of
the factors that affect software quality.
These links, between bugs and commits, are recovered

through a post facto examination of the commit logs in ver-
sion control, and/or the comments and meta-data associated
to the bug report; both of these are manually entered by
code contributors. Thus, the ability to recover these links
depend on the tagging practices of the contributors to the
software project under study. These practices vary across
each project; this heterogeneity makes the consistent, reli-
able recovery of all of the links between bugs and commits
problematic. Indeed, many datasets widely used within the
research community are missing some links and have been
found to be incomplete and biased [2, 3].

Training defect prediction models using biased and/or in-
complete datasets is problematic. Wu et al. [21] compared
the accuracy of a prediction model trained using three differ-
ent datasets: a biased dataset obtained using heuristics, a
putatively unbiased dataset obtained manually and a puta-
tively biased dataset obtained using an automated method.
The model trained with the biased dataset did not perform
as well as the models trained with unbiased datasets.

This is a disappointing result, suggesting that, despite all
the hard work invested in creating them, one should abandon
datasets that may be biased. In this paper, we therefore take
a contrarian view on bias. Available datasets could possibly
be biased, but still be large in size. Can such datasets still
be useful in some prediction settings? If it should turn out

1http://promisedata.googlecode.com
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that obtaining larger training datasets (of bugs with linked
fixing commits) is more important than the difficult task
of obtaining entirely unbiased datasets, then this would be
good news: large datasets could be used to train prediction
models, with some confidence that such prediction models
would still perform usefully.

In this research, our goal is to do a controlled study of the
relative effects of bias and sample size on defect prediction.
In order to do this, we begin with a very high-quality dataset,
wherein linkage rates are very high (median of 80%, as com-
pared to the more typical 50% [4] for other datasets). We
then artificially sample sub-datasets with varying levels of
size and bias, by selectively sampling linked defects based on
biases that are known or suspected to exist. Using these ar-
tificially biased sub-datasets, we examine the relative effects
of bias and sample size on defect prediction models. We use
a meta-modeling approach, constructing meta-models that
explain the performance of prediction models. Our research
makes the following contributions.

• We examine the effects of bias on defect prediction, by
artificially sampling with bias from a dataset known to
be very high quality.

• We study the relative effects of different types of bias
on defect prediction, using meta-models to analyze the
prediction models.

• We use the meta-models to study the relative effects
of bias and sample size on defect prediction.

• Finally we introduce and examine the effects of pollu-
tion where data sets that fail to link defects that were
actually fixed introduce false negatives, e.g. files that
are really defective but are not marked as such.

2. RELATED WORK AND THEORY
Defect prediction models use supervised methods to learn

the association of different predictors and the defect prone-
ness of entities. A labeled training dataset labels each entity
as defective or not. Existing research identifies defective
entities post facto, based on the locations where defect repair
occurs. This requires clear identification of a defect-fixing
activity.
Past research has used developers’ comments associated

with the source code changes to determine whether a change
is defect-fixing. Ideally, a responsible developer always iden-
tifies defect fixes in the change log. Keywords such as “bug”,
“fixed” etc. in the change log message could be detected by
a tool to identify defect-fixing changes [14]. One can also
identify numerical bug-ids mentioned in the change log and
match those ids with defect database such as Bugzilla to
locate defect-fixing changes [7, 8]. However, developers do
not always annotate a change with proper description; this
impairs the automated identification of defect-fixing changes.
Bird et al. [4] found that automated process only identified
less than 50% of the defect fixing changes in most cases.
Bachmann et al. [2] noted that missing links, the defect-
fixing changes that automated process fails to recover, may
impact the prediction performance of supervised learners. .

Bias Missing links can confuse and hinder a supervised
learner. Links may be systematically missing, based on the
properties of a defect-fixing change such as, e.g., severity
of the defect or the experience of the fixer. The resulting

biased dataset may trick the supervised learner. For example,
suppose only experienced developers are annotating their
changes. Automated tools will only identify defect-fixing
changes made by experienced developers; we will have over
representation of the entities fixed by experienced developers.
In earlier work [4] we introduced the notion of bias, and
have provided formal probabilistic definitions of bias. For
our purposes, here, it is sufficient to informally define bias

as the situation where the linked bug sample distributions of
the co-variates of interest are systematically different from
the distributions of the same co-variates among the entire
population of fixed bugs. Consequently, the linked sample is
not truly representative of the population. So for example,
the distribution of developer experience among the linked,
fixed bugs would differ from the distribution of developer
experience among all of the fixed bugs.

Different properties of defect-fixing changes may introduce
different types of bias. Thus, as discussed above, developer
experience may introduce Experience bias. Similarly, sever-
ity of the defects may introduce Severity bias. Bird et al. [4]
found that defect-fixing changes of less severe defects are
more likely to be linked. However, given a dataset, we may
not know the source of bias, e.g., whether it is Experience
or Severity. If different sources of Bias have different levels
of influence on prediction performance, Bias would be more
damaging due to the uncertainty over the source of bias.
We therefore study whether different sources of Bias have
different impacts on prediction performance. We note here
that Kim et al. [10] have studied the influence of noise on
bug prediction. They also propose an algorithm to find noisy
instances in bug datasets, so they can be removed to avoid
potential problems. Our concern is more with systematic
bias, rather than noise.

Research Question 1: Do different sources of bias
have varying impact on prediction performance?

Pollution The second side-effect of missing links, which to
our knowledge has not been addressed, is false negatives. An
unlinked defect-fixing change fails to identify the defective
files associated with that change. This also effectively labels
files that are actually defective as defect free! These false-
negatives constitute a form of pollution that might affect
supervised learners. We informally define pollution as an
erroneous condition of bug-fix datasets where files that are,
in fact, defective are incorrectly labeled as defect-free.
Besides these two consequences, missing links, inherently

reduce the number of defect-fixing changes available. We use
the term Size to represent the total number of links available.
Increasing Size may increase the performance of the learner
and may also ameliorate the impact of Bias and Pollution.
Size is also a more tractable problem; larger datasets may
be easier to obtain than data sets that are both unbiased
and unpolluted.
While existing research studies Bias and the presence of

missing links, so far, none have compared the effects of Size,
Pollution and Bias, to determine the relative effects of
each on the performance of prediction models; this motivates
our core research question.



Table 1: Studied Projects and Release Information

Project Description Releases Avg Avg Link
Files SLOC Rate

CXF Services Framework July 2007–April 2012, 6 releases 4038.33 358846.67 0.77
Camel Enterprise Integration Framework January 2008–March 2012, 8 releases 4600.38 241668.12 0.84
Derby Relational Database February 2006–October 2011, 7 releases 2497.29 530633.00 0.85
Felix OSGi R4 Implementation August 2007–November 2011, 9 releases 2740.56 249886.22 0.85
HBase Distributed Scalable Data Store Jun 2007–May 2012, 8 releases 934.75 187953.38 0.85
HadoopC Common libraries for Hadoop Jun 2007–September 2009, 6 releases 1047.17 142257.33 0.79
Hive Data Warehouse System for Hadoop October 2008–May 2012, 7 releases 966.29 152079.86 0.75
Lucene Text Search Engine Library October 2005–November 2009, 7 releases 990.86 122527.00 0.85
OpenEJB Enterprise Java Beans August 2007–April 2012, 7 releases 2895.43 225018.43 0.86
OpenJPA Java Persistence Framework January 2007–February 2012, 8 releases 3181.50 321033.50 0.92
Qpid Enterprise Messaging system November 2008–May 2012, 7 releases 1724.00 198311.86 0.73
Wicket Web Application Framework November 2008–May 2012, 5 releases 2295.20 152565.40 0.77

Table 2: Process Metrics

Short Name Description

COMM Commit Count
ADEV Active Dev Count
DDEV Distinct Dev Count
ADD Normalized Lines Added
DEL Normalized Lines Deleted
OWN Owner’s Contributed Lines
MINOR Minor Contributor Count
NADEV Neighbor’s Active Dev Count
NDDEV Neighbor’s Distinct Dev Count
NCOMM Neighbor’s Commit Count
OEXP Owner’s Experience
EXP All Committer’s Experience

Research Question 2: Considering Bias, Pollution,
and Size, which aspect of missing links affects prediction
models the most?

False Positives Finally, it is also possible that the bug links
contain false positives, viz.., edits that are not really bug fixes,
but accidentally get included into bug-fixing commit. This
issue is outside the scope of our current research, and we hope
to address this in the future. However, since developers may
just accidentally include non-bug-fixing changes in a bug-
fixing commit, our belief is that this type of data pollution is
more likely to be characteristically noisy rather than biased.
Arguably, the approach introduced by Kim et al. [10] for
dealing with noise should be effective in dealing with false
positives.

3. EXPERIMENTAL METHODOLOGY

Projects Studied Table 1 shows the 12 open source projects
studied in this paper. In addition to release information
and project size, the table also lists the median percentage
of defects for which we could identify the fixing-commits
(link rates). All are Apache Software Foundations projects,
written in Java; however, they come from a very diverse
range of domains. For each project we downloaded the git

repository 2 and extracted the full commit history. We also
used git blame on every file at every release to identify
the contributors’ information with more detail. We carefully
ignored whitespace changes and code movement during our
blame process to identify the correct provenance of each
line.

All the projects shown in Table 1 use jira
3 issue tracking

system. We mined jira to extract all the data associated to
each bug report. Moreover, thanks to the linking and tagging
practices of the ASF projects, as well as to the features of
jira bug tracking system, we were able to retrieve the related
commits which fixed each bug. We only considered Jira en-
tries clearly identified as defects; we ignored feature changes,
refactorings, etc. We then locate those fixing commits in
git to extract commit information, such as changed lines
and commit author. Any files modified in these bug-fixing
commits are considered as defective post-facto.

Jira Data All of our projects have very high linking rates,
with a median rate of approximately 80%. Even at these
high link rates, our data indicates a slight bias; e.g., severe
defects are linked at a median rate of about 80% and less
severe defects at about 75%. Nevertheless, these linking rates
are much higher than the 50% rates reported in prior papers
on bias [2, 4]. From these very highly linked bug-fix data
sets, we deliberately choose samples with higher and and
lower bias, to study the effects of bias.

Predicting Defects Following common research practice,
we study prediction at the file level. We use Logistic Regres-
sion from the WEKA toolkit to compute a probability that
a file will be defective or not in a subsequent release4. The
models are trained in a prediction setting, viz., we train the
model on k-th release, we test the model in k + 1-th release,
using process attributes with a binary response indicating
whether a file is defective. We describe our process metrics
in detail below.
Since we are interested in obtaining the best prediction

model possible, we want to use as many variables as we can to
capture as much variation as possible. Multicollinearity, viz.,
strong correlation of two or more predictor variables, can be
an issue with models with many variables. Multicollinearity
is typically mitigated through the use of either a manual
or automated stepwise procedure where a discrete subset

2http://git.apache.org
3https://issues.apache.org/jira/
4http://www.cs.waikato.ac.nz/ml/weka/
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of the variables are selected for the model. Because we are
evaluating the use of biased samples we build a very large
number of prediction models; consequently, it is impractical
to individually determine a particular set of predictors to
use in each prediction model manually, and an automated
stepwise procedure would dramatically increase our runtime.
As an alternative, we use ridge regression [12].

Ridge regression introduces (coefficient) bias, reducing vari-
ance in the coefficients, while improving the stability of the
model. The technical details are beyond the scope of this pa-
per5. In the best case, the variance reduction is significantly
larger in magnitude than the introduced bias. Because we are
building prediction models, however, this is not a significant
concern as we are not interpreting the (prediction) regression
coefficients. Since we are introducing (sampling) bias into
our training sets, which may disturb the relationship between
the training set and test set distributions, ridge regression
provides insurance that we can be reasonably certain that
the (coefficient) bias introduced by multicollinearity is not
impacting the quality of our prediction models in the face of
(sample) bias introduced by our experimental setup.

Our choice to use Logistic regression is motivated by its
popularity in empirical software engineering research. More-
over, researchers have found that the choice of metrics, rather
than classification methods, is the primary driver of predic-
tion performance [1].

Predictor Metrics Table 2 shows the process metrics we
use in the prediction models.

• COMM measures the number of commits made to a
file during a release.

• ADEV is the number of developers who made changes
to that file during a release.

• DDEV is the number of distinct developers contribut-
ing to this file up to this release.

• ADD and DEL are the normalized (by the total number
of added and deleted lines) added and deleted lines in
the file during a release.

• OWN is the percentage of the lines authored by the
highest contributor of a file.

• MINOR is the number of contributors who authored
less than 5% of the code in that file.

• OEXP is the experience of the highest contributor of
that file using the percent of lines he authored in the
project at a given point in time.

• EXP is the geometric mean of the experiences of all
the developers.

All of these metrics have been widely used in prior re-
search literature [1, 5, 15, 18]. In addition, we use some
“neighborhood” metrics inspired by BugCache [11]. Bug-
Cache uses co-commit history to identify files related to a
buggy file which may also be buggy. This suggests the use
of “co-commit neighbor” based process metrics. For these
metrics we first find the list of files co-committed with a given
file, weighted by the frequency of co-commit in a particular
release; we then average the above metrics over this list.

5See [12] for details.

• We use the weighted average of a metric of the “commit
neighbors” of a file: NADEV, NDDEV, and NCOMM
are just the derived measures of ADEV, DDVEV and
COMM.

All of these metrics are individually positively correlated
with the existence of defects, and are thus reasonable can-
didates for inclusion in a prediction model; we rely on the
aforementioned ridge estimator to handle any issues of mul-
ticollinearity. Software engineering data is highly skewed;
following Menzies et al. [13], we log transform all variables
to stabilize variance and improve prediction quality.

Bias-influence metrics Our goal here, as stated above, is
to try to understand the relative effects of size and different
types of bias on prediction performance. Bias arises because
programmers link only some defect-fixing commits to defect
reports, and fail to link others. Such bias can derive from the
properties of the defects, the defect fixer or the files fixed.
Bird et al. [4] observed that developers are less likely to

link severe defects than less-severe defects, and experienced
defect-fixers will more often link their fix than inexperienced
developers.

Experience and severity can thus be viewed as bias-influencing
properties. We define bias influence metrics as measures of
such bias-influencing properties. In this paper we consider 5
different bias-influencing properties, each with an associated
bias influence metric (BI Metric), that have been discussed
in prior literature [2, 4, 17].

• Experience Defect-fixer experience (measured as the
percent of all commits to date that were made by the
developer who fixed that bug).

• Severity Severity of the fixed defects (an ordinal
measure).

• Proximity Proximity of the defect-fixing commit to
the release deadline (days fromr defect resolution until
the proximate future release).

• Latency The amount of time it took to fix a defect
(days from reporting date to resolution date).

• Cardinality Size of commits (total of number of files
committed in the defect-fixing commit).

Creating Biased Sub-datasets We use all of the above
BI Metrics to create biased samples. For generality, we
consider both directions of bias, for all sources of bias. Thus,
instead of assuming that experienced developers would be
more likely to link their fixing commits, or that the commits
that fix severe defects are less likely to be linked, we study
both directions: how is prediction performance affected when
experienced developers are more likely to link their commits,
as well as when they are less likely to link their commits;
likewise we also consider the cases of severe defects being
more likely to be linked, and less likely to be linked.
For each bias-influencing property, we partition our set

of fixing commits using the median of the corresponding
BI Metric. This gives us two sets: Lower containing the
fixing commits with BI Metric < median BI Metric, and
Higher containing the fixing commits with BI Metric >

median BI Metric. We add the remaining fixing commits
(with BI Metric exactly equal to the median BI Metric)
to either Lower or Higher, whichever is smaller. This fairly



coarse split is done to keep the experimental combinatorics
under control; even with this simplification, we already have
millions of sub-samples available for training.
Based on this split, we choose our biased subsamples.

Our approach is to select subsamples with varying levels of
linking probability from Lower and Higher. So for each
of Lower and Higher, we vary the probability of linking
p ∈ {0.0, 0.1, 0.2, . . . 1.0}. Thus, when p = 0.2, and we are
considering Lower, we assume that 20% of the fixing com-
mits from Lower are linked. These 11 discrete probabilities
can be used to select 11 different samples for each of Lower

and Higher, designated as {Lowerp} and {Higherp}, (for
each value of p) randomly chosen from Lower and Higher.
During the sampling all the unselected fixing-commits are
considered as missing links.
We then find the unions of all possible cartesian pairs of

{Lowerp}∪{Higherp} (121 pairs) to study different ranges
of bias. We discard the base set {Lower0.0} ∪ {Higher0.0}
as we need at least one defect-fixing commit to train a model.
This approach allows us to study the bi-directional bias
impact (when Lower is less likely to link than Higher, as
well as when Lower is more likely) of each source of missing
links. In order to compare the relative effects of size and
bias, for each biased set of links Bl = {Lowerp ∪Higherp}
we also uniformly randomly sample an unbiased set of links
Ul from the entire pool of fixing commits of the same size
|Bl|.

Pollution Effects Besides possibly creating biased samples,
missing links may pollute the data with false negatives: We
therefore also examine the impact of Pollution, by sampling
sub-datasets both with and without pollution. We create
unpolluted sub-datasets by discarding any false negatives
from the sampled sub-dataset, i.e., any files known to be
defective, but not selected based on the biased sampling
procedure, are discarded from the training set. To study the
impact of Pollution, we created polluted sub-datasets by
labeling defect-fixing commits as non-defective when they are
not chosen by the biased sampling procedure. We can then
compare the impact of Pollution against the performance
of an unpolluted dataset.

Finally, after sampling the defect-fixing commits with the
four possible combinations (biased and polluted, biased and
unpolluted, unbiased and polluted, unbiased and unpolluted)
we derive the set of defective files based on our sampled
defect-fixing commits. Any file that appears in one of the
sampled fixing commits are considered as defective, otherwise
defect-free. We can then build models on these newly labeled
(coming from different combinations of bias and pollution)
dataset. We replicate the entire process 100 times, to reduce
the risk of random variation, and average the performance
measures over all runs.

Summary of sampling procedure Figure 1 illustrates how
we sample to create sub-datasets. The sampling process is
adjustable; it can be tuned to select sub-datasets based on
different settings described above; in addition, it can sample
with or without pollution. Finally, the procedure can also
sample without any bias, to create sub-datasets of varying
sizes. Given all of the combinations of bias & pollution, all
of the product-release pairs, and our 100-fold replication,
this sampling procedure eventually creates about 17 million
sub-datasets. These sub-datasets are used to train prediction
models. We then evaluate the effect of bias, pollution, and
size on prediction model performance.

Original
Full Dataset

Bias, Size and 
Pollution  Control

Meta-Analysis of
Trained 

Prediction Models

What matters more?

Size, Bias, or 
Pollution?

Train Prediction 
Models 

on sub-datasets
Biased, UNpolluted,

Sub-datasetsBiased, UNpolluted,
Sub-datasetsUnBiased, Polluted,

Sub-datasets

1

Biased/Ubiased
Polluted/Unpolluted

Sampling

2

3

5

67

Biased, UNpolluted,
Sub-datasetsBiased, UNpolluted,

Sub-datasets
UnBiased, 
UnPolluted,

Sub-datasets

Biased, Polluted,
 sub-datasets

(Severity, Experience,
Proximity....)

Biased, UnPolluted,
Sub-datasets

4

Figure 1: Pictorial summary of of the experimental proce-
dure. We begin with a highly linked dataset (1) and selectively
sample (2) under controls for bias, pollution and size (3) to
create a cloud (4) of sub-datasets, with and without pollution,
and bias, as well as an entirely unbiased sub-datasets. These
sub-datasets are used to estimate prediction models (5); the
results of these prediction models are then subjected to multi-
ple regression meta-modeling (6) to tease apart the effects of
pollution, size, and bias (7)

Evaluation Our evaluation is a two step process. First, we a
build a model for each training release, using the sub-dataset,
and evaluate the model on the corresponding test release.
It should be noted that the test release data is used in full,
without sampling.

There are several different approaches to evaluating predic-
tion models. We discuss them in general terms; details have
been discussed in several prior publications. Precision/Recall
and F-score are the traditional performance measures. Preci-
sion and recall have a natural trade-off, and one can choose
a high-recall/low-precision combination, or the reverse. The
precise value is based on a particular threshold of predicted
probability of defects. These measures are also dependent
on the proportion of defects; thus if most files are defective,
even random choice will give relatively high precision.
There are also several threshold-independent, non-para-

metric methods. First, is the area under the ROC curve,
auc, which evaluates performance independent of threshold
or defect occurrence rate. However, auc doesn’t directly
consider the cost of methods such as inspection. Arisholm
et al. [1] suggest that using threshold-dependent measure
such as Precision, Recall and F-measure may not be
suitable for software engineering data, since inspection cost
depends on defect density. They recommend the use of aucec
(area under the cost -effectiveness curve), and specifically
aucec at 10% (aucec10) and 20% (aucec20) source lines of
code (SLOC) to compare model performance. It should be
noted however, aucec is just one model of cost; e.g. it does
NOT consider the cost of false negatives. If false negatives
matter, auc in fact might be a better measure.

For our purposes, we consider threshold-dependent, threshold-
independent, and aucec based measures. Specifically, we
use F-measure at 0.5 cutoff (F50) to give the reader some
idea about the model performance when evaluated in tradi-
tional cutoff based settings. Following Arisholm et al., we
stress that such a threshold-based measure may give an erro-



neous impression about the true performance of the model
due to the class imbalance (only a small portion of our files
are reported as defect prone) that is common in bug-fix
datasets. So, we also measure performance using auc, as
well as aucec10 and aucec20. We replicate the entire pro-
cess of random sampling and model building 100 times and
then average over these runs to obtain the average model
performance for each {Lowerp ×Higherp} and Pollution

combination (Pollution turned off and on).

Meta-modeling Our goal is to use the models trained over
the millions of samples of varying bias & size is to determine
the relative effects of size and bias on performance. We do
this by using a meta-model to model the performance of
the resulting millions of prediction models; this meta-model
essentially gauges the degree to which Bias, Pollution and
Size influence the performance of the millions of prediction
models. Thus, the meta-response of this meta-modeling step
is the performance of the prediction of prediction models. F50,
auc, aucec10 and aucec20 of the learned prediction models
are all used as (meta) responses (measures of performance)
in our meta-analysis, while Bias, Pollution and Size are
the (meta) predictor variables. We build one meta-model for
each training-test release pair. So, for each training release,
we build an ensemble of samples of varying Bias, Pollution,
Size, as described above. We then train models for each
sample, testing on the next release to find auc, F50 etc. We
use the prediction performance of these models as a response
to our meta-model.
We validated our meta-models using standard OLS diag-

nostic techniques. All of our models exhibited reasonably
high R2. For auc, aucec10 and aucec10 we observed a
median R2 of around 0.6, while for the F-measure models,
we observed an R2 over 0.7. We checked for influential points
and excessive heteroscedasticy through visual examination
of the regression diagnostic plots. For influential points we
looked for excessive separation or high Cook’s Distance [6].
We also used a metric defined by Lindeman, Merenda, and
Gold, (LMG) to measure the impact of the variables [9]. As
described in detail in the next subsection, LMG provides a
robust way to measure the relative importance of predictor
variables on a response. LMG permutes the sequential sum
of squares to yield an order insensitive degree of variance
explained for each of the variables. The use of LMG provides
resilience against the impact of multi-collinearity. This pro-
cess is quite compute-intensive: building prediction models
for the 17 million sub-datasets, over 85 releases, and the
meta modeling phase, consume about 180 hours of time on
12-Xeon (3.0 GHz) core, 96 GB workstation.

We identify the percentage of variance explained by each
of these variables using the R package Relaimpo [9]; The
Relaimpo package computes the aforementioned “LMG”
statistic which we use to measure the impact of the meta
variables on the performance of the prediction models.

LMG measure of influence In an OLS multiple regression
setting the Relaimpo package computes a statistic called
LMG for each predictor. LMG is a measure of the influence
that a predictor has on a response in a dataset. Using the
LMG statistic, we can compare the effects of Size, Bias, and
Pollution on the performance of prediction models. We
now present our reasons for using LMG.
Ordinary Least Squares (OLS) linear regression models

can be used to evaluate the relationship between a set of
predictors x1, . . . , xp and a response y. We write the model

form of the relationsip as

y = β0 + β1x1 + . . .+ βpxp + ǫ

where each βi represents an estimated coefficient for the
relationship between xi and y. If βi is positive and significant
then we can infer that a βi unit increase in x induces a one
unit increase in y.
We were primarily interested in the magnitude of impact

on the variance, rather than the direction of the influence.
Bias may improve or retard a particular model performance
measure; we would be interested in either, equally. Conse-
quently, we are interested in the impact that each regressor
has on the variance of the model response.

Typically one measures the variance in the response of an
OLS model using the coefficient of determination, denoted by
R2. R2 is interpreted as the percentage of variance explained
in the response by the predictors, and is computed as the
proportion of model sum of squares over the total sum of
squares (SS)

R
2 =

Model SS

Total SS
=

∑n

i=1
(ŷ − ȳ)2

∑n

i=1
(yi − ȳ)2

where yi is the given value of response in the ith sample, ȳ is
the sample mean, and ŷ is the predicted response from the
OLS model, from the values of predictors in the ith sample.
Decomposing the sum of squares will allow us to compute
the impact of each regressor on the variance of the response.
We can imagine a simple method for decomposing the

sum of squares as follows: We add each predictor of interest
in turn to the model and compute the additional variance
explained by each new predictor. This will yield a particular
decomposition of the sum of squares. A decomposition deter-
mined this way is referred to as a sequential sums of squares.
No matter which order we choose to enter variables, every
sequential sum of squares of the same set of predictors will
yield the same total SS. Practically, the explained variance
is typically computed by performing an anova analysis.
Unfortunately, this procedure is sensitive to the order in

which the variables are added to the model; Although we will
always obtain the same total SS, the sequential decomposition
may not be consistent across each variable. To see why,
consider two predictor variables x1 and x2 that are not
fully independent, viz., each variable has both an indepenent
component and a shared component. Then some part of
x1 can be explained by x2, and the intersection will impact
the response y simiarly for either variable. If we initially
compute the sum of squares for the model containing only
x1, x1 will account for all of the variance that is explained
both by its independent component, and the component
shared with x2. When we add x2 to the model, only its
independent component adds additional variance explained
as the variance owing to their collinearity is accounted for in
x1. Reversing the order will attribute the joint variance now
to x2 instead of x1. This order-dependence makes this simple
analysis unsuitable for decomposing the variance explained
in our setting.

LMG is an order-independent method that calculates the
decomposition of variance for all possible variable orderings
and then computes the mean impact of each variable on the
response. LMG is thus able to correct for order-dependency
and provides a uniform measure of the impact of each predic-
tor on the explained response. We calculate the raw LMG,
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Figure 2: Median of Performance for different bias sources. E for Experience; C for Cardinality; S for Severity; L for
Latency; P for Proximity

which calculates each variable’s influence as a proportion of
the total variance in the response.
Summary: To recap, by reference of Figure 1: the generated
sub-data sets in Figure 1. (labeled 4) (controlled for size,
bias, pollution etc) are used to build prediction models. The
performance of these prediction models is evaluated. We
now have a collection of data, one for each prediction model,
which capture the Size, Bias, and Pollution of the data
that went into that model, and the measured performance.
Thus, for each model, we have one element of a meta-dataset.
We now use ordinary least squares meta-modeling (step 6

in figure) on this dataset, and use LMG to tease apart the
effects of Size, Bias, and Pollution.

4. RESULTS
We begin by investigating the impact of different sources

of bias on prediction performance.

RQ 1: Do different sources of bias have different impacts

on prediction performance?

The raw data on the performance of the various models
varies quite a bit due to different reasons: bias type, bias
degree (H/L), release cycle, as well as sample size. We deal
with the relative effects size and bias subsequently. For now,
to focus on the effects of bias type, rather than bias degree
or release cycle, we focus on summary statistics (median and
variance per release, while bias degree varies).

For each release, and for each type of bias, as we allow
the bias degree to vary, both the corresponding sample size
and the degree of pollution will vary; so we expect to see
some variation in the performance of models trained on
each sample. So within each type of bias, we calculate the
median and variance of performance per release as bias
degree varies. These two statistics give us a sense of the
range of performance that can be observed for each bias type,
as its bias degree varies. The bias types in our case could
be one of Experience, Cardinality, Severity, Latency
and Proximity. Since the goal here is to check whether
different sources of bias have different effects (and thus if any
of these sources of bias are a greater threat than any other)
we consider only biased, and polluted sub-datasets, infected
with bias of each type.

Figure 2 plots the median of prediction performance for
different sources of bias. The figure shows hardly any dif-
ference in the distribution of median performance across

different sources of bias. Our findings suggest that none of
the observed variations are statistically significant. A non-
parametric Kruskal-Wallis test also failed to reject the null
hypothesis that the distributions are the same.
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Figure 3: Variance of Performance for different bias sources.
E for Experience; C for Cardinality; S for Severity;
L for Latency; P for Proximity

In addition to analyzing the difference in median perfor-
mance, we examined the stability of prediction performance
using the variance of the performance measures per release.
Figure 3a and figure 3b presents the variance of auc and F50

for different sources of bias across releases. For brevity we
do not present aucec10 and aucec20 as they are closely re-
semble the auc plot (figure 3a). The figures suggest that the
threshold-dependent performance measure F50 is more sensi-
tive to different sources of bias than the threshold-invariant
measures such as auc and aucec. A Kruskal-Wallis test
also failed to confirm any significant difference of variances
between different sources of bias. We observe similar findings
for aucec10 and aucec20. It is clear that there is consider-
able variation in the median of the performance within each
bias type. We attribute this variation in training sample sizes
across releases; some releases have more defects, and thus
more training data, than others. We return to the subject of
sample sizes again below.

Bias Effect These two findings together have an important
implication. In general, across releases, performance as mea-
sured by auc, aucec10 and aucec20 varies (fig 2); these
models, however, perform quite well, the median of auc is
about 0.9 and the median of F50 is around 0.4. The median of
aucec10 is around 0.015, a figure that is 3 times 0.005, which



corresponds to inspecting random lines6, and the aucec20

median figure is around 0.05, or about 2.5 times the random
rate of 0.02. However, as we examine variation in perfor-
mance, within a release, for models trained with sub-datasets
with varying Bias and Pollution, arising from different
sources of bias influence, the variation in performance of
prediction is very limited (Figure 3) for the non-parametric
measures auc, as well as for aucec10 and aucec20 (not
shown)7. Furthermore, the effect on performance, and the
variance in performance across different sources of bias, is
also similar.

Different sources of Bias have very similar effects on
performance; furthermore, the effect of varying rates
of Bias is also minimal on non-parametric measures of
performance, for all sources of Bias.

This is an unexpected result; data that is selectively miss-
ing for different reasons might be expected to affect the
performance differently, and different rates of bias might
also be expected to affect performance. Nevertheless, we
still can see that each source of missing links induce some,
within-bias-source, variance in prediction performance. This
variance can be attributed to varying Size and Bias and the
Pollution of the sample space with false negatives. We
therefore study the impact of Size, Bias and Pollution

separately.

RQ 2: Considering Bias, Pollution, and Size, which

aspect of missing links affects prediction models the most?

When studying the relative effects of size and bias, we
found a high degree of collinearity between size and bias in
our meta-models. Multi-collinearity, and the resulting diffi-
culties in interpreting models with potentially high variance
inflation factors, casts doubt on the stability and validity of
such models. Therefore, we chose to focus on a simplified,
categorial measure of bias: bias polarity. Bias polarity ad-
mits two categories of possible, Biasl and Biasm. Biasl,
negative bias polarity, represents all the samples where we
have Lowerp > Higherp, where Lowerp and Higherp rep-
resent the probability of linking from Lower and Higher

respectively. In case of Experience bias, this would indicate
that inexperienced developers are more likely to link than
experienced developers. Likewise Biasm, positive polarity
represents all the samples where Lowerp < Higherp. The
samples are coded so that Biasl (resp., Biasm) take the
value 1 if the sample has negative (resp., positive) bias po-
larity. They both take the value 0 if the sample has neutral
bias, viz., Lowerp = Higherp.
Arguably, for the BI Metrics we consider, polarity is

a reasonable categorical abstraction. Concern about bias
can be stated in categorical terms such as Are more/less
experienced developers more/less/equally likely to link bugs?,

6If we inspect lines randomly, over many samples, we expect
to discover bugs at the same rate we inspect, viz. 10% of the
defects for inspecting 10% of the lines; thus the area under
the resulting diagonal line would be 0.1 times 0.1 times 0.5
7The parametric measure F50 does show a much more sub-
stantial effect, but this is due to 50% threshold parameter
not always being ideal; we discuss this later

or Does linking rate for fixes that include more changed files
lower? or higher? or the same?, or are more/less severe bugs
less/more/equally likely to be linked than less severe bugs.
Our abstraction sheds light on whether such categorical biases
affect prediction performance.
Our ensemble of samples includes both biased and unbi-

ased samples. Our set of unbiased samples will include both
uniformly randomly picked unbiased samples, as well as sam-
ples where Lowerp = Higherp. We also add Pollution

as a treatment, with two levels, polluted and unpolluted, as
described above. Those are the predictors; the (continuous)
response variables are auc, aucec10, aucec20 and F50 as
response.
To find the impact of different variables we use LMG as

described in Section 3. Figure 4 shows the LMG impact of
Bias, Size and Pollution variables on different measures
of prediction performance. Biasl and Biasm are marked as
L and M respectively on the x-axis. P and S represent Pol-
lution and Size respectively. Since there is one prediction
model for each of the training releases, we get a range of
LMG values bias, size, and pollution; these are shown as box
plots labeled below with L, M, P and S as just explained.
The figure depicts a surprising trend: for auc, Size matters
much more than both Biasl and Biasm . We ran two sample
paired Wilcox test (with alternative hypothesis set to “Size
has a larger LMG impact than either Biasl or Biasm ”) on
each pair , and corrected the p-values for multiple hypothesis
test using Benjamini-Hochberg correction. For all sources of
missing links, we observed that the impact of Size is statis-
tically significantly more than the impact of either Biasl or
Biasm with very low p-values p < 0.001.

When considering auc, Size is much more important
than Bias polarity. Focusing effort on collecting more
samples may mitigate much of the impact of Bias po-
larity.

For aucec10 and aucec20, however, the impact of Size
doesn’t dominate that of Bias. A one-sided Wilcox test
with alternative hypothesis “Size has less impact than ei-
ther Biasl or Biasm ”, failed to establish any statistical
significance of Bias against Size after Benjamini Hochberg
correction; all of the p-values were greater than 0.40. In
fact, testing the alternative hypothesis “Size has larger im-
pact than either Biasl or Biasm ”, we observed that Size

has a larger impact than both Biasl and Biasm for La-

tency (p < 0.001). This result holds for both aucec10 and
aucec20. Size also dominates both Biasl (p = 0.004) and
Biasm (p = 0.001) for aucec20 when considering Proxim-

ity, and Biasm for aucec20 (p = 0.014) when considering
Cardinality, and Biasm for both aucec10 (p = 0.048) and
aucec20 (p = 0.001) when considering Severity. This sug-
gests that Size is as important as Bias even when evaluating
aucec.

With respect to F50, we again observed a dominance of
Size over Bias. In all of our comparisons we found a sta-
tistically significantly higher impact (p < 0.001) of Size,
compared to either Biasl or Biasm. In fact, it is clear from
the figure that, for F50, Size, moreso than auc, dominates
both Biasl and Biasm.
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Figure 4: Impact of different aspects of missing links. L stands for bias polarity to low values (Biasl); M bias polarity to higher
values (Biasm); P stands for pollution; all of those are categorical variables. S stands for size, the sole numerical variable

For the IR performance measures auc and F50, the effect
of Size strongly dominates that of Bias. For the aucec

performance measure, Size has as much of an influence
as Bias polarity.

We have discussed the impact of Size and Bias, however,
missing links would inevitably introduce Pollution. As
stated above, we introduce Pollution as an additional
treatment in our meta-model. Figure 4 shows, in addition
to Bias and Size, the impact of Pollution on performance.
The figure shows that Pollution matters much more for
the threshold-dependent measure F50, than the threshold-
invariant measures auc and aucec. We compared the impact
of Pollution with Size, Biasl and Biasm using a paired
Wilcox test and corrected the p-values using Benjamini-
Hochberg correction. Our findings suggest that for auc,
aucec10 and aucec20, the impact of Pollution is typically
neither significantly greater nor smaller than the impact of
Biasl or Biasm. In fact Pollution showed a significantly
smaller impact (p = 0.016) for only one case: against Biasl

for auc and Cardinality. In all cases, for auc and aucec,
Pollution showed statistically significantly less impact than
Size (for auc, p < 0.001, and for aucec the largest observed
p < 0.027).

However, a similar comparison for the threshold-dependent
measure F50 tells a different story. In this case, Pollution
was dominant over both Biasl and Biasm, and was only out-
performed by Size. A paired Wilcox test, using a one-sided
alternative that “Pollution has greater impact than either
Biasl or Biasm ”, shows a statistical difference between the
variables with a p-values (p < 0.001). A paired Wilcox test
for the alternative hypothesis that “Pollution has smaller

impact than Size ”, however, confirms the dominant role of
Size (p < 0.001).

For F50 performance, Pollution plays a more damaging
role than Bias polarity. Size still has the most impact.

5. DISCUSSION
While previous studies have considered bias and its impli-

cations, ours is the first detailed comparison of the effects of
Size, Bias and Pollution. We now discuss the implications.

Positive & Negative Bias Note in Figure 4 that the po-
larity of Bias indicates varying impact on the prediction
performance. In case of Experience, (top left of the figure)
with auc as performance measure, linking by more experi-
enced developers (the box plot labeled Biasm) has a stronger
effect on performance. (a statistical test confirms this). But
in the case of Cardinality, we see the opposite effect on
auc.

We also examined the effect of combining positive and
negative bias. In general, we found that combining bias into
a“directionless biased”treatment tended to lower the effect of
bias (p < 0.001 for all pairwise comparisons of directionless
Bias with directional Bias). In practice, however, it is
not always easy to determine whether a given dataset has
positive or negative bias. Our study suggests that direction
does matter, and some effort, perhaps based on sampling,
might provide useful information.
From Figure 4 we also notice that each Bias may have

an impact on the prediction performance. E.g., in case of
Experience and auc as performance measure, linking by
more experienced developers may be more important. A two-
sample paired Wilcox test shows that the impact of Biasl on



the auc is significantly different than the impact of Biasm

for Cardinality (p < 0.001) and Experience (p = 0.013).
For aucec, the direction of Bias mattered only for Severity
(p = 0.034 for aucec10 and p = 0.025 for aucec20). For F50,
direction mattered only for Cardinality (p = 0.016) and
Latency (p < 0.001 ).

Pollution effect on F50 From Figure 3, it is clear that the
F50 performance measure has a much greater variance than
auc. F50 also has a lower variance than the aucec measures.
It is also clear from Figure 4 that F50 is quite strongly
affected by pollution, when compared to other prediction
performance measurements.

F50 assumes a 50% threshold on the predicted probability
from the underlying logistic regression prediction models. We
hypothesized that performance based on this fixed threshold
is highly sensitive to the precise training set. We expect that
different sizes and biases in the training set will result in vari-
able performance. To investigate this further, we measured
the F50 score on the full datasets for each release. A two-
tailed, two-sample Kolmogorov-Smirnov test showed that F50

over the unsampled data and F50 over the sampled data are
indeed different, i.e., sampling affects the F50 performance.
To reduce the sample-dependent effect on F50, we tried an
alternative approach: for each training data set, we chose
the threshold that maximized F-measure performance on
the training set. This is a feasible approach, since no test set
information is used. We call this F-measure value Ftr max.
We calculated Ftr max for both sampled sub-datasets and
the full dataset. A statistical test failed to reject the null
hypothesis that the distribution of the Ftr max scores in the
sub-datasets was different from the Ftr max scores in the
full dataset. This provides a plausible explanation for the
instability in F50.

Implications Overall, our meta-analysis shows that Size

influences prediction performance at least as much as Bias po-
larity and Pollution. When considering inspection-oriented
applications, all factors matter. The aucec results suggest
that one should not only try to maximize the size of the
training data, but also to the extent possible, strive to obtain
unbiased and unpolluted samples. aucec, however is not the
last word. For example, it doesn’t account very well for the
cost of false negatives. When these matter, auc might be a
more suitable measure. In this case, our data suggests that
Size has a much stronger influence on performance; therefore
efforts to obtain larger training sets might be a more effective
way to improve performance. Since, in general, it is difficult
to determine the nature and extent of Bias polarity, this
finding is a reassuring and positive result: if better auc is
a goal, and if there is concern about the polarity of bias, a
larger training sample is likely to help.

Finally, we note that our study focused on Bias polarity,
rather than the degree of bias. Our results indicate very
strongly that bias polarity matters far less than size; if large
sample sizes are available, our results suggest bias polarity
per se is not a major concern that it is very likely that trained
prediction models would perform reasonably well, at least
from from an auc or F50 perspective. Indeed, the effect of
bias is so strongly confounded by the effect of size that we
found it difficult to tease apart the effect by linear modeling,
and this remains for future work.

6. THREATS TO VALIDITY

Choice of Metrics Our prediction models use popular pro-
cess metrics. We did not use any code metrics; generally
speaking, process metrics outperform code metrics [1, 16, 19,
20]. Our models performed well: the median auc was around
0.9, and median F50 was about 0.5 for the full dataset, on
par to what is reported in the existing research [1, 22].

Using Logistic regression We use LR to predict the defect-
proneness of files. LR is very widely used [1, 15, 18, 22];
Moreover, prior research indicates that the choice of proper
metrics matters more than the learning techniques used, and
that LR has good performance [1].

Data Quality Instead of relying on automated extraction
of links from commit logs, we rely on a high fidelity linking
process available in jira. All of our projects have very high
linking rates, with a median linking rate about 80%. This
is well above the typical linking rate of under 50% reported
in prior research [4] using traditional heuristic based linking
technique [7, 8]. The Jira data has link bias for Severity (
80% median link rate for more severe vs. 75% for less severe)
and Latency (80% vs 78%); it is unbiased for Proximity.
Nevertheless, the high linking rate allows us to subsample
and introduce both positive and negative bias, and pollution,
to study the impact on prediction performance.

7. CONCLUSION
Several publications in the last 3-4 years have highlighted

the presence of significant bias in bug-fix datasets. This
has led to widespread concerns, reported in several papers,
that biased datasets would lead to under-performing, even
misleading, prediction models of limited practical value. We
investigated this issue in depth using simulated sampling
with bias from high-quality dataset, and found clear evidence
that a) the type of bias have limited impact in on prediction
results, and b) the effect of bias is strongly confounded by
size, and c) Bias polarity has a relatively small effect effect
when compared to size for the auc and F50 measures, and is
comparable to size for the aucec measures. Indeed, we found
that the effect bias is difficult to tease apart from size, and
this remains a challenge for future work. Thus the bias-effect
results reported earlier [4] may indeed be due to diminished
sample size in the biased samples. Our work does strongly
suggest, however, that even if there are concerns about bias
polarity in a potential training sample of defect repairs, such
a sample could still be used to train a prediction model, as
long as it is large; the resulting prediction performance is
likely to be boosted more by the size of the sample than it is
hindered by any bias polarity that may exist.
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