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ABSTRACT
A code fragment is inconsistent if it is not part of any nor-
mally terminating execution. Examples of such inconsisten-
cies include code that is unreachable, code that always fails
due to a run-time error, and code that makes conflicting
assumptions about the program state. In this paper, we
consider the problem of automatically explaining inconsis-
tent code. This problem is difficult because traditional fault
localization techniques do not apply. Our solution relies on
a novel algorithm that takes an infeasible code fragment as
input and generates a so-called error invariant automaton.
The error invariant automaton is an abstraction of the in-
put code fragment that only mentions program statements
and facts that are relevant for understanding the cause of
the inconsistency. We conducted a preliminary usability
study which demonstrated that error invariant automata can
help programmers better understand inconsistencies in code
taken from real-world programs. In particular, access to
an error invariant automata tripled the speed at which pro-
grammers could diagnose the cause of a code inconsistency.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Symbolic execution

General Terms
Algorithms, Performance, Theory, Verification

Keywords
Inconsistent code, error detection, static analysis, fault lo-
calization, Craig interpolation

1. INTRODUCTION
A recent study conducted at the University of Cambridge [3]

estimates that, on average, programmers spend 50% of their
work time on debugging. Often the most tedious part of
debugging is the task of fault localization. Once undesired
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behavior is spotted in a program, the relevant program frag-
ments that cause this behavior have to be identified before a
fix can be developed. Fault localization becomes more and
more challenging as the size of the program and the number
of control-flow paths increases. To assist programmers in
this task and reduce the manual effort involved, a number
of automated fault localization techniques have been devel-
oped [15–17,27,31,32,35–37].

In this paper, we consider the related problem of automat-
ically explaining inconsistent code. We call a code fragment
inconsistent if it is not part of any normally terminating
execution. An example of inconsistent code is a program
fragment that is guaranteed to fail, e.g., because a run-time
assertion such as an array bounds check is always violated.
Other examples include unreachable code such as an else
branch of a conditional statement that is never taken be-
cause the branching condition always evaluates to true. Al-
though inconsistent code is not necessarily in itself a bug, it
reveals significant programmer confusion, and is often cor-
related with serious bugs, including kernel errors in both
Linux and OpenBSD [13]. In addition, code inconsisten-
cies are an interesting class of program anomalies because
they can be effectively detected using symbolic program ex-
ecution. In fact, a number of existing approaches reduce the
problem of detecting infeasible code to proving unsatisfiabil-
ity of logical formulas, which is then automated using SMT
solvers [2,12,21,34]. These approaches are designed to have
no false positives, and hence only report a code inconsistency
if they can prove that it occurs.

While inconsistent code can be detected more easily than
general program errors, the problem of localizing and ex-
plaining inconsistencies is more difficult. To localize the
cause of a run-time error such as a null-pointer exception,
it is usually sufficient to investigate a single trace in which
the error is observed. On the other hand, to explain a code
inconsistency such as the fact that a particular line in the
program is not reachable, it is not sufficient to look at a
single trace. Instead, one has to consider all traces of the
program–in general, infinitely many.

In this paper, we propose the first algorithm to localize
inconsistent code automatically. Given an inconsistent pro-
gram as input, our algorithm produces a so-called error in-
variant automaton that explains the inconsistency. The er-
ror invariant automaton is an abstraction of the input pro-
gram. It consists of the statements of the input program
that are the cause of the inconsistency as well as formulas
over the program variables that summarize the remaining
irrelevant statements, which have been eliminated. We refer



to these formulas as error invariants. Intuitively, an error
invariant is a formula describing the reachable states at a
given program location and it captures the reason why the
program does not terminate normally if execution is contin-
ued from these states. Our algorithm builds on our previ-
ous work on fault localization for single error traces [8, 15]
in which we use Craig interpolation [10] to extract error in-
variants automatically from a symbolic encoding of the error
trace.

We conducted a usability study to evaluate the usefulness
of error invariant automata for understanding inconsistent
code. For this purpose, we computed error invariant au-
tomata for inconsistent code fragments found in real-world
programs. We then presented these code fragments to users,
with and without additional visual aid that we generated
from the error invariant automata. On average, the addi-
tional information extracted from the automata helped to
reduce the time that the users needed to understand the
reason for inconsistency by a factor of three.

Using our algorithm we were able to compute the error
invariant automata for the example programs in a few sec-
onds. This suggests that it is feasible to implement our
technique as a plug-in for an integrated development envi-
ronment that detects and explains infeasible code on-the-fly
while the programmer is typing in the program.

2. EXAMPLES
We illustrate how our technique explains the causes of

inconsistent code using two examples.

2.1 Example 1
Figure 1 shows inconsistent code in the open-source tool

Rachota1 (for space reasons, we have summerized some code
lines as “...”). When we ran this code through Joogie [2],
it reported a problem on line 27. The question is why?

On line 6, the programmer calls task.getDescription().
If task is null, the program will crash, so line 6 implies
a requirement that task is not null. On the other hand,
line 27 includes the test task == null. This implies that the
programmer believes that task might be null, contradicting
the invariant implied by line 6.

/* org.cesilko.rachota.gui.TaskDialog */

1: public TaskDialog(Task task, Day day,

boolean readOnly) {

~: ...

6: txtDescription.setText(task.getDescription());

~: ...

16: if (notification) {

...

}

~: ...

27: chbRegular.setEnabled(task == null);

~: ...

}

Figure 1: Infeasible code found in Rachota. Elided
code does not modify task.

How should this anomaly be reported to the programmer?
Most existing fault localization tools attempt to locate the

1http://rachota.sourceforge.net/

cause of a particular erroneous execution through the pro-
gram, whereas an inconsistency is a property of every feasi-
ble execution through the inconstant points.

Dynamic approaches such as [36] will not work for this
case, because an execution where task is null will cause an
exception at line 6 and therefore never reach the contradict-
ing assumption that task can be null at line 27. Dynamic
techniques can witness a potential error in line 6, but never
the contradiction between line 6 and 27.

Static fault localization tools such as Bug-Assist [26], and
our approach based on error invariants [8, 15], do fault lo-
calization for individual paths. In our example, we have two
paths that connect line 6 and line 27 due to the conditional
choice in line 16. An explanation for the inconsistency must
take into account both of these possible paths. In general,
inconsistent code might be witnessed by possibly infinitely
many executions, and they might be inconsistent for differ-
ent reasons. Hence we need a localization technique that
can reason about an arbitrary number of inconsistent exe-
cutions.

Error invariant automata.
In this paper, we introduce error invariant automata which

allow us to generate parsimonious explanations of the causes
of code inconsistencies. At a high level, an error invariant
automaton replaces code which does not contribute to the
inconsistency with a suitably chosen invariant.

To see how this works in practice, notice that the function
in Figure 1 is equivalent to the following simplified program:

• Lines 1–5: These lines do not affect the existence of
the inconsistency.

• Line 6: assert(task != null);

• Lines 7–26: Any arbitrary code that does not affect
whether task == null.

• Line 27: An assumption that task might be null.

• Lines 28. . . end: These lines do not affect the exis-
tence of the inconsistency.

We can represent this program graphically as a finite state
machine where nodes represent predicates on the program
state, and edges represent program statements that modify
the value of the predicates. We refer to such a state machine
as an error invariant automaton if it over-approximates the
reachable states of the original program, and has no valid
consistent terminating execution. Clearly, the full program
is one such automaton (with invariants representing the reach-
able states at each program point); the simplified program
presented above is another. The challenge is to create a
minimal automaton that is sufficient to explain the program
inconsistency.

Construction of an error invariant automaton.
The construction of such an automaton is based on an

insight from finite state machines: if a path through the
machine visits the same state twice, then any states visited
between the repeated state are unnecessary to prove the ex-
istence of an accepting run. If a machine has an accepting
run labeled with states A ·B ·C ·B ·D, it must also have an
accepting run A · B ·D. This means that we can merge se-
quences of states in an error invariant automaton that start
and end in a state labeled with the same predicate.

http://rachota.sourceforge.net/


Assertion Error Invariant
. . . ← true

`6 ∧ task 6= null ∧ . . . ← task 6= null∧ . . . ← task 6= null
`16 ∧[((notif. ∧ (. . .))

∨(¬notif. ∧ (. . .))] ← task 6= null∧ . . . ← task 6= null
`27 ∧(task = null) ∧ . . . ← false

`1−6

`7−27

`28−n

true

task 6= null

false

assume(task6=null)

assert(task=null)

Figure 2: (a) First-order logical formula for Figure 1 (b) Error Invariant Automaton for Figure 1.

There are two equivalent ways to create a minimal error
invariant automaton. One is to start with the full program,
and to merge states until a fixed point is reached (this is the
algorithm we present in § 4). The other, which we describe
here, is to start with an empty program and add abstract
states until the desired property is provable. Note that this
procedure generates a minimal automaton but not necessar-
ily a minimum automaton, since which states can be merged
depends on which invariants are chosen for the state labels.

We assume that we have a static analysis tool such as
Joogie that proves the existence of inconsistent code [2]. In
this example, Joogie reports an error on line 27. We use this
information to extract a program fragment which asserts
the inconsistency. In this case, we assert that the program
reaches line 27, and that task is null at line 27. From this
program fragment, we construct a first-order logic formula
which is unsatisfiable because of the inconsistency in the
original program. This encoding is similar to the extended
path formulas shown in [8], however our approach encodes
multiple paths into one formula.

We can now use the generated first-order formula to iden-
tify the cause of the inconsistency. Our procedure proceeds
recursively. First, we select a (sub)program and a candidate
invariant which holds at the beginning of that sub-program
(this invariant could be supplied by the user, or automati-
cally generated by an interpolating theorem prover). If the
candidate invariant also holds at the exit of the sub-program,
then it is an inductive invariant, and we can replace that sub-
program with the invariant. Otherwise, we split the program
into two sub-programs. We then calculate a new candidate
invariant for each sub-program, and repeat. At the end,
we have a simple automaton which concisely represents the
cause of the inconsistency.

The result for Example 1 can be seen in Figure 2. We
begin by formulating the program as a first-order logical
formula (the left column in Figure 2(a)). The right-hand
column shows invariants which hold at each program loca-
tion, and which are sufficient to prove the inconsistency of
the code. Figure 2(b) shows the error invariant automaton
generated using our procedure.

We construct our error invariant automaton starting from
a single node which is labeled with the first candidate error
invariant true. This invariant holds up to, but not past,
line 6. We therefore split the program in two, with one
node representing lines 1–6 and annotated true, and the
other representing the rest of the program. We then repeat
for lines 6–end. The predicate task != null is a valid er-
ror invariant for lines 7–27, so we split the program again.
In particular, this invariant is inductive for the conditional

choice in line 16, so neither of both branches has an effect
that is relevant for the proof. Finally, false is a valid error
invariant for the remainder of the program, so we are done.

A programmer attempting to locate the cause of the in-
consistency by analyzing the original program would need
to analyze a 28+ line procedure containing conditionals. A
programmer using our tool would only need to analyze a
straightforward procedure with two statements linked by one
non-trivial invariant.

2.2 Example 2
This example demonstrates how we deal with non-trivial

branches. In the previous example, we were able to re-
place the conditional with an invariant. In the procedure
toyExample (Figure 3), the location of the error depends on
the value b. If b is true, toyExample attempts to derefer-
ence a null pointer and fails in line 4; if b is false, it fails on
line 6. Note that the branches fail at different locations.

/* A constructed example */

1: public void toyExample(Boolean b) {

2: MyObject x=null;

3: if (b) {

4: x.foo();

5: }

6: x.bar();

7:}

Figure 3: Branch-dependent inconsistency in code

Figure 5 shows (a simplified version of) the unsatisfiable
formula created for the program in Figure 3. Multiple as-
signments to the same variable are handled by represent-
ing the program in SSA (Single Static Assignment) form,
with superscripts used to distinguish between different as-
signments. We handle early termination by introducing an
auxiliary variable exit, which is set to true whenever the
program exits early. All code subsequent to a potential exit
is effectively guarded by the test (!exit && code).

Figure 4(b) shows a case where we were unable to find
an inductive invariant for the conditional choice. We handle
this by splitting the automaton. One branch represents the
case where the conditional is taken, and the other represents
the branch where it is not. We can then recursively apply
the procedure on each branch, as before. Figure 6 shows
the result of making an alternative choice for our inductive
invariant. The predicate x = null is an inductive error in-
variant which holds across the conditional on lines 3–5, and
hence allows us to collapse the size of the error invariant



`2

`3

`T4

`T4,1

`F4

`5

`6

`6′

`7

x := null

assume(b)

assert(x6=null)

x.foo()

assume(!b)

assume(true)

assume(true)

assert(x6=null)

x.foo()

`2

`3

`T4

`5 `6

`7

true

x = null

x = null ∧ b

false x = null ∧ b

false

assume(x=null)

assume(b)

assert(x6=null)

assume(!b)

assert(x6=null)

Figure 4: (a) Program automaton for code from Figure 3 (b) Error invariant automaton for Figure 3

Assertion Error Invariant

← true
`2 x0 = null ← x = null
`3 ∧[ (b ∧ (x0 = null =⇒ exit))

∨[(¬b ∧ (x2 = x0))] ← (x = null ∧ ¬exit) ∨ ¬b∼ ∧[ ((b ∧ (x3 = x1))
∨(¬b ∧ (x3 = x2)))] ← x = null ∨ exit∧ (¬exit) ← x = null

`6 ∧ (x3 6= null) ∧ . . . ← false

Figure 5: First-order logical formula for Fig. 3

`2

`6

`7

true

x = null

false

assume(x=null)

assert(x6=null)

Figure 6: Alternative error invariant automaton for Fig. 3.



automaton.
This example shows the crucial effect of the quality of the

invariants on the minimality of the derived automaton. It
is encouraging to note that the more effective invariant (the
one in Figure 6) is the one derived from an interpolant.

3. PRELIMINARIES

3.1 Program Automata
We present programs and their control flow structure us-

ing program automata [20]. Program automata provide a
simple model of programs that abstracts from the syntactic
constructs and semantics of specific programming languages.
In section § 5, we describe how common language constructs
can be described in terms of program automata.

A program automaton is a finite automaton. A state in
a program automaton corresponds to a program location,
and transitions between two states are labeled with program
statements. That is, a program automaton accepts a regular
language of finite words over statements. Each word in this
language corresponds to one control flow path. Note that
not every path of a program automaton gives rise to feasible
executions.

Formally, let Σ be a fixed set of program statements. A
program automaton A is a tuple (Loc, δ, `0, `e) where

• Loc is a finite set of locations,

• δP ⊆ Loc× Σ× Loc is a finite transition relation,

• `0 is an initial location, and

• `e is an exit location.

We interpret A as a finite automaton over alphabet Σ with
initial state `0 and unique final state `e. A run ρ of A is a fi-
nite sequence of locations and statements `0st0`1 . . . stn−1`n,
such that for all i ∈ [0, n), (`i, st i, `i+1) ∈ δ. We call
path(ρ) = st0 . . . stn−1 the path associated with ρ. A run
ρ is accepting if its final state is `e. We call a word π ∈ Σ∗

a path of A if π = path(ρ) for some accepting run ρ of A.
Figure 4(a) shows the program automaton representing

the program in Figure 3.

3.2 Semantics
We present the semantics of program automata using for-

mulas in first-order logic. We assume standard syntax and
semantics of such formulas. Let X be a fixed set of program
variables. A program state (hereafter, simply referred to as
state) is a valuation of the variables from X. A state formula
F is a first-order constraint over free variables from X, i.e.,
F represents the set of all states s that satisfy F .

For a variable x ∈ X and i ∈ N, we denote by x〈i〉 the
variable which models the value of x in a state that is shifted
i time steps into the future. We extend this shift function
from variables to sets of variables, as expected, and we de-
note by X ′ the set of variables X〈1〉. For a formula F with
free variables from Y , we write F 〈i〉 for the formula ob-
tained by replacing each occurrence of a variable y ∈ Y in
F with the variable y〈i〉. A transition formula T is a first-
order constraint over free variables from X ∪X ′, where the
variables X ′ denote the values of the variables from X in
the next state. That is, a transition formula T represents
a binary relation on states. We assume that every state-
ment st ∈ Σ has an associated transition formula TF(σ)

that provides the semantics of st . For example the tran-
sition formula of an assume statement can be defined as
TF( assume(F) ) ≡ F ∧ X =X ′, where X =X ′ stands for

the conjunction of equalities x=x′ for all x ∈ X.
For a path π ∈ Σ∗ with π = st0st1 . . . stn, we define its

path formula PF(π) as the conjunction of the shifted tran-
sition formulas of the statements in π

PF(π) = TF(st0) ∧TF(st1)〈1〉 ∧ · · · ∧TF(stn)〈n〉 .

A path π is called inconsistent if its path formula is unsat-
isfiable. A program automaton A is inconsistent if all its
paths are inconsistent.

3.3 Reducible Program Automata
Given a program automaton A = (Loc, δ, `0, `e), we call a

location ` ∈ Loc a fork if it has more than one outgoing edge,
and we call it a join if it has more than one incoming edge.
We say that location ` dominates location `′, written `�A
`′, if every run of A from `0 to `′ includes `. Analogously,
`′ post-dominates `, written `′ �A `, if every run of A that
starts in ` and ends in `e goes through `′.

We consider structured programs, i.e., we only consider
program automata that are reducible. If A is reducible,
then for every fork ` there exists a unique join `′ such that `
dominates `′ and every other location that dominates `′ also
dominates `. We denote `′ by join(`). Intuitively, a fork `
in a reducible program automaton is the starting location
of a control flow construct such as a conditional or a loop,
and join(`) is the unique exit location of the corresponding
construct. For example, in the program automaton shown
in Figure 4(a), the location `3 is a fork with join(`3) = `5.

For a fork ` and a (direct) successor `s of `, we denote
by A(`, `s) the branch automaton that corresponds to the
branch going through `s of the control flow construct start-
ing in `. Formally, the branch automaton A(`, `s) is the
program automaton (Locs, δs, `, join(`)) where Locs = {`}∪
{ `′ ∈ Loc | `s �A `′ ∧ join(`) �A `′ } and δs = δ ∩ Locs ×
Σ×Locs. For example, in the program automaton shown in
Figure 4(a), the fork `3 has two branch automata A(`3, `

T
4 )

and A(`3, `
F
4 ) corresponding to the two paths encoding the

conditional in the program of Figure 3.

4. ERROR INVARIANT AUTOMATA
In our previous work [15], we introduced the notion of

error invariants to localize faults in error traces. In the fol-
lowing, we generalize this technique from single traces to en-
tire program automata, which in general represent infinitely
many traces.

4.1 Error Invariants
We can represent an error trace ofA as a sequence of state-

ments π = st0 . . . stn of A, together with state formulas Pre
and Post . The formula Pre describes the initial state(s) of
the error trace, and Post is the assertion that is violated by
the state obtained after executing the statements in π, start-
ing in a state that is described by Pre. Note that this means
that the formula Pre ∧PF(π) ∧ Post〈n〉 is unsatisfiable.

An error invariant for position i ∈ [0, n + 1] in the er-
ror trace (Pre, π,Post) is a state formula I such that the
following two conditions hold:

1. PF(st0 . . . st i−1) implies I〈i〉, and

2. I ∧PF(st i . . . stn) is unsatisfiable.



That is, the error invariant explains why, after reaching posi-
tion i, the trace will fail if execution of the trace is continued
from that position.

We say that an error invariant I is inductive for positions
i < j, if I is an error invariant for both i and j. Intuitively,
an inductive error invariant tells us that the statements be-
tween positions i and j in π are irrelevant for the error trace.

In [15], we presented an algorithm ErrInv that, given an
error trace (Pre, π,Post) computes an alternating sequence

Iost i1I1st i1 . . . st ikIk

such that: (1) st i1 . . . st ik is a subsequence of π; and (2)
for all j ∈ [0, k], Ij is an inductive invariant for positions
ij and ij+1 in π (where i0 = 0 and ik+1 = n + 1). That
is, ErrInv(Pre, π,Post) is the subsequence of error-relevant
statements in π together with error invariants that provide
summaries of the sliced irrelevant statements in π. The al-
gorithm ErrInv relies on Craig interpolation [10] to automat-
ically obtain the inductive error invariants from the proof of
unsatisfiability of the formula Pre ∧PF(π) ∧ Post〈n〉.

In the following, we generalize the notion of error invari-
ants from single traces to program automata. We then
present an algorithm that uses our previous algorithm ErrInv
to compute an explanation for the inconsistency of a given
program automaton.

4.2 Error Invariant Automata
Let A = (Loc, δ, `0, `e) be an inconsistent program au-

tomaton. A state formula I is called error invariant for a
location ` of A, if for all accepting runs ρ = `0st0 . . . stn`n+1

of A with ` = `i for some i ∈ [0, n+1], I is an error invariant
for position i of (true, path(ρ), true). We adapt the notion of
inductiveness accordingly: for two location `, `′ ∈ Loc such
that ` dominates `′, we call a state formula I an inductive
error invariant for ` and `′ if I is an error invariant for both
` and `′.

An error invariant automaton AI is an inconsistent pro-
gram automaton together with a mapping I from locations
of AI to state formulas such that for all locations `, I(`)
is an error invariant for `. We say that an error invariant
automaton AI = (Loc′, δ′, `′0, `

′
e) explains an inconsistent

program automaton A = (Loc, δ, `0, `e) if there exists a sur-
jective mapping h : Loc→ Loc′ such that the following two
conditions hold:

1. for all `1, `2 ∈ Loc, st ∈ Σ, (h(`1), st , h(`2)) ∈ δ′ if and
only if (`1, st , `2) ∈ δ and h(`1) 6= h(`2).

2. for all `1, `2 ∈ Loc, if h(`1) = h(`2) = `′, then there
exists `′1, `

′
2 ∈ h−1(`′) such that I(`′) is an inductive

error invariant for `′1 and `′2 in A, `′1 dominates both
`1 and `2, and `′2 post-dominates both `1 and `2.

4.3 Computing Error Invariant Automata
We next present our algorithm that takes an inconsistent

program automaton A and computes an error invariant au-
tomaton AI that explains A. We start with an algorithm
that assumes A to be loop-free. In the next section, we then
explain how to extend this algorithm to handle loops and
other language constructs.

Our algorithm is shown in Figure 7. We give a high-
level description. The algorithm takes a loop-free program
automaton and two state formulas Pre and Post as input.
It assumes that A is inconsistent subject to Pre and Post .

proc Explain :

input
Pre : precondition state formula

A : program automaton

Post : postcondition state formula

output
AI : error invariant automaton

requires
A is inconsistent subject to Pre and Post

ensures
AI explains A

begin
var AI = A with I = (λ`. false)

var `0, . . . , `n+1 = toploc(A)

var πA = st(`0) . . . st(`n)

var Io, st(`i1), I1, . . . , st(`ik ), Ik = ErrInv(Pre, πA,Post)

var i0 = 0

var ik+1 = n+ 1

for each j ∈ [0, k] do

I[`ij ] := Ij

AI := collapse(AI , `ij , `ij+1)

for each j ∈ [1, k] such that `ij is a fork do

for each direct successor `s of `ij in A do

var As = A(`ij , `s)

var AIs = Explain(Ij−1,As,¬Ij)

AI := replace As in AI with AIs

return AI
end

Figure 7: Algorithm for explaining an inconsistent
program automaton.

That is, for every path π of A that is of some length i,
Pre∧PF(π)∧Post〈i〉 is assumed to be unsatisfiable. The al-
gorithm returns an error invariant automaton that explains
the inconsistency of A. To compute the error invariant
automaton for the initial A, we apply the algorithm with
Pre = Post = true.

The first step of the algorithm is to translate A into a sin-
gle path πA = st(`0) . . . st(`n). The statements in this path
constitute the top-level basic block of the program that is
represented by A. That is, each statement st(`i) may rep-
resent a complex control flow construct that is composed of
many atomic statements in Σ. The path πA is still inconsis-
tent, hence we can view it as an error trace (Pre, πA,Post)
to which we apply the algorithm ErrInv. The resulting se-
quence I0st(`i1) . . . st(`ik )Ik consists of (1) the subsequence
of (composite) statements in πA that are relevant for ex-
plaining the inconsistency of A; and (2) error invariants for
the locations at which these statements start. The locations
and statements not appearing in the returned sequence (i.e.,
those that are covered by an inductive error invariant) can
be collapsed to a single location in the error invariant au-
tomaton that explains A. This is implemented by the op-
eration collapse. For each remaining non-atomic statement
st(`ij ), we compute the branch automata for the control



flow construct represented by st(`ij ). We then apply the al-
gorithm recursively to all of these smaller automata. Here,
we exploit the properties of the computed error invariants
Ij , which ensure that each such automaton is inconsistent
subject to Pre = Ij−1 and Post = ¬Ij .

It remains to define formally the statements in the path
πA that constitute the top-level basic block of A. For this
purpose, let toploc(A) be the ordered sequence of locations
of A that are the starting points of statements in the top-
level basic block. That is, toploc(A) is the maximal sequence
of distinct locations `0, `1, . . . , `n+1 such that for all i, j, such
that 0 ≤ i ≤ j ≤ n+ 1, we have `i �A `j . In particular, we
have `n+1 = `e. For every location ` ∈ toploc(A), we denote
by lp(`) the length of the longest path from `0 to ` in A and
we define lp(A) = lp(`e).

Now, for every location `i, with i ∈ [0, n], let st(`i) be
a fresh statement not in Σ and let Yi be a fresh copy of
the program variables in X. For a formula F we denote by
F [Yi/X] the formula that is obtained from F by substituting
all occurrences of (primed) variables in X by their (primed)
versions in Yi. The transition formula TF(st(`i)) of the
new statement st(`i) is defined as follows. If `i is a fork,
we must have join(`i) = `i+1. Then define TF(st i) as the
disjunctions of the path formulas of the automata for the
branches between `i and `i+1. That is, let `i,0, . . . , `i,k be the
immediate successors of `i in A. Further, for all j ∈ [0, k],
let Aj = A(`i, `i,j), mj = lp(Aj), and define m = max{mj |
0 ≤ j ≤ k }. Finally, we define

TF(st(`i)) =

8><>:
X = Yi ∧
X ′ = Y

〈m〉
i ∧W

0≤j≤k PF(πAj )[Yi/X] ∧ Y 〈mj〉
i = Y

〈m〉
i

Otherwise, if `i is not a fork, then `i+1 is the unique direct
successor of `i for some statement st i ∈ Σ. In this case,
simply define TF(st(`i)) = TF(st i). It is easy to prove by

induction that Pre ∧PF(πA)∧Post〈n〉 is unsatisfiable iff A
is inconsistent subject to Pre and Post .

5. EXTENSIONS
Next, we discuss how we can use our basic algorithm from

the previous section to handle common features found in
actual programming languages.

5.1 Loops and Procedure Calls
To handle loops and procedure calls in inconsistent code,

we rely on existing techniques. For example, in our previous
work on inconsistent code detection [22], we presented an ap-
proach that we named abstract unrolling. Abstract unrolling
over-approximate the behavior of a program with loops by
one without loops. The technique unrolls the first and last
iteration of a loop and abstracts all intermediate iterations
by a single transition that assigns non-deterministic values
to the modified variables in the loop. We have found that
this technique scales well because it is a simple syntactic
transformation of the program, yet preserves code inconsis-
tencies in practice. In particular, using this technique one
can still detect common code inconsistencies in loops such as
off-by-one errors. Since the abstraction over-approximates
the behavior of the original program we guarantee that the
input program is inconsistent if the abstraction is inconsis-
tent. Abstract unrolling can be generalized to handle proce-
dure calls by inlining called procedures in the analyzed code

fragment, but abstracting subsequent calls inside the inlined
procedure bodies.

It is also possible to combine the above techniques with
more heavy-weight analyses that increase the detection rate
but are more expensive. Note that the problem of detect-
ing inconsistent code can be reduced to verifying a safety
property, namely that the exit location of the program is
unreachable. We can therefore use existing static analysis
techniques for inferring loop invariants and procedure sum-
maries to increase the precision of abstract unrolling (re-
spectively, abstract inlining). Techniques that are based on
interpolation [1, 14, 30] are particularly well-suited because
our localization algorithm already uses interpolation proce-
dures. Using the computed invariants one can then obtain
more precise transformations into loop-free programs.

In summary, the problem of how to deal with loops and
procedure calls must already have been addressed in the de-
tection of code inconsistencies. In fact, a (Hoare) proof of
inconsistency of a program always yields a syntactic trans-
formation into a loop-free program that is inconsistent.

5.2 Nonstructured Control Flow
In Section 4, we assumed that the input program au-

tomaton has structured control flow and our algorithm for
explaining inconsistent code relies on this property to en-
code the automaton effectively into a formula. Despite this
restriction, we can still support common forms of unstruc-
tured control flow that can be found in many programming
languages such as return, break, and continue statements,
and exception mechanisms. All these mechanisms have in
common that control does not jump arbitrarily. Instead,
control is transferred immediately to some program loca-
tion that is reachable by following the regular control flow
of the program. We can therefore encode these mechanism
by introducing auxiliary variables.

For example, to model a return statement, we introduce
an auxiliary Boolean variable returned . Initially, this vari-
able is set to false and it is set to true if a return statement
is executed. All the transition formulas TF(st) of the pro-
gram are then guarded by this variable, i.e., they are of the
form ¬returned ⇒ F (X,X ′), where F (X,X ′) is the actual
transition formula that provides the semantics of statement
st . Hence, if a return statement is executed, control follows
the normal flow of the program but all statements along the
path are skipped. A location along the path is then reach-
able in the original program if it is reachable in the new
program in a state in which returned is false.

Other mechanisms for non-structured control flow can be
modeled in a similar manner, including assert statements
that check for the occurrence of run-time errors such as null-
pointer dereferences. By using different auxiliary variables
for encoding these mechanisms, we can also classify code
inconsistencies, e.g., to distinguish between inconsistencies
that are caused by guaranteed errors, and inconsistencies
such as code that is unreachable because a preceding return
statement is always executed.

6. EVALUATION

6.1 Construction of Error Invariant Automata
We evaluated our approach using six real-world examples

of inconsistent code found in open-source projects. Three
examples were taken from the mind mapping tool FreeMind,



one example (the one from Figure 1) is taken from Rachota,
and the remaining two are taken from device drivers in the
Linux kernel discussed by Engler et al. [13].

For each of these examples, we constructed an error in-
variant automaton following the algorithm discussed in § 4.
Procedure calls were abstracted as calling havoc on their
modset, which was sufficient to prove the inconsistency in
all examples. None of the examples contained loops, so we
did not have to use loop abstraction techniques in the pro-
gram automaton. Since we were able to prove inconsistency
even given this very weak approximation, all generated error
invariant automata represent real code inconsistencies, with
no false alarms. The generated path formulas for the ini-
tial automata ranged from 70–142 lines of smt-lib2 [5] code
(including comments), with a median of 89 lines. The trans-
lation was performed manually, but was fairly mechanistic
and would not be difficult to automate.

We generated candidate error invariants using the inter-
polation procedures implemented in the SMT solver Math-
SAT [9]. Using repeated calls to the SMT solver we then
identified the code fragments for which they are inductive.
In some cases we split conjuncts by adding auxiliary vari-
ables, in order to allow precise placement of the interpolation
points.

Results.
Running time to prove unsat and generate the interpolants

ranged from 0.008 seconds (experiment 4) to 0.019 seconds
(experiment 6), which suggests that this technique is prac-
tical for use in real-time tools such as code editors.

6.2 Usability Testing
We conducted an experiment to evaluate whether error

invariant automata can be used to provide visual assistance
which allows a programmer to more quickly understand the
causes of code inconsistencies. We recruited 11 program-
mers and computer scientists for this study, 5 at the United
Nations University in Macau, and 7 at New York University.
We gave a 5 minute introduction to each candidate where
we explained the concept of inconsistent code, the purpose
of the experiment, and some samples of inconsistent code.

Participants were told that they would be presented with
a series of functions which contained inconsistent code, and
that their job was to identify the cause of the inconsistency
as soon as possible. Half of the examples they would be
shown would contain the entire body of the relevant func-
tion, with the line where the inconsistency manifested it-
self underlined in red. The other half of the examples used
the error invariant automaton to provide visual assistance
as follows: all statements of the function that do not have
a corresponding edge in the error invariant automaton are
hidden behind solid blue boxes. The boxes are labeled with
the invariant associated with the node in the error invariant
automaton that summarizes the hidden statements under
it. Figure 8 gives an example of a function without (left)
and with visual assistance (right). For each candidate we
alternated the snippets for which we provided the visual as-
sistance. For each example, half of the participants (chosen
randomly) were shown the full function; the other half were
shown the error invariant automaton.

As soon as a code snippet (with or without visual assis-
tance) was on the screen, we started a stopwatch and told
the candidate to say“stop”, once (s)he is sure what the cause

of inconsistency is. If the explanation was wrong, we con-
tinued the stopwatch. If no correct answer was given within
150 seconds, we stopped the watch and explained the solu-
tion. The set of slides used in our experiments is available
on Dropbox2.

Results.
All candidates in total took 1 hour and 6 minutes to iden-

tify the problems in all code snippets. For the code snippets
without explanation they took a total of 51 minutes, and
for the code snippets with explanation they took 17 min-
utes, which roughly is a speed up by a factor of 3.

Figure 9: Average time per candidate in seconds
to spot the problem in our 6 code snippets. The
left bars in darker color refer to the average time
without visual assistance, the right bars in brighter
color show the average time with assistance.

Figure 9 shows the average time our candidates took per
question with and without visual assistance. In general, our
participants performed significantly better when given vi-
sual assistance than when they were not. The one exception
is Experiment 4. In this experiment, we showed a procedure
from Freemind, where a local variable is initialized to null,
and then it is checked at three different locations if this vari-
able is null, causing all three else blocks to be unreachable.
This was the only experiment where we highlighted multiple
lines in the same program, which caused confusion.

For all other experiments, our visual assistance based on
error invariant automata helped the candidates to spot the
problem more quickly. We observed that the candidates got
faster from one experiment to another, as they got used
to the patterns of code inconsistencies. This corresponds
with the feedback that we got from our candidates that they
are not used to looking for inconsistencies, but after they
understood the problem found it easier to find the relevant
statements. Hence, for our future experiments, we plan to
do several training rounds with the candidates.

6.3 Threats to Validity
There are several threats to validity in this study. The

first is that the participants may not be representative pro-
grammers, as they were selected based on their availability
rather than on statistically meaningful criteria. This, com-
bined with the small sample size used, makes it difficult to
make any statistically rigorous claims based on our data.

2http://goo.gl/FF9an

http://goo.gl/FF9an


noteViewerComponent must not be null 

Figure 8: Example of the code snippets used in the experiment with, and without visual assistance created
from the error invariant automaton.

However, the results are extremely promising and we will
continue to further evaluate with larger sample sizes as tools
to detect inconsistent code become more mature.

Another threat to validity is the selection of the incon-
sistent code to test. Our code snippets are taken from real
world programs, but we cannot say that they represent rel-
evant cases of inconsistent code. So far, there are no studies
about different classes of inconsistent code and their fre-
quency of occurrence. Hence, with improving tools to detect
inconsistent code that will find more and different instances
of inconsistencies, we will have to re-evaluate our approach.
It is possible that larger code-bases may be more difficult
to analyze. However, experience with inconsistent code de-
tection tools such as Joogie [2] suggest that function local
reasoning is sufficient to detect such errors, which provides
a relatively small bound on the size of code we need to an-
alyze per instance. Modern SMT solvers such as CVC4 [4],
Z3 [11], and MathSAT [9], scale to large programs [29], so
this is unlikely to pose a significant problem in practise.

The effectiveness of our reduction algorithm depends on
the quality of the candidate error invariants generated by
the decision procedure. In our experiments, we generated
candidate invariants using interpolation. This requirement
for effective interpolation may limit which SMT theories we
can use, although this was not a problem with the set of
programs we tested.

The most interesting threat to validity is the way we pro-
vide visual assistance to the programmer. In our experi-
ments we use the approach shown in Figure 8. However,
experimenting with other visualization techniques like ani-
mations might lead to very different results.

7. RELATED WORK
The problem of detecting inconsistent code has been stud-

ied quite extensively in the literature [6,12,13,19,21,24,24,
34]. Note that many of these papers use slightly different
terminology such as deviant code [13], doomed code [21], in-
feasible code [2], and fatal code [34]. However, all of these
notions are identical to or subsumed by our notion of incon-
sistency. Several of these techniques have been implemented
in actual tools, including Joogie [2], which is co-developed
by one of the authors. These tools can identify inconsistent
code in programs. The extracted code fragments then serve
as input to the algorithm presented in this paper.

Our localization algorithm works well in combination with
static techniques for detecting inconsistent code because they
ensure that an actual proof of inconsistency can be con-

structed automatically. There also exist various techniques
that trade soundness for speed. For example, in [13] Engler
et al. use dynamic pattern matching to identify contradict-
ing believes about the value of program variables. A similar
approach is implemented in Findbugs [23], which uses a fast
but imprecise static analysis to detect bug patterns, includ-
ing inconsistent assumptions. By looking for patterns in-
stead of actually tracking the values of variables, these anal-
ysis become extremely fast and scalable but on the other
hand may produce false warnings. Since our algorithm uses
a sound static analysis technique to prove the existence of a
code inconsistency, it can be used as an additional filter to
eliminate such false warnings.

A common approach to fault localization is to compare
failing with successful executions (e.g., [16,17,25,31,32,35–
37]). However, these dynamic approaches are not suitable
for explaining inconsistent code. Inconsistency is a property
of all executions and not a single execution of a program.
One therefore needs to apply static techniques that can rea-
son symbolically about all executions.

One prominent static approach to fault localization in sin-
gle error traces is implemented in Bug-Assist [26, 27]. Bug-
Assist takes an error trace as input, translates it into a for-
mula in first-order logic, and then computes a maximal satis-
fiable core to exclude statements from the trace that are not
needed to reproduce the error. Similar to the approach pre-
sented in this paper, the Bug-Assist approach analyzes the
proof of unsatisfiability to remove non-relevant facts from
the program.

In our previous work on error invariants [8,15], we localize
errors by computing Craig interpolants from symbolic repre-
sentations of error traces. If the computed interpolants are
inductive for a portion of the error trace, then that part of
the trace is irrelevant for the error and can be abstracted. In
this work, we generalize this technique to consider not just
a single path through the program, but arbitrarily many
paths. This generalization then enables us to explain code
inconsistencies.

Although the applications are quite different, our use of
Craig interpolation for localization is inspired by invariant
generation techniques in software verification (e.g., [1, 7, 14,
30]). The problem of detecting inconsistent code can be
phrased as a verification problem. Invariant generation tech-
niques can therefore also be used to increase the detection
rate of code inconsistencies.

Further related to this work is the detection and expla-
nation of vacuously true specifications in finite-state model



checking (e.g., [18, 28, 33]). However, the techniques being
used in this context are very different from the work in our
paper. For example, in [18], multi-valued logic is used to find
witnesses that explain a correctness proof in model check-
ing. These witnesses are then used to reveal potential errors
in a specification that is expressed in a temporal logic.

8. FUTURE WORK
We see two major themes of future work. First, we will in-

vestigate different ways of generating visual assistance from
error invariant automata. Currently, we only hide state-
ments that are not represented by edges in the automaton
and show the invariants that hold in between. However,
hiding code in an IDE might be confusing to some program-
mers. Further, in our examples the invariants have been
very simple and thus it is easy to present them. We are still
looking for examples where the prover generates more com-
plex invariants and we will investigate to what extent they
have to be processed to be useful to a programmer.

The other aspect of our future work is the problem of how
to classify code inconsistencies. We expect that most pro-
grammers would find the detection of unreachable code and
guaranteed errors useful. For other classes of inconsistent
code this is less clear. For example, Joogie, which detects
code inconsistencies in Java programs, does not operate di-
rectly on the source code, but on the byte code that is gener-
ated by the compiler. The tool can therefore report inconsis-
tencies that are not immediately obvious to the programmer,
e.g., the compiler may translate a boolean expression in the
source code into a branch in the byte code. If the expression
evaluates to the same constant for all executions, then one
branch will be inconsistent. While such inconsistencies are
interesting for compiler optimizations, they should probably
not be reported to the programmer. In fact, such a redun-
dant expression may be intensional to document the code
implicitly.

9. CONCLUSION
We presented error invariant automata, as a model to ex-

plain inconsistent code. Our experiments indicate that error
invariant automata can be used to provide useful visual as-
sistance for programmers to spot the cause of inconsistencies
in code. We have provided an algorithm that automatically
computes such automata for a given inconsistent program.
This work can be seen as a generalization of the fault lo-
calization technique that we presented in [8]. In particular,
error invariant automata can also be used for fault localiza-
tion on a single error trace and thus provide a general tool
to assist programmers in debugging.
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