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ABSTRACT
We present RADA, a portable, scalable open source tool for
reasoning about formulas containing algebraic data types
using catamorphism (fold) functions. It can function as a
back-end for reasoning about recursive programs that ma-
nipulate algebraic types. RADA operates by successively
unrolling catamorphisms and uses either CVC4 and Z3 as
reasoning engines. We have used RADA for reasoning about
functional implementations of complex data structures and
to reason about guard applications that determine whether
XML messages should be allowed to cross network security
domains. Promising experimental results demonstrate that
RADA can be used in several practical contexts.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs

General Terms
Verification

Keywords
Decision procedures, satisfiability, unrolling

1. INTRODUCTION
Reasoning about algebraic data types has been an ongo-

ing research topic since they are ubiquitous in functional
programming. Applications include reasoning about data
structure algorithms and guard (firewall) applications that
allow/disallow XML messages to pass between networks (as
is performed in the Guardol [5] system). To help address the
challenge, powerful SMT solvers such as CVC4 [1] and Z3
[4] have also natively supported inductive data types writ-
ten in SMT format, allowing end-users to experiment with
interesting problems involving recursive data structures.
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To reason about inductive data types, one of the promi-
nent approaches is to abstract these data types into values
in some decidable domains. The abstraction could be in the
form of a catamorphism, as in some decision procedures for
algebraic data types [13, 15, 16], or could be in the form of re-
cursively defined functions, as in the Dryad logic introduced
by Madhusudan et al. [10]. Tools have been created to rea-
son about these applications, such as the Leon verification
system [16] that works on top of Z3 and reasons over func-
tions containing complex algebraic data structures written
in Scala. However, these tools tend to be tightly integrated
with the host language that they reason over: the Leon veri-
fication system is tightly integrated with Scala. For broader
applicability, we would like to have a language-agnostic tool
to perform this reasoning.

In this paper, we introduce RADA1, an open source tool
to reason about algebraic data types with abstractions that
is conformant with the SMT-Lib 2.0 format [2]. RADA
was designed to be host-language and solver-independent
and it can use either CVC4 or Z3 as its underlying SMT
solver. RADA has also been tested on all major platforms
and has successfully been integrated into the Guardol sys-
tem [5]. Experiments show that our tool is reliable, fast,
and works seamlessly across multiple platforms, including
Windows, Unix, and Mac OS.

The rest of this paper is organized as follows. Section 2
presents the algorithm behind RADA. Next, Section 3 de-
scribes its general architecture. Section 4 shows some exper-
imental results. Section 5 presents related work. Finally, we
conclude and outline some future work in Section 6.

2. ALGORITHM
RADA works based on our unrolling-based decision pro-

cedure to reason about recursive functions with abstractions
[13]. The input of the procedure is a formula φ in a logic2

that consists of literals over elements of tree terms and tree
abstractions generated by a catamorphism (i.e., a fold func-
tion that maps a recursively-defined data type into a value
in a base domain). In other words, φ contains a recursive
data type τ , an element type E of the value stored in each
tree node, a collection type C of tree abstractions in a de-
cidable logic LC , and a catamorphism α : τ → C that maps
an object in the data type τ into a value in the collection
type C. For example, suppose we have a data type RealTree
that represents a binary tree of real numbers. Each node of

1http://crisys.cs.umn.edu/rada/.
2See [15] for a full description of the syntax and semantics
of the logic.
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the tree can be either a Leaf or a Node(left : RealTree, elem :
Real, right : RealTree). To abstract a RealTree, we could use
a function SumTree : RealTree → Real that maps the tree
into a number showing the sum of all the elements stored in
the tree. In this example, E , C, and α are Real, Real, and
SumTree, respectively.

The decision procedure works on top of an SMT solver
S that supports theories for τ, E , C, and uninterpreted func-
tions. Note that the only part of the logic that is not in-
herently supported by S is the application of the catamor-
phism. Therefore, the main idea of the decision procedure is
to approximate the behavior of the catamorphism by repeat-
edly unrolling it a certain number of times and treating the
calls to the not-yet-unrolled catamorphism instances at the
lowest levels as calls to uninterpreted functions. However,
an uninterpreted function can return any values in its co-
domain; hence, the presence of these uninterpreted functions
can make SAT results untrustworthy. To address this issue,
each time the catamorphism is unrolled, a set of boolean
control conditions B is created to determine if the determi-
nation of satisfiability is independent of the uninterpreted
functions at the bottom level. That is, if all the control con-
ditions in B are true, the list of uninterpreted functions does
not play any role in the satisfiability result. In addition, we
observe that if a catamorphism instance is treated as an un-
interpreted function, the uninterpreted function should only
return values inside the range of the catamorphim; there-
fore, in our decision procedure, Rα captures the range of
catamorphism α and it is included in the satisfiability check
whenever the determination of satisfiability may require the
use of such uninterpreted functions.

The main steps of the procedure are shown in Algorithm
1. The input of the algorithm is a formula φ written in the
logic and a program Π, which contains φ and the definitions
of data type τ and catamorphism α. The goal of the algo-
rithm is to determine the satisfiability of φ through repeated
unrolling α using the unrollStep function. Given a formula
φi generated from the original φ after unrolling the cata-
morphism i times and the corresponding set of control con-
ditions Bi of φi, function unrollStep(φi,Π, Bi) unrolls the
catamorphim one more time and returns a pair (φi+1, Bi+1)
containing the unrolled version φi+1 of φi and a set of control
conditions Bi+1 for φi+1. Function decide(ϕ) simply calls S
to check the satisfiability of ϕ and returns SAT/UNSAT
accordingly.

Algorithm 1: Unrolling-based decision procedure in [13]

1 (φ,B)← unrollStep(φ,Π, ∅)
2 while true do
3 switch decide(φ ∧

∧
b∈B b) do

4 case SAT
5 return “SAT”

6 case UNSAT
7 switch decide(φ ∧Rα) do
8 case UNSAT
9 return “UNSAT”

10 case SAT
11 (φ,B)← unrollStep(φ,Π, B)

Let us examine how satisfiability and unsatisfiability are

determined in the algorithm. In general, the algorithm keeps
unrolling the catamorphism until we find a SAT/UNSAT
result that we can trust. To do that, we need to consider
several cases after each unrolling step is carried out. First,
at line 4, φ is satisfiable and all the control conditions are
true, which means uninterpreted functions are not involved
in the satisfiable result. In this case, we have a complete
tree model for the SAT result and we can conclude that the
problem is satisfiable.

On the other hand, let us consider the case when decide(φ∧∧
b∈B b) = UNSAT. The UNSAT may be due to the unsat-

isfiability of φ, or the set of control conditions, or both of
them together. To understand the UNSAT more deeply,
we can try to check the satisfiability of φ alone. Note that
checking φ alone also means that the control conditions are
not used; consequently, the values of uninterpreted functions
may contribute to the SAT/UNSAT result. Therefore, we
include Rα in the satisfiability check (i.e., decide(φ∧Rα) at
line 7) to ensure that if a catamorphism instance is viewed
as an uninterpreted function then the uninterpreted function
only returns values inside the range of the catamorphism. If
decide(φ∧Rα) = UNSAT as at line 8, we can conclude that
the problem is unsatisfiable because assigning the uninter-
preted functions to any values in their ranges still cannot
make the problem satisfiable as a whole. Finally, we need
to consider the case decide(φ ∧ Rα) = SAT as at line 10.
Since we already know that decide(φ ∧

∧
b∈B b) = UNSAT,

the only way to make decide(φ∧Rα) be SAT is by calling to
at least one uninterpreted function, which also means that
the SAT result is untrustworthy. Therefore, we need to keep
unrolling at least one more time as denoted at line 11.

Completeness. The decision procedure in Algorithm
1 has been proven to be sound for all catamorphisms and
complete for monotonic catamorphisms [13]. With mono-
tonic catamorphisms, completeness is guaranteed if there is
only one type of catamorphism (i.e., α) in the input for-
mula. We showed in [13] that for associative-commutative
catamorphisms, a popular subclass of monotonic catamor-
phisms, we can handle multiple catamorphisms while pre-
serving the completeness of the decision procedure. Also,
associative-commutative catamorphisms can be automati-
cally detectable and they allow Algorithm 1 to terminate af-
ter a considerably small number of unrollings. Furthermore,
we recently identified parameterized associative-commutative
catamorphisms [14] that have all the features of associative-
commutative catamorphisms and that allow several addi-
tional parameters to be defined in a catamorphism, making
our catamorphism approach more general and efficient.

3. TOOL ARCHITECTURE
Figure 1 shows the overall architecture of RADA, which

follows closely the algorithm described in Section 2. We use
CVC4 [1] and Z3 [4] as the underlying SMT solvers in RADA
because of their powerful abilities to reason about recursive
data types. The grammar of RADA in Figure 2 is based
on the SMT-Lib 2.0 [2] format with some new syntax for
selectors, testers, data type declarations, and catamorphism
declarations.

Note that although selectors, testers, and data type decla-
rations are not defined in SMT-Lib 2.0, all of them are cur-
rently supported by both CVC4 and Z3; therefore, only cata-
morphism declarations are not understood by these solvers.
:post-cond, which is used to declare Rα, is optional be-
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Figure 1: RADA architecture.

〈command〉1 ::= ( declare-datatypes () 〈datatype〉+ )

〈datatype〉 ::= ( 〈symbol〉 〈datatype branch〉+ )
〈datatype branch〉 ::= ( 〈symbol〉 〈datatype branch para〉∗ )

〈datatype branch para〉 ::= ( 〈symbol〉 〈sort〉 )

〈command〉2 ::= ( define-catamorphism 〈catamorphism〉 )
〈catamorphism〉 ::= ( 〈symbol〉 ( 〈sort〉 ) 〈sort〉 〈term〉

[:post-cond 〈term〉] )

〈selector application〉 ::= 〈symbol〉 〈symbol〉
〈tester application〉 ::= is-〈symbol〉 〈symbol〉

Figure 2: RADA grammar.

cause we do not need to specify Rα when α is a surjective
function (e.g., function SumTree in Section 2).

To illustrate the grammar used in RADA, let us further
examine the RealTree example briefly mentioned in Section
2. A RealTree, which could be a leaf or a root node with two
subtrees and a number stored in the node, could be written
in RADA syntax as follows:

(declare-datatypes () (
(RealTree

(Leaf)
(Node (left RealTree) (elem Real) (right RealTree)))))

Next, a RealTree could be abstracted into a real number
representing the sum of all elements in the tree by catamor-
phism SumTree, which is recursively defined as follows:

(define-catamorphism SumTree ((foo RealTree)) Real
(ite

(is-Leaf foo) 0.0
(+ (SumTree (left foo))

(elem foo)
(SumTree (right foo)))))

In the above SumTree definition, is-Leaf is a tester that
checks if a RealTree is a leaf node and left foo, elem foo,
and right foo are selectors that select the corresponding data
type branches in a RealTree named foo. Given the definitions
of data type RealTree and catamorphism SumTree, one may
want to check some properties of a RealTree in an SMT style,
for example:

(declare-fun l1 () RealTree)
(declare-fun l2 () RealTree)
(declare-fun l3 () RealTree)
(assert (= l1 (Node l2 5.0 l3)))
(assert (= (SumTree l1) 5.0))
(check-sat)

As expected, RADA returns sat for the above example.

4. EXPERIMENTAL RESULTS
RADA has been successfully integrated into the Guardol

system [5], replacing our implementation of the Suter-Dotta-
Kuncak decision procedure [15] on top of OpenSMT [3] in

Guardol. We have experimented RADA with a collection of
42 benchmark guard examples listed in Table 1. The results
are very promising: all of them were automatically verified
in a very short amount of time.

Table 1: Experimental results

# Benchmark Result Time (s)

Manually created benchmarks

1 sumtree01 sat 0.098
2 sumtree02 sat 0.079
3 sumtree03 sat 0.207
4 sumtree04 unsat 0.038
5 sumtree05 sat 0.096
6 sumtree06 sat 0.097
7 sumtree07 sat 0.045
8 sumtree08 unsat 0.041
9 sumtree09 unsat 0.042
10 sumtree10 sat 0.042
11 sumtree11 sat 0.083
12 sumtree12 unsat 0.041
13 sumtree13 sat 0.036
14 sumtree14 unsat 0.114
15 mut rec1 sat 0.077
16 mut rec3 unsat 0.059
17 mut rec4 unsat 0.091
18 min max01* unsat 0.078
19 min max02* unsat 0.459
20 min max sum01* unsat 1.688
21 min max sum02* sat 0.224
22 min max sum03* sat 0.601
23 min max sum04* sat 0.521
24 min size sum01* unsat 1.314
25 min size sum02* sat 0.262
26 negative positive01* unsat 0.065
27 negative positive02* unsat 0.421

Manually created benchmarks containing
parameterized associative-commutative catamorphisms [14]

28 forall01 sat 0.633
29 forall02 unsat 0.455
30 exists01 sat 0.074
31 exists02 unsat 0.082
32 member01 sat 0.331
33 member02 unsat 0.458
34 ngn01 sat 0.602
35 ngn02 unsat 0.251
36 ngn ngn01* sat 0.801
37 ngn ngn02* unsat 0.315

Complex guard benchmarks from Guardol [5]

38 Email Guard Correct All* 17 unsats ≈0.031/obligation
39 RBTree.Black Property* 12 unsats ≈11.752/obligation
40 RBTree.Red Property* 12 unsats ≈0.664/obligation
41 array checksum.SumListAdd* 2 unsats ≈0.064/obligation
42 array checksum.SumListAdd Alt* 13 unsats ≈0.025/obligation

The set of benchmarks is divided into three parts. The
first part contains simple manually created benchmarks in-
volving normal catamorphisms. Some benchmarks in this
part were used to verify interesting properties such as (1)
there does not exist a tree that is both positive (i.e., all of
its nodes are positive) and negative (i.e., all of its nodes are
negative) and (2) the minimum value in a tree can not be
bigger than the maximum value in the tree. The second
group consists of ten manually created benchmarks involv-
ing parameterized associative-commutative catamorphisms
[14]; some of them represent important higher-order func-
tions such as forall, exists, and member. All benchmarks in
the last part were automatically generated from Guardol [5]
and are highly complicated; for example, the Email Guard
benchmark has 8 mutually recursive data types, 6 catamor-
phisms, and 17 complex obligations. Benchmarks with ∗ in



Table 1 contain multiple catamorphisms.
RADA was designed to be solver-independent, portable,

and compilable on all major platforms. All benchmarks
were run on a Ubuntu machine using an Intel Core I5 run-
ning at 2.8 GHz with 4GB RAM. All the running time was
measured when Z3 was used as the reasoning engine of the
tool. RADA, its source code, all the benchmarks in this pa-
per, and a screencast to illustrate the tool are available at
http://crisys.cs.umn.edu/rada/.

5. RELATED WORK
There are some tools that support catamorphisms (as well

as other functions) over algebraic data types. For example,
Isabelle [11], PVS [12], and ACL2 [7] provide efficient sup-
port for both inductive reasoning and evaluation. Although
very powerful and expressive, these tools usually need man-
ual assistance and require substantial expert knowledge to
construct a proof. On the contrary, RADA is fully auto-
mated and accepts input written in the popular SMT-Lib
2.0 format [2]; therefore, we believe that RADA is more
suited for non-expert users.

In addition, there are a number of other tools built on
top of SMT solvers that have support for data types. One
of such tools is Dafny [9], which supports many imperative
and object-oriented features; hence, Dafny can solve many
verification problems that RADA cannot. On the other
hand, Dafny does not have explicit support for catamor-
phisms, so for many problems it requires significantly more
annotations than RADA. For example, RADA can, with-
out any annotations other than the specification of correct-
ness, demonstrate the correctness of insertion and deletion
for red-black trees. From examining proofs of similarly com-
plex data structures (such as the PriorityQueue) provided in
the Dafny distribution, it is likely that these proofs would
require significant annotations in Dafny.

Our work was inspired by the Leon system, which uses
an unrolling-based semi-decision procedure to reason about
catamorphisms [16]. While Leon uses Scala input, RADA of-
fers a more neutral input format, which is a superset of SMT-
Lib 2.0. In addition, Leon specifically uses Z3 [4] as its un-
derlying SMT solver, whereas RADA is solver-independent:
it currently supports both Z3 and CVC4. In fact, RADA can
support any SMT solvers that use SMT-Lib 2.0 and that
have supports for algebraic data types and uninterpreted
functions. In addition, RADA is open source while Leon
is not (at the time of writing). More importantly, RADA
guarantees the completeness of the results even when the in-
put formulas have multiple catamorphisms with or without
parameters for certain classes of catamorphisms [13, 14]; in
this situation, it is unknown whether the decision procedure
[16] used in Leon can ensure the completeness or not be-
cause the authors [16] only claimed the completeness of the
procedure when there is only one type of catamorphism in
the input formulas and there are not any additional parame-
ters to be defined within catamorphisms except the algebraic
data types.

6. CONCLUSION
We have presented RADA, an open source tool to reason

about inductive data types with catamorphisms. RADA
was designed to be simple, efficient, portable, and easy to
use. The successful uses of RADA in the Guardol project [5]

demonstrate that RADA not only could serve as a good re-
search prototype tool but also holds great promise for being
used in other real world applications.

With the help of RADA, we have been able to reason
about unbounded data in Guardol. However, verifying string
operations in Guardol still remains a challenge and they are
currently treated as uninterpreted functions in our system.
Therefore, in the future, we would like to extend RADA to
support a string decision procedure [6, 8] in our tool.
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